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Abstract. We develop an implementable algorithm for the solution of a class of generalized semi-
infinite min-max problems. To this end, first we use exact penalties to convert a generalized semi-
infinite min-max problem into a finite family of semi-infinite min-max-min problems. Second, the
inner min-function is smoothed and the semi-infinite max part is approximated, using discretization,
to obtain a three-parameter family of finite min-max problems. Under a calmness assumption, we
show that when the penalty is sufficiently large the semi-infinite min-max-min problems have the
same solutions as the original problem, and that when the smoothing and discretization parameters
go to infinity the solutions of the finite min-max problems converge to solutions of the original
problem, provided the penalty parameter is sufficiently large.

Our algorithm combines tests for adjusting the penalty, the smoothing, and the discretization
parameters and makes use of a min-max algorithm as a subroutine. In effect, the min-max algorithm
is applied to a sequence of gradually better-approximating min-max problems, with the penalty
parameter eventually stopping to increase, but with the smoothing and discretization parameters
driven to infinity. A numerical example demonstrates the viability of the algorithm.
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1. Introduction. We consider the class of generalized semi-infinite min-max
problems in the form

P min
x∈Rn

ψ(x),(1.1)

where ψ : Rn → R is defined by

ψ(x)
�
= max

y∈Y
{φ(x, y) | f(x, y) ≤ 0},(1.2)

with φ : Rn × Rm → R, f : Rn × Rm → R
r1 , Y

�
= {y ∈ Rm|g(y) ≤ 0}, g : Rm → R

r2 ,
and v ≤ 0 meaning v1 ≤ 0, . . . , vq ≤ 0, for any v = (v1, . . . , vq) ∈ Rq. We use
superscripts to denote components of vectors.

This class of generalized semi-infinite min-max problems is of both theoretical and
practical interest. In particular, generalized semi-infinite min-max problems occur in
various engineering applications. For example, optimal design of civil and aerospace
structures is frequently considered in a probabilistic framework, where uncertainties
in material properties, loads, and boundary conditions are taken into account. Let
x ∈ Rn be a vector of deterministic design variables, e.g., physical dimensions of the
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structure, or parameters in the probability distribution of the random quantities. The
probability of failure of a structure Pf : Rn → [0, 1] for a given design vector x, is
defined by (see [5])

Pf (x)
�
=

∫
{y∈Rm|h(x,y)≤0}

ϕ(y)dy,(1.3)

where ϕ(·) is the m-dimensional standard normal probability density function,1 and
h : Rn × Rm → R is a smooth real-valued limit-state function.

The optimal design problem is typically in the form

min
x∈Rn
{ c0(x) + c1(x)Pf (x) },(1.4)

where c0 : Rn → R is the initial cost of the structure and c1 : Rn → R is the
cost of structural failure. The evaluation of Pf (·) is computationally expensive, and
the mathematical properties of Pf (·) are not easily available. Hence, a first-order
approximation to the probability of failure is usually considered acceptable. Based on
such approximations, it can be shown (see [22]) that (1.4) can be approximated by

min
x∈Rn

max
y∈Γ(x)

{
c0(x) + c1(x)Φ

[
βh(x, 0)

h(x, y)− h(x, 0)

]}
,(1.5)

where Φ(·) is the standard normal cumulative distribution function and Γ(x) =
{y ∈ Rm | h(x, y) − h(x, 0) ≤ −α, ‖y‖2 ≤ β2}, with α, β > 0. Hence, the opti-
mal design problem (1.4) can approximately be solved by solving a generalized semi-
infinite min-max problem in the form (1.1), with f(x, y) = h(x, y) − h(x, 0) + α and
g(y) = ‖y‖2 − β2.

There is a nontrivial literature dealing with the existence of and formulas for direc-
tional derivatives of generalized max-functions, such as the one in (1.2) (e.g., [2, 21]),
and with first-order optimality conditions for generalized semi-infinite optimization
problems of the form

min
x∈Rn
{f0(x) | ψ(x) ≤ 0},(1.6)

where f0 : Rn → R is smooth and ψ(·) is as in (1.2) [9, 23, 24, 25, 26, 28]. Just as
we do in Assumption 2.6 below, [28] also assumes that the linear independence con-
straint qualification for the “inner problem” (1.2) is satisfied. Under this assumption,
[28] shows that the problem in (1.6) is equivalent to a standard semi-infinite optimiza-
tion problem, i.e., a problem in the form minx∈Rn{f0(x) | φ(x, ω) ≤ 0, ω ∈ Ω}, with
φ(·, ·) smooth and Ω of infinite cardinality. However, it is not clear how to implement
a procedure for constructing the equivalent problem.

There are only a few papers dealing with numerical methods for problems in the
form (1.6). In [7], an algorithm is presented, without a convergence proof, for a special
class of problems, with f0(x) = x ∈ R, arising in the evaluation of the acceleration
radius of manipulator positioning systems. Other basic ideas for solving problems
of the form (1.6) in robotics (maneuverability problems) can be found in [8]. A
special case of (1.6) arising in robotics and minimum time optimal control problems
is considered in [10], where y ∈ R,m = 1. In [13], we find an algorithm for the

1When the uncertainties are not described by standard normal random variables, such variables
can always be obtained by a nonlinear transformation; see [5].
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solution of the special case with φ(x, y) = 1
2 〈y,Gy〉+ 〈a, y〉+ 〈y,Hx〉, G,H matrices,

fk(x, y) = 〈pk, y〉 + qk(x), a, pk ∈ Rm, and convex functions qk. In [26, 27] we find
a conceptual algorithm for solving the problem (1.6). In these papers it is assumed
that the LICQ, second-order sufficient conditions, and strict complementary slackness
for the “inner problem” in (1.2) hold. The algorithm in [26, 27] applies a globally
convergent Newton-type method to the Karush–Kuhn–Tucker system for a locally
reduced problem. In addition, a conceptual algorithm, based on discretization, is
presented in [27]. In the still unpublished paper [12], Levitin employs a differentiable
penalty function to remove the constraints f(x, y) ≤ 0, and shows that the sequence
of global solutions of the penalized problem converges to a global solution of (1.6),
as the penalty goes to infinity. Thus, in spirit, his approach is close to ours. To the
authors’ knowledge there exists no implementable algorithm for solving general forms
of P.

In this paper we present an implementable algorithm for solving general forms
of P under a calmness assumption. We use an exact penalty function to eliminate
the inequalities in (1.2) that depend on x, i.e., f(x, y) ≤ 0, and as a result convert
the generalized semi-infinite min-max problem into a standard semi-infinite min-max
problem with an unknown penalty parameter. In principle, we could have picked
any one of the existing exact penalty or augmented Lagrangian functions for this
purpose; see, e.g., [16, 17]. However, the use of augmented Lagrangians, together with
differentiable multiplier estimates as in [6], is unattractive because it would require a
second-order sufficient condition to hold at solutions of the “inner problem” in (1.2),
evaluation of second-order derivatives even by a first-order algorithm, and the linear
independence assumption on the gradients ∇yfk(x, y) and ∇gk(y) at every x ∈ Rn
and y ∈ Y . Hence, we opted for a standard nondifferentiable exact penalty function,
which avoids the need for an assumption about a second-order sufficient condition
and second-order derivative evaluations and requires only the linear independence
assumption on the gradients ∇yfk(x, y) and ∇gk(y) at points y ∈ Y , which are
solutions to the “inner problem” (1.2). The selected approach leads to an algorithm
that generates sequences converging to weaker stationary points than the ones given
in [24]; see Appendix A. It is unknown whether a different penalty function would
have resulted in an algorithm converging to stronger stationary points.

Since a penalty function of the form φ(x, y) − π‖f(x, y)+‖∞ is in fact a min-
function, use of a nondifferentiable exact penalty function results in a semi-infinite
min-max-min problem with an unknown penalty parameter. This problem can be
approximated by a finite min-max problem obtained by discretizing the semi-infinite
part and smoothing the min-function. This adds two more parameters to the resulting
min-max problem. In view of this, our algorithm combines tests for adjusting the
three parameters with the Pironneau–Polak–Pshenichnyi min-max algorithm [17, 20].
Under mild assumptions, we show that if the algorithm generates a bounded sequence,
then the penalty parameter remains bounded and that there exists an accumulation
point which satisfies a first-order optimality condition.

Along the way, we needed a few results from [19], such as a new optimality condi-
tion for min-max-min problems and tests for adjusting discretization and smoothing
parameters. For completeness, we have duplicated those results.

In section 2 we define the penalized problem and establish its relation to P. In
the process we obtain a new first-order optimality condition for P. Approximations
for the solution of the penalized problem are defined in section 3. Section 4 presents
the algorithm and the proof of its convergence. The paper ends with a numerical
example and concluding remarks.
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2. Exact penalization. As described in the introduction, we introduce exact
penalization for the violation of the constraints f(x, y) ≤ 0 in (1.2). Let π denote this
penalty. Hence, for any π > 0 we define a family of related problems by

Pπ min
x∈Rn

ψπ(x),(2.1)

where ψπ : Rn → R is defined by

ψπ(x)
�
= max

y∈Y
{φ(x, y)− π‖f(x, y)+‖∞},(2.2)

with ‖v+‖∞ �
= max{max{v1, 0}, . . . ,max{vq, 0}}.

At first glance (2.1) looks like an ordinary min-max problem. However, ‖f(x, y)+‖∞
is a max-function, and hence we see that, with r

�
= {1, . . . , r} and r

�
= r1 + 1,

ψπ(x) = max
y∈Y
{φ(x, y)− π‖f(x, y)+‖∞} = max

y∈Y
min
k∈r

φkπ(x, y),(2.3a)

where

φkπ(x, y)
�
= φ(x, y)− πfk(x, y), k ∈ r1

�
= {1, . . . , r1},(2.3b)

φrπ(x, y)
�
= φ(x, y).(2.3c)

We need the following notation: Let B(x, ρ)
�
= {x′ ∈ Rn|‖x − x′‖ ≤ ρ}, and let

ωπ : Rn × Rm → R, Ŷ : Rn → 2R
m

and Ŷπ : Rn → 2R
m

be defined by

ωπ(x, y)
�
= min

k∈r
φkπ(x, y),(2.3d)

Ŷ (x)
�
= argmax

y∈Y
{φ(x, y) | f(x, y) ≤ 0},(2.4a)

Ŷπ(x)
�
= argmax

y∈Y
{φ(x, y)− π‖f(x, y)+‖∞} = {y ∈ Y | ωπ(x, y) = ψπ(x)}.(2.4b)

Note that (2.3a,d) imply that ψπ(x) = maxy∈Y ωπ(x, y).
Assumption 2.1. We assume that

(i) φ(·, ·), fk(·, ·), k ∈ r1 = {1, . . . , r1}, and gk(·), k ∈ r2
�
= {1, . . . , r2}, are

continuously differentiable, and that
(ii) Y ⊂ Rm is compact, and that {y ∈ Y |f(x, y) ≤ 0} �= ∅ for all x ∈ Rn.
The notion of calmness (see [4, 3]) can be used to show the local equivalence of

Pπ and P for π sufficiently large. For any x ∈ Rn and u ∈ Rr1 , consider the perturbed
“inner problem” (see (1.2)) defined by

IP(x, u) max
y∈Y
{φ(x, y) | f(x, y) ≤ u}.(2.5)

Let the value function v : Rn × Rr1 → R
⋃ {−∞} of IP(x, u) be defined by

v(x, u)
�
= max

y∈Y
{φ(x, y) | f(x, y) ≤ u},(2.6)

where v(x, u) = −∞ if f(x, y) > u for all y ∈ Y .
We now define local calmness. A sufficient condition for local calmness will be

given at the end of the section.
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Definition 2.2. We say that IP(x̂, 0) is locally calm at x̂ ∈ Rn if there exist
ρ̂ > 0 and α̂ <∞ such that

v(x, u)− v(x, 0) ≤ α̂‖u‖∞(2.7)

for every x ∈ B(x̂, ρ̂) and u ∈ Rr1 .
Theorem 2.3. Suppose that Assumption 2.1 holds and that IP(x̂, 0) is locally

calm at x̂ ∈ Rn. Then there exist a π̂ < ∞ and a ρ̂ > 0 such that ψ(x) = ψπ̂(x)
for all x ∈ B(x̂, ρ̂), and hence x̂ is a local minimizer for P if and only if x̂ is a local
minimizer for Pπ̂.

Proof. Let ρ̂ > 0 and α̂ < ∞ be as in Definition 2.2. Now, let x ∈ B(x̂, ρ̂) and
y ∈ Ŷ (x) be arbitrary. We will show that y ∈ Ŷπ̂(x), with π̂ = α̂. For the sake of a
contradiction, suppose that y /∈ Ŷπ̂(x). Then there exists y′ ∈ Y such that

φ(x, y′)− π̂‖f(x, y′)+‖∞ > φ(x, y)− π̂‖f(x, y)+‖∞.(2.8a)

Hence,

φ(x, y′)− φ(x, y) > π̂‖f(x, y′)+‖∞ − π̂‖f(x, y)+‖∞
= π̂‖f(x, y′)+‖∞.

(2.8b)

Next, φ(x, y′) ≤ v(x, f(x, y′)+) and φ(x, y) = v(x, 0). Hence, by (2.7)

φ(x, y′)− φ(x, y) ≤ v(x, f(x, y′)+)− v(x, 0)

≤ π̂‖f(x, y′)+‖∞,
(2.8c)

which is a contradiction. Hence, y ∈ Ŷ (x), y ∈ Ŷπ̂(x), and

ψπ̂(x) = φ(x, y)− π̂‖f(x, y)+‖∞
= ψ(x).

(2.8d)

Hence, ψ(x) = ψπ̂(x) for all x ∈ B(x̂, ρ̂), and the result follows.
Optimality conditions can be expressed in terms of continuous, nonpositive valued

optimality functions, which vanish at local minimizers; see [17].
Theorem 2.4. Suppose that Assumption 2.1 holds, and for any π > 0 let

θπ : Rn → R be an optimality function defined by

θπ(x)
�
= − min

ζ̄∈Ḡψπ(x)
ζ−1 + ζ0 +

1

2
‖ζ‖2,(2.9)

Ḡψπ(x̂)
�
= conv

y∈Y
conv
k∈r






φkπ(x̂, y)− ωπ(x̂, y)

ψπ(x̂)− ωπ(x̂, y)

∇xφkπ(x̂, y)




 ,(2.10)

where elements of Ḡψπ(x̂) ⊂ R
n+2 are denoted by ζ̄ = (ζ−1, ζ0, ζ), with ζ ∈ Rn.

Then (i) θπ(·) is continuous and nonpositive valued, and (ii) if x̂ is a local minimizer
for Pπ, then θπ(x̂) = 0.

Proof. (i) By Corollaries 5.3.9 and 5.4.2 in [17], θπ(·) is continuous and nonpositive
valued.
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(ii) If x̂ is a local minimizer for Pπ, then

d−ψπ(x;h) ≥ 0 ∀ h ∈ Rn,(2.11a)

where d−ψπ(x;h) is the lower Dini directional derivatives of ψπ(·) at a point x in a
direction h, i.e.,

d−ψπ(x;h)
�
= lim inf

t↓0
ψπ(x+ th)− ψπ(x)

t
.(2.11b)

Next, for any x ∈ Rn and y ∈ Y , let r̂π(x, y)
�
= {k ∈ r | φkπ(x, y) = ωπ(x, y)}. By

using (2.4b), the facts that for any y ∈ Y , −ψπ(x) ≤ −ωπ(x, y) and that r̂π(x, y) ⊂ r,
and the definition of r̂π(x, y), we obtain that for any x, h ∈ Rn and t > 0,

ψπ(x+ th)− ψπ(x)

t
= max

y∈Ŷπ(x+th)
min
k∈r

φkπ(x+ th, y)− ψπ(x)

t

≤ max
y∈Ŷπ(x+th)

min
k∈r̂π(x,y)

φkπ(x+ th, y)− ωπ(x, y)

t

= max
y∈Ŷπ(x+th)

min
k∈r̂π(x,y)

〈∇xφkπ(x+ sth, y), h〉,

(2.11c)

where s ∈ [0, 1]. Hence, since Ŷπ(·) is outer semicontinuous in the sense of Kuratowski–
Painlevé (see [21, 17]), we have that

lim inf
t↓0

ψπ(x+ th)− ψπ(x)

t
≤ max

y∈Ŷπ(x)
min

k∈r̂π(x,y)
〈∇xφkπ(x, y), h〉.(2.11d)

Next, we proceed by contraposition. Suppose that 0 /∈ Ḡψπ(x̂). Then there exists
a nonzero vector h ∈ Rn such that 〈∇xφkπ(x̂, y), h〉 < 0 for all y ∈ Ŷπ(x̂) and all
k ∈ r̂π(x̂, y). Hence, by (2.11d), d−ψπ(x̂;h) < 0. Therefore, (2.11a) implies that
0 ∈ Ḡψπ(x̂) and θπ(x̂) = 0.

In view of Theorem 2.3, we can formulate the following optimality condition for P.
Theorem 2.5. Suppose that Assumption 2.1 holds and that IP(x̂, 0) is locally

calm at x̂ ∈ Rn. If x̂ is a local minimizer for P, then there exists a π̂ <∞ such that
θπ̂(x̂) = 0 and ψ(x̂) = ψπ̂(x̂).

The optimality condition for P in Theorem 2.5 can be related to an optimality
condition in [24]; see Appendix A.

In the remainder of the section, we derive results leading to the conclusion that
Assumption 2.1, together with Assumption 2.6, are sufficient conditions for local
calmness.

Assumption 2.6. We assume that for any x ∈ Rn and y ∈ Ŷ (x), the vectors
∇yfk(x, y), k ∈ r∗1(x, y), together with the vectors ∇gk(y), k ∈ r∗2(y), are linearly
independent, where r1 = {1, . . . , r1}, r2 = {1, . . . , r2}, and

r∗1(x, y)
�
= {k ∈ r1|fk(x, y)− ‖f(x, y)+‖∞ = 0},(2.12a)

r∗2(y)
�
= {k ∈ r2|gk(y) = 0}.(2.12b)

Next, we will define a test function, which plays a crucial role in determining the
value of the penalty π that is sufficiently large to ensure the local equivalence between
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P and Pπ near a point x̂ ∈ Rn. We need the following building blocks: Let

A(x, y)
�
=

(
fy(x, y)

gy(y)

)
(2.13a)

be an (r1 + r2)×m matrix with

fy(x, y)
�
= (∇yf1(x, y), . . . ,∇yfr1(x, y))T ,(2.13b)

gy(y)
�
= (∇g1(y), . . . ,∇gr2(y))T ,(2.13c)

and let

B(x, y)
�
= diag(B1(x, y), B2(y))(2.13d)

be an (r1+r2)×(r1+r2) diagonal matrix defined in terms of the two diagonal matrices

B1(x, y)
�
= diag([f1(x, y)− ‖f(x, y)+‖∞]2, . . . , [fr1(x, y)− ‖f(x, y)+‖∞]2),(2.13e)

B2(y)
�
= diag([g1(y)]2, . . . , [gr2(y)]2).(2.13f)

Furthermore, let z : Rn × Rm → R
r1+r2 be defined by

z(x, y)
�
= (η(x, y), ξ(x, y))T

�
= [A(x, y)A(x, y)T +B(x, y)]+A(x, y)∇yφ(x, y),

(2.13g)

where η(x, y) ∈ Rr1 , ξ(x, y) ∈ Rr2 , and M+ denotes the pseudoinverse2 of the ma-
trix M .

Using a similar construction as in [6], we define for any π > 0 the test function
tπ : Rn × Rm → R by

tπ(x, y)
�
= −π + σ

r1∑
k=1

|ηk(x, y)|,(2.13h)

where σ > 1.
The function η(·, ·) has the following properties, which will ensure that the test

function in (2.13h) is well-defined for all x ∈ Rn and y ∈ Rm, and it is continuous
whenever η(·, ·) is continuous. Note that η(x, y) is under certain assumptions related
to the multipliers of the “inner problem” in (1.2); see the proof of Lemma 2.7.

Lemma 2.7. Suppose Assumption 2.1 holds and σ > 1 in (2.13h).
(i) Then η(·, ·) is well-defined for all x ∈ Rn and y ∈ Rm.
(ii) If x ∈ Rn and y ∈ Rm are such that ∇yfk(x, y), k ∈ r∗1(x, y) (see (2.12a)),

together with ∇gk(y), k ∈ r∗2(y) (see (2.12b)), are linearly independent, then
A(x, y)A(x, y)T +B(x, y) (see (2.13a), (2.13d)) is positive definite, and η(·, ·)
is continuous at x ∈ Rn and y ∈ Rm.

(iii) If x ∈ Rn and π > 0 is such that tπ(x, yx) ≤ 0 for some yx ∈ Ŷπ(x), and
∇yfk(x, yx), k ∈ r∗1(x, yx) (see (2.12a)), together with ∇gk(yx), k ∈ r∗2(yx)
(see (2.12b)), are linearly independent, then yx ∈ Ŷ (x) and ψ(x) = ψπ(x).

2The pseudoinverse of a real matrix M is obtained by first taking a singular-value decomposition
M = PDQ, with P and Q unitary matrices, and D diagonal, and then setting M+ = QTD+PT .
The pseudoinverse of a diagonal matrix is obtained by replacing the ith diagonal term dii with 1/dii
whenever dii �= 0, otherwise with 0; see [11].
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Proof. (i) By Theorem 4 in section 5.4 in [11], the pseudoinverse is unique, and
hence η(·, ·) is uniquely defined for all x ∈ Rn and y ∈ Rm.

(ii) Let x ∈ Rn and y ∈ Rm be such that ∇yfk(x, y), k ∈ r∗1(x, y) (see (2.12a)),
together with ∇gk(y), k ∈ r∗2(y) (see (2.12b)), are linearly independent. By the defi-
nition in (2.13g), z(x, y) satisfies the equation

[A(x, y)A(x, y)T +B(x, y)]z(x, y)−A(x, y)∇yφ(x, y) = 0,(2.14a)

which is also the first-order necessary optimality condition for the unconstrained con-
vex quadratic optimization problem

min
z∈Rr1+r2

{‖−∇yφ(x, y) +A(x, y)T z‖2 + 〈z,B(x, y)z〉}.(2.14b)

We will first show that z(x, y) is the unique solution of (2.14b). Since (2.14b) is a
quadratic problem, we need only to show that the quadratic function being minimized
is positive definite. Clearly, this function is positive semidefinite. Let z = (η, ξ). Then
the quadratic part of the cost function in (2.14b) can be written as follows:

〈z, [A(x, y)A(x, y)T +B(x, y)]z〉
= ‖fy(x, y)T η + gy(y)

T ξ‖2 + 〈η,B1(x, y)η〉+ 〈ξ,B2(x, y)ξ〉.(2.15a)

Hence, the quadratic function in (2.14b) is positive definite if and only if

‖fy(x, y)T η + gy(y)
T ξ‖2 + 〈η,B1(x, y)η〉+ 〈ξ,B2(x, y)ξ〉 = 0(2.15b)

implies that η = 0 and ξ = 0. Now, when (2.15b) holds, we must have that ηk = 0
for all k /∈ r∗1(x, y), and ξk = 0 for all k /∈ r∗2(y). Hence, (2.15b) implies that∑

k∈r∗1(x,y)

ηk∇yfk(x, y) +
∑

k∈r∗2(y)

ξk∇gk(y) = 0.(2.15c)

It now follows from the linear independence hypothesis that (2.15c), and hence also
(2.15b), hold if and only if η = 0 and ξ = 0. This shows that [A(x, y)A(x, y)T+B(x, y)]
is positive definite, and hence z(x, y) is the unique solution of (2.14b).

Next, since there is an unique solution to (2.14b), it follows that [A(x, y)A(x, y)T+
B(x, y)] is invertible, and the inverse is identical to the pseudoinverse. Hence,

z(x, y)
�
= [A(x, y)A(x, y)T +B(x, y)]−1A(x, y)∇yφ(x, y).(2.15d)

Since [A(x, y)A(x, y)T + B(x, y)] is positive definite, there exists ε > 0 such that
[A(x′, y′)A(x′, y′)T +B(x′, y′)] is positive definite for all (x′, y′) ∈ B((x, y), ε). Hence,
(2.15d) holds, with x = x′ and y = y′, for all (x′, y′) ∈ B((x, y), ε), which implies that
z(·, ·) is continuous at (x, y).

(iii) Let x ∈ Rn, yx ∈ Rm, and π > 0 be such that tπ(x, yx) ≤ 0, yx ∈ Ŷπ(x), and
∇yfk(x, yx), k ∈ r∗1(x, yx), together with ∇gk(yx), k ∈ r∗2(yx), are linearly indepen-
dent at (x, yx). Then yx is a minimizer for the problem (see (2.3a) and (2.4b))

min
y∈Y

max
k∈r
{−φkπ(x, y)},(2.15e)

and it follows from first-order optimality conditions (see [17]) that there exist mul-
tipliers ν ∈ Rr, with νk ≥ 0, k ∈ r,

∑r
k=1 ν

k = 1, and µ ∈ Rr2+1, with µk ≥ 0,
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k ∈ {0, 1, . . . , r2},
∑r2

k=0 µ
k = 1, such that

µ0

[
r∑

k=1

−νk∇yφkπ(x, yx)
]
+

r2∑
k=1

µk∇gk(yx) = 0,(2.15f)

µ0

[
r∑

k=1

νk(−φkπ(x, yx) + ωπ(x, yx))

]
+

r2∑
k=1

µkgk(yx) = 0.(2.15g)

By the linear independence hypothesis, µ0 > 0. Using (2.3b) and (2.3c), (2.15f) can
be rewritten as

−∇yφ(x, yx) +
r1∑
k=1

νkπ∇yfk(x, yx) +
r2∑
k=1

µk

µ0
∇gk(yx) = 0,(2.15h)

and, also using the fact that each term in (2.15g) must be nonnegative, (2.15g) can
be rewritten as

νkπ(fk(x, yx)− ‖f(x, yx)+‖∞) = 0, k ∈ r1,(2.15i)

νrπ‖f(x, yx)+‖∞ = 0,(2.15j)

µk

µ0
gk(yx) = 0, k ∈ r2.(2.15k)

Then we see from (2.14b), and the definitions (2.13a) and (2.13d), that

min
η∈Rr1 ,ξ∈Rr2



∥∥∥∥∥−∇yφ(x, yx) +

r1∑
k=1

ηk∇yfk(x, yx) +
r2∑
k=1

ξk∇gk(yx)
∥∥∥∥∥

2

+

r1∑
k=1

[ηk(fk(x, yx)− ‖f(x, yx)+‖∞)]2 +

r2∑
k=1

[ξkgk(yx)]
2


 ≥ 0.

(2.15l)

Since the cost function in (2.15l) is nonnegative for all vectors η ∈ Rr1 and ξ ∈ Rr2 ,
it follows, by taking η = (ν1π, . . . , νr1π) and ξ = (µ1/µ0, . . . , µr2/µ0) and (2.15h),
(2.15i), (2.15k), that

min
η∈Rr1 ,ξ∈Rr2



∥∥∥∥∥−∇yφ(x, yx) +

r1∑
k=1

ηk∇yfk(x, yx) +
r2∑
k=1

ξk∇gk(yx)
∥∥∥∥∥

2

+

r1∑
k=1

[ηk(fk(x, yx)− ‖f(x, yx)+‖∞)]2 +

r2∑
k=1

[ξkgk(yx)]
2




≤
∥∥∥∥∥−∇yφ(x, yx) +

r1∑
k=1

νkπ∇yfk(x, yx) +
r2∑
k=1

µk

µ0
∇gk(yx)

∥∥∥∥∥
2

+

r1∑
k=1

[νkπ(fk(x, yx)− ‖f(x, yx)+‖∞)]2 +

r2∑
k=1

[
µk

µ0
gk(yx)

]2
= 0.

(2.15m)

Since the linear independence property holds at (x, yx), it follows from the proof
of part (ii) that (2.14b) has a unique solution. Hence, in view of (2.15l)–(2.15m),
η(x, yx) = (ν1π, . . . , νr1π).
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Suppose that ‖f(x, yx)+‖∞ > 0. Then by (2.15j), νr = 0, and hence
∑r1

k=1 ν
k = 1.

Now, since tπ(x, yx) ≤ 0 by assumption (see (2.13h)),

π ≥ σ

r1∑
k=1

|ηk(x, yx)| = σ

r1∑
k=1

νkπ = σπ.(2.15n)

However, this is a contradiction because σ > 1. Hence f(x, yx) ≤ 0. Since yx ∈ Ŷπ(x),
we have that for every y′ ∈ Y such that f(x, y′) ≤ 0,

φ(x, y′) = φ(x, y′)− π‖f(x, y′)+‖∞
≤ φ(x, yx)− π‖f(x, yx)+‖∞
= φ(x, yx).

(2.15o)

Hence, yx ∈ Ŷ (x), and

ψπ(x) = φ(x, yx)− π‖f(x, yx)+‖∞
= ψ(x).

(2.15p)

This completes the proof.

In the following, for any S ⊂ Rm and ρ > 0, let S + Bρ
�
= {y ∈ Rm|‖y − y′‖ ≤ ρ,

y′ ∈ S}. Furthermore, we denote the convergence of an infinite (sub)sequence {xi}i∈K ,
K ∈ N, to a point x, by xi →K x.

Lemma 2.8. Suppose Assumptions 2.1 and 2.6 hold. Then, for every x̂ ∈ Rn,
there exist a compact set Ω(x̂) ⊂ Rm and a scalar ρx̂ > 0 such that

(i) for every x ∈ B(x̂, ρx̂) and y ∈ Ω(x̂), A(x, y)A(x, y)T + B(x, y) (see (2.13a),
(2.13d)) is positive definite, and hence ∇yfk(x, y), k ∈ r∗1(x, y) (see (2.12a)),
together with ∇gk(y), k ∈ r∗2(y) (see (2.12b)), are linearly independent, and

(ii) Ŷ (x̂) + Bρx̂ ⊂ Ω(x̂).
Proof. Let x̂ ∈ Rn be arbitrary. By Assumption 2.6, ∇yfk(x̂, ŷ), k ∈ r∗1(x̂, ŷ),

together with ∇gk(ŷ), k ∈ r∗2(ŷ), are linearly independent for any ŷ ∈ Ŷ (x̂). It follows
from Lemma 2.7(ii) that A(x̂, ŷ)A(x̂, ŷ)T + B(x̂, ŷ) is positive definite. Thus, by
continuity of A(·, ·) and B(·, ·), there exist a compact set Ω(x̂) ⊂ Rm and a ρx̂ > 0 such
that A(x, y)A(x, y)T + B(x, y) is positive definite for all x ∈ B(x̂, ρx̂) and y ∈ Ω(x̂),
and Ŷ (x̂) + Bρx̂ ⊂ Ω(x̂).

By positive definiteness, both sides of (2.15a) are strictly positive for all x ∈
B(x̂, ρx̂), y ∈ Ω(x̂), and z = (η, ξ) �= 0, with η ∈ Rr1 and ξ ∈ Rr2 . Hence, (2.15b)
must imply that (η, ξ) in (2.15b) is zero for all x ∈ B(x̂, ρx̂) and y ∈ Ω(x̂). However,
then ∇yfk(x, y), k ∈ r∗1(x, y), together with ∇gk(y), k ∈ r∗2(y), must be linearly
independent for all x ∈ B(x̂, ρx̂) and y ∈ Ω(x̂). Because if that was not true, we may
have (2.15b) satisfied for (η, ξ) �= 0. This completes the proof.

Lemma 2.9. Suppose that Assumption 2.1 holds. Then, for every x̂ ∈ Rn, π > 0,
ρ > 0, and ε > 0, there exist π̂ ∈ [π,∞) and ρ̂ ∈ (0, ρ] such that Ŷπ̂(x) ⊂ Ŷ (x̂) + Bε
for all x ∈ B(x̂, ρ̂).

Proof. Let x̂ ∈ Rn, π > 0, ρ > 0, and ε > 0 be arbitrary. To prove the desired
result, we will show that (i) there exists a π̂ ∈ [π,∞) such that Ŷπ̂(x̂) ⊂ Ŷ (x̂) +Bε/2,

and (ii) there exists a ρ̂ ∈ (0, ρ] such that Ŷπ̂(x) ⊂ Ŷπ̂(x̂) + Bε/2 for all x ∈ B(x̂, ρ̂).
(i) Let the set-valued function Γ : [0,∞)→ 2R

m

be defined by

Γ(s)
�
= argmax

y∈Y
φ′(s, y),(2.16a)
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where φ′ : [0,∞)× Rm → R
⋃ {−∞} is defined by

φ′(s, y)
�
=




φ(x̂, y)− 1

s
‖f(x̂, y)+‖∞, s > 0,

φ(x̂, y), s = 0, ‖f(x̂, y)+‖∞ = 0,

−∞, s = 0, ‖f(x̂, y)+‖∞ > 0.

(2.16b)

First, we show that Γ(·) is outer semicontinuous at s = 0 in the sense of Kuratowski–
Painlevé; see [21, 17]. By Theorem 5.3.7 in [17], we need only to show that the outer
limit of {Γ(si)}∞i=0 is contained in Γ(0) for any sequence {si}∞i=0 ⊂ [0,∞) such that
si → 0. Let {si}∞i=0 ⊂ [0,∞) be such that si → 0, and let ŷ ∈ Rm be a point in the
outer limit of {Γ(si)}∞i=0. Then there exists a sequence {yi}∞i=0 such that yi ∈ Γ(si)
for all i ∈ N, and yi → ŷ, as i→∞.

Now, consider the hypographs (see [21, 17]) of the problems maxy∈Y φ′(si, y)
given by

Ei
�
= {(y0, y) ∈ Rm+1 | y ∈ Y, y0 ≤ φ′(si, y)}(2.16c)

and of the problem maxy∈Y φ′(0, y) given by

E
�
= {(y0, y) ∈ Rm+1 | y ∈ Y, y0 ≤ φ′(0, y)}.(2.16d)

By Theorem 3.3.2 in [17], the sequence of sets {Ei}∞i=0 converges to E in the Kuratowski–
Painlevé sense (see [21, 17]) if and only if (a) for any y′ ∈ Y , lim infi→∞ φ′(si, y′) ≥
φ′(0, y′), and (b) for any infinite sequence {y′i}i∈K ⊂ Y , K ⊂ N, such that y′i →K y′,
as i→∞, lim supi→K∞ φ′(si, y′) ≤ φ′(0, y′).

First, we consider (a). Suppose y′ ∈ Y . Then we have directly from (2.16b) that
limi→∞ φ′(si, y′) = φ′(0, y′).

Second, we consider (b). Let {y′i}i∈K ⊂ Y be an infinite sequence, K ⊂ N, such
that y′i →K y′, as i → ∞. Without loss of generality, we assume that y′i → y′, as
i→∞. Now, we have two cases.

Case I. Suppose ‖f(x̂, y′)+‖∞ > δ for some δ > 0. Then by continuity of f(·, ·)
there exists an i0 ∈ N such that ‖f(x̂, y′i)+‖∞ ≥ δ/2 for all i > i0. Hence, for all
i > i0, such that si > 0, φ′(si, y′i) = φ(x̂, y′i) − ‖f(x̂, y′i)+‖∞/si ≤ φ(x̂, y′i) − δ/(2si),
and for all i > i0, such that si = 0, φ′(si, y′i) = −∞. Since si → 0, we have that
limi→∞ φ′(si, y′i) = φ′(0, y′) = −∞.

Case II. Suppose f(x̂, y′) ≤ 0. Then by (2.16b), lim supi→∞ φ′(si, y′i) ≤ φ(x̂, y′) =
φ′(0, y′).

Hence, by Theorem 3.3.2 in [17], {Ei}∞i=0 converges to E. As a consequence of
the convergence of {Ei}∞i=0 to E, Theorem 3.3.3 in [17] states that any accumulation
point of a sequence of global maximizers of maxy∈Y φ′(si, y) is a global maximizer of
maxy∈Y φ′(0, y). Hence, ŷ ∈ Γ(0), which is a contradiction. Hence, we have that Γ(·)
is outer semicontinuous at s = 0.

Next, let y∗ ∈ Γ(0). It follows from (2.16b) and Assumption 2.1(ii) that f(x̂, y∗) ≤
0 and y∗ ∈ Ŷ (x̂). Hence, Γ(0) ⊂ Ŷ (x̂).

Finally, by outer semicontinuity of Γ(·) at s = 0, there exists a π̂ ∈ [π,∞) such
that Ŷπ̂(x̂) ⊂ Ŷ (x̂) + Bε/2, and (i) holds.

(ii) Let π̂ be as in (i). First, we show that Ŷπ̂(·) is outer semicontinuous at x̂.
By Theorem 5.3.7 in [17], we need only to show that the outer limit of {Ŷπ̂(xi)}∞i=0 is
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contained in Ŷπ̂(x̂) for any sequence {xi}∞i=0 ⊂ Rn such that xi → x̂. Let {yi}∞i=0 be

an arbitrary sequence such that yi ∈ Ŷπ̂(xi) and yi → ŷ. Then

φ(xi, yi)− π̂‖f(xi, yi)+‖∞ ≥ φ(xi, y)− π̂‖f(xi, y)+‖∞(2.16e)

for all i ∈ N and y ∈ Y . Hence, by adding φ(x̂, ŷ) − π̂‖f(x̂, ŷ)+‖∞ to both sides
of (2.16e), and rearranging terms, we obtain that

φ(x̂, ŷ)− π̂‖f(x̂, ŷ)+‖∞ ≥ max
y∈Y
{φ(x̂, ŷ)− π̂‖f(x̂, ŷ)+‖∞ − φ(xi, yi)

+ π̂‖f(xi, yi)+‖∞ + φ(xi, y)− π̂‖f(xi, y)+‖∞}.

(2.16f)

It now follows by the continuity of the right-hand side of (2.16f) that φ(x̂, ŷ) −
π̂‖f(x̂, ŷ)+‖∞ ≥ ψπ̂(x̂), and hence that ŷ ∈ Ŷπ̂(x̂). Hence, Ŷπ̂(·) is outer semicon-
tinuous at x̂, which implies that (ii) holds. Now, the conclusion follows directly from
(i) and (ii).

Theorem 2.10. Suppose Assumptions 2.1 and 2.6 hold. Then, for any x̂ ∈ Rn,
IP(x̂, 0) is locally calm at x̂.

Proof. Let x̂ ∈ R
n. By Lemmas 2.7(ii) and 2.8, there exist a compact set

Ω(x̂) ⊂ R
m and ρx̂ > 0 such that η(·, ·) is continuous on B(x̂, ρx̂) × Ω(x̂) and

Ŷ (x̂) + Bρx̂ ⊂ Ω(x̂). Hence,

π∗ �
= max

x∈B(x̂,ρx̂)
max
y∈Ω(x̂)

σ

r1∑
k=1

|ηk(x, y)|,(2.17a)

with σ > 1, is well-defined. By Lemma 2.9, there exist ρ̂ ∈ (0, ρx̂] and π̂ ≥ π∗

such that Ŷπ̂(x) ⊂ Ŷ (x̂) + Bρx̂ for all x ∈ B(x̂, ρ̂). Let x ∈ B(x̂, ρ̂) be arbitrary.

Then Ŷπ̂(x) ⊂ Ω(x̂), and hence, for any yx ∈ Ŷπ̂(x), we have by (2.17a) and (2.13h)
that tπ̂(x, yx) ≤ 0, and by Lemma 2.8 that ∇yfk(x, yx), k ∈ r∗1(x, yx), together with
∇gk(yx), k ∈ r∗2(yx), are linearly independent. Hence, by Lemma 2.7(iii), yx ∈ Ŷ (x).
Next, let y ∈ Y and u ∈ Rr1 be such that f(x, y) ≤ u. Then

φ(x, yx) = φ(x, yx)− π̂‖f(x, yx)+‖∞
≥ φ(x, y)− π̂‖f(x, y)+‖∞
≥ φ(x, y)− π̂‖(f(x, y)− u)+‖∞ − π̂‖u‖∞
= φ(x, y)− π̂‖u‖∞.

(2.17b)

By (2.6), v(x, 0) = φ(x, yx). For every u ∈ Rr1 such that v(x, u) > −∞, there exists
y′u ∈ Y such that f(x, y′u) ≤ u and φ(x, y′u) = v(x, u). Hence, by (2.17b), for every
u ∈ Rr1 such that v(x, u) > −∞, we have that

v(x, u)− v(x, 0) ≤ π̂‖u‖∞.(2.17c)

Since (2.17c) also holds for u ∈ Rr1 such that v(x, u) = −∞, we have that (2.17c)
holds for every u ∈ Rr1 . Finally, because x ∈ B(x̂, ρ̂) was assumed arbitrary, the
conclusion follows with α̂ = π̂.

3. Approximations to Pπ. In view of Theorem 2.3, P can be solved by solving
Pπ for a sufficiently large π > 0. To facilitate the solution of Pπ, we introduce two

approximations. First, for any set YN ⊂ Y , N ∈ N �
= {1, 2, . . . }, of finite cardinality
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and π > 0, we define the approximation ψπ,N : Rn → R to the function ψπ(·)
(see (2.3a)) by

ψπ,N (x)
�
= max

y∈YN

ωπ(x, y),(3.1a)

with ωπ(·, ·) as in (2.3d).
Second, we introduce a smoothing technique that can be found in [1, 14, 18]. For

any π > 0 and p > 0, let ωπ,p : R
n×Rm → R be the smooth approximation to ωπ(·, ·)

defined by

ωπ,p(x, y)
�
= −1

p
ln

(
r∑

k=1

e−pφ
k
π(x,y)

)
.(3.1b)

Hence, for any π > 0, N ∈ N, and p > 0 we define a family of min-max approxi-
mations to Pπ by

Pπ,N,p min
x∈Rn

ψπ,N,p(x),(3.1c)

where ψπ,N,p : R
n → R is defined by

ψπ,N,p(x)
�
= max

y∈YN

ωπ,p(x, y).(3.2a)

Referring to section 2.1 in [17], we find that a continuous optimality function,
θπ,N,p : R

n → R, for the problem Pπ,N,p is given by

θπ,N,p(x)
�
= − min

ξ̄∈Ḡψπ,N,p(x)
ξ0 +

1

2
‖ξ‖2,(3.2b)

where ξ̄ = (ξ0, ξ) ∈ Rn+1, with ξ ∈ Rn, and

Ḡψπ,N,p(x)
�
= conv

y∈YN

{(
ψπ,N,p(x)− ωπ,p(x, y)

∇xωπ,p(x, y)

)}
.(3.2c)

We require that the error associated with the discretization of the set Y satisfies a
certain relation as specified in Assumption 3.1(ii). Note also that Assumption 3.1(iv)
is a Mangasarian–Fromowitz-type constraint qualification.

Assumption 3.1. We assume that
(i) φ(·, ·), fk(·, ·), k ∈ r1, and gk(·), k ∈ r2, are twice continuously differentiable;
(ii) there exist a strictly decreasing function ∆ : N

⋃ {∞} → [0,∞), with the

property that ∆(N)→ 0, as N →∞, and ∆(∞)
�
= 0, and constants N0 ∈ N,

C < ∞ such that for every N ≥ N0 and y ∈ Y there exists a y′ ∈ YN such
that

‖y − y′‖ ≤ C∆(N);(3.3a)

(iii) for every N ≥ N0 and x ∈ Rn

{y ∈ YN | f(x, y) ≤ 0} �= ∅;(3.3b)
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(iv) for any x ∈ Rn and y ∈ Y there exist an h ∈ Rm and û > 0 such that for
all k ∈ r1 satisfying fk(x, y) = 0, 〈∇yfk(x, y), h〉 < 0, and for all u ∈ (0, û],
g(y + uh) ≤ 0.

For example, if Y is the unit cube in Rm, i.e., Y = Im, with I = [0, 1], then we
can define YN = ImN , where

IN = {0, 1/a(N), 2/a(N), . . . , (a(N)− 1)/a(N), 1},(3.3c)

with a(N) = 2N−N0N0. In this case, ∆(N) = 1/a(N) and C = 1
2m

1/2.

We need the following notation: Let ŶN : Rn → 2R
m

and Ŷπ,N : Rn → 2R
m

be
defined by

ŶN (x)
�
= argmax

y∈YN

{φ(x, y)|f(x, y) ≤ 0},(3.4a)

Ŷπ,N (x)
�
= {y ∈ YN | ωπ(x, y) = ψπ,N (x)} = argmax

y∈YN

{φ(x, y)− π‖f(x, y)+‖∞}.(3.4b)

Lemma 3.2. Suppose Assumptions 2.1 and 3.1 hold and π > 0. If xi → x̂,
yi → ŷ, Ni → ∞, as i → ∞, with yi ∈ Ŷπ,Ni

(xi) and Ni ∈ N, for all i ∈ N, then

ŷ ∈ Ŷπ(x̂).

Proof. Let π > 0, {xi}∞i=0 ⊂ Rn, {yi}∞i=0 ⊂ Rm, {Ni}∞i=0 ⊂ N, x̂ ∈ Rn, and ŷ ∈ Y

be such that yi ∈ Ŷπ,Ni
(xi), xi → x̂, yi → ŷ, and Ni →∞. Then

φ(xi, yi)− π‖f(xi, yi)+‖∞ ≥ φ(xi, y)− π‖f(xi, y)+‖∞(3.5a)

for all i ∈ N and y ∈ YNi . Hence, by adding φ(x̂, ŷ) − π‖f(x̂, ŷ)+‖ to both sides
of (3.5a), and rearranging terms, we obtain that

φ(x̂, ŷ)− π‖f(x̂, ŷ)+‖∞ ≥ max
y∈YNi

{φ(x̂, ŷ)− π‖f(x̂, ŷ)+‖∞ − φ(xi, yi)

+ π‖f(xi, yi)+‖∞ + φ(xi, y)− π‖f(xi, y)+‖∞}.

(3.5b)

It now follows from the continuity of the right-hand side of (3.5b) (see Corollary 5.4.2
in [17]) and Assumption 3.1(ii) that φ(x̂, ŷ)− π‖f(x̂, ŷ)+‖∞ ≥ ψπ(x̂), and hence that
ŷ ∈ Ŷπ(x̂).

Lemma 3.3. Suppose Assumptions 2.1 and 3.1 hold. Then,

(i) for every x̂ ∈ Rn and ε > 0, there exist π̂ <∞, N̂ <∞, and ρ̂ > 0, such that
Ŷπ,N (x) ⊂ Ŷ (x̂) + Bε, for all x ∈ B(x̂, ρ̂), π ≥ π̂, and N ≥ N̂ , N ∈ N, and

(ii) for every x̂ ∈ Rn, N ∈ N, N ≥ N0, with N0 as in Assumption 3.1(ii), and
ε > 0, there exist π̂ <∞ and ρ̂ > 0, such that Ŷπ,N (x) ⊂ ŶN (x̂) + Bε, for all
x ∈ B(x̂, ρ̂) and π ≥ π̂.

Proof. (i) For any s ≥ 0, t ∈ T
�
= {t ∈ (0, 1] | 1/t ∈ N} ⋃ {0}, and x ∈ Rn, let

w = (s, t, x) ∈ Rn+2. We define the set-valued function W : [0,∞) × T × Rn → 2R
m

by

W (w)
�
= argmax

y∈Y ∗
t

φ̃(s, x, y),(3.6a)
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where Y ∗
t

�
= YN , with N = 1/t, for t ∈ T, t > 0, Y ∗

t
�
= Y for t = 0, and φ̃ :

[0,∞)× Rn × Rm → R
⋃ {−∞} is defined by

φ̃(s, x, y)
�
=




φ(x, y)− 1

s
‖f(x, y)+‖∞, s > 0,

φ(x, y), s = 0, ‖f(x, y)+‖∞ = 0,

−∞, s = 0, ‖f(x, y)+‖∞ > 0.

(3.6b)

Let x̂ ∈ Rn be arbitrary. We will first show that W (·) is outer semicontinuous
at ŵ = (0, 0, x̂) in the sense of Kuratowski–Painlevé; see [21, 17]. By Theorem 5.3.7
in [17], we need only to show that the outer limit of {W (wi)}∞i=0 is contained in W (ŵ)
for any sequence {wi}∞i=0 ⊂ [0,∞) × T × Rn such that wi → ŵ. Let {wi}∞i=0, with
wi = (si, ti, xi) ∈ [0,∞) × T × Rn, be such that wi → ŵ, and let ŷ ∈ Rm be a point
in the outer limit of {W (wi)}∞i=0. Then there exists a sequence {yi}∞i=0 such that
yi ∈W (wi) for all i ∈ N, and yi → ŷ, as i→∞.

Now, consider the hypographs (see [21, 17]) of the problems maxy∈Y ∗
ti
φ̃(si, xi, y)

given by

Ei
�
= {(y0, y) ∈ Rm+1 | y ∈ Y ∗

ti , y0 ≤ φ̃(si, xi, y)}(3.6c)

and of the problem maxy∈Y φ̃(0, x̂, y) given by

E
�
= {(y0, y) ∈ Rm+1 | y ∈ Y, y0 ≤ φ̃(0, x̂, y)}.(3.6d)

By Theorem 3.3.2 in [17], the sequence of sets {Ei}∞i=0 converges to E in the Kuratowski–
Painlevé sense (see [21, 17]) if and only if (a) for any ỹ ∈ Y , there exists a sequence
{ỹi}∞i=0, with ỹi ∈ Y ∗

ti , such that ỹi → ỹ, as i → ∞, and lim infi→∞ φ̃(si, xi, ỹi) ≥
φ̃(0, x̂, ỹ), and (b) for every infinite sequence {ỹi}i∈K , with K ⊂ N, such that ỹi ∈ Y ∗

ti

for all i ∈ K, and ỹi →K ỹ, as i→∞, lim supi→K∞ φ̃(si, xi, ỹi) ≤ φ̃(0, x̂, ỹ).
First, consider (a). Suppose that ỹ ∈ Y . Now, we have two cases.
Case I. Suppose ‖f(x̂, ỹ)+‖∞ > 0. Then φ̃(0, x̂, ỹ) = −∞, and hence by As-

sumption 3.1(ii) there exists a sequence {ỹi}∞i=0 ⊂ Y such that ỹi ∈ Y ∗
ti , for all i ∈ N,

ỹi → ỹ, as i→∞, and lim infi→∞ φ̃(si, xi, ỹi) ≥ φ̃(0, x̂, ỹ).
Case II. Suppose f(x̂, ỹ) ≤ 0. We infer from Assumption 3.1(iv) that there exist

h ∈ Rm, δ > 0, and u∗ > 0 such that for all u ∈ (0, u∗]

fk(x̂, ỹ + uh) ≤ −δu ∀ k ∈ r1,(3.6e)

g(ỹ + uh) ≤ 0.(3.6f)

Let L <∞ be a Lipschitz constant for fk(·, ·), k ∈ r1, on B(x̂, 1)×B(ỹ, u∗‖h‖). Hence,
by (3.6e), for all u ∈ (0, u∗/2], x ∈ B(x̂, 1), and y ∈ B(ỹ + uh, u∗‖h‖/2), we have that

fk(x, y) ≤ −δu+ L(‖x− x̂‖+ ‖ỹ + uh− y‖) ∀ k ∈ r1,(3.6g)

Let α = δ/(2L). Then there exists u∗∗ ∈ (0, u∗/2] such that for all u ∈ (0, u∗∗], αu ≤
min{1, u∗‖h‖/2}. Let u ∈ (0, u∗∗]. Then, for all x ∈ B(x̂, αu) and y ∈ B(ỹ+ uh, αu),

fk(x, y) ≤ 0 ∀ k ∈ r1.(3.6h)

Since xi → x̂ and ti → 0, as i → ∞, there exists i0 ∈ N such that for all i ≥ i0,
‖xi → x̂‖ ≤ αu∗∗ and C∆(1/ti) ≤ αu∗∗ (see Assumption 3.1(ii)). For all i ≥ i0, we
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define ui = max{‖xi − x̂‖, C∆(1/ti)}/α, and y′i = ỹ + uih. By (3.6f), g(y′i) ≤ 0, and
hence y′i ∈ Y . Then by Assumption 3.1(ii), for every i ≥ i0 there exists ỹi ∈ Y ∗

ti such
that ‖y′i − ỹi‖ ≤ C∆(1/ti). It now follows by construction that {ỹi}∞i=i0 is such that
ỹi → ỹ, as i → ∞, and by (3.6h) that ‖f(xi, ỹi)+‖∞ = 0 for all i ≥ i0. Hence, by
continuity of φ(·, ·), limi→∞ φ̃(si, xi, ỹi) = φ̃(0, x̂, ỹ).

Second, consider (b). Let {ỹi}i∈K be an infinite sequence, K ⊂ N, such that
ỹi ∈ Y ∗

ti , for all i ∈ K, ỹi →K ỹ, as i → ∞. Without loss of generality, we assume
that ỹi → ỹ, as i→∞. Now, we have two cases.

Case I. Suppose ‖f(x̂, ỹ)+‖∞ > δ for some δ > 0. Then by continuity of f(·, ·),
there exists an i0 ∈ N such that ‖f(xi, ỹi)+‖∞ ≥ δ/2 for all i > i0. Hence,
for all i > i0, such that si > 0, φ̃(si, xi, ỹi) = φ(xi, ỹi) − ‖f(xi, ỹi)+‖∞/si ≤
φ(xi, ỹi) − δ/(2si), and for all i > i0, such that si = 0, φ̃(si, xi, ỹi) = −∞. Since
wi → ŵ, we have that si → 0, and hence limi→∞ φ̃(si, xi, ỹi) = φ̃(0, x̂, ỹ) = −∞.

Case II. Suppose f(x̂, ỹ) ≤ 0. Then it follows directly from (3.6b) that
lim supi→∞ φ̃(si, xi, ỹi) ≤ φ(x̂, ỹ) = φ̃(0, x̂, ỹ).

Hence, by Theorem 3.3.2 in [17], {Ei}∞i=0 converges to E. As a consequence of
the convergence of {Ei}∞i=0 to E, Theorem 3.3.3 in [17] states that any accumulation
point of a sequence of global maximizers of maxy∈Y ∗

ti
φ̃(si, xi, y) is a global maximizer

of maxy∈Y φ̃(0, x̂, y). Hence, ŷ ∈W (ŵ). So we have that W (·) is outer semicontinuous
at ŵ = (0, 0, x̂).

Next, let y∗ ∈ W (ŵ), with ŵ = (0, 0, x̂). It follows from Assumption 2.1(ii)
and (3.6b) that f(x̂, y∗) ≤ 0 and y∗ ∈ Ŷ (x̂). Hence, W (ŵ) ⊂ Ŷ (x̂).

Next, let ε > 0. Then, by outer semicontinuity of W (·) at ŵ = (0, 0, x̂), there ex-
ists ρ > 0 such thatW (w) ⊂W (ŵ)+Bε for all w ∈ [0,∞)×T×Rn with ‖w−ŵ‖∞ ≤ ρ.
Hence, for all π ≥ 1/ρ, N ≥ 1/ρ, N ∈ N, and x ∈ B(x̂, ρ), Ŷπ,N (x) ⊂ Ŷ (x̂) + Bε.

(ii) Using the same arguments as in (i), we obtain (ii). This completes the
proof.

The approximating, smooth functions in (3.1b) have the property (see [1, 14, 18])
that

0 ≤ ωπ(x, y)− ωπ,p(x, y) ≤ 1

p
ln r(3.7)

for all x ∈ Rn, y ∈ Y , and π > 0. Hence, for all x ∈ Rn and π > 0

ψπ(x) = max
y∈Y

ωπ(x, y)

≤ max
y∈Y

ωπ,p(x, y) +
1

p
ln r

= ψπ,p(x) +
1

p
ln r,

(3.8a)

with

ψπ,p(x)
�
= max

y∈Y
ωπ,p(x, y).(3.8b)

Next, it also follows from (3.7) that for all x ∈ Rn and π > 0

ψ(x) = max
y∈Y

ωπ(x, y)

≥ max
y∈Y

ωπ,p(x, y)

= ψπ,p(x).

(3.8c)
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By the same arguments leading to (3.8a) and (3.8c), we have that

0 ≤ ψπ,N (x)− ψπ,N,p(x) ≤ 1

p
ln r(3.9)

for all x ∈ Rn, π > 0, and N ∈ N.
Lemma 3.4. Suppose Assumptions 2.1 and 3.1(ii) hold. Then, for every bounded

set S ⊂ Rn and π > 0, there exists a constant K <∞ such that for all N ≥ N0, with
N0 as in Assumption 3.1(ii), p > 0, and x ∈ S,

0 ≤ ψπ(x)− ψπ,N (x) ≤ K∆(N),(3.10a)

0 ≤ ψπ,p(x)− ψπ,N,p(x) ≤ K∆(N).(3.10b)

Proof. Since φkπ(·, ·), k ∈ r, are continuously differentiable, they are Lipschitz con-
tinuous on bounded sets. Hence, ωπ(·, ·) is also Lipschitz continuous on bounded sets.
First, because YN ⊂ Y , we always have that ψπ,N (x) ≤ ψπ(x). Second, let S ⊂ Rn be
a bounded set, and let L <∞ be a Lipschitz constant for ωπ(·, ·) on S. For any x ∈ S,
there must exists a yx ∈ Y such that ψπ(x) = ωπ(x, yx). By Assumption 3.1(ii), there
exists y′x ∈ YN such that ‖y′x − yx‖ ≤ C∆(N). Hence,

ψπ,N (x) ≥ ωπ(x, y
′
x) ≥ ωπ(x, yx)− LC∆(N) = ψπ(x)− LC∆(N).(3.10c)

Hence, (3.10a) holds with K = LC.
Next, ωπ,p(·, ·), defined in (3.1b), has gradient with respect to y

∇yωπ,p(x, y) �
=

r∑
k=1

µkπ,p(x, y)∇yφkπ(x, y),(3.10d)

where, for any k∗ ∈ r,

µk
∗
π,p(x, y)

�
=

exp[−pφk∗
π (x, y)]∑

k∈r exp[−pφkπ(x, y)]
.(3.10e)

Hence, by the mean value theorem and (3.10d)–(3.10e), we have that for all p > 0,
x ∈ Rn, and y, y′ ∈ Y

|ωπ,p(x, y′)− ωπ,p(x, y)| ≤ r

r∑
k=1

‖∇yφkπ(x, y + s(y′ − y))‖ ‖y′ − y‖(3.10f)

for some s ∈ [0, 1]. Hence, ωπ,p(·, ·) is Lipschitz continuous on bounded sets with a
Lipschitz constant independent of p. The result now follows by the same arguments
as for (3.10a).

Lemma 3.5. Suppose that Assumptions 2.1 and 3.1(i) hold. Then, for every
bounded set S ⊂ Rn and π > 0, there exists an L <∞ such that〈

v,
∂2ωπ,p(x, y)

∂x2
v

〉
≤ pL‖v‖2(3.11a)

for all y ∈ Y , x ∈ S, v ∈ Rn, and p ≥ 1.
Proof. Let π > 0 be arbitrary. By Assumption 3.1(i), ωπ,p(·, y), y ∈ Y , is twice

differentiable with gradient

∇xωπ,p(x, y) �
=

r∑
k=1

µkπ,p(x, y)∇xφkπ(x, y),(3.11b)
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where µkπ,p(x, y) is given by (3.10e), and Hessian matrix

∂2ωπ,p(x, y)

∂x2

�
=

r∑
k=1

[
∇xµkπ,p(x, y)∇xφkπ(x, y)T + µkπ,p(x, y)

∂2φkπ(x, y)

∂x2

]
,(3.11c)

where, for any k∗ ∈ r,

∇xµk∗
π,p(x, y)

�
= pµk

∗
π,p(x, y)

r∑
k=1

µkπ,p(x, y)(∇xφkπ(x, y)−∇φk
∗
π (x, y)).(3.11d)

Let S ⊂ R
n be bounded. Then by continuity there exists a K < ∞ such that

‖∇xφkπ(x, y)‖ ≤ K and 〈v, ∂2φkπ(x, y)/∂x
2v〉 ≤ K‖v‖2 for all x ∈ S, v ∈ Rn, y ∈ Y ,

and k ∈ r. Then, for all x ∈ S,

‖∇xµk∗
π,p(x, y)‖ ≤ p

r∑
k=1

‖∇xφkπ(x, y)−∇xφk
∗
π (x, y)‖ ≤ 2prK.(3.11e)

Hence, there exists K1 <∞ such that〈
v,
∑
k∈r

∇xµkπ,p(x, y)∇xφkπ(x, y)T v
〉
≤ pK1‖v‖2(3.11f)

for all x ∈ S, v ∈ Rn, and y ∈ Y . By inspection, 0 < µkπ,p(x, y) < 1 for all x ∈ Rn,
y ∈ Y , k ∈ r, and p > 0. Hence, for p ≥ 1, x ∈ S, y ∈ Y , and v ∈ Rn〈

v,
∂2ωπ,p(x, y)

∂x2
v

〉
≤ pK1‖v‖2 + rK‖v‖2

≤ p(K1 + rK)‖v‖2.
(3.11g)

Hence, L = K1 + rK. This completes the proof.

Lemma 3.6. Suppose that Assumptions 2.1 and 3.1(ii) hold and that the sequences
{xi}∞i=0 ⊂ Rn, {Ni}∞i=0 ⊂ N, and {pi}∞i=0 ⊂ (0,∞) are such that xi → x̂, pi → ∞,
and Ni →∞, as i→∞. Then, for any π > 0, lim sup θπ,Ni,pi(xi) ≤ θπ(x̂).

Proof. For every i, let

ξ̄i
�
= (ξ0

i , ξi) ∈ argmin
ξ̄∈Ḡψπ,Ni,pi

(xi)

ξ0 +
1

2
‖ξ‖2.(3.12a)

Then there exist multipliers νji ≥ 0, a set Ji ⊂ N, and yi,j ∈ YNi such that∑
j∈Ji

νji = 1,

ξ0
i =

∑
j∈Ji

νji [ψπ,Ni,pi(xi)− ωπ,pi(xi, yi,j)],(3.12b)

and

ξi =
∑
j∈Ji

νji∇xωπ,pi(xi, yi,j).(3.12c)
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In view of (3.10e), we have that all µkπ,pi(xi, yi,j) ≥ 0, and
∑

k∈r µ
k
π,pi(xi, yi,j) = 1.

Hence, we obtain the following expression for ξ̄i:

ξ̄i =
∑
j∈Ji

νji
∑
k∈r

µkπ,pi(xi, yi,j)

(
ψπ,Ni,pi(xi)− ωπ,pi(xi, yi,j)

∇xφkπ(xi, yi,j)

)
.(3.12d)

Now, let

ζ̄
�
= (ζ−1, ζ0, ζ) =

∑
j∈Ji

νji
∑
k∈r

µkπ,pi(xi, yi,j)




φkπ(xi, yi,j)− ωπ(xi, yi,j)

ψπ(xi)− ωπ(xi, yi,j)

∇xφkπ(xi, yi,j)


 .(3.12e)

Then by inspection ζ̄ ∈ Ḡψπ(xp), and hence

−θπ(xi) ≤ ζ−1 + ζ0 +
1

2
‖ζ‖2

=
∑
j∈Ji

νji {[ψπ(xi)− ψπ,Ni,pi(xi)]− [ωπ(xi, yi,j)− ωπ,pi(xi, yi,j)]}

+ ζ−1 − θπ,Ni,pi(xi).

(3.12f)

Now, for any j ∈ Ji and k∗ ∈ r,

µk∗π,pi(xi, yi,j)[φ
k∗
π (xi, yi,j)− ωπ(xi, yi,j)] =

φk∗π (xi, yi,j)− ωπ(xi, yi,j)∑
k∈r exp{pi[(φk∗π (xi, yi,j)− φkπ(xi, yi,j)]}

≤ φk∗π (xi, yi,j)− ωπ(xi, yi,j)

exp{pi[φk∗π (xi, yi,j)− ωπ(xi, yi,j)]}
≤ 1

pi[exp(1)]
.

(3.12g)

It now follows from (3.7), (3.9), (3.10a), (3.12g), and (3.12f) that

−θπ(xi) ≤ −θπ,Ni,pi(xi) +
r

pi[exp(1)]
+

1

pi
ln r +K∆(Ni),(3.12h)

with K <∞ as in (3.10a). By continuity of θπ(·) and (3.12h), the result follows.

4. Algorithm for P. In view of Theorem 2.5, P can be solved by solving Pπ for
a sufficiency large penalty π > 0. However, a priori the size of the penalty is unknown.
Hence, in the following algorithm we use the test function defined in (2.13h) to control
the penalty π.

As shown in section 3, ψπ(·) can be approximated by ψπ,N,p(·). Hence, Pπ can
be approximately solved by solving Pπ,N,p. The following algorithm adaptively in-
creases the precision parameters N and p, based on a series of tests, such that for
all x ∈ Rn, ψπ,N,p(x) converges to ψπ(x). For given π, N , and p, the algorithm calls
the Pironneau–Polak–Pshenichnyi min-max algorithm (see [17, 20]) as a subroutine
to perform one iteration on Pπ,N,p.

In the algorithm below, let ∆ : N→ R, N0 ∈ N, be as in Assumption 3.1, and let
YN ⊂ Y,N ≥ N0 be the finite-cardinality subsets of Y in the definition of Pπ,N,p.
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Algorithm 4.1.
Parameters. α, β, µ, ρ ∈ (0, 1); τ1 ≥ ln(r1 + 1); σ−1, τ2 > 0; σ, κ > 1; γ � 1;

π−1 > 0; p0 ≥ 1; p̂ ≥ p0, p̂� 1; ζ ∈ N, ζ ≥ 2; N0 ∈ N.
Data. x0 ∈ Rn.
Step 0. Set i = 0, j = 0, k = 0, and δ = 1.
Step 1. Compute yi ∈ Ŷπi−1,Ni

(xi), and the smallest eigenvalue σmin(xi, yi) of the
matrix [A(xi, yi)A(xi, yi)

T+B(xi, yi)] (see (2.13a), (2.13d)), and set π = πi−1.
Step 2. If σmin(xi, yi) ≥ σi−1, set σi = σi−1, and go to Step 3.

Else, set σi = µσi−1, and go to Step 10.
Step 3. If tπ(xi, yi) ≤ 0 (see (2.13h)), set πi = π, and go to Step 4.

Else, go to Step 10.
Step 4. Compute θπi,Ni,pi(xi) and the augmented search direction (see (3.2b)),

(h0
πi,Ni,pi(xi), hπi,Ni,pi(xi)) = − argmin

ξ̄∈Ḡψπi,Ni,pi
(xi)

ξ0 +
1

2
‖ξ‖2.(4.1a)

Step 5. Compute xi+1 = xi + λπi,Ni,pi(xi)hπi,Ni,pi(xi), where the Armijo step size

λπi,Ni,pi(xi) = max
s∈N

{βs | ψπi,Ni,pi(xi + βshπi,Ni,pi(xi))− ψπi,Ni,pi(xi)

≤ αβsθπi,Ni,pi(xi)}.

(4.1b)

Step 6. If

∆ψi
�
= ψπi,Ni,pi(xi+1)− ψπi,Ni,pi(xi) ≥ −

τ1
pi
− τ2∆(Ni),(4.1c)

go to Step 7.
Else, set Ni+1 = Ni and pi+1 = pi, replace i by i+ 1, and go to Step 1.

Step 7. Set Ni+1 ∈ N equal to the smallest integer satisfying

∆(Ni+1) ≤ min

{
max

{
1− ρ

τ2
|∆ψi|, ∆(ζNi)

}
,
γ − 1

γ
∆(Ni)

}
.(4.1d)

Step 8. If (initial stage)

max

{
τ1

ρ|∆ψi| ,
γpi
γ − 1

}
≤ p̂ and δ = 1,(4.1e)

set pi+1 = max{τ1/(ρ|∆ψi|) , γpi/(γ−1)}, replace k by k+1, i by i+1, and
go to Step 1.
Elseif (switch stage)

max

{
τ1

ρ|∆ψi| ,
γpi
γ − 1

}
> p̂ and δ = 1,(4.1f)

set δ = max{2 , γp̂/((γ − 1)(k + 1))}, pi+1 = δ(k + 2), replace k by k + 1,
i by i+ 1, and go to Step 1.
Else (final stage) go to Step 9.

Step 9. If δ(i+2) < γpi/(γ−1), set pi+1 = pi, replace i by i+1, and go to Step 1.
Else find the smallest k∗ ∈ N such that k ≤ k∗ ≤ i and δ(k∗+2) ≥ γpi/(γ−1),
and set pi+1 = δ(k∗ + 2), replace k by k∗ + 1, i by i+ 1, and go to Step 1.

Step 10. Set x∗
j = xi, π = κj+1π−1, replace j by j + 1, and go to Step 3.
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Lemma 4.2. Suppose that Algorithm 4.1 has generated a sequence {pi}∞i=0. Then
the following hold:

(i) If the test in (4.1c) is satisfied an infinite number of times, then there exists
an i∗ ∈ N such that pi∗+1 is set in the “switch stage” of Step 8.

(ii) If there exists an i∗ ∈ N such that pi∗+1 is set in the “switch stage” of Step 8,
then for all i < i∗ such that (4.1c) is satisfied, pi+1 is set in the “initial
stage,” and for all i > i∗ such that (4.1c) is satisfied, pi+1 is set in the “final
stage.”

Proof. (ii) Suppose that there exists an i∗ ∈ N such that pi∗+1 is set in the
“switch stage.” Then Algorithm 4.1 sets δ = max{2, γp̂/((γ − 1)(k + 1))} ≥ 2 > 1 in
iteration i∗. Hence, (4.1e)–(4.1f) cannot hold for i > i∗, and pi+1 must be set in the
“final stage” of Step 8 for all i > i∗ such that (4.1c) holds. Hence, pi+1 must be set
in the “initial stage” of Step 8 for all i < i∗ such that (4.1c) holds.

(i) Suppose for the sake of a contradiction that for all i ∈ N, pi+1 is not set in the
“switch stage” of Step 8. Then δ = 1 for all i ∈ N because δ = 1 for i = 0, and δ is
only changed in the “switch stage” of Step 8. Hence, because δ = 1 for all i ∈ N and
the hypothesis that pi+1 is not set in the “switch stage,” pi+1 is set by the “initial
stage” of Step 8 for all i ∈ N such that (4.1c) is satisfied. Hence, pi+1 ≥ γpi/(γ−1) for
all i ∈ N such that (4.1c) is satisfied. Since pi+1 ≥ γpi/(γ − 1) an infinite number of
times, there must exists an i∗∗ ∈ N such that max{τ1/(ρ|∆ψi∗∗ |), γpi∗∗/(γ− 1)} > p̂;
see the “initial stage” of Step 8. Hence, (4.1f) is satisfied for i = i∗∗, but (4.1e) is not.
This is a contradiction, which completes the proof.

The mechanisms in Algorithm 4.1 can by described as follows. Step 2 ensures
that the linear independence property of Assumption 2.6 is eventually satisfied at
(xi, yi), and Step 3 ensures that the test function remains nonpositive. In view of
Lemma 2.7(iii), we see that Steps 2 and 3 increase the penalty π to a sufficiently large
value that ensures local equivalence between P and Pπ.

Suppose that π∗ is sufficiently large; i.e., there exists an i∗ ∈ N such that πi = π∗

for all i > i∗. Then Algorithm 4.1 solves the sequence of approximating problem
{Pπ∗,Ni,pi}∞i=i∗, associated with a sequence of monotonically increasing precision pa-
rameters Ni, pi that diverge to infinity. At a given precision level, N ′, p′, say, Algo-
rithm 4.1 computes iterates that approach a stationary point of the approximating
problem Pπ∗,N ′,p′ . When the current iterate is sufficiently close to a stationary point
for Pπ∗,N ′,p′ , as determined by the test in (4.1c), the precision level is increased from
N ′, p′ to N ′′, p′′, say. Algorithm 4.1 then continues by computing iterates that are
approaching a stationary point of Pπ∗,N ′′,p′′ until the test in (4.1c) again determines
that the precision level has to be increased. The last iteration of the previous precision
level is used as a “warm start” for calculations on the next precision level.

It becomes gradually harder and harder to satisfy (4.1c) as Ni, pi →∞. Hence, as
the precision level is increased, the iterates generated by Algorithm 4.1 gradually get
closer and closer to a stationary point of the current approximating problem before the
precision level is increased. Thus, Algorithm 4.1 computes approximate solutions to a
sequence of approximating problems {Pπ∗,Ni,pi}∞i=i∗ with higher and higher precision
as the number of iterations increases.

The sequences of precision parameters {Ni}∞i=0 and {pi}∞i=0 are not determined
a priori but are constructed by Algorithm 4.1. When (4.1c) is satisfied, the precision
level is increased by an amount determined by Steps 7, 8, and 9.

In the “early” iterations, i.e., before the test in (4.1e) fails, the smoothing precision
parameter is increased by an amount related to the value of the cost-decrease ∆ψi.
When |∆ψi| is large, pi+1 tends to be only marginally larger than pi, with a minimum
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increase of pi/(γ − 1). On the other hand, when |∆ψi| is small, pi+1 tends to be
augmented by a considerable amount.

When the test in (4.1e) fails, δ is set to be larger than 1 in the “switch stage” of
Step 8. Hence, for all subsequent iterations, the increase of the precision parameter
will be determined by the “final stage,” i.e., Step 8, of Algorithm 4.1. In the “final
stage,” the precision parameter is augmented by a multiple of δ whenever pi+1 > pi.

The increase of the precision parameters Ni, pi are motivated by the following
considerations: (i) Suppose that the algorithm parameter τ1 = ln(r1+1), where r1 ∈ N
is as in (2.3b), τ2 = K, where K <∞ is as in Lemma 3.4, ψ(xi+1) = ψπ∗(xi+1), and
ψ(xi) = ψπ∗(xi); then we have by (3.8a), (3.8c), (3.9), and Lemma 3.4 that

ψ(xi+1)− ψ(xi) ≤ ∆ψi +
τ1
pi

+ τ2∆(Ni).(4.2)

Hence, ψ(xi+1)− ψ(xi) < 0 whenever the test in (4.1c) fails; i.e., the precision is not
increased as long as the new iterate guarantees a decrease in the cost function ψ(·).
The constant K in Lemma 3.4 may seldom be known. In absence of any information
about K, we recommend setting τ2 = 1. Note that larger values for τ2 will drive
N to infinity faster. (ii) When (4.1c) is satisfied, we can no longer guarantee that
ψ(xi+1) − ψ(xi) < 0, and we set Ni+1 and pi+1 to be larger than Ni and pi, which,
hopefully, will ensure that ψ(xi+2)−ψ(xi+1) < 0 will hold. (iii) If the current iterate is
very close to a stationary point of the approximating problem, |∆ψi| tends to become
extremely small. Hence, the factor ζ (see (4.1d)) and the fixed increase of pi in the
“final stage” is introduced to prevent Ni, pi from becoming very large prematurely.
(iv) Lemma 4.3 below must hold.

Let t > 0 be the desired tolerance on the solution. Then every pi � ln(r1+1)/t is
associated with an error (see (3.7)) ln(r1 +1)/pi � t. Hence, we recommend that the
algorithm parameter p̂, used to decide when to switch from the “initial stage” to the
“final stage,” be set equal to ln(r1 +1)/t. Furthermore, we recommend to set γ equal
to a large number, e.g., 105, to avoid any practical influence on the determination
of pi+1.

The parameter ρ ∈ (0, 1) controls how the error associated with the discretization
of Y compares with the error associated with the smoothing of ωπ(·, ·). When ρ is
close to unity, the error associated with the discretization tends to be “small” and
the error associated with smoothing tends to be “large.” When ρ is close to zero, the
situation is reversed. Since a fine discretization implies a high computational cost,
it can be efficient to bias the approximation error towards the smoothing error by
selecting ρ close to 0.

Algorithm 4.1 is quite insensitive to the selection of the parameters σ−1 > 0 and
µ ∈ (0, 1) used in Step 2. However, note that larger values of σ−1 and µ will cause
the penalty π to increase faster. We recommend setting σ−1 = 10−5 and µ = 0.5.

Lemma 4.3. Suppose that Assumption 2.1 holds and that the sequences {xi}∞i=0,
{Ni}∞i=0, and {pi}∞i=0 are generated by Algorithm 4.1. Then the following hold:

(i) The sequences {Ni}∞i=0 and {pi}∞i=0 are monotonically increasing, and, if
pi+1 > pi, then pi+1 ≥ γpi/(γ − 1), and, if Ni+1 > Ni, then ∆(Ni+1) ≤
(γ − 1)∆(Ni)/γ, with γ as in Algorithm 4.1.

(ii) If {xi}∞i=0 has an accumulation point, then Ni →∞, pi →∞, and
∑∞

i=0 1/pi
=∞.

Proof. (i) If the test in (4.1c) fails, then Ni+1 = Ni and pi+1 = pi. If the
test in (4.1c) is satisfied, then, according to Step 7 of Algorithm 4.1 (see (4.1d)),
∆(Ni+1) ≤ (γ − 1)∆(Ni)/γ. Next, consider the construction of {pi}∞i=0. If the test
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in (4.1c) is satisfied, then we have three cases corresponding to the “initial,” “switch,”
and “final” stages of Step 8.

Case I. Suppose that pi+1 is defined as in the “initial stage” of Step 8 in Algo-
rithm 4.1. Then pi+1 ≥ γpi/(γ − 1).

Case II. Suppose that pi+1 is defined as in the “switch stage” of Step 8 in
Algorithm 4.1. Then

pi+1 = max

{
2,

γ

γ − 1

p̂

k + 1

}
(k + 2)

≥ γ

γ − 1
p̂.

(4.3a)

If i > 0, then, by Lemma 4.2(ii), pi was constructed according to the “initial stage”
of Step 8. Hence, it follows from the definition of pi and (4.1e) that pi ≤ p̂. Hence,
by (4.3a) we have that pi+1 ≥ γpi/(γ − 1). If i = 0, then pi+1 ≥ γpi/(γ − 1) because
p̂ ≥ p0.

Case III. Suppose that pi+1 is defined as in the “final stage” of Step 8; see Step 9.
Then pi+1 ≥ γpi/(γ − 1) whenever pi+1 > pi. Hence, (i) holds.

(ii) Suppose that Algorithm 4.1 has generated the sequence {xi}∞i=0 with accu-
mulation point x̂ and that at least one of the sequences {Ni}∞i=0, {pi}∞i=0 are bounded
from above. Now, we have three cases.

Case I. Suppose that both {Ni}∞i=0 and {pi}∞i=0 are bounded. Then the test
in (4.1c) can only be satisfied a finite number of times, because otherwise (4.1d)
would have caused {Ni}∞i=0 to diverge to infinity. Hence, there must exist an i∗ ∈ N,
an N∗ <∞, and a p∗ <∞ such that for all i > i∗, Ni = N∗, pi = p∗, and

ψπi,N∗,p∗(xi+1)− ψπi,N∗,p∗(xi) < − τ1
p∗
− τ2∆(N∗).(4.3b)

By inspection, ψπ′′,N (x)− ψπ′,N (x) ≤ 0 for all π′′ ≥ π′, N ∈ N, and x ∈ Rn. Hence,
by (3.9) and (4.3b), we have that for all i > i∗

ψπi+1,N∗(xi+1)− ψπi,N∗(xi)

= ψπi+1,N∗(xi+1)− ψπi,N∗(xi+1) + ψπi,N∗(xi+1)− ψπi,N∗(xi)

≤ 0 + ψπi,N∗,p∗(xi+1)− ψπi,N∗,p∗(xi) +
1

p∗
ln(r1 + 1)

< − τ1
p∗
− τ2∆(N∗) +

1

p∗
ln(r1 + 1)

≤ −τ2∆(N∗).

(4.3c)

Thus, ψπi,N∗(xi) → −∞, as i → ∞. However, there exists an infinite subset K ⊂ N
such that xi →K x̂, as i→∞. If {πi}∞i=0 is bounded, then there exists an i∗∗ ≥ i∗ such
that πi = π∗ for all i > i∗∗, and hence by continuity, ψπ∗,N∗(xi) →K ψπ∗,N∗(x∗), as
i→∞. If πi →∞, then we can infer from Lemma 3.3(ii) that ψπi,N∗(xi)→K ψN∗(x∗),
as i→∞. This is a contradiction.

Case II. Suppose that {Ni}∞i=0 is bounded, but {pi}∞i=0 diverges to infinity. Then
the test in (4.1c) can only be satisfied a finite number of times, because otherwise
(4.1d) would have caused {Ni}∞i=0 to diverge to infinity. Since pi+1 = pi whenever
the test in (4.1c) fails, it follows that pi+1 > pi only a finite number of times. Hence,
{pi}∞i=0 has to be bounded, which is a contradiction.

Case III. Suppose that {Ni}∞i=0 diverges to infinity, but {pi}∞i=0 is bounded from
above. Then the test in (4.1c) must be satisfied an infinite number of times, because
otherwise {Ni}∞i=0 would not have diverged to infinity. Hence, Algorithm 4.1 enters
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Step 8 an infinite number of times. By Lemma 4.2, there exists an i∗ ∈ N such that
pi+1 is set by the “final stage” for all i > i∗ such that (4.1c) is satisfied. Since {pi}∞i=0

is bounded from above and Step 8 is entered a infinite number of times, we must have
that (see Step 9)

δ(i+ 2) <
γpi
γ − 1

(4.3d)

for an infinite number of iterations. However, since there exists an p∗ <∞ such that
pi ≤ p∗ for all i ∈ N, (4.3d) cannot be satisfied for an infinite number of iterations,
which is a contradiction.

Hence, Ni → ∞ and pi → ∞, as i → ∞. Next, we prove that
∑∞

i=0 1/pi = ∞.
Since pi+1 > pi only if (4.1c) is satisfied, and pi → ∞, as i → ∞, the test in (4.1c)
must be satisfied an infinite number of times. Hence, by Lemma 4.2, there exists an
i∗ ∈ N such that for all i > i∗, pi+1 is set by the “final stage” of Step 8 whenever
(4.1c) is satisfied. Hence, for all i > i∗, pi+1 = pi or pi+1 ≤ δ(i+ 2); see Step 9. The
final result now follows from the fact that

∑∞
i=0 1/i = +∞.

Lemma 4.4. Suppose that Assumptions 2.1 and 3.1(i) hold. For every bounded
set S ⊂ Rn, π > 0, and α, β ∈ (0, 1), there exists a KS < ∞ such that for all p ≥ 1,
N ∈ N, and x ∈ S

ψπ,N,p(x+ λπ,N,p(x)hπ,N,p(x))− ψπ,N,p(x) ≤ α
KS

p
θπ,N,p(x),(4.4a)

where λπ,N,p(x) and hπ,N,p(x) are the step size and search direction of Algorithm 4.1;
see (4.1a,b).

Proof. In section 2.1 in [17], we find the following equivalent form of θπ,N,p(·),
see (3.2b):

θπ,N,p(x) = min
h∈Rn

max
y∈YN

ωπ,p(x, y)− ψπ,N,p(x) + 〈∇xωπ,p(x, y), h〉+ 1

2
‖h‖2.(4.4b)

Let S ⊂ Rn be bounded. It follows from Assumption 2.1 and (3.2b)–(3.2c) that there
exists a constant M <∞ such that ‖hπ,N,p(x)‖ ≤M for all x ∈ S, N ∈ N, and p > 0.

Next, let SB ⊂ Rn �
= {x ∈ Rn | ‖x − x′‖ ≤ M,x′ ∈ S}, and let L ∈ [1,∞) be the

constant corresponding to SB such that (3.11a) holds for all x ∈ SB , y ∈ Y , v ∈ Rn,
and p ≥ 1. Then, for all λ ∈ (0, 1], x ∈ S, N ∈ N, and p ≥ 1, we have by expansion,
Lemma 3.5, and (4.4b) that for some s ∈ [0, 1]

ψπ,N,p(x+ λhπ,N,p(x))− ψπ,N,p(x)

= max
y∈YN

{ωπ,p(x+ λhπ,N,p(x), y)− ψπ,N,p(x)}

= max
y∈YN

{
ωπ,p(x, y)− ψπ,N,p(x)

+ λ〈∇xωπ,p(x, y), hπ,N,p(x)〉

+
λ2

2

〈
hπ,N,p(x),

∂2ωπ,p(x+ sλhπ,N,p(x), y)

∂x2
hπ,N,p(x)

〉}

≤ λ max
y∈YN

{
ωπ,p(x, y)− ψπ,N,p(x) + 〈∇xωπ,p(x, y), hπ,N,p(x)〉+ λ

2
pL‖hπ,N,p(x)‖2

}

= λ

(
θπ,N,p(x) +

1

2
(λpL− 1)‖hπ,N,p(x)‖2

)
.

(4.4c)
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Hence, for all λ ∈ (0, 1/(pL)]

ψπ,N,p(x+ λhπ,N,p(x))− ψπ,N,p(x)− αλθπ,N,p(x)

≤ λ(1− α)θπ,N,p(x) ≤ 0.
(4.4d)

Now, it follows from (4.4d) and the step-size rule in (4.1b) that

λπ,N,p(x) ≥ β

pL
(4.4e)

for all x ∈ S, N ∈ N, and p ≥ 1. Hence, the conclusion follows with KS = β/L. This
completes the proof.

Theorem 4.5. Suppose that Assumptions 2.1 and 3.1 hold and that Algo-

rithm 4.1 has generated a bounded sequence {xi}∞i=0 and a finite sequence {x∗
j}j

∗
j=0.

Then there exist an infinite subset K ⊂ N and an x̂ ∈ Rn such that xi →K x̂ and
θπ∗(x̂) = 0, where π∗ = κj

∗+1π−1, with κ, π−1 as in Algorithm 4.1.

Proof. Since {x∗
j}j

∗
j=0 is a finite sequence, there exists an i∗ ∈ N such that πi =

π∗ �
= κj

∗+1π−1 for all i > i∗. For the sake of a contradiction, suppose that there
exists an ε > 0 such that

lim sup
i→∞

θπ∗,Ni,pi(xi) ≤ −ε.(4.5a)

Since {xi}∞i=0 is a bounded sequence, it has at least one accumulation point. Hence,
by Lemma 4.3(ii), pi, Ni →∞, as i→∞. Next, by Lemma 4.4 there exists anM <∞
such that

ψπ∗,Ni,pi(xi+1)− ψπ∗,Ni,pi(xi) ≤ α
M

pi
θπ∗,Ni,pi(xi)(4.5b)

for all i > i∗. Now, for all N ∈ N and p > 0, let

ψ̃π∗,N,p(x)
�
= ψπ∗,N,p(x) +

γ

p
ln r + γK∆(N),(4.5c)

where γ > 1 is as in Algorithm 4.1 and K <∞ as in Lemma 3.4. Now, we have three
cases corresponding to whether p and N were increased or not in Steps 7 and 8 of
Algorithm 4.1.

Case I. Suppose that pi < pi+1 and Ni < Ni+1. Then by Lemma 4.3(i)

pi+1 ≥ γ

γ − 1
pi,(4.5d)

∆(Ni+1) ≤ γ − 1

γ
∆(Ni),(4.5e)
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and we have that for all i > i∗

ψ̃π∗,Ni+1,pi+1
(xi+1)− ψ̃π∗,Ni,pi(xi)

= ψπ∗,Ni+1,pi+1
(xi+1)− ψπ∗,Ni,pi(xi)

+

(
γ

pi+1
− γ

pi

)
ln r + γK(∆(Ni+1)−∆(Ni))

= ψπ∗,Ni+1,pi+1(xi+1)− ψπ∗,Ni,pi(xi+1) + ψπ∗,Ni,pi(xi+1)− ψπ∗,Ni,pi(xi)

+

(
γ

pi+1
− γ

pi

)
ln r + γK(∆(Ni+1)−∆(Ni))

≤ ψπ∗,Ni+1(xi+1)− ψπ∗,Ni(xi+1) +
1

pi
ln r + α

M

pi
θπ∗,Ni,pi(xi)

+

(
γ

pi+1
− γ

pi

)
ln r + γK(∆(Ni+1)−∆(Ni))

≤ ψπ∗(xi+1)− ψπ∗(xi+1) +
1

pi
ln r +K∆(Ni) + α

M

pi
θπ∗,Ni,pi(xi)

+

(
γ

pi+1
− γ

pi

)
ln r + γK(∆(Ni+1)−∆(Ni))

≤ α
M

pi
θπ∗,Ni,pi(xi).

(4.5f)

Case II. Suppose that pi = pi+1 and Ni < Ni+1. Then (4.5e) holds, and we have
that for all i > i∗

ψ̃π∗,Ni+1,pi+1
(xi+1)− ψ̃π∗,Ni,pi(xi)

= ψπ∗,Ni+1,pi(xi+1)− ψπ∗,Ni,pi(xi) + γK(∆(Ni+1)−∆(Ni))

= ψπ∗,Ni+1,pi(xi+1)− ψπ∗,Ni,pi(xi+1) + ψπ∗,Ni,pi(xi+1)− ψπ∗,Ni,pi(xi)

+ γK(∆(Ni+1)−∆(Ni))

≤ ψπ∗,pi(xi+1)− ψπ∗,pi(xi+1) +K∆(Ni) + α
M

pi
θπ∗,Ni,pi(xi)

+ γK(∆(Ni+1)−∆(Ni))

≤ α
M

pi
θπ∗,Ni,pi(xi).

(4.5g)

Case III. Suppose that pi = pi+1 and Ni = Ni+1. Then we have that for all i > i∗

ψ̃π∗,Ni+1,pi+1(xi+1)− ψ̃π∗,Ni,pi(xi)

= ψπ∗,Ni,pi(xi+1)− ψπ∗,Ni,pi(xi)

≤ α
M

pi
θπ∗,Ni,pi(xi).

(4.5h)

By Lemma 4.3(ii),
∑∞

i=0 1/pi = +∞. Hence, by (4.5a) and (4.5f)–(4.5h),

ψ̃π∗,Ni,pi(xi) → −∞, as i → ∞. Then we also must have ψπ∗,Ni,pi(xi) → −∞, as
i→∞. Let x∗ be an accumulation point of {xi}∞i=0. Then there exists an infinite sub-
set K∗ ⊂ N such that xi →K∗

x∗, and by (3.9) and (3.10a) |ψπ∗,Ni,pi(xi)−ψπ∗(x∗)| ≤
|ψπ∗,Ni,pi(xi)− ψπ∗,Ni(xi)|+ |ψπ∗,Ni(xi)− ψπ∗(xi)|+ |ψπ∗(xi)− ψπ∗(x∗)| →K∗

0, as
i→∞, which is a contradiction. Thus,

lim sup
i→∞

θπ∗,Ni,pi(xi) = 0.(4.5i)
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Hence, by Lemma 3.6 and (4.5i), there have to exist an infinite subset K ⊂ N and an
x̂ ∈ Rn such that xi →K x̂ and θπ∗(x̂) = 0. This completes the proof.

Lemma 4.6. Suppose that Assumptions 2.1 and 2.6 hold. Then the small-
est eigenvalue σmin(·, ·) of the matrix-valued function [A(·, ·)A(·, ·)T + B(·, ·)] (see
(2.13a), (2.13d)) is continuous, and for every compact set S ⊂ Rn,

min
x∈S

min
y∈Ŷ (x)

σmin(x, y) > 0.(4.6)

Proof. For any x ∈ Rn and y ∈ Rm, let C(x, y) = A(x, y)A(x, y)T + B(x, y),
with the smallest eigenvalue σmin(x, y). Since σmin(x, y) = min‖v‖=1〈v, C(x, y)v〉 and
C(·, ·) is continuous, it follows from Corollary 5.4.2 in [17] that σmin(·, ·) is continuous.

Next, let S ⊂ Rn be a compact set. By Theorem 5.4.3 in [17], Ŷ (·) (see (2.4a)) is
outer semicontinuous and compact-valued. Hence, by Theorem 5.4.1 in [17],
miny∈Ŷ (·) σmin(·, y) is lower semicontinuous. Since the infimum of a lower semicon-

tinuous function over a compact set is attained, (4.6) follows from Lemma 2.7(ii) and
Assumption 2.6.

Theorem 4.7. Suppose that Assumptions 2.1, 2.6, and 3.1 hold and that {xi}∞i=0

is a bounded sequence generated by Algorithm 4.1. Then there exist an x̂ ∈ Rn and
an infinite subset K ⊂ N such that xi →K x̂, as i → ∞, and x̂ is a stationary point
for P.

Proof. Let {x∗
j} be the sequence generated by Algorithm 4.1 in Step 10. We will

show that {x∗
j} must be a finite sequence. For the sake of a contradiction, suppose

that {x∗
j}∞j=0 is an infinite sequence. Since {xi}∞i=0 is a bounded sequence, {x∗

j}∞j=0 is
bounded, and hence there must exist an infinite subset K∗ ⊂ N and x∗∗ ∈ Rn such
that x∗

j →K∗
x∗∗, as i→∞.

By Lemmas 2.7(ii) and 2.8, there exist a compact set Ω(x∗∗) and a ρx∗∗ such that
η(·, ·) is continuous on B(x∗∗, ρx∗∗)× Ω(x∗∗), and

Ŷ (x∗∗) + Bρx∗∗ ⊂ Ω(x∗∗).(4.7a)

Hence,

π∗∗ �
= max

x∈B(x∗∗,ρx∗∗ )
max

y∈Ω(x∗∗)
σ

r1∑
k=1

|ηk(x, y)|(4.7b)

is well-defined, and therefore tπ(x, y) ≤ 0 for all π ≥ π∗∗, x ∈ B(x∗∗, ρx∗∗), and
y ∈ Ω(x∗∗). Since {x∗

j} is an infinite sequence, πi → ∞, as i → ∞. Hence, there
exists i0 ∈ N such that πi > π∗∗ for all i ≥ i0. Hence, tπi−1(xi, y) ≤ 0 for all i > i0,
xi ∈ B(x∗∗, ρx∗∗), and y ∈ Ω(x∗∗). By Lemma 4.3(ii), Ni →∞, as i→∞. Let {yi}∞i=0

be the sequence generated by Algorithm 4.1 in Step 1. Then by Lemma 3.3(i) and
(4.7a) there exist i1 ≥ i0 and ρ1 ∈ (0, ρx∗∗ ] such that for all i > i1 with xi ∈ B(x∗∗, ρ1),

yi ∈ Ŷπi−1,Ni(xi) ⊂ Ŷ (x∗∗) + Bρx∗∗ ⊂ Ω(x∗∗).(4.7c)

Therefore, for all i > i1 and xi ∈ B(x∗∗, ρ1), tπi−1
(xi, yi) ≤ 0.

Next, by Lemma 4.6 there exists ε > 0 such that

2ε = min
x∈B(x∗∗,ρ1)

min
y∈Ŷ (x)

σmin(x, y).(4.7d)
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Moreover, σmin(·, ·) is continuous, and hence uniformly continuous on B(x∗∗, ρ1) ×
Ω(x∗∗). Hence, there exists ρ2 ∈ (0, ρ1] such that

|σmin(x
′, y′)− σmin(x

′′, y′′)| ≤ ε(4.7e)

for all x′, x′′ ∈ B(x∗∗, ρ1), and y′, y′′ ∈ Ω(x∗∗), with ‖x′−x′′‖ ≤ ρ2 and ‖y′−y′′‖ ≤ ρ2.
By Lemma 3.3(i), there exist ρ3 ∈ (0, ρ2] and i2 > i1 such that for all i > i2 with
xi ∈ B(x∗∗, ρ3),

yi ∈ Ŷπi−1,Ni(xi) ⊂ Ŷ (x∗∗) + Bρ2 ⊂ Ω(x∗∗).(4.7f)

Consequently, for all i > i2 with xi ∈ B(x∗∗, ρ3), there exists y′i ∈ Ŷ (x∗∗) such
that ‖y′i − yi‖ ≤ ρ2. Hence, by (4.7d) and (4.7e), we have that for all i > i2 with
xi ∈ B(x∗∗, ρ3),

σmin(xi, yi) = σmin(xi, yi)− σmin(x
∗∗, y′i) + σmin(x

∗∗, y′i) ≥ −ε+ 2ε = ε.(4.7g)

Since for all i > i1 and xi ∈ B(x∗∗, ρ1), tπi−1(xi, yi) ≤ 0; i.e., the test in Step 3 is

satisfied for all π ≥ πi−1. Since x
∗
j →K∗

x∗∗, there must exist an infinite set K∗∗ ⊂ N,
with elements diverging to infinity, such that σmin(xi, yi) < σi−1 for all i ∈ K∗∗;
i.e., the test in Step 2 fails an infinite number of times. Hence, σi → 0, as i → ∞.
Therefore, there exists an i3 > i2 such that for all i > i3, σi−1 < ε. Now, we have
that for all i > i3 with xi ∈ B(x∗∗, ρ3), σmin(xi, yi) ≥ σi−1 and tπ(xi, yi) ≤ 0 for all
π ≥ πi−1. Consequently, no xi ∈ B(x∗∗, ρ3) is converted into x∗

j after i3, which is a

contradiction. Hence, {x∗
j}j

∗
j=0 is a finite sequence with j∗ <∞.

It follows from Theorem 4.5 there exist an infinite subset K ⊂ N and an x̂ ∈ Rn
such that xi →K x̂ and θπ∗(x̂) = 0, with π∗ �

= κj
∗+1π−1. Furthermore, there exists

i∗ ∈ N such that for all i ≥ i∗ the test in Step 2 is satisfied and the test in Step 3
is satisfied with π = πi−1; i.e., there exists σ∗ > 0 such that for all i ≥ i∗, πi = π∗,
σmin(xi, yi) ≥ σ∗, and

tπ∗(xi, yi) ≤ 0.(4.7h)

Now, {yi}∞i=0 ⊂ Y , which is compact. Hence, there exist L ⊂ K and ŷ ∈ Y such
that yi →L ŷ, as i → ∞. By Lemma 4.3(ii), Ni → ∞. Hence, Lemma 3.2 gives
that ŷ ∈ Ŷπ∗(x̂). By Lemma 4.6, σmin(·, ·) is continuous, and hence by continuity,
σmin(x̂, ŷ) ≥ σ∗. This implies that A(x̂, ŷ)A(x̂, ŷ)T + B(x̂, ŷ) is positive definite, and
hence by Lemma 2.8(i), ∇yfk(x̂, ŷ), k ∈ r∗1(x̂, ŷ), together with ∇gk(ŷ), k ∈ r∗2(ŷ), are
linearly independent. By Lemma 2.7(ii), tπ∗(·, ·) is continuous at (x̂, ŷ). It follows
from (4.7h) that tπ∗(x̂, ŷ) ≤ 0. Hence, by Lemma 2.7(iii),

ψ(x̂) = ψπ∗(x̂).(4.7i)

It now follows from Theorems 2.5 and 2.10 that x̂ is stationary for P. This completes
the proof.

5. Numerical example. We illustrate Algorithm 4.1 by a numerical example
computed on a 500 MHz PC running Matlab [15]. Let x = (x1, x2, x3) ∈ R3, y ∈ R,
and
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Fig. 1. Decrease in the cost functions ψπi,Ni,pi (xi) and ψ(xi).

φ(x, y) = 3(x1 − y)2 + (2− y)(x2)2 + 5(x3 + y)2 + 2x1 + 3x2 − x3 + e4y2

,(5.1a)

f(x, y) =
1

4
sin(x1x2) + y − 1

2
,(5.1b)

g1(y) = −y,(5.1c)

g2(y) = y − 1,(5.1d)

i.e., r1 = 1, r2 = 2, and Y = [0, 1] ⊂ R.
Based on the reasoning in the paragraphs following Lemma 4.2, we take τ1 = ln 2,

τ2 = 1, σ = κ = 2, ρ = 0.001, µ = 0.5, σ−1 = 10−5, p̂ = 5 · 104, γ = 105, and
ζ = 2. Furthermore, we set the step-size parameters to be α = 0.5 and β = 0.8. The
discretization scheme is such that YN contains N +1 equally spaced numbers in [0, 1],
i.e., Y1 = {0, 1}, Y2 = {0, 0.5, 1}, Y3 = {0, 0.333, 0.667, 1}, etc., and ∆(N) = 1/N . The
approximation parameters are set to be p0 = 1, N0 = 1, and π−1 = 1, which give a
coarse approximation.

Using the starting point x0 = (2, 1, 0), we obtain the local minimizer x̂ = (−0.0033,
−1.0002,−0.3928), with ψ(x̂) = 2.4100. Figures 1–3 show how the approximating cost
function ψπi,Ni,pi(xi) and the exact cost function ψ(xi) converge, and how the pre-
cision parameters N and p are gradually increased. The penalty π was increased
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Fig. 2. Increase in the discretization parameter Ni.

to 1024 in the first iteration and remained constant after that throughout the rest
of the computation. Obviously, the cost function ψ(xi) cannot be evaluated exactly
in finite time; the values in Figure 1 were obtained by a fine discretization of Y . It
can be seen from Figures 2 and 3 that the precision parameters N and p stay low
until the iterate is close to a local minimizer. The initially coarse approximations
reduce ill-conditioning potentially caused by a high smoothing precision parameter
(see [18] for an examination of such effects) and computational cost caused by high
discretization.

6. Conclusions. We have developed an implementable algorithm for a class of
generalized semi-infinite min-max problems based on a sequential solution of grad-
ually better-approximating finite min-max problems. The approximating problems
are obtained by exact penalization, discretization, and smoothing. The penalty, dis-
cretization, and smoothing parameters are automatically adjusted by using a series
of tests. Under mild assumptions, we have shown that if the algorithm generates a
bounded sequence, then the penalty parameter remains bounded and there exists an
accumulation point which satisfies a first-order optimality condition.

Clearly, discretization is a computationally expensive technique in high-
dimensional spaces, and hence the proposed algorithm will be computationally in-
efficient for problems with a high-dimensional semi-infinite part, i.e., large m. In
spite of this, we used a discretization technique because of the need for global max-
imizers of the inner problem of the min-max-min problem. Obviously, other global
optimization techniques could have been used, but we have not evaluated the relative
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Fig. 3. Increase in the smoothing parameter pi.

merits of alternative techniques.

Appendix A. The optimality condition for P derived in Theorem 2.5 (see also
Theorem 2.10) can be related to the following optimality condition deduced from
Theorem 3.3 in [24].

Theorem A.1. Suppose that x̂ is a local minimizer for P, that Assumption 2.1
holds, and that the vectors ∇yfk(x̂, y), k ∈ r∗1(x̂, y), together with the vectors ∇gk(y),
k ∈ r∗2(y), are linearly independent for all y ∈ Ŷ (x̂). Then

0 ∈ conv
y∈Ŷ (x̂)

{∇xφ(x̂, y)− fx(x̂, y)
Tα(x̂, y)},(A.1a)

where α(x̂, y) ∈ Rr1 , together with β(x̂, y) ∈ Rr2 (not used here), are the unique
Karush–Kuhn–Tucker multipliers for the “inner problem” (1.2) at the point y ∈ Ŷ (x̂);
i.e., (α(x̂, y), β(x̂, y)) satisfy

∇yφ(x̂, y)− fy(x̂, y)
Tα(x̂, y)− gy(y)

Tβ(x̂, y) = 0,(A.1b)

α(x̂, y)T f(x̂, y) + β(x̂, y)T g(y) = 0,(A.1c)

α(x̂, y) ≥ 0, β(x̂, y) ≥ 0,(A.1d)

f(x̂, y) ≤ 0, g(y) ≤ 0.(A.1e)
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Theorem A.2. Suppose that Assumption 2.1 holds, that x̂ satisfies (A.1a), and
that the vectors ∇yfk(x̂, y), k ∈ r∗1(x̂, y), together with the vectors ∇gk(y), k ∈ r∗2(y),
are linearly independent for all y ∈ Ŷ (x̂). If π > 0 is such that ψ(x̂) = ψπ(x̂), and
for all y ∈ Ŷ (x̂)

π ≥
r1∑
k=1

|ηk(x̂, y)|,(A.2a)

with η(·, ·) as in (2.13g), then 0 ∈ Ḡψπ(x̂).
Proof. By Carathéodory’s theorem (see, e.g., Theorem 5.2.5 in [17]), (A.1a) holds

if and only if there exist ŷi ∈ Ŷ (x̂), i ∈ {1, . . . , n + 1}, and a multiplier vector

µ̂ ∈ Σn+1
�
= {µ ∈ Rn+1| µi ≥ 0, i ∈ {1, . . . , n+ 1},∑n+1

i=1 µi = 1} such that

0 =

n+1∑
i=1

µ̂i∇xφ(x̂, ŷi)−
n+1∑
i=1

r1∑
k=1

µ̂iαk(x̂, ŷi)∇xfk(x̂, ŷi).(A.2b)

We will now construct multipliers such that 0 ∈ Ḡψπ(x̂). Let π > 0 satisfy (A.2a) for
all y ∈ Ŷ (x̂),

ζki
�
=

1

π
αk(x̂, ŷi), k ∈ r1,(A.2c)

ζ0
i

�
= 1−

r1∑
k=1

ζki ,(A.2d)

µi
�
= µ̂i, i ∈ {1, . . . , n+ 1},(A.2e)

and yi
�
= ŷi, i ∈ {1, . . . , n + 1}. Trivially, µ ∈ Σn+1, yi ∈ Y , and f(x̂, yi) ≤ 0 for all

i ∈ {1, . . . , n+ 1}. Furthermore, for all k ∈ r1 and i ∈ {1, . . . , n+ 1}

µiζki [φ
k
π(x̂, yi)− ωπ(x̂, yi)] = −πµiζki fk(x̂, yi)

= −µ̂iαk(x̂, ŷi)fk(x̂, ŷi) = 0,
(A.2f)

because from (A.1c)–(A.1e), αk(x̂, ŷi)f
k(x̂, ŷi) = 0 for all k ∈ r1 and i ∈ {1, . . . , n+1}.

Also, φrπ(x̂, yi)− ωπ(x̂, yi) = 0 for all i ∈ {1, . . . , n+ 1}. Next, by (A.2b)

n+1∑
i=1

r∑
k=1

µiζki ∇xφkπ(x̂, yi) =
n+1∑
i=1

µi∇xφ(x̂, yi)−
n+1∑
i=1

r1∑
k=1

µiζki π∇xfk(x̂, yi)

=

n+1∑
i=1

µ̂i∇xφ(x̂, ŷi)−
n+1∑
i=1

r1∑
k=1

µ̂iαk(x̂, ŷi)∇xfk(x̂, ŷi) = 0.

(A.2g)

It now remains to show that ζ0
i ≥ 0 for all i ∈ {1, . . . , n+1}. It follows by inspection

that the unique multipliers α(x̂, ŷi) and β(x̂, ŷi) (see (A.1b)–(A.1e)) solve the mini-
mization problem in (2.14b) with x and y replaced by x̂ and ŷi, respectively. Hence,
α(x̂, ŷi) and β(x̂, ŷi) also satisfy the necessary optimality conditions for (2.14b) given
in (2.14a). Since the solution of (2.14a) is unique under the linear independence as-
sumption (see the proof of Lemma 2.7(ii)), we have by definition of η(·, ·) (see (2.13g))
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that η(x̂, yi) = α(x̂, ŷi) for all i ∈ {1, . . . , n+ 1}. Hence,

ζ0
i = 1−

r1∑
k=1

ζki = 1− 1

π

r1∑
k=1

αk(x̂, ŷi)

= 1− 1

π

r1∑
k=1

ηk(x̂, yi) ≥ 1− 1

π
π = 0.

(A.2h)

This completes the proof.
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AN INFEASIBLE ACTIVE SET METHOD FOR QUADRATIC
PROBLEMS WITH SIMPLE BOUNDS∗
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Abstract. A primal-dual active set method for quadratic problems with bound constraints is
presented. Based on a guess on the active set, a primal-dual pair (x, s) is computed that satisfies the
first order optimality condition and the complementarity condition. If (x, s) is not feasible, a new
active set is determined, and the process is iterated. Sufficient conditions for the iterations to stop in
a finite number of steps with an optimal solution are provided. Computational experience indicates
that this approach often requires only a few (less than 10) iterations to find the optimal solution.

Key words. primal-dual active set method, convex programming
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1. Introduction. We consider the convex programming problem

(P ) minJ(x) subject to x− b ≤ 0,(1.1)

where

J(x) :=
1

2
xTQx+ dTx,

Q is a positive definite n × n matrix, and b, d ∈ Rn. This problem has received
considerable interest in the literature. We recall some of the more recent contributions.

Solution methods based on active sets and gradient projection are among the
most popular approaches to solve (P ) and can be traced back to the 1960s. More
recent contributions from Moré and Toraldo [14, 15] indicate that this approach is
applicable also for large-scale problems. The key steps here consist of using the
conjugate gradient method to investigate a given face of the feasible region and the
gradient projection method to move to a different face. Kočvara and Zowe [12] replace
the gradient projection by successive overrelaxation with projection, thereby gaining
efficiency as compared to [15].

Another solution strategy consists of treating the inequalities by the interior-point
idea: a sequence of parameterized barrier functions is (approximately) minimized
using Newton’s method. The main computational effort consists of solving the Newton
system to get the search direction. From the vast literature on this topic, we refer
to the book by Wright [16]. More recently, Heinkenschloss, Ulbrich, and Ulbrich
[10] developed an affine-scaling interior-point approach to general nonlinear bound-
constrained problems, which does not assume strict complementarity to hold at local
solutions. D’Appuzo et al. [7] present a parallel implementation of an interior-point
method for box-constrained quadratic programming.
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Finally, trust–region-type methods have also been investigated to deal with bound-
constrained problems. We refer to Coleman and Lin [4], Coleman and Liu [5], and
Lin and Moré [13] for further details.

Our contribution to solve (P ) consists of an infeasible active-set approach that
was already successfully applied to constrained optimal control problems; see [1, 2].
The approach from [1, 2] was tailored to deal with specially structured elliptic partial
differential equations. Here we investigate this approach for general convex quadratic
problems of the form (P ). Our approach is iterative. In each step we maintain the
first order optimality condition and the complementarity constraint associated with
(P ); see (2.1) and (2.2) below. The iterations are carried out until primal and dual
feasibility hold; see (2.3) and (2.4) below. A primary feature of the algorithm is its
simplicity. Moreover, it does not rely on tuning parameters except in the degenerate
case, where a parameter controlling the stopping criterion is used. In the nondegen-
erate case the algorithm terminates after finitely many steps. In fact, computational
experience shows that typically only few (often only between 5 and 10) iterations are
required to reach the optimal solution starting from an arbitrarily chosen initial active
set. We succeed in proving finite step convergence of the algorithm from arbitrary
initial data independently of assumptions on strict complementarity, provided appro-
priate sufficient conditions related to strict diagonal dominance of Q are satisfied.

The paper is organized as follows. At the end of this section we summarize nota-
tion used throughout this paper. In section 2 we describe the details of our algorithm.
The main theoretical contributions are contained in section 3, which presents sufficient
conditions for the method to converge in a finite number of iterations. The practical
performance is described in section 4. We consider randomly generated problems,
problems arising in mathematical physics, and problems from [14, 15] for the sake of
comparison.

Notation. The following notation will be used throughout. For a subset A ⊆
N := {1, . . . , n} and x ∈ Rn we write xA for the components of x indexed by A, i.e.,
xA := (xi)i∈A. The complement of A will be denoted by Ā. If Q is a matrix and A and
B are subsets of N , then QA,B is the submatrix of Q, given by QA,B = (qij)i∈A,j∈B . If
A = B we write QA for QA,A. The vector of ones will be denoted by e. For a, b ∈ Rn

we write a ◦ b to denote the vector of elementwise products, a ◦ b := (aibi)i∈N ∈ Rn.

2. The algorithm. To describe the algorithm that will be investigated analyt-
ically and computationally let b, d ∈ Rn and Q = QT be given, with Q a positive
definite n × n matrix. We consider the convex quadratic minimization problem with
simple bound constraints (1.1).

Even though we could assume without loss of generality that b = 0, we prefer to
maintain a general upper bound on x. The Karush–Kuhn–Tucker (KKT) system for
(P ) is given by

Qx+ d+ s = 0,(2.1)

(KKT ) s ◦ (x− b) = 0,(2.2)

x− b ≤ 0,(2.3)

s ≥ 0.(2.4)

It is well known that a vector x together with a vector s ∈ Rn of Lagrange multi-
pliers for the inequality constraints furnishes a (global) minimum of (P ) if and only
if (x, s) satisfies the KKT system. A solution pair (x, s) of KKT is called strictly
complementary if there exists no index i such that si = 0 and xi = bi.
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Table 2.1
Description of the algorithm.

Prototype Algorithm

Input: Q symmetric, positive definite n× n matrix, b, d ∈ Rn. A ⊆ N , e.g., A = N .
Output: (x, s) optimal solution

repeat until (x,s) is optimal
Solve KKT(A), i.e., set xA = bA, sI = 0 and compute xI from (2.7) and sA from (2.8);
A := {i : xi > bi or si > 0};

We now describe in some detail the approach sketched in the introduction. The
crucial step in solving (P ) is to identify those inequalities which are active, i.e., the
set A ⊆ N , where the solution to (P ) satisfies xA = bA. Then, with I := N\A, we
must have sI = 0.

To compute the remaining elements xI and sA of x and s, we use (2.1) and
partition the equations and variables according to A and I:

(
QA QA,I

QI,A QI

)(
xA
xI

)
+

(
dA
dI

)
+

(
sA
sI

)
= 0.(2.5)

The second set of equations can be solved for xI , because QI is by assumption
positive definite:

xI = −Q−1
I (dI +QI,A bA).

Substituting this into the first equation implies sA = −dA −QA,N x. If our guess for
A would have been correct, then xI ≤ bI and sA ≥ 0 would have to hold. Suppose
this is not the case. Then we need to make a new “guess” for A, which we denote by
A+. Let us first look at sA. If si > 0, this confirms our previous guess i ∈ A, so we
include i also in A+. Consider now xI . If xi > bi we set xi = bi in the next iteration.
Hence we include i in A+ also in this case. Formally we arrive at

A+ := {i : xi > bi or si > 0}.(2.6)

This completes an intuitive description of one iteration of the algorithm. It is
summarized in Table 2.1. To simplify notation we introduce for given A the following
set KKT (A) of equations:

KKT (A) Qx+ d+ s = 0, xA = bA, sI = 0.

The solution of KKT (A) is given by xA = bA, sI = 0, and

xI = −Q−1
I (dI +QI,AbA),(2.7)

sA = −dA −QA bA −QA,IxI .(2.8)

We observe that if (x, s) satisfies KKT (A), then (2.1) and (2.2) of KKT hold. The
iterates of the algorithm are well-defined, because KKT (A) has a unique solution for
every A ⊆ N , due to Q � 0.

In Lemma 2.1 it is guaranteed that the set A changes in each iteration unless the
algorithm stops. Hence the algorithm does not get trapped by generating the same
(x, s) in two consecutive iterations.
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Lemma 2.1. Let A and A+ be the active sets in two consecutive iterations of the
algorithm. Then either the current primal and dual variables satisfy (2.1)–(2.4) or
A �= A+.

Proof. Let A and A+ be the active sets in two consecutive iterations. Suppose
that A = A+, and let i ∈ A+. Then either si > 0 or xi > bi. But xi = bi for i ∈ A,
and A = A+, so we cannot have xi > bi, and hence x ≤ b. Therefore i ∈ A+ implies
that si > 0, i.e., sA+ > 0. But we also have sI = sI+ = 0 because A = A+, so s ≥ 0.
Therefore the solution of KKT (A) is optimal, and the algorithm would have stopped
before generating A+.

Remark. To guess the set A at the start, several obvious strategies could be
employed. Using A = N , we get x = b and s = −(Qb+ d). Setting A = ∅ gives s = 0
and x = −Q−1d. In the latter case a linear system of order n has to be solved, which
may be expensive for large-scale sparse problems. Alternatively, A may be selected
at random.

3. Convergence analysis.

3.1. Index partition. To investigate the convergence behavior of the algorithm,
we look at two consecutive iterations. Suppose that some iteration, say k ≥ 1, is
carried out with the set Ak ⊆ N , yielding (x(k), s(k)) as the solution of KKT (A(k)).
According to (2.6), the new active set is

A(k+1) = {i : x(k)
i > bi or s

(k)
i > 0}.

Let (x(k+1), s(k+1)) denote the solution of KKT (A(k+1)). To avoid too many super-
scripts, we write

(A, x, s) for (A(k), x(k), s(k)) and (B, y, t) for (A(k+1), x(k+1), s(k+1)).

Given A, we find that x, s,B, y, t are determined by

xA = bA, sĀ = 0, Qx+ d+ s = 0,(3.1)

B = {i : xi > bi or si > 0},(3.2)

yB = bB , tB̄ = 0, Qy + d+ t = 0.(3.3)

The following partition of N into mutually disjoint subsets will be useful in our con-
vergence analysis. We first partition A into

S := {i ∈ A : si ≤ 0}

and A\S. The set I is partitioned into

T := {i ∈ I : xi > bi}

and I\T . In Table 3.1 we summarize the relevant information about x, s, y, t for this
partition. The column for x indicates that xT > bT , xS = bS and so on. A nonspecified
entry, for instance yS , indicates that yS is in no specific relation to bS . Finally, let
K1 := {i ∈ S : yi > bi}, let K2 := {i ∈ I\T : yi > bi}, and let K := K1 ∪K2. The set
K contains the indices of primal infeasibility of y.
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Table 3.1
Partition of index set N.

s t x y

T =0 > b = b
S ≤ 0 =0 = b
I\T =0 =0 ≤ b
A\S > 0 = b = b

3.2. Merit function and finite step convergence. We recall the well-known
[3] augmented Lagrangian merit function for (P ) given by

Lc(x, s) = J(x) + sT max
(
x− b,− s

c

)
+

c

2

∥∥∥max(x− b,−s

c

)∥∥∥2

,

where c > 0 and the max-operation is acting componentwise. Here we shall employ a
variation of Lc(x, s) given by

Lc(x, s) = Lc(x,max(0, s)).

Let us note that

Lc(x, s) = J(x) +
c

2
‖max(x− b, 0)‖2,

provided that (x, s) satisfies the complementarity condition s ◦ (x − b) = 0, which is
the case for the iterates of our algorithm. In the remainder of this section we shall
establish sufficient conditions for the decay of Lc along the iterates of the algorithm;
i.e.,

Lc(y, t)− Lc(x, s) < 0

holds for any two consecutive pairs (x, s) and (y, t). In particular this implies conver-
gence of the algorithm in finitely many steps. We start with some preliminary results.
First, we investigate how the objective function changes during consecutive iterations.
One cannot expect a monotone decrease of J(x), as the iterates may be infeasible.

Lemma 3.1. Let (x, s), (y, t) and T be given as above. Then we have

J(y)− J(x) =
1

2
(y − x)T

(
QT 0
0 −QT̄

)
(y − x).

Proof. We use the Q-inner product, 〈a, b〉Q := aTQb, with associated norm
‖a‖2Q := 〈a, a〉Q and get

J(y)− J(x) =
1

2
‖y‖2Q −

1

2
‖x‖2Q + zT d,

where z = y − x. Using the identity

‖y‖2Q − ‖x‖2Q = 2〈y − x, y〉Q − ‖y − x‖2Q,

the right-hand side can now be rewritten to obtain

J(y)− J(x) = −1
2
zTQz + zT (Qy + d) = −1

2
zTQz − zT t.
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The last equation follows from Qy+ d = −t. Now ti = 0 for i ∈ S ∪ (I\T ) and zi = 0
on A\S. Therefore zT t =

∑
i∈T ziti. Furthermore t − s = −Qz and ti − si = ti for

i ∈ T , and hence

−
∑
i∈T

ziti =
∑
i∈T

zi(Qz)i = zT
(

QT,N

0

)
z.

Summarizing, we see that

J(y)− J(x) = −1
2
zT
(

QT QT,T̄

QT̄ ,T QT̄

)
z + zT

(
QT

1
2QT,T̄

1
2QT̄ ,T 0

)
z.

Lemma 3.2. Let (x, s), (y, t) as well as T and K be given as above. Then we
have

‖max(y − b, 0)‖2 − ‖max(x− b, 0)‖2 =
∑
i∈K
|yi − bi|2 −

∑
i∈T
|xi − bi|2.

Proof. The claim follows from the fact that x is infeasible precisely on T ; see Table
3.1. Moreover, by the definition of the sets K1 and K2, the variable y is infeasible on
K.

In summary we have proved the following result.
Proposition 3.3. For every two consecutive pairs (x, s) and (y, t) we have

Lc(y, t)− Lc(x, s) =
1

2
zT
(

QT 0
0 −QT̄

)
z +

c

2

∑
i∈K
|yi − bi|2 − c

2

∑
i∈T
|xi − bi|2.

We can now state the following sufficient conditions (C1) and (C2) for decrease
of the merit function. Some more notation is required. Let µ := λmin(Q) > 0 denote
the smallest eigenvalue of Q. Further, let

ν := max{‖QA,Ā‖ : A ⊂ N,A �= ∅, A �= N},
where ‖ · ‖ denotes the spectral norm. We also use the diagonal matrix D :=
diag(q11, . . . , qnn), consisting of the main diagonal elements of Q, and define

q := min{qii : i ∈ N}.
Finally, let r := ‖Q − D‖ denote the norm of Q with the elements from the main
diagonal removed.

condition (C1) cond(Q) <
(µ
ν

)2

− 1,(3.4)

condition (C2) cond(Q) <
(q
r

)2

− 1,(3.5)

where cond(Q) = λmax(Q)
λmin(Q) . We will show below that either (C1) and (C2) ensures

strict decrease of the merit function Lc.
Conditions (3.4) and (3.5) both require some diagonal dominance of Q. In fact,

turning to (3.4), we observe that ν is independent of the main diagonal of Q and can
be bounded as

ν ≤ ‖Q−D‖ = r.
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Consequently, (3.4) is implied by

cond(Q) <
(µ
r

)2

− 1.

Clearly, this condition will hold if r > 0 is sufficiently small, relative to µ and cond(Q).
Turning to (3.5), assume that r

q < 1. This implies that

‖QD−1 − I‖ ≤ ‖Q−D‖‖D−1‖ = r

q
< 1,

which allows us to interpret (3.5) as a condition on the diagonal dominance of Q
relative to cond(Q).

To see the effect of these two conditions in more detail, we consider the matrix

Q(α) := αI − (E − I) =




α −1 . . . −1
−1 . . .

. . .
...

...
. . . −1

−1 . . . −1 α


 .

Here E = eeT is the matrix of all ones. The eigenvalues of Q(α) are a + 1 − n and
α+ 1. We assume that α > n− 1 to ensure Q � 0. In this case

cond(Q) =
α+ 1

α+ 1− n
, r = ‖Q−D‖ = ‖E−I‖ = n−1, q = α, and ν =

n

2
for even n.

Therefore (3.4) is equivalent to

α+ 1

α+ 1− n
< 4

(
α+ 1− n

n

)2

− 1.

This condition holds for α+ 1 ≥ 1.9n. Similarly, it can be established that condition
(3.5) is satisfied for α+1 ≥ 1.8n. In summary, α+1 > n ensures diagonal dominance
of Q(α), but our conditions require a stronger form of diagonal dominance.

Theorem 3.4. Let (x, s), (y, t) be two consecutive primal-dual iterates of the
algorithm, and set c = ‖Q‖+ µ. If (C1) holds, then we have

2(Lc(y, t)− Lc(x, s)) ≤ c1‖y − x‖2 < 0,

with c1 := (‖Q‖+ µ)( νµ )
2 − µ < 0. Similarly, (C2) implies that

2(Lc(y, t)− Lc(x, s)) ≤ c2‖y − x‖2 < 0,

with c2 := (‖Q‖ + µ)( rq )
2 − µ < 0. In both cases the algorithm stops after a finite

number of iterations for every b and d in Rn.
Proof. As before, we set z = y − x. We first note that for i ∈ K we have xi ≤ bi,

hence 0 < yi − bi ≤ yi − xi, and therefore∑
i∈K

(yi − bi)
2 ≤ ‖zK‖2.

Similarly, yT = bT , and hence ∑
i∈T

(xi − bi)
2 = ‖zT ‖2.
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Using Proposition 3.3 we get

2(Lc(y, t)− Lc(x, s)) ≤ ‖Q‖‖zT ‖2 − µ‖zT̄ ‖2 + c‖zK‖2 − c‖zT ‖2.
The next goal is to bound ‖zK‖ in terms of ‖z‖. On K1 we have sK1 ≤ 0, tK1 = 0,

and therefore (Qz)K1 = sK1 ≤ 0. Similarly, sK2 = tk2 = 0 on K2, and thus (Qz)K2 =
0. It follows that (Qz)K = QKzK +QK,K̄zK̄ = ( sK1

0
). Taking the inner product with

zK and noting that zK1
≥ 0 we find

zTK(Qz)K = zTKQKzK + zTKQK,K̄zK̄ = sTK1
zK1 ≤ 0.(3.6)

We can now bound ‖zK‖ in the following two ways.
Variant 1 to bound ‖zK‖. We have

µ‖zK‖2 ≤ ‖zTKQKzK‖ ≤ ‖zTKQK,K̄zK̄‖ ≤ ν‖zK‖‖zK̄‖.
The first inequality follows from the definition of µ, the second uses (3.6), and the
last follows from the definition of ν. So we get

‖zK‖2 ≤ ν2

µ2
‖zK̄‖2 ≤

ν2

µ2
(‖zT ‖2 + ‖zT̄ ‖2).

Variant 2 to bound ‖zK‖. Using again (3.6) and the definition of D we can
alternatively write

0 ≥ zTK(Qz)K = zTKDKzK + zTK(QK,N −DK,N )z.

From this we get q‖zK‖2 ≤ zTKDKzK ≤ r‖zK‖‖z‖, and therefore

‖zK‖2 ≤ r2

q2
‖z‖2 = r2

q2
(‖zT ‖2 + ‖zT̄ ‖2).

Variant 1 yields

2(Lc(y, t)− Lc(x, s)) ≤
(
‖Q‖ − c+ c

ν2

µ2

)
‖zT ‖2 +

(
c
ν2

µ2
− µ

)
‖zT̄ ‖2,(3.7)

while variant 2 gives

2(Lc(y, t)− Lc(x, s)) ≤
(
‖Q‖ − c+ c

r2

q2

)
‖zT ‖2 +

(
c
r2

q2
− µ

)
‖zT̄ ‖2.(3.8)

Note that setting c := ‖Q‖+ µ makes the coefficients of ‖zT ‖2 and ‖zT̄ ‖2 in (3.7) as
well as (3.8) equal to one another.

Up to this point we have not yet used either of the conditions (C1) or (C2).
Suppose now that (C1) holds. Then the coefficients in (3.7) are both equal to (‖Q‖+
µ) ν

2

µ2 − µ = c1. Moreover, condition (C1) implies that ‖Q‖ + µ < µ(µν )
2, and hence

c1 < 0.
Similarly, we find that in (3.8) the coefficients are both equal to c2. If we assume

that (C2) holds, then c2 < 0.
It is clear that under the above conditions it is impossible that some active set A

is reproduced twice. Since there is only a finite number, namely 2n, of different sets,
the algorithm stops with an optimal solution for every choice of b and d.
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We conclude this section with several remarks.
1. The main computational effort per iteration is the solution of the linear equa-

tion (2.7). The size of this system varies, but typically it is much smaller than
n, since it needs only be solved for the inactive variables.

2. We emphasize that the iterates of the algorithm do not observe primal and
dual feasibility. Thereby big changes to the active set are possible and occur
in numerical practice. This is an extremely useful feature especially for large
scale problems.

3. It is straightforward to extend the algorithm to both lower and upper bounds,
i.e., to constraints of the form

l ≤ x ≤ u.

We experimented also with this type of problem and did not find a significant
difference in performance to the unilaterally constrained problem.

4. It is also straightforward to extend the present approach to strictly convex
cost functions f . In this case the algorithm can be included in an outer
SQP-type iteration.

3.3. Comparison to closely related methods. To compare the present al-
gorithm with Bertsekas’s projected Newton method [3, Chapter 1.5], we first recall a
simple version of this algorithm.

(i) Given the current iterate x with x ≤ b, computeAB = {i : xi = bi and (∇J(x))i
< 0} and set IB = N\AB .

(ii) Compute a step δx by (δx)IB = −Q−1
IB (Qx+ d)IB , (δx)AB = −(Qx+ d)AB .

(iii) Compute a step size α based on an Armijo rule along the projected arc and
set the new iterate x+ = P (x+ αδx).

Here P denotes the projection onto the feasible set, and the superscript B refers to
Bertsekas. Furthermore ∇J(x) = Qx + d corresponds to −s in the development of
our algorithm. We note that (xB+)AB = b, due to steps (ii) and (iii) of the Bertsekas
algorithm.

We point out some significant differences between Bertsekas’s method and ours.
Bertsekas’s algorithm maintains primal feasibility throughout. To ensure convergence,
a line search is performed in each iteration. In contrast our algorithm always satisfies
the first order equation (2.1) and the complementarity condition (2.2). It neither
utilizes a line search nor maintains primal feasibility (2.3). As a consequence the
gradients determining the active sets are computed at different points for the two
methods. If the primal variable of our algorithm is feasible, then the active sets of
both methods coincide. This does not imply, however, that the following iterates
are identical. The equality criterion xi = bi in step (ii) of Bertsekas’s algorithm
causes difficulties in the convergence proof and can lead to jamming in numerical
realizations. It is therefore suggested [3] to replace it by the criterion 0 ≤ bi−xi < εk,
where εk → 0+ as the iteration count k → ∞. If Q is positive definite and strict
complementarity holds at the solution (x, s) to KKT, then the Bertsekas algorithm
converges in finitely many steps.

In our algorithm the new iterate is uniquely determined by the current active
set A, and consequently it can generate only a finite number of different iterates. A
convergence proof therefore amounts to verifying that primal and dual feasibilities
(2.3) and (2.4) are reached.

The projected Newton method was refined in several papers; see, e.g., [14, 15].
The resulting implementations differ significantly from our algorithm not only in the
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points already addressed above but also in the fact that they utilize tuning parameters.
Our algorithm does not depend on sophisticated tuning parameters.

Next we note that (KKT) can be considered as a complementarity system. The
numerical treatment of such a system has been studied extensively. We mention
splitting schemes, damped Newton methods, and interior-point methods, all of which
are described in [6, Chapter 5.8], for example. We now describe how the method of
this paper relates to the damped Newton method as analyzed in [6]. For this purpose
we define, for given x ∈ RN , s ∈ RN , the disjoint decomposition of N into subsets
A,D, I as

A = {i : bi − xi < si}, D = {i : bi − xi = si}, I = {i : bi − xi > si}(3.9)

and introduce the mapping H : RN → R
N by

H(x) = min{−Qx− d, b− x}.
Note that the system

H(x) = 0, s = −(Qx+ d),

characterizes a solution pair (x, s) to (2.1)–(2.4).
Let us consider a Newton step for solving H(x) = 0, and let x denote the current

iterate associated with s = −(Qx+d). We assume that x is nondegenerate, i.e., D = ∅.
Then H is differentiable at x, and a Newton step satisfying H(x)+∇H(x)δx = 0 has
the form ( −(Qx+ d)I

(b− x)A

)
−
(

QI QIA
0 IA

)(
(δx)I
(δx)A

)
= 0,(3.10)

where IA is the identity matrix of appropriate dimension. Solving for δx results in

x+
A = xA + (δx)A = bA(3.11)

and

x+
I = xI + (δx)I = −Q−1

I (dI +QIAbA).(3.12)

Defining s+ by means of s+ = −(Qx+ + d) we have

s+
I = 0 and x+

A = −dA −QAbA −QAIxI .(3.13)

From (3.11)–(3.13) we conclude that (x+, s+) from the above Newton step and (x, s)
of KKT(A) in our algorithm coincide if A = A and I = I. If, as in our algorithm,
one accepts the update (x+, s+) obtained from the full Newton step, then, since
s+ ◦ (x+ − b) = 0, the new active sets according to (3.9) and those determined from
our prototype algorithm coincide.

The damped Newton algorithm, however, does not accept the full Newton step
but rather utilizes a line search guaranteeing that the actual new iterate is nonde-
generate and that HTH acts as a merit function. For the resulting algorithm it is
shown in [6] that if x̃ is a nondegenerate accumulation point of the damped Newton
method, then (x̃, s̃) with s̃ = −(Qx̃+d) is a solution to the complementarity problem.
Nondegeneracy corresponds to strict complementarity of the solution to (KKT). The
latter is not required for Theorem 3.4 to hold.
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3.4. Equality constraints. We close this section with a discussion of why our
approach may have difficulties if we allow equality constraints. For this purpose we
consider the following problem:

minimize J(x) such that Rx− r = 0, x ≤ b.

Denoting by u the multipliers for the equality constraints, the KKT system for this
problem is given by

Qx+ d+ s+RTu = 0, Rx = r, s ◦ (x− b) = 0, x ≤ b, s ≥ 0.

Solving the system Qx + d + s + RTu = 0, Rx = r under the additional constraint
that xA = bA, sI = 0 leads to(

QI RT
I

RI 0

)(
xI
u

)
=

( −dI −QI,AxA
r −RAxA

)
.

This system need not be solvable even if R has full rank. RI could, for instance, be
the zero matrix for some I ⊆ N . On the other hand, this system is solvable for any
I if there is only a single equation

∑
rixi = r0 and ri �= 0 for all i. This occurs,

for instance, if x represents a convex combination, x ≥ 0,
∑

i xi = 1. Numerical
experiments for this case are given in section 4.5.

4. Computational experience. In section 3 we gave sufficient conditions for
convergence of our algorithm. In this section we look at the practical behavior of the
algorithm by considering a variety of test problems. We implemented the algorithm
in MATLAB and provide the source code along with the routines for the examples of
section 4.2 for download at

http://www-sci.uni-klu.ac.at/math-or/home/publications/active-ml.tar.

4.1. A randomly generated problem. To get a first impression, we study in
some detail a randomly generated problem, where we vary Q by making it increasingly
ill-conditioned. In order for the reader to be able to reproduce some of the following
results, we provide the MATLAB commands that we used to generate the data Q, d
and b.
>> n=500;

>> rand(’seed’,n);

>> p=sprandn(n,n,.1)+speye(n);

>> p=tril(triu(p,-100));

>> Q0=p*p’;

>> d=rand(n,1)*20*n-10*n;

>> b=ones(n,1);

>> Astart=find(rand(n,1)>rand);

The problem of size n = 500 was generated so that Q0 is a sparse positive semidef-
inite matrix, which is singular. The matrices Q are obtained from Q0 by adding a
small multiple of the identity matrix I:

Q = Q0 + εI,

where ε ∈ {1, 10−1, 10−4, 10−7, 10−10}. The estimated condition numbers of these
matrices are given in Table 4.1. We used the MATLAB command condest to compute
them. The only nontrivial input to our algorithm is the initial guess A for the optimal
active set. The algorithm is started by a randomly generated initial active set Astart;
see the last command line above.
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Table 4.1
Iteration counts for a random problem of size n = 500. Q = Q0 + εI, where Q0 � 0 is singular.

5 6 7 8 9 10 11 12 cond(Q) ε
540 460 0 0 0 0 0 0 795 1
0 67 575 343 15 0 0 0 9.3e+03 1e-1
0 0 11 306 470 176 35 2 8.7e+06 1e-4
0 0 14 266 443 220 47 10 7.4e+09 1e-7
0 0 13 244 437 235 59 12 5.1e+12 1e-10

In Table 4.1 we summarize the iteration counts of our algorithm. Each line
represents 1000 runs on the same problem with different starting sets A. The columns
labeled with numbers it ranging from 5 to 12 indicate how often the algorithm stopped
after it iterations. We note that the algorithm never took more than 12 iterations in
all of the 5000 runs. For the well-conditioned problem with ε = 1, the algorithm in
fact always stopped after no more than 6 iterations.

4.2. Biharmonic equation. A rich source of applications for our algorithm
comes from applications in mathematical physics. We first consider a model problem
describing small vertical deformations u of a horizontal, elastic thin plate occupying
a domain Ω ⊂ R2, which is clamped along its boundary Γ, under the influence of a
vertical force of density f ∈ L2(Ω), with the plate constrained to remain below an
obstacle ψ ∈ L∞(Ω):

min 1
2

∫
Ω

|∆u(x)|2dx−
∫

Ω

f(x)u(x)dx

over u ∈ H2(Ω) satisfying
u = 0, ∂u

∂n = 0 on Γ
u(x) ≤ ψ(x) a.e. in Ω.




(4.1)

We assume throughout that ψ is uniformly positive in a neighborhood of Γ. This
implies, in particular, that the set of feasible solutions to (4.1) is nonempty. It is then
well known that (4.1) admits a unique solution u∗ in H2

0 (Ω) = {v ∈ H2(Ω) : v|Γ = 0,
∂v
∂n |Γ = 0}; see, e.g., [8, section 4.4]. The Lagrange multiplier λ associated with the
inequality constraint is only a measure in L∞(Ω)∗, the dual of L∞(Ω). The KKT
system characterizing the solution to (4.1) is given by

(∆u∗,∆v)L2 + 〈λ, v〉L∞,∗,L∞ = (f, v)L2 for all v ∈ H2
0 (Ω),

〈λ, v〉L∞,∗,L∞ ≥ 0 for all v ∈ H2
0 (Ω), with v ≥ 0

〈λ, u∗ − ψ〉L∞,∗,L∞ = 0, u∗ − ψ ≤ 0 a.e. in Ω,


(4.2)

where (·, ·) denotes the inner product in L2(Ω), 〈·, ·〉L∞,∗,L∞ denotes the duality pair-
ing between L∞(Ω)∗ and L∞(Ω), and we recall that H2

0 (Ω) ⊂ L∞(Ω).
Formally, (4.2) can be expressed as

∆2u∗ + λ = f in Ω, with u|Γ = ∂u
∂n |Γ = 0,

λ ≥ 0, u∗ ≤ ψ, λ(x)(u∗ − ψ)(x) = 0 in Ω.

}
(4.3)

To realize (4.1), discretization of the biharmonic ∆2 with homogeneous Dirichlet and
Neumann boundary conditions, as well as of u, λ, f , and ψ, is required. For our
numerical tests we chose Ω as the unit square which was discretized by a uniform
axiparallel grid of meshsize h = 1

m+1 , for fixed m ∈ N, resulting in m2 interior nodes.
The biharmonic operator, including the boundary conditions, was discretized on the
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basis of a 13-point finite difference stencil as described, e.g., in [9, page 105], resulting
after proper ordering of the nodes in a positive definite m2 × m2-matrix Qh. It is
worthwhile to point out that Qh is not an M -matrix. The functions u, f , and ψ were
approximated by their interior nodal values and are denoted by uh, fh, ψh. Approxi-
mating the integral by cuboids centered at the nodes of the grid, the discretization of
(4.1) turns out to be

min 1
2 uTh Qh uh + fTh uh

subject to uh ≤ ψh,

}
(4.4)

which is of the form (P ). For the discretized problem a Lagrange multiplier λh ≥ 0 in

R
m2

clearly exists. We solved (4.4) for different choices of f and ψ. Numerical results
are presented for a typical case with

f(x, y) = −60(1− x2) y e−7(x−.9)2−4(y−.1)2 + 100x(1− y) e−3(x−.2)2−6(y−.8)2

(see Figure 4.1) and

ψ(x, y) = 4 · 10−5.

A straightforward application of our algorithm withm = 128 and an unstructured
initialization chosen as uh = ψh requires 71 iterations and 172 seconds to reach the
exact solution of (4.4). All computation times given are seconds on a DEC ALPHA
workstation.

To reduce the number of iterations and to utilize the advantage of fast solution on
coarse meshes a multilevel approach turned out to be very efficient. For this purpose
we choose a sequence of grids characterized by meshsizes hi = 2−ih, i = 0, 1, . . . ,
where h is an initial coarse meshsize. The nested algorithm then consists of a coarse
to fine sweep. The optimal active set for meshsize hi is interpolated to the grid hi+1

and utilized as the initial active set for the problem with gridsize hi+1. Utilizing this
strategy for our test problem resulted in a significant reduction in the total number of
iterations. In Table 4.2 we give the number of required iterations on each grid level,
starting with m = 8. In our computational experiments we noted that the algorithm
typically maintained dual feasibility throughout (s ≥ 0), and only primal feasibility
was violated. This phenomenon is known to hold if Q is an M-matrix; see [11].

We next compare our algorithm to the Moré–Toraldo refinement of Bertsekas’s
projected Newton algorithm for a problem that is widely studied in the literature.
For that purpose we consider the obstacle problem for the harmonic equation, which
arises from (4.1) by replacing the Laplacian with the Nabla operator and removing the
homogeneous Neumann boundary conditions. All further specifications regarding the
discretization of the operators, the choices for Ω, f , and ψ, are as in [15, section 7.1].
We solve this problem with our algorithm including grid refinement as described
above. In Table 4.3 we provide the iteration counts and the number of inactive
variables at the optimum. Comparing with Table 7.1 in [15] we observe an identical
number of inactive variables form = 100. Moreover, the iteration count is consistently
less than half of that reported in [15] for a wide range of m.

Our numerical results for obstacle problems of numerical physics suggest that the
prototype algorithm combined with grid refinement is highly competitive with the
most efficient existing methods.

4.3. Lack of strict complementarity. Our convergence analysis of section 3
holds independent of any assumptions concerning strict complementarity; however, in
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Fig. 4.1. Force f acting on plate (top); deformation u of plate (bottom).

Table 4.2
Number of iterations for the biharmonic obstacle problem.

m 8 16 32 64 128 256
iter 6 7 10 6 7 8
time (sec.) 0.01 0.08 0.6 2.7 26.7 364
largest system 26 139 647 2738 11251 45580

Table 4.3
Number of iterations for the obstacle problem.

m 25 50 100 200 400
iter 7 4 4 4 4
time (sec.) 0.05 0.27 1.5 12.2 127.3
final system 199 899 3843 15880 64636
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Table 4.4
Iteration count for random problems from [14].

3 4 5 6 7 8 9 10 11 12 13 14-16 fail
tol = 0

3 3 269 4812 4643 276
3 12 4 157 1775 4080 2711 1062 189 22
12 3 5 502 3449 4449 1395 199 1
12 12 78 742 2219 2713 2291 930 423 209 86 309

tol = 10−12
3 3 269 4812 4643 276
3 12 4 157 1775 4080 2711 1062 189 22
12 3 30 979 4386 3680 856 69
12 12 62 568 2329 3339 2433 953 279 36 1

finite precision computations the test si > 0 is sensitive to round-off errors. Therefore
we replace it by si > −tol, where tol > 0 is a small tolerance. Similarly, we allow
small violations of primal feasibility and set our stopping condition to

si ≥ −tol, xi ≤ bi + tol for all i.

With this modification, we tested our method on problems lacking strict complemen-
tarity, which we generated as follows.

First we partition N into three nonempty sets A,B, I. We select b and Q � 0 at
random. Setting xA = bA, xB = bB , xI < bI and sB = 0, sI = 0, sA > 0 and defining
d := −Qx − s yields a solution pair (x, s) satisfying KKT, with sB = xB − bB = 0.
By construction the solution lacks strict complementarity on B.

Our computational tests for this type of problem with tol = 10−6 did not indicate
a significant performance difference compared to problems where strict complemen-
tarity holds.

The following class of examples, which are constructed in such a way that they
are arbitrarily close to lacking strict complementarity, allows comparison with results
presented in the literature. We follow the approach of [14] and generate random
instances where both the condition number of Q and the degree of degeneracy can
be set by the user. To allow comparisons with [14], we choose the dimension n of
the problems to be n = 100. The parameter ncond sets the condition number of
Q to encond. We selected ncond ∈ {3, 12}. The number ndeg controls the degree of
degeneracy of the problem. The example from [14] is constructed in such a way that
for all i in the active set at the solution we set si = 10−µi ndeg, where µi is a uniformly
distributed random number in [0, 1]. A large value of ndeg indicates that the optimal
dual variable to the active constraint may be close to zero, depending on µi. Similar to
[14] we choose ndeg ∈ {3, 12}. Finally, we selected the cardinality of active variables
at the optimal solution to be n/2, with upper and lower bound constraints.

Table 4.4 contains computational results for random instances generated for the
parameter combinations for ndeg and ncond which are specified in the first two
columns. For each pair of parameter settings, 100 random instances are generated
and solved with 100 different initial active sets. This gives 10000 runs for each line.
The number of iterations needed for these 10000 runs is documented. We first ran all
instances with tol = 0; i.e., we ignored potential difficulties arising from lack of strict
complementarity.

For this choice of tol the algorithm solved all instances with no more than 10
iterations per run, except for the most difficult setting with ndeg = 12, ncond = 12.
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For the latter, 309 out of 10000 instances failed due to cycling. Setting tol = 10−12

for the stopping condition, as described above, led to convergence of all instances.
The second part in the table summarizes the corresponding iteration counts.

The comparison with the results in [14] can be carried out on the basis of iteration
counts since for both algorithms the most expensive step is the solution of the linear
system on the inactive set. For both choices of tol our algorithm requires significantly
fewer iterations, with a big majority of runs terminating with less than 10 iterations.
Moreover, our algorithm is less sensitive to ndeg and ncond.

4.4. Regularization. The conditions (3.4) or (3.5) are sufficient for our method
to converge. In practice we noticed, however, that the method also converges when
these conditions are not satisfied, provided that Q is positive definite and not too
ill-conditioned.

To make the method work independently of the conditioning of Q, we propose to
use the following regularization term in the first few iterations of the algorithm. In
iteration k of the algorithm we use

Q′ := Q+
t

2k−1
I for k ≤ k0

and set Q′ = Q after iteration k0. Here the number t depends on the scaling of Q.
In our tests we set t = 1 and k0 = 4. With this modification we never ran into
computational difficulties and managed to handle even problems with singular Q. A
specific class of examples is given in the next subsection.

4.5. Projection onto polytope. Suppose we are given n+1 points a0, . . . , an
in Rm. If P denotes the convex hull of a1, . . . , an, we consider the problem of finding
the point a ∈ P closest to a0. Let A = (a1, . . . , an). Then a ∈ P if and only if
a = Ax, x ≥ 0,

∑
i xi = 1. Thus we arrive at the following problem:

minimize ‖Ax− a0‖2 such that x ≥ 0,
∑
i

xi = 1.

We generate our problems as follows. A is chosen to be a sparse random matrix
of order m × n, where n > m, with nonzero entries uniformly distributed in (0, 1).
We set a0 = 0 and measure the distance of the polytope P ⊆ R

n
+, contained in

the positive orthant, from the origin. Under our assumptions, Q = ATA is positive
semidefinite with dimension of the nullspace at least n −m, so the matrix is highly
singular. To ensure that the iterates are well-defined, we have added a multiple of
( 1
2 )

k−1 times the identity for iterations k = 1, . . . , 4. After iteration 4 we continued
with the singular matrix Q, without encountering any computational difficulties. In
Table 4.5 we present again accumulated results for 100 test runs with n = 500 and
n = 1000. In both cases m = n/2. The meaning of the numbers in Table 4.5 is the
same as that in Table 4.1. The number of iterations was never more than 10, despite
the fact that we work with a singular matrix after iteration 4. Obviously, after the

Table 4.5
Distance of polytope from origin (iteration counts).

n m 6 7 8 9 10 11
500 250 1 23 61 12 3 0
1000 500 0 6 56 33 5 0
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Table 4.6
Cardinality of inactive set during iterations for m = 128. The third column provides the number

of common elements to the subsequent inactive set.

Iteration n− |A| Common Difference
1 11097 10928 169
2 11192 11092 100
3 11225 11191 34
4 11245 11225 20
5 11249 11245 4
6 11251 11249 2
7 11251 11251 0

first four iterations the approximation to the true active set was already close enough
to the optimal solution so that no computational difficulties occurred.

4.6. Cholesky update/downdate. The algorithm which we use for the com-
putational tests can be improved by utilizing the fact that as the method progresses,
the current estimate of the active set gets closer to the active set at the optimum.
Hence from a certain iteration on this set changes only in a few variables from one
iteration to the next when compared to the total number of variables. To give some
intuition, we provide in Table 4.6 the cardinalities of the inactive set (= size of the
linear system to be solved) and the number of common elements to the subsequent
inactive set for the biharmonic equation with m = 128, starting from the extrapolated
optimal active set from m = 64; see Figure 4.1.

In the current version of the algorithm we do not use this feature and compute
the Cholesky factor of the system from scratch in each iteration. It would certainly be
worth testing to use the Cholesky factor from the previous iteration and to perform
the required update and downdate steps to add or remove elements as necessary. Since
version 5.3 of MATLAB does not support this feature for sparse matrices, we have no
computational results yet for this variant of the algorithm.

5. Discussion. In this paper we presented an infeasible active set method. Un-
der certain conditions we were able to prove global convergence of the method. More-
over, we demonstrated the efficiency of the method by considering a diverse set of test
problems. As can be seen from these examples the algorithm converges in many cases
for which the sufficient conditions of Theorem 3.4 are not satisfied. It could be the
focus of further research efforts to narrow the gap between the classes of problems for
which the algorithm converges efficiently in numerical practice and those for which
convergence can be proved. Special features of the algorithm include its ability to
find the exact numerical solution of the problem and the fact that at each iteration
level the size of the linear system which must be solved is determined by the currently
inactive set, which can be significantly smaller than the total set of variables. As a
consequence the proposed algorithm differs significantly from interior-point methods,
for example. From the numerical experiments we observe that the algorithm has the
feature of “correcting” many active variables to inactive ones and vice versa during
the early stages of the iterations. This is certainly one of its distinguishing practical
features. The total number of iterations is frequently quite insensitive with respect
to initialization. Lack of strict complementarity as well as singularity of the system
matrix do not inhibit the efficiency of the algorithm. In the context of the obstacle
problem for the plate equation we demonstrated that it can be useful to combine our
algorithm with a multilevel approach.
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Abstract. In this paper we study practical solution methods for finding the maximum volume
ellipsoid inscribing a given full-dimensional polytope in �n defined by a finite set of linear inequal-
ities. Our goal is to design a general-purpose algorithmic framework that is reliable and efficient in
practice. To evaluate the merit of a practical algorithm, we consider two key factors: the computa-
tional cost per iteration and the typical number of iterations required for convergence. In addition,
numerical stability is an important factor. We investigate some new formulations upon which we
build primal-dual type interior-point algorithms, and we provide theoretical justifications for the
proposed formulations and algorithmic framework. Extensive numerical experiments have shown
that one of the new algorithms is the method of choice among those tested.
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1. Introduction. The ellipsoidal approximation of polytopes is an important
problem in its own right, while it is also a basic subroutine in a number of algorithms
for different problems. One example is that Lenstra’s algorithm for the integer pro-
gramming feasibility problem [12, 13] uses the ellipsoidal approximation of polytopes
as a subroutine.

Consider a full-dimensional polytope P ∈ �n defined by m linear inequalities. For
brevity, we will call the problem of finding the maximum volume ellipsoid inscribing
P the MaxVE problem. The MaxVE problem has its root in the rounding of convex
bodies in �n. One of the earliest studies was done by John [7]. In particular, John’s
results imply that once the maximum volume inscribing ellipsoid E is found in P, then
E ⊂ P ⊂ nE , where nE is the ellipsoid resulting from dilating E by a factor n about
its center. Such a pair of ellipsoids is also called a Löwner–John pair for P. That is,
E provides an n-rounding for P. Moreover, if P is centrally symmetric around the
origin, then the rounding factor can be reduced to

√
n.

Ellipsoids have good geometric and computational properties that make them
much easier to handle, both theoretically and computationally, than polytopes. For
example, the global minimum of any quadratic in an ellipsoid can be located in poly-
nomial time (see [25], for example), while finding such a global minimum in a poly-
tope is generally an NP-hard problem. For many problems a fruitful and effective
approach is to use ellipsoids to approximate polytopes in various theoretic and al-
gorithmic settings. A celebrated example is Khachiyan’s ellipsoid method [9]—the
first polynomial-time algorithm for linear programming. Other applications include
optimal design [20, 22], computational geometry (for example, [24]), and algorithm
construction (for example, [4] and [21]).
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Recently, several randomized polynomial-time algorithms ([2, 8, 14], for example)
have been proposed for approximating the volume of convex bodies. (Computing
the volume itself is NP-hard.) In the case of a polytope, these algorithms require
approximating the polytope by an ellipsoid.

It is known that the rounding of a polytope can be accomplished by the (shallow-
cut) ellipsoid method in polynomial time (see, for example, [19, 4]). It is also known,
however, that the ellipsoid method is not a practically efficient algorithm. A number of
interior-point algorithms have been proposed in recent years for the MaxVE problems,
for example, by Nesterov and Nemirovskii [17], Khachiyan and Todd [11] (also see [10]
for a related problem), Nemirovskii [16], and Anstreicher [1].

Nesterov and Nemirovskii [17] constructed a three-stage barrier method for find-
ing an ε-optimal ellipsoid E such that its volume Vol(E) ≥ Vol(E∗)e−ε, where E∗ is
the maximum volume ellipsoid inscribing P and ε ∈ (0, 1). They obtained a com-
plexity bound O(m2.5(n2 + m) ln(mRε )) for their algorithm, where m is the number
of constraints and R is a priori known ratio of the radii of two concentric balls, the
larger ball containing the given polytope P and the smaller one being contained in P.
The term n2 comes from the requirement of solving linear systems involving an n×n
matrix-valued variable.

Khachiyan and Todd [11] proposed an algorithm that attains the complexity
estimate of O(m3.5 ln(mRε ) ln(n lnR

ε )). The algorithm applies the basic barrier method
to a small number of subproblems and requires only solving linear systems of n+m
equations to compute the involved Newton directions. In their formulation the matrix-
valued variable is explicitly treated as dependent on another vector-valued variable
during the solution of Newton linear systems.

Nemirovskii [16] showed that the MaxVE problem can be reformulated as a
saddle-point problem in m + n variables and solved by a path-following method for
approximating saddle points of a sequence of self-concordant convex-concave func-
tions as defined in [16]. Nemirovskii proved that the complexity of the algorithm is
O(m3.5 ln(mRε )).

Most recently, Anstreicher [1] proposed an algorithm that uses key ideas of
Khachiyan and Todd [11] but avoids solving the subproblems required in the Khachiyan
and Todd algorithm. This way, Anstreicher’s algorithm attains the complexity esti-
mate of O(m3.5 ln(mRε )), which is the same as in [16]. Anstreicher also showed that
first computing an approximate analytic center of the polytope can reduce the com-
plexity to O((mn2 +m1.5n) ln(R) +m3.5 ln(mε )).

In addition, Vandenberghe, Boyd, and Wu [23] proposed an algorithm for the
class of MAXDET problems to which the MaxVE problem belongs. However, their
algorithm does not take into account the special structure of the MaxVE problem.

All the aforementioned works are primarily concerned with the complexity issues,
and the proposed algorithms are theoretical in nature. The objective of the present
study is to identify or construct a numerically efficient and stable algorithm for solving
general MaxVE problems. Our study is not aimed at solving very large-scale problems,
so we will not consider aspects of exploiting sparsity and other special structures that
may be present in the polytope-defining inequalities.

Since for many convex programs primal-dual interior-point algorithms have proven
to be superior in practice than either primal or dual algorithms, we will mainly in-
vestigate primal-dual type algorithms, though we will also consider particular primal
algorithms for the purpose of comparison.
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Two features are common in all the known interior-point algorithms for solving
the MaxVE problem. First, they are iterative in nature. Second, they require solving
a linear system at each iteration to update the current iterate. Hence, in judging the
practical efficiency of an algorithm, we must consider two key factors: (i) how many
iterations the algorithm typically requires in practice for obtaining an approximate
solution of a certain quality and (ii) how expensive it is to solve the relevant linear
system at each iteration. Besides efficiency, another important consideration is the
robustness of the algorithm. The robustness of an iterative algorithm is often deter-
mined by the numerical stability of the solution procedure for linear systems that has
to be invoked at every iteration.

In most primal-dual algorithms for linear programming or semidefinite program-
ming, at each iteration one solves a large linear system by reducing it to a smaller
Schur complement system obtained by block elimination. Moreover, the coefficient
matrix in the Schur complement system is often positive definite. This procedure has
proven to be efficient and at the same time adequately stable. Likewise, in this paper
we will try to identify primal-dual algorithms for which the corresponding linear sys-
tems can be reduced by block Gauss elimination to a well-behaved Schur complement
system.

The paper is organized as follows. In section 2 we describe the formulation of
the MaxVE problem. We introduce some primal-dual type interior-point algorithms
in section 3 and give related theoretical results in section 4. We summarize the
Khachiyan and Todd algorithm and our modification in section 5. Numerical com-
parative results on these four algorithms are presented in section 6. Finally, we offer
some concluding remarks in section 7.

We now introduce some notation. For any given vector v ∈ �p, we denote the p×p
diagonal matrix with v on its diagonal either by Diag(v) or by its upper-case letter V
whenever no confusion can occur. On the other hand, for a square matrix M , diag(M)
is the vector formed by the diagonal of M . The Hadamard product is represented by
the small circle “◦ .” Unless otherwise specified, superscripts for vectors and subscripts
for scalars that are not elements of a matrix are iteration counts. For a vector v,
inequalities of the form v > a are interpreted as componentwise, where a is a vector
of the same size. For symmetric matrices, A 
 B, or equivalently A− B 
 0, means
that A−B is positive definite. We use �m+ and �m++ to represent the nonnegative and
positive orthants in �m, respectively. The notation Sn++ represents the cone of all
symmetric positive definite matrices in �n×n. For a setW in �m, we denote its closure
by cl(W). Finally, by default ‖ · ‖ represents the Euclidean norm unless otherwise
specified.

2. The maximum volume ellipsoid problem. Consider a polytope P in �n
given by

P = {v ∈ �n : Av ≤ b},(2.1)

where A ∈ �m×n, m > n, and b ∈ �m. Recall that by definition a polytope is a
bounded polyhedron. For convenience of discussion, we will make the following two
assumptions throughout the paper:

A1. The matrix A has full rank n and contains no zero rows.
A2. There exists a strictly interior point v̄ ∈ P satisfying Av̄ < b.

In this paper, we will also make the assumption that m is a small multiple of n, that
is, n < m� n2.
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Given a center x ∈ �n and a nonsingular scaling matrix E ∈ �n×n, an ellipsoid
in �n centered at x can be defined as

E(x,E) = {v ∈ �n : (v − x)T (EET )−1(v − x) ≤ 1};

or, equivalently,

E(x,E) = {v ∈ �n : v = x+ Es and ‖s‖ ≤ 1},(2.2)

where ‖·‖ is the Euclidean norm in �n. Clearly, an ellipsoid is uniquely determined by,
and uniquely determines, the symmetric positive definite matrix EET , but E is not
uniquely determined since the same ellipsoid can also be generated by EQ for any or-
thogonal matrix Q ∈ �n×n. Without loss of generality, we make the assumption that
E itself is symmetric positive definite. With this restriction, every (nondegenerate)
ellipsoid will have a unique representation E(x,E).

It is easy to see that the ellipsoid E(x,E) is contained in P if and only if

sup
‖s‖=1

aTi (x+ Es) ≤ bi, i = 1, . . . ,m,

where aTi is the ith row of A; or, equivalently,

aTi x+ ‖Eai‖ ≤ bi, i = 1, . . . ,m.

Introducing the notation

h(E) = (‖Ea1‖, . . . , ‖Eam‖)T ∈ �m,(2.3)

we have

E(x,E) ⊂ P ⇐⇒ b−Ax− h(E) ≥ 0.(2.4)

Let Vn be the volume of the n-dimensional unit ball. Then the volume of the
ellipsoid E(x,E) defined in (2.2) is

Vol(E) ≡ Vn detE.

It is evident that E(x∗, E∗) is the maximum volume ellipsoid contained in P if and
only if (x∗, E∗) ∈ �n × Sn++ solves the following optimization problem:

min − log detE
subject to (s.t.) b−Ax− h(E) ≥ 0

(E 
 0),
(2.5)

where E 
 0 means that E is symmetric positive definite. (The constraint in paren-
theses may not need to be explicitly enforced.) It is well known that the optimization
problem (2.5) is a convex program with a unique solution (x∗, E∗) ∈ �n×Sn++. More-
over, this solution is uniquely determined by the first-order optimality, or Karush–
Kuhn–Tucker (KKT), conditions for the problem which can be derived as follows.

The Lagrangian function of the convex program (2.5) is

L(x,E, u) = − log detE − uT (b−Ax− h(E)),
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where u ∈ �m is the vector of Lagrange multipliers and u ≥ 0. The KKT conditions
consist of the equations ∇xL = 0, ∇EL = 0, feasibility, and complementarity. Using
the differentiation formulas

∇[log detE] = E−1 and ∇hi(E) =
Eaia

T
i + aia

T
i E

2hi(E)

and introducing the notation U := Diag(u) and

Y ≡ Y (E, u) := Diag(h(E))−1U,(2.6)

we can write the KKT conditions as

ATu = 0,(2.7a)

E−1 − [E(ATY A) + (ATY A)E]/2 = 0,(2.7b)

z − (b−Ax− h(E)) = 0,(2.7c)

Uz = 0,(2.7d)

u, z ≥ 0,(2.7e)

where E 
 0 and z is a slack variable.

3. Formulations and primal-dual algorithms. In this section, we propose
formulations and algorithms for effectively solving the MaxVE problem in practice. In
constructing practically efficient algorithms, we consider the following three guidelines:

1. The algorithms should not carry the matrix-valued variable E as a completely
independent variable because it would require too much computation (given
that n2 � m).

2. The algorithms should be primal-dual algorithms because of their proven
practical efficiency in numerous cases.

3. The algorithms should have theoretical guarantees to be well defined and well
behaved.

The first objective above can be achieved by eliminating the matrix variable E.
The elimination may occur either at the beginning of a formulation or at the time
of solving linear systems during iterations. In this paper, we will take the former
approach.

3.1. Formulations without matrix variable. We now describe three formu-
lations, first proposed in [26], for the MaxVE problem which are free of the matrix
variable E. The key idea in these formulations is to eliminate the matrix-valued vari-
able E from the system by solving (2.7b) for E. As can be verified easily, a solution
to (2.7b) is

E(y) = (ATY A)−1/2,(3.1)

where y = diag(Y ) and Y is defined in (2.6). We will later demonstrate that this
solution is unique in Sn++. Upon the substitution of E(y) into the definition of h(y)
(recall that hi(E) = ‖Eai‖), the vector h(E) becomes a function of y that we will
denote, with a slight abuse of notation, as h(y); namely,

h(y) ≡ h(E(y)).(3.2)
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In [26], after substituting (3.1) and (3.2) into the KKT system, deleting (2.7b),
and adding (2.6) written in a different form, i.e.,

u = g(y) := Y h(y),(3.3)

the author obtained the following system:

F0(x, y, u, z) = 0, y, u, z ≥ 0,(3.4)

where x ∈ �n, y, u, z ∈ �m, and the function F0 : �n+3m → �n+3m is

F0(x, y, u, z) =




ATu
Ax+ h(y) + z − b

u− g(y)
Uz


 .(3.5)

Moreover, it is proposed in [26] to eliminate the variable u from the above system
using (3.3). The resulting system is

F1(x, y, z) = 0, y, z ≥ 0,(3.6)

where the function F1 : �n+2m → �n+2m is

F1(x, y, z) =


 AT g(y)

Ax+ h(y) + z − b
Zg(y)


 .(3.7)

In (3.5) and (3.7), we have used the notation U = Diag(u) and Z = Diag(z), respec-
tively.

In addition, the complementarity conditions Uz = 0 are clearly equivalent to the
conditions Y z = 0 because U = YDiag(h(y)) and h(y) > 0 at the solution. Based on
this observation, a third system is proposed in [26]:

F2(x, y, z) = 0, y, z ≥ 0,(3.8)

where the function F2 : �n+2m → �n+2m is

F2(x, y, z) =


 AT g(y)

Ax+ h(y) + z − b
Y z


 .(3.9)

The three systems (3.4), (3.6), and (3.8) are all free of the matrix-valued variable
E and will form the bases for our algorithm construction.1 However, in obtaining
them we have applied nonlinear transformations whose properties need to be investi-
gated. A most important question is whether or not these transformations preserve
the uniqueness of solutions. We will answer this question and others in a subsequent
section.

1In [26], some additional systems were also derived that we have found to be less satisfactory.
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3.2. Primal-dual algorithmic framework. The primal-dual algorithms to be
proposed can be motivated from the view of the damped Newton’s method applied to
the so-called perturbed complementarity conditions. Another useful perspective is to
view them as path-following algorithms. In this construction, one replaces the zero
right-hand side of relevant complementarity conditions with µw0, where µ > 0 and
w0 ∈ �m++, and applies the Newton method to the resulting “perturbed” system while
decreasing the parameter µ to zero. Specifically, the perturbed systems for (3.6) and
(3.8) have the form

F (x, y, z) =


 0

0
w


, y, z > 0,(3.10)

where F can be either F1 or F2, and for some w0 ∈ �m++

w = µw0, µ > 0.

Normally, one chooses w0 = e, where e is the vector of all ones.
We will prove later that each of the perturbed systems has a unique solution for

every µ > 0, and as µ → 0 the corresponding solutions will converge to the (same)
solution of the unperturbed systems from which the solution to the MaxVE problem
can be easily constructed.

We now present our primal-dual interior-point algorithmic framework for the sys-
tems (3.6) and (3.8). The framework for the system (3.4) would be the same except
that an extra variable u ∈ �m is present. In the rest of the paper, we will concentrate
only on the formulations (3.6) and (3.8) but omit (3.4) because, being so closely re-
lated to (3.6), system (3.4) shares almost identical theoretical properties with (3.6),
while in our tests it seems to produce algorithms with performance inferior to that of
their counterparts based on (3.6) and (3.8).

Algorithm 1 (primal-dual interior-point algorithm).

Given x0 in the interior of P and y0, z0 ∈ �m++, set k = 0.

Step 1. Choose σk ∈ (0, 1), set µk to σk
g(yk)T zk

m for F = F1 or to σk
(yk)T zk

m for
F = F2.

Step 2. Solve for (dx, dy, dz) from

F ′(xk, yk, zk)


 dx

dy
dz


 = µk


 0

0
e


− F (xk, yk, zk).(3.11)

Step 3. Choose a step length αk ∈ (0, 1] and update

(xk+1, yk+1, zk+1) = (xk, yk, zk) + αk(dx, dy, dz)

such that xk+1 ∈ P, yk+1 > 0 and zk+1 > 0.
Step 4. If ‖F (xk+1, yk+1, zk+1)‖ ≤ ε, stop; else increment k and go to Step 1.

In addition to the initial guesses, this algorithmic framework has two essential
parameters, σk and αk, that need to be specified at each iteration. The main compu-
tation required is to solve the linear system (3.11) at every iteration.
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When F = F1, the coefficient matrix in the linear system (3.11), i.e., the Jacobian
matrix of F1(x, y, z), is of the form

F ′
1(x, y, z) =


 0 AT g′(y) 0

A h′(y) I
0 Zg′(y) Diag(g(y))


 ,(3.12)

where g′(y) and h′(y) are the Jacobian matrices of g(y) and h(y), respectively. A
direct differentiation shows that

g′(y) = H(y) + Y h′(y)(3.13)

and (see also [26])

h′(y) = −1

2
H(y)−1[Q(y)◦Q(y)],(3.14)

where

H ≡ H(y) := Diag(h(y)), Q ≡ Q(y) = A(ATY A)−1AT .(3.15)

It is worth noting that Y 1/2Q(y)Y 1/2 is an orthogonal projection matrix.
On the other hand, when F = F2 we have

F ′
2(x, y, z) =


 0 AT g′(y) 0

A h′(y) I
0 Z Y


 .(3.16)

An efficient way to solve the linear system (3.11) is the following block Gaussian
elimination procedure: first eliminating dz and dy, then solving for dx, finally com-
puting dy and dz by back substitutions. We now formally describe the procedure for
F = F1. To simplify notation, we define the following two m×m matrices:

N ≡ N(y) := g′(y)(3.17)

and

M1 ≡M1(y, z) := −h′(y) + [Y H(y)]−1ZN(y).(3.18)

For now we will assume that M1 is nonsingular, and we will prove this fact later.
The aforementioned block Gaussian elimination reduces F ′

1(x, y, z) into a lower
triangular matrix, which is equivalent to, when F = F1, premultiplying (3.11) by the
upper triangular elimination matrix

T1(y, z) =


I ATNM−1

1 −ATNM−1
1 (Y H)−1

0 I −(Y H)−1

0 0 I


 .

It is straightforward to verify that

T1(y, z)F
′
1(x, y, z) =


ATNM−1

1 A 0 0
A −M1 0
0 ZN YH


(3.19)
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and for any vectors r1 ∈ �n and r2, r3 ∈ �m

T1(y, z)


r1
r2
r3


 =


r1 +ATNM−1

1

(
r2 − (Y H)−1r3

)
r2 − (Y H)−1r3

r3


 .(3.20)

Clearly, the linear system

F ′
1(x, y, z)


dx
dy
dz


 =


r1
r2
r3




is equivalent to the linear system where the coefficient matrix is the one in (3.19) and
the right-hand side is that of (3.20). This linear system can be formally solved by the
following procedure:

dx = [ATNM−1
1 A]−1

(
r1 +ATNM−1

1 (r2 − (Y H)−1r3)
)
,(3.21a)

dy = −M−1
1

(
r2 − (Y H)−1r3 −Adx

)
,(3.21b)

dz = (Y H)−1(r3 − ZNdy).(3.21c)

This solution procedure requires O(m3) operations (recall that m > n), with the bulk
of the computation involving the m×m matrix M1.

Similarly, the linear system (3.11) corresponding to F = F2 can be formally solved
by the following procedure:

dx = [ATNM−1
2 A]−1(r1 +ATNM−1

2

(
r2 − Y −1r3)

)
,(3.22a)

dy = −M−1
2

(
r2 − Y −1r3 −Adx

)
,(3.22b)

dz = Y −1(r3 − Zdy),(3.22c)

where

M2 ≡M2(y, z) := −h′(y) + Y −1Z.(3.23)

This procedure also requires O(m3) operations in terms of the order but less linear
algebra computation than required by procedure (3.21a)–(3.21c).

Of course, we still need to establish in theory that the proposed primal-dual
algorithms are well defined. To this end, we need to show that the matrices F ′

i (x, y, z)
are nonsingular for any y, z > 0, and the matrices Mi and ATNM−1

i A are also
nonsingular for both i = 1 and 2. These results will be presented next.

4. Theoretical results. In this section, we give theoretical results regarding
the well-definedness of the proposed algorithms, the uniqueness of solutions in our
formulations, as well as the existence and convergence of solution paths. We note
that the formulations introduced in the last section are obtained by applying some
nonlinear transformations. Therefore we need to show that these nonlinear transfor-
mations preserve the uniqueness of solution. We also mention that when F = F2, the
system in (3.10) is not equivalent to the optimality conditions of a convex program.
Hence, it is not evident that solution paths defined by (3.10) should always exist for
F = F2.
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4.1. Well-definedness of algorithms. We will show in this subsection that
the proposed primal-dual algorithmic framework and the solution procedures (3.21a)–
(3.21c) and (3.22a)–(3.22c) are well defined for both F = F1 and F = F2. (Following
the same approach, one can also easily verify similar results for F = F0.)

We recall that throughout the paper we have assumed that A has full rank with
no zero rows. The main result of this subsection is the following theorem.

Theorem 4.1 (nonsingularity of Jacobian). For any y, z > 0, the Jacobian ma-
trices F ′

i (x, y, z) are nonsingular for i = 1, 2. Moreover, both the procedures (3.21a)–
(3.21c) and (3.22a)–(3.22c) are well defined.

Proof. The theorem follows directly from Lemma 4.4 below.
Now we prove three technical results that will lead to the proof of Theorem 4.1.
Lemma 4.2. Let P ∈ �n×n be an orthogonal projection matrix; i.e., P satisfies

PT = P and P 2 = P . Then the symmetric matrix

Gγ = I◦P − γP◦P(4.1)

is positive semidefinite for any γ ≤ 1. Moreover, if diag(P ) > 0, then Gγ is positive
definite for any γ < 1.

Proof. We note that since I � P � 0, i.e., both P and I − P are symmetric
positive semidefinite, so are P◦P and (I − P )◦P because the Hadamard products
of positive semidefinite matrices are also positive semidefinite (see, for example, [6]).
Gγ is obviously positive semidefinite for γ ≤ 0. Using the identity

Gγ = γ(I − P )◦P + (1− γ)I◦P,
we see that Gγ is a convex combination of two positive semidefinite matrices for
γ ∈ [0, 1], and hence is positive semidefinite. The second statement follows from the
conditions diag(P ) > 0 and γ < 1 which ensure that the second term above is positive
definite.

Lemma 4.3. For any y > 0, the matrix N(y) ≡ g′(y) is similar to a symmetric
positive definite matrix, and thus is nonsingular.

Proof. We first note h(y) > 0 whenever y > 0. In view of (3.17), (3.13), and
(3.14),

N = H − (2H)−1Y [Q◦Q]

= H−1

(
HYH − 1

2
Y [Q◦Q]Y

)
Y −1 = H−1GY −1

= [H−1/2Y 1/2]
(
[HY ]−1/2G[Y H]−1/2

)
[H−1/2Y 1/2]−1,

where

G := HYH − 1

2
Y [Q◦Q]Y.(4.2)

Therefore, N is similar to [HY ]−1/2G[Y H]−1/2, which is positive definite if and only
if the matrix G is positive definite since both Y and H are positive diagonal matrices.

Recall that by our notation Q = A(ATY A)−1AT , H = Diag(h(y)), and

h(y) ≡ h(E(y)) = (diag(Q(y))1/2,

where the square root is taken elementwise. We have

HYH = (I◦Q)Y = I◦ (Y 1/2QY 1/2).
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In addition, since yiQ
2
ijyj =

(√
yiQij

√
yj
)2

, we have

Y [Q◦Q]Y =
(
Y 1/2QY 1/2

)
◦
(
Y 1/2QY 1/2

)
.

Therefore we can write

G = I◦P − 1

2
P◦P,

where the matrix

P = Y 1/2QY 1/2 = Y 1/2A(ATY A)−1ATY 1/2

is an orthogonal projection matrix. Since the vector y is positive and the matrix A
has no zero rows, we have diag(P ) > 0. It follows from Lemma 4.2 with γ = 1/2 that
G is indeed positive definite. This completes the proof.

The relationships

N = H−1GY −1 and N−1 = Y G−1H(4.3)

that were used in the proof of Lemma 4.3 will be useful later.
Lemma 4.4. For y, z > 0, there hold the following statements:
1. The matrix M1 is similar to a symmetric positive definite matrix, and ATNM−1

1 A
is symmetric positive definite.

2. The matrix M2 is similar to a symmetric positive definite matrix, and ATNM−1
2 A

is nonsingular.
Proof. To prove the first statement, it suffices to prove that the matrix M1N

−1

is symmetric positive definite. Using the definitions of M1, N , and the formula for
g′ (see (3.18), (3.17), and (3.13), respectively), and the relationships (4.3), we have
h′ = Y −1(N −H) and

M1N
−1 = ((Y H)−1ZN − h′)N−1

= (Y H)−1Z − Y −1(N −H)N−1

= (Y H)−1Z − Y −1 + Y −1HN−1

= (Y H)−1Z − Y −1 + Y −1H(Y G−1H)

= (Y H)−1Z − Y −1 +HG−1H

= (Y H)−1Z +H
(
G−1 − (HYH)−1

)
H.

Then it suffices to show thatG−1−(HYH)−1 is symmetric positive definite sinceH,Y ,
and Z are all positive diagonal matrices. While the symmetry is obvious, the positive
definiteness follows from the fact that G equals HYH minus a positive semidefinite
matrix; see (4.2); hence G ≺ Y HY and G−1 
 (Y HY )−1 (see [5], for example).

To prove the second statement, we use the formula for h′(y) in (3.14) to obtain

M2 = Y −1Z − h′ = H−1

(
HY −1Z +

1

2
Q◦Q

)
,

which is the product of two symmetric positive definite matrices, implying that M2 is
similar to a symmetric positive definite matrix. Since both M2 and N are nonsingular,
so is ATNM−1

2 A. This completes the proof.
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4.2. Uniqueness of solution. Since we have utilized nonlinear transformations
in the elimination of variables E = E(y) and u = g(y) from the KKT system (2.7a)–
(2.7d), we need to establish a rigorous equivalence of our formulations (3.6) and (3.8)
to the original KKT system. The main result is the following.

Theorem 4.5 (uniqueness of solution). The systems (3.6) and (3.8) have the
same, unique solution (x∗, y∗, z∗) such that y∗, z∗ ≥ 0. Moreover, let u∗ = g(y∗)
and E∗ = E(y∗). Then (x∗, E∗, u∗, z∗) is the unique solution of the KKT conditions
(2.7a-)–(2.7e).

Proof. The conclusions follow directly from Lemmas 4.6 and 4.7, given below,
and the uniqueness of the solution to the MaxVE problem.

We now prove the two technical lemmas.
Lemma 4.6. Let C ∈ Sn++; then the matrix equation

X−1 =
1

2
(CX +XC)(4.4)

has a unique solution X∗ = C−1/2 in Sn++. Moreover, the mapping: C → X∗ defined
implicitly through (4.4) is homeomorphic between Sn++ and itself.

Proof. One can easily verify that both X∗ and −X∗ are solutions to (4.4). This
implies that the matrix equation (4.4) does not in general have a unique solution in
�n×n.

Suppose that X̂ ∈ Sn++ is a solution to (4.4) and U is an orthogonal matrix that

diagonalizes X̂, i.e., UT X̂U = Σ, where Σ is a positive diagonal matrix. Premultiply-
ing both sides of (4.4) by UT and postmultiplying them by U , we obtain

Σ−1 =
1

2
(DΣ+ ΣD),

where D = UTCU . Comparing the elements on both sides, we have

1

2
Dij(Σii +Σjj) =

{
0, i �= j,

1/Σii, i = j.

Since diag(Σ) > 0, we must have (i) Dij = 0 for i �= j and (ii) Σii = D
−1/2
ii . The first

relationship says that D = UTCU is also diagonal. The second relationship says that
Σ = D−1/2, that is, X̂ = C−1/2 ≡ X∗. Consequently, X∗ is the only solution of (4.4)
in Sn++.

The last statement of the lemma is evident in view of the explicit relationships
X∗ = C−1/2 and C = (X∗)−2.

Lemma 4.7. Let g(y) ≡ Y h(y). Then the mapping g : �m++ → �m++ is homeo-
morphic between �m++ and its image under g, i.e., g(�m++) ⊂ �m++.

Proof. It is straightforward to verify that the function g(y) is continuously dif-
ferentiable in �m++, whose derivative is represented by the matrix g′(y) ≡ N(y). By
Lemma 4.3, N(y) is nonsingular in �m++. With these properties, the lemma is a direct
consequence of the inverse function theorem.

4.3. Existence and convergence of solution paths. To justify our algo-
rithms as the path-following type, we will show that (i) the perturbed system (3.10)
with either F = F1 or F = F2 permits a unique solution for any given w0 ∈ �m++

and each µ > 0, and hence the solution set forms a path; and (ii) as µ→ 0 the path
converges to the unique solution of the unperturbed system. Although it is straight-
forward to establish these results in the case of F = F1, it is much more involved in
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the case of F = F2 since the perturbed system (3.10) for F = F2 does not correspond
to the optimality conditions of a convex program.

Following the conventional terminology in the literature of interior-point methods,
we will refer to the collection of solutions to the system (3.10) for w0 = e and µ > 0
as the central path of the system, where e ∈ �m is the vector of all ones. Our analysis
in this subsection applies to not only the central path but also to so-called weighted
paths where w0 > 0 is not equal to e.

The existence of paths for F = F1 follows a standard argument as given below.
Proposition 4.8 (existence and convergence of path for F = F1). For any w0 ∈

�m++ and µ > 0, the system (3.10) with F = F1 has a unique solution (x(µ), y(µ), z(µ))
such that y(µ), z(µ) > 0. Moreover,

lim
µ→0

(x(µ), y(µ), z(µ)) = (x∗, y∗, z∗),

where (x∗, y∗, z∗) is the solution of (3.6).
Proof. The proof follows from a standard argument which we will outline as

follows. It is well known that the system of the “perturbed” KKT (PKKT) conditions

ATu = 0,(4.5a)

E−1 − [E(ATY A) + (ATY A)E]/2 = 0,(4.5b)

z − (b−Ax− h(E)) = 0,(4.5c)

Uz = w,(4.5d)

u, z > 0,(4.5e)

has a unique solution for any w > 0, where Y is defined as in (2.6), because it is
equivalent to the condition that the gradient of the barrier function Bw(x,E) equals
zero, where

Bw(x,E) = − log det(E)−
m∑
i=1

wi log
(
bi − aTi x− hi(E)

)
.(4.6)

This barrier function is strongly convex and has a unique stationary point (x(µ), E(µ))
corresponding to w = µw0 for a fixed w0 ∈ �m++ and any µ > 0, which, together with
the dual variable u(µ) and the slack variable z(µ), satisfies (4.5a)–(4.5e) for w = µw0.
This can be seen as follows. From (4.5c) and (4.5d), we obtain u = Diag(b − Ax −
h(E))−1w. Substituting the expressions of y and u into (4.5a) and (4.5b), we obtain
the partial gradient of Bw(x,E) with respect to x and E, respectively. It is well
known that (x(µ), E(µ), u(µ), z(µ)) converges to the unique solution (x∗, E∗, u∗, z∗)
of the (unperturbed) KKT system as µ→ 0. Due to the homeomorphic relationships
between the PKKT conditions and the conditions in (3.10) with F = F1, we know
that (x(µ), y(µ), z(µ)), where y(µ) = Diag(h(E(µ)))−1u(µ) is also the unique solution
of (3.10) with F = F1. Moreover, the path {(x(µ), y(µ), z(µ)) : µ > 0} converges to
(x∗, y∗, z∗), where y∗ = Diag(h(E∗))−1u∗.

We now consider the existence of solution to the system (3.10) when F = F2,
that is, the existence of solution to the system

AT g(y) = 0,(4.7a)

Ax+ h(y) + z − b = 0,(4.7b)

Y z = w,(4.7c)

y, z > 0,(4.7d)
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where w ∈ �m++ and g(y) is defined as in (3.3). The situation here is more complicated
because this system is no longer equivalent to the PKKT conditions (4.5a)–(4.5e) when
w > 0, even though they are equivalent when w = 0. As such, we can no longer use
the standard argument used in the proof of Proposition 4.8. The question is whether
or not the following holds:

{0 ∈ �n} × {0 ∈ �m} × �m++ ⊂ R(F2),

where

R(F2) := F2(�n ×�m++ ×�m++)

is the range of the function F2 corresponding to the domain �n × �m++ × �m++. In
particular, we want to know if the vectors (0, 0, µe) for µ > 0 are in the range of F2, in
other words whether a central path exists for the system (3.10) in the case of F = F2.

The answer to the above question is affirmative and given in Theorem 4.14 which
we will prove now. There is a strong possibility that we can prove this theorem by
identifying and verifying a set of conditions under which an existing general result is
applicable to problem (3.8)—an instance of the so-called nonlinear mixed complemen-
tarity problem for which a number of potentially applicable results exist (for example,
in [15]). However, we choose to provide an elementary and self-contained proof in this
paper. We start with the following proposition stating some useful facts.

Proposition 4.9. The following facts hold:
1. Both F1 and F2 are locally homeomorphic at any point (x, y, z) ∈ �n×�m++×
�m++.

2. If (x̂, ŷ, ẑ) is the solution to the system (3.10) with F = F1 and w = ŵ,
then (x̂, ŷ, ẑ) also satisfies (3.10) with F = F2 (i.e., (4.7a)–(4.7d)) and w =
Diag(h(ŷ))−1ŵ.

We note that the local homeomorphism of Fi implies that corresponding to any
point (u, v, w) ∈ Fi(�n × �m++ × �m++), i = 1, 2, there is a unique point (x, y, z) ∈
�n ×�m++ ×�m++ such that Fi(x, y, z) = (u, v, w).

If one were able to choose ŵ such that Diag(h(ŷ))−1ŵ = µe, then the point
(0, 0, µe) would be in the range of F2. However, since ŷ is dependent on ŵ, it is not
clear whether or not such a vector ŵ exists, let alone how to find it. Nevertheless, we
do find that points of the form (0, 0, w) with w = Diag(h(ŷ))−1ŵ are in the range of
F2.

Lemma 4.10. Let x ∈ �n, E ∈ Sn++, and z ∈ �m+ satisfy the equation

Ax+ h(E) + z = b.(4.8)

Then there exists a constant γ > 0, independent of x, E, and z, such that

max(‖x‖, ‖E‖, ‖z‖) ≤ γ.

Proof. Equation (4.8) implies that x ∈ P, where P is the given polytope; hence
such x’s must be uniformly bounded above. Consequently, b − Ax for x ∈ P is also
uniformly bounded above, which in turn implies that both z and h(E) are uniformly
bounded above because they are both nonnegative and they sum up to b−Ax. Since
hi(E) = (aTi E

2ai)
1/2 and, by our assumption, the set {a1, a2, . . . , am} spans �n, the

uniform boundedness of h(E) implies that of E. This completes the proof.
Lemma 4.11. Let the barrier function Bw(x,E) be defined as in (4.6), and let W

be a bounded set with its closure cl(W) in �m++ ∪ {0}. For any w ∈ �m++, define

(xw, Ew) := argminBw(x,E)(4.9)
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and for w = 0 ∈ �m define (xw, Ew) := (x∗, E∗) as the solution of the MaxVE problem
(2.5). Then

βW := inf
w∈cl(W)

{log det(Ew)} > −∞.

Proof. Since the pair (xw, Ew), Ew 
 0, is the unique minimizer of Bw(x,E),
there exists some (uw, zw) ∈ �m++ × �m++ such that together they satisfy (4.5a)–
(4.5e). It is well known that the quadruple (xw, Ew, uw, zw) is a continuous function
of w in �m++ and that (xw, Ew, uw, zw) converges to (x∗, E∗, u∗, z∗) as w converges
to 0 from the interior of �m++. Hence, the composite function log det(Ew) of w is a
continuous function of w in �m++ ∪ {0} and must attain its minimum on the compact
set cl(W) ⊂ �m++ ∪ {0}. This proves the lemma.

Lemma 4.12. Let R(F2) be the range of the function F2 corresponding to the
domain �n × �m++ × �m++, and let W be a bounded set in �m++ such that its closure
cl(W) ⊂ �m++ ∪ {0}. Let

{0 ∈ �n} × {0 ∈ �m++} ×W ⊂ R(F2),

and let (x(w), y(w), z(w)) be the solution to (4.7a)–(4.7c) corresponding to w ∈ W.
Then the set {y(w) : w ∈ W} is bounded.

Proof. The triple (x(w), y(w), z(w)) being the solution to (4.7a)–(4.7c) implies
that the quadruple

(xw′ , Ew′ , uw′ , zw′) := (x(w), E(y(w)), g(y(w)), z(w))

is the solution to (4.5a)–(4.5e) with the right-hand side of (4.5d) being replaced by
w′ = Diag(h(y(w)))w. It is worth noting that the pair (xw′ , Ew′) also satisfies (4.9)
with w = w′. Evidently, we have

Ew′ ≡ E(y(w)).

Define the set

W ′ := {w′ = Diag(h(yw))w : w ∈ W},
which is bounded because both W and the set of {h(y(w)) : w ∈ W} are bounded. It
follows from Lemma 4.10 that the set

{Ew′ : w′ ∈ W ′} ≡ {E(y(w)) : w ∈ W}
is bounded. Hence, the eigenvalues of E(y(w)) are uniformly bounded above. On the
other hand, Lemma 4.11 implies that

log det(E(y(w))) ≥ βW .

As a result, the eigenvalues of E(y(w)) are also uniformly bounded away from zero in
the set W. Consequently, the components of h(y(w)) are uniformly bounded above
and away from zero in the set W because hi(y(w)) = (aTi E(y(w))ai)

1/2 and the rows
aTi of A are all nonzero for i = 1, . . . ,m.

We note that the vector Diag[h(y(w))]2y(w) is the diagonal of the orthogonal
projection matrix Y (w)1/2A[ATY (w)A]−1ATY (w)1/2 and therefore is componentwise
bounded above by unity; namely,

yi(w) ≤ 1

hi(y(w))2
, i = 1, 2, . . . ,m.
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Since h(y(w)) is uniformly bounded away from zero for w ∈ W, we conclude that
y(w) is uniformly bounded above for w ∈ W. This completes the proof.

Lemma 4.13. Let R(F2) be defined as in Lemma 4.12. Then

{0 ∈ �n} × {0 ∈ �m} × �m++ ⊂ R(F2).

Proof. From the second statement of Proposition 4.9, we know that there exists
a triple (0, 0, wα) ∈ R(F2) for some wα ∈ �m++. Now for any given wβ ∈ �m++, we are
to show that (0, 0, wβ) ∈ R(F2).

Let us define the line segment between wα and wβ ,

w(t) = (1− t)wα + t wβ ,

and the number

t̂ = sup{t ∈ [0, 1] : {(0, 0, w(t′)) : t′ ∈ [0, t]} ⊂ R(F2)}.

Since (0, 0, w(0)) ∈ R(F2) and F2 is homeomorphic between �n × �m++ × �m++ and

R(F2), we must have t̂ > 0. If t̂ = 1, we already have wβ ∈ R(F2) and we are done.
Now suppose t̂ < 1. This implies that (0, 0, w(t̂)) /∈ R(F2); otherwise by the local

homeomorphism of F2 the number t̂ would not have been a supremum. Consider the
set

W := {w(t) : t ∈ [0, t̂)} ⊂ R(F2),

which is clearly bounded with its closure cl(W) in �m++. It follows from Lemmas 4.10
and 4.12, that the set

{(x(w), y(w), z(w) : w ∈ W}

is also bounded. Let us denote x(w(t)) by x(t), and so on. Then there must exist
a sequence {tk}∞k=1 such that tk → t̂ and (x(tk), y(tk), z(tk)) → (x̂, ŷ, ẑ) for some
(x̂, ŷ, ẑ) ∈ �n ×�m+ ×�m+ . (Otherwise, a convergent subsequence can be selected.)

Since the function F2 is continuous, we have F2(x̂, ŷ, ẑ) = (0, 0, w(t̂))T , meaning
that (0, 0, w(t̂)) ∈ R(F2). This is a contradiction. Thus the assumption t̂ < 1 is false,
and we have proved the lemma.

Finally we prove the existence and convergence of solution paths, including the
central path, leading to the solution of the original MaxVE problem in the sense
specified in the following theorem.

Theorem 4.14 (existence and convergence of path for F = F2). For any w0 ∈
�m++ and µ > 0, the system (3.10) with F = F2 and w = µw0 has a unique solution
(x(µ), y(µ), z(µ)). Moreover,

lim
µ→0

(x(µ), y(µ), z(µ), u(µ), E(µ)) = (x∗, y∗, z∗, u∗, E∗),

where (x∗, y∗, z∗) satisfies the system (3.8), and (x∗, E∗, u∗, z∗) satisfies the KKT
system (2.7a)–(2.7e). Consequently, (x∗, E∗) solves the MaxVE problem (2.5).

Proof. The first statement follows directly from Lemma 4.13 and the fact that F2

is homeomorphic in �n ×�m++ ×�m++.
By Lemmas 4.10 and 4.12, the quantities x(µ), y(µ), z(µ), u(µ), and E(µ) are all

bounded as µ → 0. Hence, they must have accumulation points as µ → 0, say,
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x∗, y∗, z∗, u∗, and E∗. Clearly, these accumulation points satisfy the two systems in
the theorem. Since these systems permit only unique solutions, we conclude that all
accumulation points of x(µ) as µ → 0 must coincide, and the same is true for other
quantities as well; namely, accumulation points are actually the limit point. Obviously,
x∗ and E∗ solve the optimization problem (2.5) because they, together with u∗ and
z∗, satisfy the optimality conditions (2.7a)–(2.7e). This proves the theorem.

4.4. Issues of algorithmic convergence. So far polynomial convergence the-
ory for primal-dual interior point algorithms has been established only for convex
conic programming in symmetric cones (see [18], for example), with the exception
of Nemirovskii [16]. Given the highly nonlinear formulations upon which we build
our primal-dual interior-point algorithms, it seems unlikely that polynomial conver-
gence could be proven for our primal-dual algorithms unless some new technique is
discovered.

On the other hand, performing some nonpolynomial, global convergence analysis
for the proposed algorithmic framework appears to be a worthy task. Given the good
theoretical properties we have already established for our formulations, we do not
see any fundamental difficulty in proving global and fast local convergence for some
parameter choices in the proposed algorithmic framework (for example, following the
approach in [3]). Such an analysis, however, would be rather lengthy and technical.
To keep the current paper focused and within a reasonable length, we will not attempt
a convergence analysis in this paper.

5. Khachiyan–Todd algorithm and modification. We will introduce two
other algorithms, the Khachiyan and Todd algorithm [11] and a modification of it,
and will later compare them with algorithms proposed in section 3.

Given a set of inequalities Ax ≤ b and a strictly interior point x0, using the
change of variable x = v + x0, we can rewrite the inequalities as Av ≤ b − Ax0. By
multiplying both sides by the positive diagonal matrix Diag(b − Ax0)−1, we obtain
the following polytope:

P = {v ∈ �n : Cv ≤ e},(5.1)

where C ≡ Diag(b−Ax0)−1A ∈ �m×n and e is the vector of all ones in �m. We will
use this form of polytopes in this section as it was used by Khachiyan and Todd in
[11].

In the formulation (2.5), the matrix-valued variable E appears in the constraints
in a nonlinear manner. In an alternative formulation given below, through the change
of variables B = E2 one can have the unknown matrix B appear linearly in the
constraints. Indeed, after substituting E2 by B and using the form (5.1), we can
rewrite the problem (2.5) into

min − log detB
s.t. cTi Bci ≤ (1− cTi x)

2, i = 1, . . . ,m,
(Cx < e, B 
 0).

(5.2)

While the constraints of (5.2) are linear with respect to the matrix variable B, they
are no longer linear or convex with respect to the vector variable x.

5.1. Khachiyan and Todd’s algorithm. Khachiyan and Todd’s algorithm [11]
for the MaxVE problem has a good complexity bound and also takes the advantage
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of the special structure of the MaxVE problem. It is a suitable candidate for the
purpose of performance comparison.

To make use of the simplicity of linear constraints, Khachiyan and Todd intro-
duced the following subproblem, or auxiliary problem AP (a), from (5.2):

min − log detB
s.t. cTi Bci ≤ (1− cTi x)(1− cTi a), i = 1, . . . ,m,

(B 
 0)
(5.3)

for a fixed a ∈ �n, where Ca < e. Note that now the constraints are linear in both
B and x. The key idea here is to solve subproblems AP (a) iteratively until x and
a become sufficiently close to each other so (5.3) becomes a good approximation of
(5.2). Khachiyan and Todd use a primal barrier method to solve the subproblem
AP (a). Their barrier function has the form

Ft(x,B| a) = − log detB − t

m∑
i=1

log ((1− cTi x)(1− cTi a
k)− cTi Bci),

where a is fixed and t is the barrier parameter. The Khachiyan and Todd (KT)
algorithm can be summarized as follows.

Algorithm 2 (Khachiyan and Todd’s algorithm).

Step 1. Let a0 be a strictly interior point of P, B0 
 0, ε > 0, and k = 0.
Step 2. Solve the subproblem AP (ak) by using Newton’s method to minimize the

barrier function Ft(x,B| ak) for a sequence of t ↓ 0. The solution of AP (ak)
is (xk, Bk).

Step 3. If ‖xk − ak‖ ≤ ε, then stop; else let ak+1 = (ak + xk)/2, increment k, and
go to Step 2.

Khachiyan and Todd prove that to attain a sufficient accuracy only a small num-
ber of subproblems need to be solved, and they derive a linear system of size n +m
for calculating the Newton direction. Since the updates to the matrix-valued vari-
able B are parameterized by a vector-valued variable, they are able to reduce the
complexity of the algorithm. However, the drawback of their algorithm is that the
barrier method used to solve the subproblem is not efficient in practice. Particularly,
as we can see from the algorithmic framework, three layers of loops are involved in
the KT algorithm: the loop for the subproblem parameter a, the loop for the barrier
parameter t, and the iterations for a fixed a and a fixed t.

5.2. A modification of the KT algorithm. Since primal barrier methods are
generally less efficient than primal-dual, interior-point methods, in order to speed up
the KT algorithm we modify it by applying a primal-dual interior-point method to
the subproblems in Step 2 of the KT algorithm, while keeping the outer iterations
intact.

Following Khachiyan and Todd’s approach, we transform the subproblem AP (a)
into the standard form AP (0):

min − log detB
s.t. cTi Bci + cTi x ≤ 1, i = 1, . . . ,m,

(B 
 0)
(5.4)

by the change of variables x ⇒ x + a and the change of data ci/(1 − cTi a) ⇒ ci for
i = 1, . . . ,m.
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The optimality conditions, or KKT conditions, of problem AP (0) are as follows:

CT y = 0,(5.5a)

B−1 − CTY C = 0,(5.5b)

Cx+ diag(CBCT ) + z − e = 0,(5.5c)

Y z = 0,(5.5d)

y, z ≥ 0,(5.5e)

where y ∈ �m is the vector of Lagrangian multipliers, z ∈ �m consists of slack
variables, and C ∈ �m×n with cTi as its ith row.

Following the same strategy used earlier, we eliminate the matrix variable B from
the system using the substitution B(y) = (CTY C)−1 that is the solution to (5.5b).
We also replace the zero right-hand side of (5.5d) by µe. The resulting system that
defines the central path is

F3(x, y, z) :=


 CT y

Cx+ diag(Q(y)) + z − e
Y z


 =


 0

0
µe


 ,(5.6)

where y, z > 0, and Q(y) = C(CTY C)−1CT . Clearly, (5.6) is a square, nonlinear
system of n+ 2m variables. The Jacobian matrix of F3(x, y, z) is

F ′
3(x, y, z) =


 0 CT 0

C −Q ◦Q I
0 Z Y


 .

To solve the Newton linear system

F ′
3(x, y, z)


 dx

dy
dz


 =


 r1

r2
r3


 :=


 0

0
µe


− F3(x, y, z),

we use the following block Gaussian elimination procedure:

dx = (CTM−1C)−1(r1 + CTM−1(r2 − Y −1r3)),

dy = M−1(Cdx− r2 + Y −1r3),

dz = Y −1(r3 − Zdy),

where the matrix M := Q ◦Q+ Y −1Z is symmetric positive definite.
The primal-dual algorithm for solving the subproblem AP (0) falls into the same

framework of Algorithm 1.

6. Numerical results. In this section, we report our numerical results on the
four algorithms: the KT algorithm, the modified KT, or MKT, algorithm, and the
two direct primal-dual interior-point algorithms based on the systems (3.6) and (3.8)
which we name F1PD and F2PD, respectively. The numerical tests were performed on
three sets of test problems with a total of 200 problems. Our implementations of the
four algorithms are in Matlab. All the experiments were run on an SGI Origin2000
computer with multiple 300-MHz R12000 processors. However, our programs use only
a single processor at a time.
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6.1. Implementation details. In describing the implementation details, we
first give some features common to all the algorithms and then other features specific
to individual algorithms.

For all the algorithms, the input data for a polytope include the matrix A, the
vector b, and a strictly interior point x0 such that Ax0 < b which will serve as the
starting point for the center of the initial ellipsoid. In our implementations, the point
x0 is selected to be the solution to an auxiliary linear program max{τ : Ax + τe ≤
b}. Other choices are certainly possible such as the analytic center of the polytope.
However, it was not our intention to use the best possible starting point.

Scaling is an important issue in numerical computation. In our implementations,
we always first transform the inequality Ax ≤ b into the form Cv ≤ e using the
change of variables and the row scaling as described at the beginning of section 5.
After the transformation, the starting point x0 is transformed into the origin, and the
transformed polytope is better scaled.

In all the algorithms, the stopping tolerance is set to ε = 10−4. In the case of the
KT and MKT algorithms, we stop the outer iterations whenever the relative change
between the current and previous centers is less than or equal to ε. In the case of the
F1PD and F2PD algorithms, we stop whenever the residual norm of Fi, i = 1 or 2,
becomes less than or equal to ε.

We now describe some algorithm-specific features.
• The KT and MKT algorithms: Both algorithms have the same outer loop
with the center varying. The initial center is the origin and the initial value
for the matrix variable B is B0 = ρI, where I is the identity matrix and ρ
is chosen such that the corresponding ball, centered at the origin with radius
ρ, lies entirely inside the polytope. During the outer iterations, we use a
warm-start strategy in which a later iteration always starts from the solution
of the previous iteration.
• The KT algorithm: In the subproblems, the barrier parameter t is set to 0.5
initially and then decreased by a factor of 10 whenever the subproblem stop-
ping criterion is met. For a fixed t value, the subproblem stopping criterion
is that the gradient norm of the corresponding barrier function becomes less
than or equal to t. This way, the stopping criterion becomes progressively
more stringent as t approaches zero. We found that this adaptive strategy
made the algorithm run significantly faster. To prevent the loss of symmetry
during the computation, we set B = (B+BT )/2 after B is updated at every
iteration. We update an iterate for (x,B) by a damped Newton step to en-
sure that the updated ellipsoid remains inside the polytope. Specifically, the
step length is 0.75 times the largest allowable step that keeps the updated
ellipsoid inside the polytope.
• The primal-dual algorithms: The primal-dual algorithmic framework (i.e.,
Algorithm 1) encompasses the F1PD and F2PD algorithms, and the sub-
problem solver of the MKT algorithm. The initial values for the primal-dual
algorithms are set as follows: the initial center is x = 0; the initial multi-
plier value is y = e; and the initial slack variable z, say, in the equation
z − g = 0, is set as zi = max(0.1, gi). In addition to the initial values,
there are two critical parameters in these algorithms: the so-called cen-
tering parameter σk and the step length αk. In our implementations, we
choose σk = min{0.5, g(yk)T zk/m} for F1PD or σk = min{0.5, (yk)T zk/m}
for F2PD, and αk = min(1, τ α̂), where τ ∈ (0, 1) and α̂ is the maximum
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length such that updated iterate for (x, y, z) reaches the boundary of the set
P × �m++ × �m++. We use τ = 0.75 for the F1PD and F2PD algorithms, and
a more aggressive value τ = 0.9 for the subproblem solver of the MKT al-
gorithm because the subproblem (5.3) is not as nonlinear as its counterparts
are in the F1PD and F2PD algorithms.

The parameter settings given above are rather generic and unsophisticated. For
example, a line search scheme for determining step length could be a more effective
and theoretically sound strategy. However, given our purpose of identifying the most
robust and efficient algorithm, we consider our current settings to be appropriate and
sufficient.

6.2. Test problems. Three sets of test problems were used in our numerical
experiments, consisting of 47, 143, and 10 problems, respectively. The total number
of test problems is 200. (All the test problems, as well as detailed problem information
and numerical results, are available from http://www.caam.rice.edu/˜zhang/mve.)

Test sets 1 and 2 are obtained from an implementation of Lenstra’s algorithm
for an integer programming feasibility problem [12, 13]. This algorithm searches on a
tree of subproblems and applies ellipsoidal approximation on each one of them. The
polytopes in sets 1 and 2 are taken from some branches of the search trees for two
different integer programming feasibility problems. The problem sizes in sets 1 and 2
are relatively small with m ≤ 288 and n ≤ 80. Nevertheless, our numerical experience
has indicated that some of the problems are nontrivial to solve.

In order to test the ability of our algorithms for solving larger problems, we
generated a set of 10 random problems that is called set 3. The largest problem in
this set has m = 1200 and n = 500. For each problem, we first use the Matlab function
sprandn to generate a sparse random matrix B and then use the rand function to
generate a right-hand side vector c > 0, an upper-bound vector ub > 0, and a lower-
bound vector lb < 0. Together, they form a polytope

{x ∈ �n : Bx ≤ c, lb ≤ x ≤ ub},
where B ∈ �k×n and c ∈ �k and lb, ub ∈ �n. By construction, the origin x = 0 is
strictly interior to the polytope. Then we rewrite the polytope into the standard form

{x ∈ �n : Ax ≤ b},
where A ∈ �m×n, b ∈ �m, with m = k + 2n. The matrix A is constructed, in an
obvious manner, from the matrix B and the identity matrix in �n, and the vector b
is constructed from the vectors c ∈ �k and lb, ub ∈ �n. The problems in set 3 are
sparse.

6.3. Test results. Test results on sets 1 and 2, totaling 190 problems are sum-
marized in Table 6.1. Six rows of numbers are presented in Table 6.1. For each test
set, in the first row we list the test set number, the number of test problems in the set,
the total number of iterations, and the total amount of CPU time in seconds taken by
each algorithm for solving the entire set of test problems; then in the last two rows for
each category we give the algebraic mean and the standard deviation (std) of the set.

We note that the iteration numbers for the KT and the MKT algorithms are
the numbers of innermost, Newton iterations that involve solving systems of linear
equations. These innermost iterations are comparable to the iterations of the primal-
dual algorithms in terms of complexity of linear algebra computation. Specifically,
all of the iterations require either solving m ×m linear systems or inverting m ×m
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Table 6.1
Summary of results on tests 1 and 2.

Test No. of KT MKT F1PD F2PD
set probs iter time iter time iter time iter time
1 47 19416 3340 2655 240 692 124 694 77

mean 413.1 71.1 56.5 5.1 14.7 2.6 14.8 1.6
std 17.7 38.6 5.8 2.9 1.9 1.8 1.6 1.0

2 143 56783 3567 9720 429 2448 168 2058 104
mean 397.1 24.9 68.0 3.0 18.1 1.2 14.4 0.7
std 54.3 6.0 10.1 0.8 3.6 0.4 2.3 0.2

Table 6.2
Results on test set 3: Problems 1–10.

Prob Size F1PD F2PD
number m n nnz iter time iter time

1 600 100 7426 31 97 22 30
2 600 150 8408 30 107 23 39
3 600 200 7669 53 203 29 58
4 600 250 5022 60 249 31 73
5 800 100 5914 34 235 22 63
6 800 200 8029 34 271 24 91
7 800 300 8933 58 549 32 165
8 1000 300 11993 40 675 28 245
9 1000 400 8433 60 1134 31 330
10 1200 500 10518 73 2917 37 703

mean — — — 47.3 643.3 27.9 179.6
std — — — 15.3 860.5 5.0 211.9

matrices, and hence have an O(m3) complexity per iteration. Nevertheless, these
algorithms do differ in terms of secondary computational tasks. For example, both
KT and MKT algorithms compute matrices of the form ATM−1A, while F1PD and
F2PD algorithms compute ATNM−1A, where A is m×n (m > n) and M and N are
m×m. For both cases the leading complexity term is O(m3), but the latter is more
expensive than the former. Similarly, comparing (3.18) and (3.21c) with (3.23) and
(3.22c) we can see that F1PD requires more linear algebra computation than F2PD.

From Table 6.1, we observe that on average the MKT algorithm is about 10
times faster than the KT algorithm, the F1PD algorithm is over 2 times faster than
the MKT algorithm, and the F2PD algorithm is about 1.5 times faster than the F1PD
algorithm. Moreover, the standard deviations in both iteration count and CPU time
decrease monotonically in the same order: KT, MKT, F1PD, and F2PD. The results
are remarkably consistent; for example, there is not a single problem which F1PD
solved in less time than F2PD did.

We mention that out of the 190 test problems in test sets 1 and 2 the KT algorithm
failed to converge on two: problems 22 and 120 in set 2. More conservative choices of
parameters would make the KT algorithm converge on these two problems but would
also adversely affect the overall performance of the algorithm. We kept the current
choices of parameters for the benefit of the KT algorithm.

The test results on the randomly generated test set 3 are presented in Table 6.2.
Only the F1PD and F2PD algorithms were tested on this set of larger problems
because the other two algorithms would require an excessively long time to run. Since
these test problems are sparse, in addition to the matrix sizes m and n, we also include
the number of nonzero entries, denoted as nnz, in the matrix A. We mention that
although the sparsity in A makes relevant matrix multiplications cheaper, the matrix
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Q = A(ATY A)−1AT involved in h′(y) (see (3.14)) is still generally dense. As a result,
it is still necessary to solve m×m dense linear systems in the algorithms.

The results in Table 6.2 indicate that given the current choices of parameters, the
F2PD algorithm clearly outperforms the F1PD algorithm by a considerable margin
on test set 3. Although the performance of the F1PD algorithm may be somewhat
improved by selecting different parameters, we do not believe that it can in general
outperform the F2PD algorithm because it requires more linear algebra calculation
in each iteration for solving its version of the Newton linear system.

7. Concluding remarks. The goal of this study is to find a practically efficient
algorithmic framework for solving general MaxVE problems where the number of
constraintsm is a small multiple of the number of variables n. Our extensive numerical
results show that among the four tested algorithms, the method of choice is clearly
the F2PD algorithm built on the formulation (3.8), which has been shown to have a
sound theoretical foundation. We have established, among other things, the existence
of a central path for this formulation even though this central path is not known to
be directly connected to the optimality conditions of a barrier function.

The main advantage of the F2PD algorithm over the KT and the MKT algorithms
is that, without the need for solving a number of subproblems either for fixed centers or
fixed barrier parameter values, it requires fewer iterations (or linear system solutions)
than the other two algorithms. We expect that the same advantage would still hold
against some other untested algorithms like the one given in [1]. In addition, compared
to the F1PD algorithm, the F2PD algorithm requires less linear algebra computation
per iteration and seems to be more robust. These features make the F2PD algorithm
particularly attractive.

We should point out that the polynomial algorithm recently proposed by Ne-
mirovskii [16] is, much like our algorithms, a primal-dual type algorithm free of matrix
variables. Such a characteristic indicates that it may also be promising as a practi-
cally efficient algorithm. This algorithm deserves further study from a computational
point of view.

The algorithms considered in this paper are all of the general-purpose type. For
really large-scale problems with special structures, one will likely need special-purpose
algorithms that can take full advantage of the problem-specific structures, in particular
sparsity, in order to solve the problems efficiently. This should be a topic of further
research.
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Abstract. A so-called DCA method based on a d.c. (difference of convex functions) optimization
approach (algorithm) for solving large-scale distance geometry problems is developed. Different
formulations of equivalent d.c. programs in the l1-approach are stated via the Lagrangian duality
without gap relative to d.c. programming, and new nonstandard nonsmooth reformulations in the
l∞-approach (resp., the l1 − l∞-approach) are introduced. Substantial subdifferential calculations
permit us to compute sequences of iterations in the DCA quite simply. The computations actually
require matrix-vector products and only one Cholesky factorization (resp., with an additional solution
of a convex program) in the l1-approach (resp., the l1 − l∞-approach) and allow the exploitation
of sparsity in the large-scale setting. Two techniques—respectively, using shortest paths between
all pairs of atoms to generate the complete dissimilarity matrix and the spanning trees procedure—
are investigated in order to compute a good starting point for the DCA. Finally, many numerical
simulations of the molecular optimization problems with up to 12567 variables are reported, which
prove the practical usefulness of the nonstandard nonsmooth reformulations, the globality of found
solutions, and the robustness and efficiency of our algorithms.

Key words. reformulations, d.c. programming, d.c. algorithm (DCA), Lagrangian duality,
subdifferential calculations, distance geometry problem, dissimilarity geometry problem
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1. Introduction. In recent years there has been much active research in molecu-
lar optimization, especially in the protein-folding framework, which is one of the most
important problems in biophysical chemistry. Molecular optimization problems arise
also in the study of clusters (molecular cluster problems) and of large confined ionic
systems in plasma physics [23]. The determination of a molecular conformation can
be tackled by either minimizing a potential energy function (if the molecular structure
corresponds to the global minimizer of this function) or solving the distance geom-
etry problem [5], [11] (when the molecular conformation is determined by distances
between pairs of atoms in the molecule). Both methods are concerned with global
optimization problems.

In this paper we are interested in the large-scale molecular conformation via
the distance geometry problem, which can be formulated as follows: find positions
x1, . . . , xn of n atoms in R3 such that

‖xi − xj‖ = δij for (i, j) ∈ S,(1.1)

where S is a subset of the atom pairs, δij with (i, j) ∈ S is the given distance between
atoms i and j, and ‖ · ‖ denotes the Euclidean norm. Usually, a small subset of
pairwise distances is known; i.e., S is sparse.
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The above formulation corresponds to the exact distance geometry problem. By
the error in the theoretical or experimental data, there may not exist any solution to
this problem, for example, when the triangle inequality

δij ≤ δik + δkj

is violated for atoms i, j, k. Then an ε-optimal solution of (1.1), namely, a configu-
ration x1, . . . , xn satisfying

|‖xi − xj‖ − δij | ≤ ε for (i, j) ∈ S,(1.2)

is useful in practice.
The general distance geometry problem then is to find positions x1, . . . , xn in R3

verifying

lij ≤ ‖xi − xj‖ ≤ uij for (i, j) ∈ S,(1.3)

where lij and uij are lower and upper bounds of the distance constraints, respectively.
In what follows, Mn,p(R) denotes the space of real matrices of order n×p, and for

X ∈ Mn,p(R), Xi (resp., Xi) is its ith row (resp., ith column). By identifying a set
of positions x1, . . . , xn with the matrix X (i.e., (XT )i = (Xi)

T = xi for i = 1, . . . , n),
we can advantageously express the exact and/or general distance geometry problems
in the matrix space Mn,p(R):

(EDP) 0 = min


σ(X) :=

1

2

∑
(i,j)∈S,i<j

wijθij(X) : X ∈Mn,p(R)


 ,

where wij > 0 for i 
= j and wii = 0 for all i. The pairwise potential θij : Mn,p(R) −→
R is defined for problem (1.1) by either

θij(X) =
(
δ2i,j − ‖XT

i −XT
j ‖2

)2
(1.4)

or

θij(X) =
(
δij − ‖XT

i −XT
j ‖

)2
,(1.5)

and for problem (1.3) by

θij(X) = min2

{
‖XT

i −XT
j ‖2 − l2ij

l2ij
, 0

}
+ max2

{
‖XT

i −XT
j ‖2 − u2ij

u2ij
, 0

}
.(1.6)

Note that for simplicity (Xj)
T is written throughout the paper as XT

j . In the molec-
ular optimization problem, p is equal to 3. It is easy to see that, except for θij defined
by (1.4), where the objective function is infinitely differentiable, problems (EDP), with
θij given by (1.5) and (1.6), are nondifferentiable optimization problems. However,
they are all d.c. programs.

Observe that X is a solution of the distance geometry problem if and only if it is
a global minimizer of problem (EDP) and σ(X) = 0.

When all pairwise distances are available and a solution exists, the exact distance
geometry problem (1.1) can be solved by a polynomial time algorithm (Blumenthal [3],
Crippen and Havel [5]). However, in practice one knows only a subset of the distances,
and it is well known (Saxe [37]) that p-dimensional distance geometry problems are
strongly NP-complete with p = 1 and strongly NP-hard for all p > 1. The visible
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sources of difficulties of these problems are

• the question of the existence of a solution,

• the nonuniqueness of solutions,

• the presence of a large number of local minimizers,

• the large scale of problems that arise in practice.

Several methods have been proposed for solving the distance geometry problems
(1.1) and/or (1.3). De Leeuw [7], [8] proposed the well-known majorization method for
solving the Euclidean metric multidimensional scaling (MDS) problem, which includes
(EDP) with θij given by (1.5). Crippen and Havel [5] used the function θij defined
in (1.6) for solving (1.3) by the EMBED algorithm. Their method consists of solv-
ing a sequence of exact distance geometry problems where all pairwise distances are
included. It relies on the SVD or alternative Cholesky decomposition with diagonal
pivoting. Current implementations of the EMBED algorithm use a local minimizer of
problem (EDP), (1.4) as a starting point for a simulated annealing. Glunt, Hayden,
and Raydan [9] studied a special gradient method for determining a local minimizer
of (1.1), with θij defined in (1.5). From a graph-theoretic viewpoint, Hendrickson [13]
developed an algorithm to solve (1.1), where θij is given by (1.4). His method works
well for his test problems in which a protein contains at most 124 amino acids (at most
777 atoms). The protein actually has 1849 atoms, but some simple structure exploita-
tion allowed the author to start the numerical method with only 777 atoms. With a
smoothing technique and a continuation approach based on the Gaussian transform
of the objective function and on the trust region method, Moré and Wu [22] proposed
an algorithm for solving (1.1), with θij defined by (1.4). By the Gaussian transform,
the original function becomes a smoother function with fewer local minimizers. Com-
putational experiments with up to 648 variables (n = 216) in [22] proved that the
continuation method is more reliable and efficient than the multistart approach, a
standard procedure for finding the global minimizer to (EDP). Also by the Gaussian
transform, Moré and Wu [24] considered the general distance geometry problem with
the function θij defined by (1.6). A stochastic/perturbation algorithm was proposed
by Zou, Bird, and Schnabel [41] for both general and exact distance geometry prob-
lems. This is a combination of a stochastic phase that identifies an initial set of local
minimizers and a more deterministic phase that moves from a low to an even lower
local minimizer. The numerical experiments presented there (with the same data as
in Moré and Wu [22] and Hendrickson [13]) showed that this approach is promising.
It is worth noting that (EDP) is intimately related to the Euclidean distance matrix
completion problem [1], [15]. This problem has been formulated as a semidefinite
programming problem and considered by Alfakih, Khandami, and H. Wolkowicz [1]
with an adapted interior-point method.

In the convex analysis approach to nondifferentiable nonconvex programming, the
d.c. (difference of convex functions) optimization and its solution algorithms (DCA)
developed by Pham Dinh and Le Thi (see [16], [17], [30], [31], [32], [33], and references
therein) constitute a natural and logical extension of Pham Dinh’s earlier works con-
cerning convex maximization and its subgradient algorithms (see [26], [27], [28], [29],
and references therein). The majorization algorithm is a suitable adaptation of the
above subgradient methods for maximizing a seminorm over the unit ball of another
one. Our method in this paper, based on the d.c. optimization approach, aims at
solving the exact geometry distance problem (1.1) with different standard and non-
standard formulations as nonsmooth d.c. programs. More precisely, we are concerned
with (EDP), (1.5) and problems (1.7), (1.8), and (1.9) given below.
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The purpose of this paper is to demonstrate that the DCA can be suitably adapted
for devising efficient algorithms for solving large-scale exact distance geometry prob-
lems. We propose various versions of DCA that are based on different formulations
for this problem. The DCA is a primal-dual subgradient method for solving a general
d.c. program that consists of the minimization of the d.c. on the whole space. (The
convex constraint set is incorporated into the objective function by using its indicator
function.) Featured as a descent method without line-search, it is at present one of
a few algorithms in the local approach which has been successfully applied to many
large-scale d.c. optimization problems and proved to be more robust and efficient than
related standard methods. Due to its local character it cannot guarantee the globality
of computed solutions for general d.c. programs. However, we observe that with a
suitable starting point it converges quite often to a global solution (see, e.g., [16],
[17], [18], [32]). This property motivates us to investigate a technique for computing
a “good” starting point for the DCA in the solution of (EDP), with θij defined by
(1.5). The idea of this technique arose from two facts:
• When all pairwise distances are known, the DCA applied to (EDP), (1.5) is very

simple. Although the DCA is not a polynomial time algorithm, it works very
well in practice, because it has an explicit form and requires only matrix-
vector products.

• In the general case where only a small subset of distances is known, one can
approximate a solution of (EDP), (1.5) by using a dense set of constraints,
which is extrapolated from the given distances and then works with this set.

The so-called EDCA, a variant of the DCA, is composed of the following two
phases. In Phase 1 we complete the matrix of distances by using the shortest path
between all pairs of atoms and then apply the DCA to the new problem where all
pairwise “distances” (rather, dissimilarities) are known. In Phase 2 we solve the
original problem by applying the DCA from the point obtained in Phase 1.

This two-phase algorithm EDCA has some advantages. First, we work with both
(dense and sparse) sets of constraints. The use of a complete matrix which is an
approximate distance matrix (called a dissimilarity matrix) aims at finding a good
initial point for the DCA applied to the original problem: such a starting point is
computed by DCA applied to the resulting problem (3.14) with the complete dissim-
ilarity matrix. By contrast, the existing methods work only on either a full set of
constraints (see, e.g., [5]) or a sparse set of constraints [24], [41].

As an alternative to Phase 1, we also propose Procedure SP (section 4), which
is an adaptation of the inexpensive approach using spanning trees (Algorithm Struct
of Moré and Wu [24]) to compute acceptable starting points. In our experiments
Procedure SP is more (resp., less) efficient than Phase 1 when the number of distance
constraints is small (resp., large).

Another important issue in our d.c. optimization approach is that we can exploit
the nice effect of d.c. decompositions of problem (EDP), (1.5). In fact, by using the
Lagrangian duality with zero gap relative to the problem of maximization of a gauge
ψ on the unit ball defined by a gauge φ (see [16], [31]), we are able to obtain different
d.c. formulations of Problem (1.1), and then different d.c. optimization algorithms are
introduced in Phases 1 and 2. In particular, we are interested in the following convex
maximization problem:

max


ξ(X) :=

∑
(i,j)∈S

wij‖XT
i −XT

j ‖ : X ∈ C


 ,(1.7)
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with

C :=


X ∈Mn,p(R) :

∑
(i,j)∈S,i<j

wijδij‖XT
i −XT

j ‖2 ≤
∑

(i,j)∈S,i<j

wijδ
2
ij


 .

It appears that the norms l1 and l2 have served to model these nonconvex programs.
In addition, we have introduced the nonstandard l1 − l∞-approach to reformulating
the exact distance geometry problem (section 5): we then also take into account in
the objective functions the function

Φ(X) := max

{
Φij(X) :=

1

2
wij [‖XT

i −XT
j ‖ − δij ]

2 : (i, j) ∈ S, i < j

}
.

That leads to the two nonstandard d.c. programs using the l∞-norm and the combi-
nation of the l1 and l∞ norms in their formulations

0 = min

{
Φ(X) := max

(i,j)∈S,i<j

{
Φij(X) :=

1

2
wij [‖XT

i −XT
j ‖ − δij ]

2 : X∈Mn,p(R)

}}
,

(1.8)

0 = min


Φ(X) +

ρ

2

∑
(i,j)∈S,i<j

wij

(
δij − ‖XT

i −XT
j ‖

)2
: X ∈Mn,p(R)


 .(1.9)

Although these d.c. programs have the same solution set, problems (1.7), (1.8), and
(1.9) cannot be transformed into equivalent smooth nonconvex programs. Consequently
the DCA seems to play here its crucial role in nonsmooth d.c. programming. Recall,
as mentioned before, that most alternative methods for solving the distance geome-
try problem were applied to the (infinitely differentiable) d.c. program (EDP), (1.4)
because they require some smoothness. But paradoxically problems (EDP), (1.5) and
(1.7) are quite suitable to the application of the DCA: the choice of a d.c. program
equivalent to problem (1.1) is crucial because DCA is far better when applied to
(EDP), (1.5) than to the standard (EDP), (1.4).

As will be seen in section 5, the DCA for problems (1.8), (1.9) are not explicit as
they are for Problems (EDP), (1.5) and (1.7). They are consequently more expensive.
However, for certain classes of hard exact distance geometry problems, problem (1.9)
seems to be more suitable to making DCA converge to global solutions (section 6).

Our algorithms are quite simple and easy to implement. They require only matrix-
vector products and one Cholesky factorization for DCA1 (DCA applied to (EDP),
(1.5)) and DCA2 (DCA applied to (1.7)). For DCA3 (DCA applied to (1.9)) we
have to solve nonsmooth convex programs. We have tested our codes on the artificial
distance geometry problems (Moré and Wu [22]), on the data derived from the Protein
Data Bank (PDB) [2] with up to 12567 variables (the molecule contains 4189 atoms),
and on the twelve test problems constructed by Hendrickson [12], [13]. These last are
among the most difficult test problems for the exact distance geometry problems.

Our work relies on d.c. programming and its main tool, the DCA. A short de-
scription of the background indispensable for understanding this approach is given
in section 2. In section 3 we present the use of the general scheme of the DCA to
solve two equivalent d.c. programs (problems (3.6) and (3.12)) of problem (1.1). A
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thorough study of these problems and their proximal regularization in their elegant
matrix formulation and especially the substantial subdifferential calculus for related
convex functions in the resulting d.c. programs allows us to express DCA1, DCA2,
and their proximal regularized versions DCA1r and DCA2r in an explicit form and to
exploit the sparsity. The two-phase algorithm EDCA is summarized in section 4. The
nonstandard reformulations in the l∞-approach and the l1−l∞-approach, respectively,
are presented, together with their solution, algorithm DCA3, in section 5. Numerical
simulations reported in section 6 demonstrate the practical usefulness of the non-
standard reformulations, the globality of the sought solutions, and the efficiency and
reliability of our algorithms.

2. D.c. programming and the DCA. In this section we summarize the ma-
terial needed for an easy understanding of d.c. programming and the DCA, which will
be used to solve the exact distance geometry problem (EDP), with θij given in (1.5).
We are working with the space E = R

n, which is equipped with the canonical inner
product 〈·, ·〉 and the corresponding Euclidean norm ‖ · ‖; thus the dual space E∗ of
E can be identified with E itself. We follow [35] for definitions of the usual tools
of convex analysis, where functions could take the infinite values ±∞. A function
θ : E → R ∪ {±∞} is said to be proper if it takes the value −∞ nowhere and is not
identically equal to +∞. The effective domain of θ, denoted by dom θ, is

dom θ = {x ∈ E : θ(x) <∞}.

The set of all lower semicontinuous proper convex functions on E is denoted by Γ0(E).
For g ∈ Γ0(E), the conjugate function g∗ of g is a function belonging to Γ0(E

∗) and
defined by

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ E}.

Note that g∗∗ = g.
Let g ∈ Γ0(E), and let x0 ∈ dom g and ε > 0. Then ∂εg(x0) stands for the ε−

subdifferential of g at x0 and is given by

∂εg(x0) = {y0 ∈ E∗ : g(x) ≥ g(x0) + 〈x− x0, y0〉 − ε ∀x ∈ E},

while ∂g(x0) corresponding to ε = 0 stands for the usual (or exact) subdifferential of
g at x0. Recall that

y0 ∈ ∂g(x0) ⇐⇒ x0 ∈ ∂g∗(y0) ⇐⇒ 〈x0, y0〉 = g(x0) + g∗(y0).

One says that g is subdifferentiable at x0 if ∂g(x0) is nonempty. It has been proved [35]
that ri(dom g) ⊂ dom ∂g ⊂ dom g, where ri(dom g) stands for the relative interior
of dom g and dom ∂g := {x ∈ E : ∂g(x) 
= ∅}.

Furthermore, the indicator function χC of a closed convex set C is defined by
χC(x) = 0 if x ∈ C, and +∞ otherwise.

Let ρ ≥ 0, and let C be a convex subset of E. One says that a function θ :
C −→ R ∪ {+∞} is ρ-convex if

θ[λx + (1− λ)x′] ≤ λθ(x) + (1− λ)θ(x′)− λ(1− λ)

2
ρ‖x− x′‖2

∀λ ∈ ]0, 1[, ∀x, x′ ∈ C.
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This amounts to saying that θ − (ρ/2)‖ · ‖2 is convex on C. The modulus of strong
convexity of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = E, is given by

ρ(θ, C) = sup{ρ ≥ 0 : θ − (ρ/2)‖ · ‖2 is convex on C}.(2.1)

Clearly, θ is convex on C if and only if ρ(θ, C) ≥ 0. One says that θ is strongly convex
on C if ρ(θ, C) > 0.

For f1 and f2 belonging to Γ0(E), the infimal convolution of f1 and f2, denoted
f1∇f2, is a convex function on E, defined by (see [14])

f1∇f2(x) = inf{f1(x1) + f2(x2) : x1 + x2 = x} ∀x ∈ E.

In convex analysis, this functional operation aims, as does the convolution in func-
tional analysis, at regularizing convex functions [14]. The proximal regularization
corresponds to θ = λ

2 ‖ · ‖2.
For f ∈ Γ0(E) and λ > 0 the Moreau–Yosida regularization of f with parameter

λ, denoted by fλ, is the infimal convolution of f and 1
2λ‖ · ‖2. The function fλ is con-

tinuously differentiable, underapproximates f without changing the set of minimizers,
and (fλ)µ = fλ+µ. More precisely, ∇fλ = 1

λ [I − (I + λ∂f)−1] is Lipschitzian with
ratio 1

λ . The operator (I +λ∂f)−1 is called the proximal mapping associated with λf
(see [20], [21], [36]).

For g, h ∈ Γ0(E), a general d.c. program is that of the form

(Pdc) α = inf{f(x) := g(x)− h(x) : x ∈ E},

where we adopt the convention +∞ − (+∞) = +∞ to avoid ambiguity. One says
that g−h is a d.c. decomposition (or d.c. representation) of f , and g, h are its convex
d.c. components. If g and h are finite on E, then f = g − h is said to be a finite d.c.
function on E. The set of d.c. functions (resp., finite d.c. functions) on E is denoted
by DC(E) (resp., DCf (E)).

Note that the finiteness of α merely implies that

dom g ⊂ dom h and dom h∗ ⊂ dom g∗.(2.2)

Such inclusions will be assumed throughout the paper.
A point x∗ is said to be a local minimizer of g − h if g(x∗)− h(x∗) is finite (i.e.,

x∗ ∈ dom g ∩ dom h) and there exists a neighborhood U of x∗ such that

g(x∗)− h(x∗) ≤ g(x)− h(x) ∀x ∈ U.(2.3)

Under the convention +∞− (+∞) = +∞, the property (2.3) is equivalent to g(x∗)−
h(x∗) ≤ g(x)− h(x) ∀x ∈ U ∩ dom g.

A point x∗ is said to be a critical point of g − h if ∂g(x∗) ∩ ∂h(x∗) 
= ∅.
It is worth noting the richness of DC(E) and DCf (E) (see [16], [32], [33], and

references therein).
D.c. programming is a natural extension of convex maximization in which the

function g is the indicator function of a nonempty closed convex set C. In the convex
analysis approach to nonsmooth nonconvex optimization, convex maximization has
been extensively studied since 1974 by Pham Dinh (see [26], [27], [28], [29], and
references therein), who has introduced subgradient algorithms for solving convex
maximization problems.



84 LE THI HOAI AN AND PHAM DINH TAO

The d.c. duality (due to Toland [39], who generalized in a very elegant and natural
way the early work of Pham Dinh on convex maximization programming, mentioned
above) associates the d.c. program (Pdc) with the so-called dual d.c. program

(Ddc) α = inf{h∗(y)− g∗(y) : y ∈ E∗},
with the help of the functional conjugate notion, and states relationships between
them. More precisely, using the fundamental characterization of a convex function
θ ∈ Γ0(E) as the pointwise supremum of a collection of affine minorizations,

θ(x) = sup{〈x, y〉 − θ∗(y) : y ∈ E∗} ∀x ∈ E,(2.4)

the d.c. duality is built by replacing the function h in problem (Pdc) with its corre-
sponding expression of the form (2.4).

Thanks to a symmetry in the d.c. duality (the bidual d.c. program is exactly the
primal one) and the d.c. duality transportation of global minimizers—the operator ∂h
(resp., ∂g∗) transports the solution set of the primal problem (Pdc) (resp., the solution
set of the dual problem (Ddc)) into the solution set of the dual problem (Ddc) (resp.,
the solution set of the primal problem (Pdc))—solving a d.c. program implies solving
the dual one and vice versa. This may be useful if one of them is easier to solve than
the other. The equality of the optimal value in the primal and dual programs can be
easily translated (with the help of the ε-subdifferential of the d.c. components) into
global optimality conditions; namely, x∗ is a global solution to (Pdc) if and only if

∂εh(x∗) ⊂ ∂εg(x∗) ∀ε ≥ 0.

Unfortunately, as we foresee, these conditions are rather difficult to use for devising
solution methods to d.c. programs.

Local d.c. optimality conditions constitute (with the d.c. duality) the basis of the
DCA. In general, it is not easy to state them as one does for the global d.c. optimality
conditions, and they have been found to have very few properties which are useful in
practice (see, e.g., [16], [32], [33], [19]).

Remark 2.1. Problem (Pdc) is a “false” d.c. program if the function f = g−h is
actually convex on E. For example, the problem of minimizing a convex function f on
E can be (equivalently) cast in the d.c. framework as that of minimizing a d.c. function
g−h, where g = f+ θ, h = θ, and θ is a finite convex function on E. In such a case it is
proved that the subdifferential inclusion ∂h(x∗) ⊂ ∂g(x∗) is equivalent to 0 ∈ ∂f(x∗);
i.e., x∗ is a solution to the problem being considered. Different ways of generating
equivalent d.c. programs by using regularization techniques can be found in [16], [33],
[19]; see also Remark 2.2. These proper features of the d.c. framework are crucial in
the use of the DCA for solving nonconvex problems (or false d.c. programs), as will
be shown in what follows: there are as many DCA as there are d.c. decompositions.

2.1. The DCA for general d.c. programs. The DCA consists of the con-
struction of the two sequences {xk} and {yk} (candidates for being primal and
dual solutions, respectively) that we improve at each iteration (thus, the sequences
{g(xk) − h(xk)} and {h∗(yk) − g∗(yk)} are decreasing) in an appropriate way such
that their corresponding limits x∞ and y∞ satisfy the local optimality condition

∂h(x∞) ⊂ ∂g(x∞) and ∂g∗(y∞) ⊂ ∂h∗(y∞), i.e., (x∞, y∞) ∈ Pl ×Dl,(2.5)

where Pl = {x∗ ∈ E : ∂h(x∗) ⊂ ∂g(x∗)} and Dl = {y∗ ∈ E∗ : ∂g∗(y∗) ⊂ ∂h∗(y∗)},
or are critical points of g − h and h∗ − g∗, respectively.
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These sequences are generated as follows: xk+1 (resp., yk) is a solution to the
convex program (Pk) (resp., (Dk)) defined by

(Pk) inf{g(x)− [h(xk) + 〈x− xk, yk〉] : x ∈ E},

(Dk) inf{h∗(y)− [g∗(yk−1) + 〈xk, y − yk−1〉] : y ∈ E∗}.
In view of the observation that (Pk) (resp., (Dk)) is obtained from (Pdc) (resp., (Ddc))
by replacing h (resp., g∗) with its affine minorization defined by yk ∈ ∂h(xk) (resp.,
xk ∈ ∂g∗(yk−1)), the DCA yields the next scheme:

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk).(2.6)

This corresponds actually to the simplified DCA (which will be called DCA through-
out the paper for simplicity), where xk+1 (resp., yk) is arbitrarily chosen in ∂g∗(yk)
(resp., ∂h(xk). In the complete form of DCA, we impose the following natural choice:

xk+1 ∈ arg min{g(x)− h(x) : x ∈ ∂g∗(yk)}(2.7)

and

yk ∈ arg min{h∗(y)− g∗(y) : y ∈ ∂h(xk)}.(2.8)

Problems (2.7) and (2.8) are equivalent to convex maximization problems (2.9) and
(2.10), respectively:

xk+1 ∈ arg min{〈x, yk〉 − h(x) : x ∈ ∂g∗(yk)},(2.9)

yk ∈ arg min{〈xk, y〉 − g∗(y) : y ∈ ∂h(xk)}.(2.10)

The complete DCA ensures that (x∞, y∞) ∈ Pl×Dl. It can be viewed as a variation
of the decomposition approach of the primal and dual problems (Pdc), (Ddc). From
a practical point of view, although problems (2.7) and (2.8) are simpler than (Pdc),
(Ddc) (we work in ∂h(xk+1) and ∂g∗(yk) with convex maximization problems), they
remain nonconvex programs and thus are still hard to solve. In practice, except for
the cases in which the convex maximization problems (2.9) and (2.10) are easy to
treat, one generally uses the simplified DCA to solve d.c. programs.

The DCA was introduced by Pham Dinh in 1986 as an extension of the afore-
mentioned subgradient algorithms (for convex maximization programming) to d.c.
programming [29]. However, this field has been really developed since 1994 by the
joint work of Le Thi and Pham Dinh [16], [17], [18], [19], [32], [33] for solving non-
smooth nonconvex optimization problems. To our knowledge, DCA is actually one of
a few algorithms (in the convex analysis approach to d.c. programming) which allow
the solution of large-scale d.c. programs.

It had been proved by Pham Dinh and Le Thi (see, e.g., [16], [32], [33], [19]) that,
for the simplified DCA, the sequences {xk} and {yk} enjoy the following properties:

(1) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)−h(xk+1) ≤h∗(yk)−g∗(yk)−max{ρ(h)2 ‖xk+1−xk‖2,ρ(h∗)
2 ‖yk+1−

yk‖2} ≤ g(xk) − h(xk) − δk, where δk := max{ρ(g)+ρ(h)
2 ‖xk+1 − xk‖2,

ρ(g∗)
2 ‖yk − yk−1‖2 + ρ(h)

2 ‖xk+1−xk‖2, ρ(g∗)
2 ‖yk − yk−1‖2 + ρ(h∗)

2 ‖yk+1−
yk‖2};
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• g(xk+1)− h(xk+1) = g(xk)− h(xk) if and only if yk ∈ ∂g(xk) ∩ ∂h(xk),
yk ∈ ∂g(xk+1) ∩ ∂h(xk+1), and [ρ(g) + ρ(h)]‖xk+1 − xk‖ = 0;

• h∗(yk+1) − g∗(yk+1) = h∗(yk) − g∗(yk) if and only if xk+1 ∈ ∂g∗(yk) ∩
∂h∗(yk), xk+1 ∈ ∂g∗(yk+1) ∩ ∂h∗(yk+1), and [ρ(g∗) + ρ(h∗)]‖yk+1 −
yk‖ = 0. In such a case DCA terminates at the kth iteration.

(2) If ρ(g) + ρ(h) > 0 (resp., ρ(g∗) + ρ(h∗) > 0), then the series {‖xk+1 −
xk‖2} (resp., {‖yk+1 − yk‖2}) converges.

(3) If the optimal value α of problem (Pdc) is finite and the sequences {xk} and
{yk} are bounded, then every limit point x∞ (resp., y∞) of the sequence {xk} (resp.,
{yk}) is a critical point of g − h (resp., h∗ − g∗).

(4) DCA has a linear convergence for general d.c. programs.
(5) In polyhedral d.c. programs (i.e., when g or h is polyhedral convex), the

sequences DCA {xk} and {yk} contain finitely many elements, and DCA has a finite
convergence.

We have the same results for the complete DCA, except that in (1) (resp., (3))
we must add the following property: ∂h(xk) ⊂ ∂g(xk) and ∂g∗(yk) ⊂ ∂h∗(yk) (resp.,
∂h(x∞) ⊂ ∂g(x∞) and ∂g∗(y∞) ⊂ ∂h∗(y∞)).

For more details, see [16], [32], [33], [19], and the references therein.
Remark 2.2. In general, the qualities (cost, robustness, stability, rate of con-

vergence, and globality of sought solutions) of the DCA depend upon the d.c. de-
composition of the function f . Assertion (2) shows how the strong convexity of d.c.
components in primal and dual problems can influence the DCA. To make the d.c.
components (of the primal objective function f = g − h) strongly convex, we usually
apply the following decomposition (proximal regularization in d.c. programming):

f = g − h =

(
g +

λ

2
‖ · ‖2

)
−

(
h +

λ

2
‖ · ‖2

)
.(2.11)

In this case the d.c. components in the dual problem will be differentiable. In the
same way, inf-convolution of g and h with λ

2 ‖ · ‖2 will make the d.c. components (in
the dual program) strongly convex and the d.c. components of the primal objective
function differentiable. It is worth mentioning, for instance, that by using conjointly
suitable d.c. decompositions of convex functions and proximal regularization techniques
[20], [21], [35], we can obtain the proximal point algorithm and the Goldstein–Levitin–
Polyak subgradient method (in convex programming) as special cases of the DCA. For
a detailed study of regularization techniques in d.c. programming, see [16], [19], [30],
[33]. Since there are as many DCA as there are d.c. decompositions, it is of particular
interest to study various equivalent d.c. forms for the primal and dual d.c. programs
(see section 3).

The choice of the d.c. decomposition of the objective function in a d.c. program
and the initial point for the DCA are open questions to be studied. Of course, such
a choice depends strongly on the very specific structure of the problem being consid-
ered. In practice, for solving a given d.c. program, we try to choose g and h such
that sequences {xk} and {yk} can be easily calculated, i.e., either they are in explicit
form or their computations are inexpensive. On the other hand, for a method based
on local optimality conditions like DCA, it is crucial to point up different equivalent
reformulations of the d.c. program which do not have the same local optimality, be-
cause they may serve to restart the DCA (escaping local solutions procedure); see
sections 3 and 5.

The above description of DCA does not really reveal the main features of this
approach that can partly explain its qualities (low costs, robustness, stability, rate
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of convergence and globality of sought solutions) from the computational viewpoint.
For a deeper insight into DCA, the reader is referred to [19].

The major difficulty in nonconvex programming resides in the fact that there are,
in general, no practical global optimality conditions. Thus, checking the globality of
solutions computed by local algorithms is possible only in the cases where optimal
values are known a priori (for example, they are zero in exact distance geometry
problems) or by comparison with global algorithms which, unfortunately, cannot be
applied to large-scale problems. A pertinent comparison of local algorithms should
be based on the following aspects:

+ mathematical foundations of the algorithms,

+ rate of convergence and running-time,

+ ability to treating large-scale problems,

+ quality of computed solutions: the lower the corresponding value of the objec-
tive is, the better the local algorithm will be,

+ the degree of dependence on initial points: the larger the set (composed of
starting points, which ensure convergence of the algorithm to a global solution) is,
the better the algorithm will be.

DCA seems to meet these standards since it was successfully applied to a lot
of different nonconvex optimization problems, to which it gave global solutions and
proved to be more robust and more efficient than related standard methods, especially
in the large-scale setting (see [16], [17], [18], [32], [33], [19] and references therein).

We shall apply all these d.c. enhancement features to solving exact distance ge-
ometry problems (1.1) that are formulated as d.c. programs.

3. Solving the distance geometry problem by DCA. This section is de-
voted to the formulation of the exact distance geometry problem (1.1) in terms of
d.c. programs and the computation of the sequences {Xk} and {Y k} generated by
DCA for solving them. It will be proved that both problems (EDP), with θij defined
by (1.4) or (1.5), are d.c. programs; moreover, the objective function of the former
(the usual formulation of problem (1.1) as a global optimization problem) is infinitely
differentiable, while the latter is a nondifferentiable nonconvex optimization problem.
Paradoxically, the second formulation is advantageous in using DCA for solving the
exact distance geometry problem since the sequences {Xk} and {Y k} have explicit
forms. On the other hand, the zero-gap of the Lagrangian duality relative to a spe-
cial convex maximization problem allows the statement of interesting d.c. programs
equivalent to the exact distance geometry problem.

A thorough study of the two chosen d.c. programs has been developed in the
appropriate matrix framework. Substantial calculations of subdifferentials of related
convex d.c. components prove that DCA requires matrix-vector products and only
one Cholesky factorization. These results justify our theoretical choice of the d.c.
program to be solved. Numerical simulations presented in section 5 will prove their
practical efficiency.

The first nonconvex optimization problem equivalent to the exact distance geom-
etry problem (1.1) is

(EDP1) 0 =min


σ(X) :=

1

2

∑
(i,j)∈S, i<j

wij

(‖XT
i −XT

j ‖ − δij
)2

: X ∈Mn,p(R)
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(recall that p = 3 in the molecular problem). By identifying an n×p matrix X with a
p×n− vector, in what follows, we use either Mn,p(R) or Rp×n for indicating the same
notation. We can identify by rows (resp., columns) each matrix X ∈Mn,p(R) with a
row-vector (resp., column-vector) in (Rp)n (resp., (Rn)p) by writing, respectively,

X ←→ X = (X1, . . . , Xn), XT
i ∈ Rp, X T ∈ (Rp)n,(3.1)

and

X ←→ X = (X1, . . . , Xp)T , Xi ∈ Rn, X ∈ (Rn)p.(3.2)

The inner product in Mn,p(R) is defined as the inner product in (Rp)n or (Rn)p.
That is,

〈X,Y 〉Mn,p(R) = 〈X T ,YT 〉(Rp)n =

n∑
i=1

〈XT
i , Y T

i 〉Rp =

n∑
i=1

XiY
T
i(3.3)

= 〈X ,Y〉(Rn)p =

p∑
k=1

〈Xk, Y k〉Rn =

p∑
k=1

(Xk)TY k = Tr(XTY ).(3.4)

Here Tr(XTY ) denotes the trace of the matrix XTY . In what follows, for simplicity
we shall suppress, where no ambiguity is possible, the indices for the inner product
and denote by ‖ · ‖ the corresponding Euclidean norm on Mn,p(R). Evidently, we
must choose either representation in a convenient way.

The data of (EDP1) can be succinctly represented by a graph G(N,S). The
vertices N = {1, . . . , n} correspond to the atoms, and an edge (i, j) ∈ S connects
vertices i and j if the distance δij between the corresponding atoms is known. The
weight matrix W = (wij) of (EDP1) is defined by taking wij = 0 when (i, j) /∈ S.
Throughout this paper, we assume that W is irreducible, i.e., that the graph G(N,S)
is connected. This assumption is not restrictive for problem (EDP1) since it can be
decomposed into a number of smaller problems otherwise. Then we work under the
next assumptions for the two symmetric matrices ∆ = (δij) (the distance matrix) and
W = (wij):
(a1) for i 
= j, δij > 0 when (i, j) ∈ S (i.e., two different atoms are not in the same

position), and wii = 0 for all i;
(a2) for i 
= j, wij = 0 if and only if δij is unknown, say (i, j) /∈ S;
(a3) the weight matrix W is irreducible.

We note that if we set δij = 0 for (i, j) /∈ S, then G(N,S) is the graph associated
with the distance matrix ∆ too.

The case in which wij = c (c is a given positive number) for all i 
= j is called
the normal case. Clearly, this case can occur if and only if the distance matrix ∆ is
completely defined, say, when all pairwise distances are known.

We are now in a position to present, in the matrix framework, the two d.c. pro-
grams equivalent to the exact distance geometry problem (1.1): problems (3.6) and
(3.12).

3.1. D.c. formulations of problem (EDP1): The l1-norm approach. The
objective function of (EDP1) can be written as

σ(X) =
1

2

∑
(i,j)∈S, i<j

wijd
2
ij(X)−

∑
(i,j)∈S, i<j

wijδijdij(X) +
1

2
η2δ ,(3.5)

with dij(X) = ‖XT
i −XT

j ‖ and ηδ :=
[∑

(i,j)∈S, i<j wijδ
2
ij

]1/2
.
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Under assumption (a2), although δij is unknown for any (i, j) /∈ S, in (3.5) the
summation over pairs (i, j) ∈ S can be extended to that over all pairs (i, j). This
fact must be taken into account later in subsection 3.2 while computing sequences of
iterations in DCA.

Then (EDP1) is equivalent to the following problem:

−1

2
η2δ = min

{
F1(X) :=

1

2
η2(X)− ξ(X) : X ∈Mn,p(R)

}
,(3.6)

where η and ξ are the functions defined on Mn,p(R) by

η(X) =

[∑
i<j

wijd
2
ij(X)

]1/2
and ξ(X) =

∑
i<j

wijδijdij(X).(3.7)

It is not difficult to verify that η and ξ are two seminorms in Mn,p(R), and thus (3.6)
is a d.c. program to which the DCA can be applied.

As indicated above, an important issue in the DCA is a good d.c. decomposition
of the problem being considered. For this purpose, by using the Lagrangian duality
with zero gap relative to the problem of maximization of a finite gauge ψ over the unit
ball defined by a finite gauge φ such that φ−1(0) is a subspace contained in ψ−1(0)
(see [16], [31]), we will state a problem equivalent to (EDP1), which is a d.c. program
too. Let us first recall the following result (see [16], [31]).

Lemma 3.1. The convex maximization program

ω := max{ξ(X) : X ∈ U(η)},(3.8)

with U(η) := {X ∈ Mn,p(R) : η(X) ≤ 1} formulated as a d.c. program (χU(η) is the
indicator of U(η) defined in section 2)

−ω := min{χU(η)(X)− ξ(X) : X ∈Mn,p(R)},(3.9)

is equivalent to the d.c. program

−ω2

2
= min

{
F1(X) :=

1

2
η2(X)− ξ(X) : X ∈Mn,p(R)

}
(3.10)

in the sense that
(i) the solutions to problem (3.9) are of the form X∗/η(X∗), with X∗ being a

solution to problem (3.10);
(ii) the solutions to problem (3.10) are of the form ξ(X∗)X ∗, with X ∗ being a

solution to problem (3.9).
For our distance geometry problem, ω = ηδ, and the next useful result is a

consequence of Lemma 3.1.
Proposition 3.2. The convex maximization program

η2δ = max{ξ(X) : η(X) ≤ ηδ},(3.11)

formulated as a d.c. program

−η2δ = min{χC(X)− ξ(X) : X ∈Mn,p(R)}(3.12)
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with C := {X ∈ Mn,p(R) : 1
2η
2(X) ≤ 1

2η
2
δ} = ηδU(η), is equivalent to the d.c.

program

−η2δ
2

= min

{
F1(X) :=

1

2
η2(X)− ξ(X) : X ∈Mn,p(R)

}
(3.13)

in the sense that they have the same solution set. Moreover, X∗ solves these problems
if and only if ξ(X∗) = η2(X∗) = η2δ .

3.1.1. The dissimilarity geometry problem in Phase 1. As has been said
in section 1, phase 1 of our approach is concerned with the complete dissimilarity
matrix ∆̃ = (δ̃ij), (i, j) ∈ {1, . . . , n}2, with δ̃ij being the length of the shortest path
between atoms i and j (section 4) and the resulting d.c. programs in the normal case

min


1

2

∑
i<j

c(δ̃ij − ‖XT
i −XT

j ‖)2 : X ∈Mn,p(R)


 ,(3.14)

min

{
F̃1(X) :=

1

2
η̃2(X)− ξ̃(X) : X ∈Mn,p(R)

}
,(3.15)

min
{
χC̃(X)− ξ̃(X) : X ∈Mn,p(R)

}
,(3.16)

where

η̃(X) :=

[
c
∑
i<j

d2ij(X)

]1/2
, ξ̃(X) = c

∑
i<j

δ̃ijdij(X),

C̃ := {X ∈Mn,p(R) : η̃(X) ≤ η̃δ̃}.

Here c is a positive number, η̃δ̃ := [c
∑

i<j δ̃
2
ij ]
1/2

, and the summations are taken for

all (i, j) ∈ {1, . . . , n}2.
The next subsection is devoted to the description of the DCA applied to problems

(3.6) and (3.15) on the one hand, and problems (3.12) and (3.16) on the other hand.
Performing this scheme is thus reduced to calculating subdifferentials of the functions
ξ, ((1/2)η2), ((1/2)η2)∗, and χ∗

C .

3.2. Solving (3.6), (3.15), and (3.12), (3.16) by the DCA. Under assump-
tions (a2) and (a3), we can restrict the working matrix space to an appropriate set,
which is, as will be seen later, favorable to our calculations. Indeed, let A denote the
set of matrices in Mn,p(R) whose rows are all identical, i.e.,

A := {X ∈Mn,p(R) : X1 = · · · = Xn},

and let PA be the orthogonal projection on A; we then have the following result.
Lemma 3.3.
(i) A = {evT : v ∈ Rp} is a p-dimensional subspace ofMn,p(R), whose orthogonal

subspace is given by A⊥ = {Y ∈Mn,p(R) :
∑n

i=1 Yi = 0}.
(ii) A ⊂ ξ−1(0); A ⊂ η−1(0).
(iii) PA = (1/n)eeT ;PA⊥ = I − (1/n)eeT (e is the vector of ones in Rn).
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(iv) If the weight matrix W is irreducible (resp., W is irreducible and wijδij > 0
whenever wij > 0), then A = η−1(0) (resp., A = ξ−1(0)). If A = η−1(0) = ξ−1(0),
then the problems

−η2δ
2

= min

{
1

2
η2(X)− ξ(X) : X ∈ A⊥

}
(3.17)

and

−η2δ = min{χC(X)− ξ(X) : X ∈ A⊥}(3.18)

have the same solution set. Moreover, X∗ is an optimal solution of (3.17) (resp.,
(3.18)) if and only if X∗ + Z is an optimal solution of (3.13) (resp., (3.12)) for all
Z ∈ A.

Proof. (i) and (ii) are straightforward from the definition of A. The proof of
(iii) is easy. To prove (iv), let X ∈ Mn,p(R) such that η(X) = 0 (or ξ(X) = 0) and
(i, j) ∈ {1, . . . , n}2 with i 
= j. Since the matrix W is irreducible, there is a finite
sequence {i1, . . . , ir} ⊂ {1, . . . , n} verifying wii1 > 0, wikik+1

> 0 for k = 1, . . . , r−1,
and wirj > 0. It follows that Xi = Xi1 = · · · = Xir = Xj , and then η−1(0) =
A = ξ−1(0). The remaining part is a direct consequence of [31]. The proof is thus
completed.

Remark 3.4. As a consequence of Lemma 3.3, the restrictions of the seminorms
η and ξ on the subspace A⊥ are actually norms under the assumptions (a1), (a2), and
(a3). It follows that their polars η0 and ξ0 defined by [35],

η0(Y ) = sup{〈X,Y 〉 : η(X) ≤ 1} ∀Y ∈Mn,p(R),

ξ0(Y ) = sup{〈X,Y 〉 : η(X) ≤ 1} ∀Y ∈Mn,p(R)

satisfy the following properties:
(i) η0(Y ) = ξ0(Y ) = +∞ if Y /∈ A⊥,
(ii) η0(Y ) = sup{〈X,Y 〉 : X ∈ A⊥, η(X) ≤ 1} ∀Y ∈ A⊥,

ξ0(Y ) = sup{〈X,Y 〉 : X ∈ A⊥, η(X) ≤ 1} ∀Y ∈ A⊥.
We shall now compute subdifferentials of the functions ξ, ((1/2)η2)∗, and ∂χ∗

C .
These calculations will fortunately permit us to state new matrix expressions of these
functions and thus to provide the simplest computations of the sequences {X(k)} and
{Y (k)} generated by the DCA applied to problems (3.6) and (3.12). They also point
out interesting relations between the trust region subproblem and problem (3.6).

3.2.1. Calculation of ∂ξ. By definition, ξ(X) =
∑

i<j wijδijdij(X). Thus,
∂ξ(X) =

∑
i<j wijδij∂dij(X). Further, since dij can be expressed as (using the row

representation of X ∈Mn,p(R))

dij = ‖ · ‖ ◦ Lij : (Rp)n −→ R
p −→ R,

X %−→ Lij(X) = XT
i −XT

j %−→ ‖XT
i −XT

j ‖,
it follows [35] that ∂dij(X) = LT

ij∂ (‖ · ‖) (Lij(X)). Hence

Y (i, j) ∈ ∂dij(X) ⇔ Y (i, j) = LT
ijy, y ∈ ∂ (‖ · ‖) (XT

i −XT
j ),

which implies

Y (i, j)k = 0 if k /∈ {i, j} and Y (i, j)Ti = −Y (i, j)Tj ∈ ∂ (‖ · ‖) (XT
i −XT

j ).(3.19)



92 LE THI HOAI AN AND PHAM DINH TAO

Thus, ξ is not differentiable on the closed set {X ∈Mn,p(R) : Xi = Xj for (i, j) ∈ S,
i < j} but on its complement in Mn,p(R), i.e., the open set Ω defined by

Ω = {X ∈Mn,p(R) : ‖XT
i −XT

j ‖ > 0 ∀(i, j) ∈ S, i < j}.(3.20)

It is clear that

Ω +A = Ω.(3.21)

Now for (i, j) ∈ S, i < j, let us choose the particular subgradient Y (i, j) ∈ ∂dij(X)
defined by

Y (i, j)i = −Y (i, j)j =

{
Xi−Xj

‖XT
i −XT

j ‖ if Xi 
= Xj ,

0 if Xi = Xj .
(3.22)

In this case, the resulting subgradient Y ∈ ∂ξ(X) is explicitly given by

Yk =
∑
i<j

wijδijY (i, j)k =
∑
i<k

wikδikY (i, k)k +
∑
j>k

wkjδkjY (k, j)k

=
∑
i<k

wkiδkiski(X)(Xk −Xi) +
∑
j>k

wkjδkjskj(X)(Xk −Xj)

=

[
n∑

i=1

wkiδkiski(X)

]
Xk −

n∑
i=1

wkiδkiski(X)Xi,

where

sij(X) =

{
1

‖XT
i −XT

j ‖ if Xi 
= Xj ,

0 otherwise.

Let B(X) = (bij(X)) be the n× n matrix defined by

bij(X) =

{ −wijδijsij(X) if i 
= j,
−∑n

k=1,k �=i bik(X) if i = j.
(3.23)

It follows that

Y = B(X)X, B(X + U) = B(X) ∀X ∈Mn,p(R),∀U ∈ A.(3.24)

In what follows, for i 
= j, Mij denotes the n × n matrix given by Mij = eie
T
i +

eje
T
j − (eie

T
j + eje

T
i ), where {ei : i = 1, . . . , n} forms the canonical basis of Rn. It is

clear that the particular subgradient Y (i, j) ∈ ∂dij(X) relates to Mij by

Y (i, j) = sij(X)MijX.(3.25)

We will denote by N (M) and ImM the null space and the range of the matrix M ,
respectively.

Proposition 3.5. Let B(X) be the matrix defined by (3.23). Then we have the
following:

(i) N (B(X)) ⊃ A, Im(B(X)) ⊂ A⊥ for all X ∈ Mn,p(R). Moreover, the
preceding inclusions become inequalities under the assumptions (a1), (a2),
and (a3).
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(ii) B(X) depends only on Xi − Xj for (i, j) ∈ S, i < j, and B : Mn,p(R) %−→
Σ+n (the set of n×n symmetric positive semidefinite matrices) is continuous
on Ω and B(X)X ∈ ∂ξ(X) for all X ∈Mn,p(R).

(iii) The seminorm ξ is differentiable (and so continuously differentiable) on Ω,
and ξ(X) = 〈X,B(X)X〉 for all X ∈Mn,p(R).

(iv) 〈X,B(Y )Y 〉 ≤ 〈X,B(X)X〉 for all X,Y ∈Mn,p(R).
Proof. (i) follows immediately from Lemma 3.3 and the facts that A = {evT :

v ∈ Rp} and B(X)e = 0 for all X ∈Mn,p(R).
(ii) B(X) is symmetric and diagonally dominant, and its diagonal entries are

nonnegative. Thus it is positive semidefinite [40]. The continuity of the mapping B
on Ω directly follows from (3.23).

(iii) The differentiability of the seminorm ξ is straightforward from (3.22) since the
subdifferential ∂ξ(X) is reduced to the singleton {B(X)X} for X ∈ Ω. The remaining
equality is in fact the generalized Euler relation for convex nondifferentiable functions
which are positively homogeneous of degree 1 [35].

(iv) By the definition of the subdifferential, it follows from assertion (ii) that

ξ(X) = 〈X,B(X)X〉 ≥ ξ(Y ) + 〈X − Y,B(Y )Y 〉 ∀X,Y ∈Mn,p(R),

and thus the proof is completed since ξ(Y ) = 〈Y,B(Y )Y 〉.
Remark 3.6. We have (see [35])

∂ξ(X) = {Y ∈ A⊥ : ξ0(Y ) ≤ 1, 〈X,Y 〉 = ξ(X)} ∀X ∈Mn,p(R),

and the range of the subdifferential ∂ξ then is bounded (Remark 3.4):

range ∂ξ = {Y ∈ A⊥ : ξ0(Y ) ≤ 1}.
3.2.2. Calculation of ∂((1/2)η2)∗. First we state some fundamental proper-

ties of the function (1/2)η2 which will be needed for the calculation of ∂((1/2)η2)∗.

From the definition of η, say η2(X) =
∑

i<j wij‖XT
i −XT

j ‖2 =
∑

i<j wijd
2
ij(X), we

have ∂
(
1
2η
2
)

(X) =
∑

i<j wijdij(X)∂dij(X). Thus

Y ∈ ∂

(
1

2
η2

)
(X) ⇔ Y =

∑
i<j

wijdij(X)Y (i, j),

with Y (i, j) being defined by (3.19). It follows that η2 is differentiable on Mn,p(R),
and Y = ∇( 12η

2)(X) is defined as

Yk =
∑
i<k

wki(Xk −Xi) +
∑
j>k

wkj(Xk −Xj) =

(
n∑

i=1

wki

)
Xk −

n∑
i=1

wkiXi.

Hence Y = V X, where V = (vij) given by

vij =

{ −wij if i 
= j,∑n
k=1 wik if i = j.

(3.26)

Similarly to Proposition 3.5 for the function ξ, one has the following results.
Proposition 3.7. Let V be the matrix defined by (3.26). Then the following

hold:
(i) V is positive semidefinite, ∇( 12 )η2(X) = V X, and η2(X) = 〈X,V X〉.



94 LE THI HOAI AN AND PHAM DINH TAO

(ii) If the weight matrix W is irreducible (assumption (a3)), then A = η−1(0) =
{X ∈ Mn,p(R) : V X = 0} = N (V ), rank V = n− 1, and A⊥ = {Y = V X :
X ∈Mn,p(R)} = ImV.

(iii) (12η
2)∗(Y ) = 1

2 〈Y, V +Y 〉 if Y ∈ A⊥, and +∞ otherwise. In other words,(
1

2
η2

)∗
(Y ) =

1

2
〈V +Y, Y 〉+ χA⊥(Y ) for Y ∈Mn,p(R).

(iv) dom ( 12η
2)∗ = dom ∂( 12η

2)∗ and ∂( 12η
2)∗(Y ) = V +Y + A for Y ∈ A⊥.

Proof. (i) The positive semidefiniteness of V follows from [40] as in Proposition
3.5. Since ∇( 12η

2)(X) = V X, the generalized Euler relation [35] yields η2(X) =
〈X,V X〉.

(ii) It remains to prove that rank V = n−1, since the other assertions follow from
the fact that V is symmetric positive semidefinite. First, we see that rank V ≤ n− 1
because V e = 0. Suppose now rank V < n − 1. Then there exists v /∈ Re such that
V v = 0. Let X = v(ep)T (ep is the vector of ones in Rp). Clearly, V X = 0, and
therefore X ∈ A. By the definition of A, all rows of X are identical, which implies
that v ∈ Re. This contradiction proves that rank V = n− 1.

(iii) By the definition (12η
2)∗(Y ) := sup{〈X,Y 〉 − ( 12η

2)(X) : X ∈ Mn,p(R)}, it
follows that (12η

2)∗(Y ) = +∞ if Y /∈ A⊥. For Y ∈ A⊥, X solves the above problem
if and only if V X = Y, i.e., X ∈ V +Y + A, where V + denotes the pseudoinverse of
V. Hence ( 12η

2)∗(Y ) = 1
2 〈V +Y, Y 〉 if Y ∈ A⊥, and thus (12η

2)∗(Y ) = 1
2 〈V +Y, Y 〉 +

χA⊥(Y ) for Y ∈ Mn,p(R). Since V + is symmetric positive semidefinite, we have
∂( 12η

2)∗(Y ) = V +Y + A for Y ∈ A⊥. The proof then is completed.
Hence, determining the gradient of (12η

2)∗(Y ) with Y ∈ A⊥ amounts to comput-
ing the pseudoinverse of V . The next result permits us to calculate V +.

Proposition 3.8. If the weight matrix W is irreducible (assumption (a3)), then
we have the following:

(i) ImV + = ImV = A⊥ and 〈V +Y, Y 〉 > 0 for Y ∈ A⊥ \ {0}.
(ii) V +Y = (V + 1

nee
T )−1Y − 1

nee
TY for all Y ∈ Mn,p(R). That implies, for

Y ∈ A⊥,

X = V +Y =

(
V +

1

n
eeT

)−1
Y, i.e.,

(
V +

1

n
eeT

)
X = Y.(3.27)

Hence, in the normal case where V = ncI−ceeT , the solution to (3.27) is X = Y/(nc).
In other words,

V +Y =
Y

nc
for Y ∈ A⊥.(3.28)

Proof. Assertion (i) is a well-known property for pseudoinverses of symmetric
positive semidefinite matrices (see also (3.27)), while assertion (ii) is easy to prove
and is omitted here.

3.2.3. Calculation of ∂χ∗
C . Recall that C = {X ∈ Mn,p(R) : η(X) ≤ ηδ}.

According to [35], χ∗
C is ηδ times the polar η0 of the gauge (seminorm) η:

η0(Y ) := sup {〈X,Y 〉 : η(X) ≤ 1} = sup

{
〈X,Y 〉 :

1

2
η2(X) ≤ 1

2

}
.

We have η0(Y ) = +∞ if Y /∈ A⊥. Let now Y ∈ A⊥. It is clear that X is an optimal
solution to the above problem if and only if there is a positive number λ such that
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(1) 〈X,V X〉 ≤ 1, (2) Y = λV X, and (3) λ(〈X,V X〉 − 1) = 0. First assume that
Y 
= 0. Then λ must be positive, and (2) implies that X ∈ 1

λV
+Y +A. The value of

λ is given according to (3) as λ = 〈Y, V +Y 〉 1
2 . Hence η0(Y ) = 〈Y, V +Y 〉 1

2 .
This formulation holds also for Y = 0 because η0(0) = 0. Finally we get

η0(Y ) = ηδ〈Y, V +Y 〉 1
2 + χA⊥(Y ) ∀Y ∈Mn,p(R).(3.29)

It follows that (U(η) denotes the unit ball of the seminorm η).
Proposition 3.9. (i) The support function χ∗

U(η) of U(η) is the polar η0 of η, and

we have χ∗
U(η)(Y ) = η0(Y ) = 〈Y, V +Y 〉 1

2 + χA⊥(Y ) ∀Y ∈ Mn,p(R) and ( 12η
2)∗ =

1
2 (η0)2. Hence

∂χ∗
U(η)(Y ) =



∅ if Y /∈ A⊥,
V +Y/〈Y, V +Y 〉1/2 +A if Y ∈ A⊥ \ {0},
U(η) if Y = 0.

(3.30)

The last expression is very simple in the normal case, since we have V +Y = Y/nc
for Y ∈ A⊥. Therefore

∂χ∗
U(η)(Y ) =



∅ if Y /∈ A⊥,
Y/(

√
nc‖Y ‖) +A if Y ∈ A⊥ \ {0},

U(η) if Y = 0.
(3.31)

(ii) For C := ηδU(η), we have χ∗
C = ηδχ

∗
U(η).

Before going further, it is worth noting the following crucial consequences on both
theoretical and algorithmic viewpoints of DCA of solving problems (3.6) and (3.12).

Remark 3.10. (i) It follows from the very definition of the seminorms η and ξ
and the Cauchy–Schwarz inequality ξ(X) ≤ ηδη(X) ∀X ∈ Mn,p(R). Hence 1

ηδ
η0 =

(ηδη)0 ≤ ξ0.
(ii) We have V V +Y = Y = V +V Y for Y ∈ ImV = ImV + = A⊥. Hence

η(V +Y ) = 〈Y, V +Y 〉1/2 = η0(Y ) ≤ ηδ for Y ∈ A⊥, ξ0(Y ) ≤ 1.(3.32)

(iii) Under the assumptions (a1), (a2), and (a3), X∗ is a solution to problem
(EDP1) if and only if X

∗ ∈ Ω and

B(X∗) = V(3.33)

according to (3.23), (3.26). Moreover, ρ( 12η
2,A⊥) and ρ(( 12η

2)∗,A⊥) are positive.
From the above displayed calculations, we can now give the description of the

DCA applied to (3.6) and (3.12) (or, equivalently (3.17) and (3.18); i.e., the compu-
tations of the sequences {X(k)} and {Y (k)} in A⊥ generated by the algorithm.

3.2.4. The description of DCA for solving (3.6) and (3.15). We present
below the DCA applied to problems (3.6) and (3.15), which are respectively denoted
by DCA1 and DCA1bis. The latter will be used to compute an initial point for the
former.

DCA1 (DCA applied to (3.6)). Generate two sequences {X(k)} and {Y (k)} in
A⊥ as follows:

Let τ1 > 0, τ2 > 0, and 0 
= X(0) ∈ A⊥ be given.
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For k = 0, 1, . . . until

either ‖X(k+1) −X(k)‖ ≤ τ1‖X(k+1)‖
or |F1(X(k))− F1(X

(k+1))| ≤ τ2(|F1(X(k+1))|+ 1)

take

Y (k) = B(X(k))X(k),

X(k+1) = V +Y (k).(3.34)

DCA1bis (DCA applied to (3.15)). Replace (3.34) in DCA1 by

X(k+1) =
1

nc
Y (k).(3.35)

The main results on DCA for general d.c. programs (see section 2) can be refined
as follows.

Proposition 3.11. The sequences {X(k)} and {Y (k)} generated by DCA1 satisfy
the following properties:

(i) η(X(k+1)) = η(V +Y (k)) = 〈Y (k), V +Y (k)〉1/2 = η0(Y (k)) ≤ ηδ ∀k; i.e., they
are bounded.

(ii)

1

2
η2(X(k+1))− ξ(X(k+1)) ≤ −1

2
〈Y (k), V +Y (k)〉 ≤ 1

2
η2(X(k))− ξ(X(k))− δk ∀k,

where δk := max{ 12ρ( 12η
2,A⊥)‖X(k+1) −X(k)‖2, 12ρ( 12 (η0)2,A⊥)‖Y (k) − Y (k−1)‖2}.

(iii) The sequences {η(X(k))}, {ξ(X(k))}, and {η0(Y (k))} are increasing:

η2(X(k)) ≤ ξ(X(k)) ≤ 1

2
[η2(X(k)) + η2(X(k+1))]− δk ≤ ηδ − δk ∀k,

ξ(X(k+1)) ≥ ξ(X(k)) +
1

2
[η2(X(k+1))− η2(X(k))] + δk ∀k.

(iv) (Finite convergence of DCA1.) 1
2η
2(X(k+1)) − ξ(X(k+1)) = 1

2η
2(X(k)) −

ξ(X(k)) if and only if X(k+1) = X(k) (or equivalently, Y (k) = Y (k−1)). In such a case
DCA1 stops at the kth iteration with

Y (k) = B(X(k))X(k) = V X(k), ξ(X(k)) = η2(X(k)) = (η0)2(Y (k−1)),

and X(k) solves problem (3.17) if and only if ξ(X(k)) = η2δ (i.e., η(X(k)) = ηδ).
(v) (Infinite convergence of DCA1.) If the sequences {X(k)} and {Y (k)} are

infinite, then the two series {‖X(k+1) − X(k)‖2}, {‖Y (k+1) − Y (k)‖2} converge, and
we have for every limit point (X∗, Y ∗) of {X(k), Y (k)}

X∗ = V +Y ∗, Y ∗ = V X∗ ∈ ∂ξ(X∗), ξ(X∗) = η2(X∗) = (η0)2(Y ∗).

In such a case, X∗ solves problem (3.17) if and only if ξ(X∗) = η2δ (i.e., η(X∗) = ηδ).
Proof. (i) follows from Remark 3.10. The remaining assertions are consequences

of the main results on DCA (see section 2) after simple calculations (related to the
conjugate function, the polar, and the subdifferential of the two seminorms η, ξ), the
fact that the moduli of strong convexity ρ( 12η

2,A⊥) and ρ( 12 (η0)2,A⊥) are positive,
and Proposition 3.2.



MOLECULAR OPTIMIZATION BY A D.C. OPTIMIZATION APPROACH 97

3.2.5. The description of DCA for solving (3.12) and (3.16). Let us now
describe the DCA applied to Problems (3.12) and (3.16).

DCA2 (DCA applied to (3.12)). Generate two sequences {X(k)} and {Y (k)} in
A⊥ as follows:

Let τ1 > 0, τ2 > 0 , and 0 
= X(0) ∈ A⊥ ∩ C be given.
For k = 0, 1, . . . until

either ‖X(k+1) −X(k)‖ ≤ τ1‖X(k+1)‖
or |ξ(X(k))− ξ(X(k+1))| ≤ τ2(ξ(X(k+1)) + 1)

take

Y (k) = B(X(k))X(k),(3.36)

X(k+1) =
ηδV

+Y (k)

〈Y (k), V +Y (k)〉1/2 =
ηδV

+Y (k)

η(V +Y (k))
.(3.37)

DCA2bis (DCA applied to (3.16)). Replace (3.37) in DCA2 with

X(k+1) =
Y (k)

√
nc‖Y (k)‖ .(3.38)

Like Proposition 3.11, we have the following convergence result for DCA2.
Proposition 3.12. The sequences {X(k)} and {Y (k)} generated by DCA2 satisfy

the following properties:
(i) η(X(k)) = ηδ for all k and η0(Y (k)) ≤ ηδ; i.e., the sequences {X(k)} and

{Y (k)} are bounded.
(ii) The sequences {ξ(X(k))} and {η0(Y (k))} are increasing:

ξ(X(k)) ≤ ηδη
0(Y (k)) ≤ ξ(X(k+1)) ∀k.

(iii) (Finite convergence of DCA2.) ξ(X(k+1)) = ξ(X(k)) if and only if X(k+1) =
X(k) (or equivalently, Y (k+1) = Y (k)). In such a case DCA1 stops at the kth iteration
with

X(k) =
ηδV

+Y (k)

η(V +Y (k))
, Y (k) =

ξ(X(k))

η2δ
V X(k),

and X(k) solves Problem (3.18) if and only if ξ(X(k)) = η2δ (i.e., η
0(Y (k)) = ηδ).

(iv) (Infinite convergence of DCA2.) If the sequences {X(k)} and {Y (k)} are
infinite, then for every limit point (X∗, Y ∗) of {X(k), Y (k)} the following hold:

Y ∗ =
ξ(X∗)

η2δ
V X∗ ∈ ∂ξ(X∗), η(X∗) = ηδη

0(Y ∗) ≤ ηδξ(X∗) = ηδη
0(Y ∗).

Moreover, such an X∗ solves Problem (3.18) if and only if ξ(X∗) = η2δ (i.e., η
0(Y ∗) =

ηδ).
Proof. Assertions (i) and (ii) follow from the main results on DCA for general d.c.

programs (section 2) and Proposition 3.2. The remaining assertions can be proved
in the same way. Let us demonstrate (iii). According to the results collected in
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section 2, ξ(X(k+1)) = ξ(X(k)) implies Y (k) ∈ ∂χC (X(k)), i.e., Y (k) = λkV X(k). But
Y (k) ∈ ∂ξ(X(k)), so

ξ(X(k)) = 〈Y (k), X(k)〉 = λk〈X(k), V X(k)〉 = λkη
2(X(k)) = λkη

2
δ .

It follows that

Y (k) =
ξ(X(k))

η2δ
V X(k) and X(k) =

ηδV
+Y (k)

η(V +Y (k))
= X(k+1).

The converse is obvious, and the proof is completed.
Remark 3.13. (i) Computing V +Y (k) in DCA1 and/or DCA2 amounts to solv-

ing the (symmetric positive definite) linear system(
V +

1

n
eeT

)
X = Y (k),(3.39)

for which the Cholesky factorization seems to be one of the efficient methods.
(ii) The calculation of X(k+1) in DCA1bis and DCA2bis requires only matrix-

vector products.
(iii) In DCA1bis we have ρ( 12η

2,A⊥) = nc and ρ(( 12η
2)∗,A⊥) = 1

nc (the normal
case).

3.2.6. DCA for solving the proximal regularized d.c. program of (3.6):
DCA1r. As indicated in Remark 2.2, it is worth introducing the proximal regularized
d.c. program of (EDP1) (with ρ being a nonnegative number, called the regularization
parameter):

min

{
F1(X) :=

[
ρ

2
‖X‖2+

1

2
η2(X)

]
−
[
ρ

2
‖X‖2 + ξ(X)

]
: X ∈Mn,p(R)

}
,(3.40)

where the d.c. decomposition of F (X) yields

G(X) :=
ρ

2
‖X‖2 +

1

2
η2(X), H(X) :=

ρ

2
‖X‖2 + ξ(X).(3.41)

The original d.c. program (EDP1) is a special case of (3.40) with ρ = 0.
The DCA applied to (3.40) differs from the DCA applied to (EDP1) by the follow-

ing two facts: the symmetric positive semidefinite matrices B(X) and V are replaced
by ρI + B(X) and ρI + V , respectively. More precisely, the regularized version of
DCA1 can be described as follows.

DCA1r (the DCA applied to the proximal regularized d.c. program (3.40)).
Let τ1 > 0, τ2 > 0, and 0 
= X(0) ∈ A⊥ be given.
For k = 0, 1, . . . until

either ‖X(k+1) −X(k)‖ ≤ τ1‖X(k+1)‖
or |F1(X(k))− F1(X

(k+1))| ≤ τ2(|F1(X(k+1))|+ 1)

take Y (k) = B(X(k))X(k) + ρX(k) and solve

(V + ρI)X = Y (k)(3.42)

to obtain X(k+1).
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Remark 3.14. The other visible advantage of DCA1r concerns the computation
of the pseudoinverse V + of V : for computing V +, we have to apply the Cholesky
factorization to the matrix V + 1

nee
T , which destroys the sparsity structure of V ,

while the sparse Cholesky factorization can be advantageously applied to the symmetric
positive matrix ρI+V , which preserves the sparsity structure of V . In our experiments
DCA1r seems to be more robust and efficient than DCA1 (see section 6).

3.2.7. DCA for solving the proximal regularized d.c. program of (3.12):
DCA2r. As for problem (3.13), we introduce the proximal regularization technique
into problem (3.12) in order to obtain robustness and stability in numerical computa-
tions. Here we will not use the Hilbertian kernel ρ

2‖.‖2 but the quadratic function ρ
2η
2

(which is positive definite on A⊥) because we have explicit calculations for the latter.
The regularized d.c. program of problem (3.12) is thus its equivalent d.c. program:

min

{[
ρ

2
η2(X) + χηδU(η)(X)

]
−

[
ξ(X) +

ρ

2
η2(X)

]
: X ∈Mn,p(R)

}
.(3.43)

The DCA applied to problem (3.43) computes Y (k) = B(X(k))X(k) + ρV X(k) and
X(k+1) ∈ A⊥, which is the unique solution of the convex program

min

{
ρ

2
η2(X)− 〈X,Y (k)〉 : X ∈ A⊥, η(X) ≤ ηδ

}
.(3.44)

Lemma 3.15. Let Y ∈ A⊥ be fixed. The unique solution X to the convex program

min

{
ρ

2
η2(X)− 〈X,Y 〉 : X ∈ A⊥, η(X) ≤ ηδ

}
(3.45)

is given by

X :=
1

ρ
V +Y if η(V +Y ) ≤ ρηδ,

ηδ

η(V +Y )
V +Y otherwise.(3.46)

Moreover, if Y = B(X)X+ρV X with X ∈ A⊥, ρ2η2(X)+2ρξ(X)+η2(V +B(X)X) ≥
ρ2η2δ , then the unique solution X to problem (3.45) is simply X = ηδ

η(V +Y )
V +Y .

Proof. Since the quadratic function η2 is positive definite on A⊥, problem (3.45)
has a unique solution X ∈ A⊥ defined by (λ being a nonnegative number)

η(X) ≤ ηδ, ρV X − Y = −λV X, λ(η(X)− ηδ) = 0.

It follows that X = 1
λ+ρV

+Y and η2(X) = 1
(λ+ρ)2 η2(V +Y ). According to the first

and third conditions, we get

λ = 0 if η(V +Y ) ≤ ρηδ,
η(V +Y )

ηδ
− ρ otherwise.

The formulation (3.46) then is immediate. It remains to prove that if Y = B(X)X +
ρV X with X ∈ A⊥ given as above, then η(V +Y ) ≥ ρηδ. Indeed we have

η2(V +Y ) = 〈V V +Y , V +Y 〉 = 〈Y , V +Y 〉 = 〈B(X)X + ρV X, V +B(X)X + ρX〉
= ρ2〈V X,X〉+ 2ρ〈X,B(X)X〉+ 〈B(X)X,V +B(X)X〉
= ρ2η2(X) + 2ρξ(X) + η2(V +B(X)X) ≥ ρ2η2δ .
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The DCA for solving the proximal regularized d.c. program (3.43) is then given by
the following.

DCA2r (the DCA applied to the proximal regularized d.c. program (3.43)).
Let τ1 > 0, τ2 > 0 and X(0) ∈ A⊥, η(X(0)) = ηδ be given.
For k = 0, 1, . . . until

either ‖X(k+1) −X(k)‖ ≤ τ1‖X(k+1)‖
or |ξ(X(k))− ξ(X(k+1))| ≤ τ2(ξ(X(k+1)) + 1)

take Y (k) = B(X(k))X(k) + ρV X(k), solve(
V +

1

n
eeT

)
X = Y (k)(3.47)

to obtain V +Y (k), and set X(k+1) = ηδ

η(V +Y (k))
V +Y (k).

Remark 3.16. Regarding Proposition 3.12, the above regularization implies the
following property for DCA2: since the moduli of strong convexity ρ( 12η

2,A⊥) and

ρ( 12 (η0)2,A⊥) are positive, the two series {‖X(k+1)−X(k)‖2} and {‖Y (k+1)−Y (k)‖2}
converge.

4. The two-phase algorithm EDCA. In order to obtain a good starting point
for DCA applied to the main problem we investigate two techniques. In the first one
we compute the complete dissimilarity matrix and then apply DCA to solve the new
dissimilarity geometry problem. This procedure is called Phase 1 in our two-phase
algorithm named EDCA which is described below.

Algorithm EDCA.
Phase 1. Find an initial point for Phase 2.
Step 1. Determine an approximate distance matrix ∆̃ = (δ̃ij).

For i = 1, . . . , n, j = i + 1, . . . , n, compute δ̃ij , the length of the shortest path
between i and j, within the connected graph G(N,S).

Step 2. Solve the problem

min


1

2

∑
i<j

c(δ̃ij − ‖XT
i −XT

j ‖)2 : X ∈Mn,p(R)


(4.1)

by applying either DCA1bis to problem (3.6) or DCA2bis to problem (3.12), where
wij and δij are replaced by c and δ̃ij , respectively, to obtain a point denoted by X̃.

Phase 2. Solve the original problem (EDP1) by applying either DCA1 to problem
(3.6) or DCA2 to problem (3.12) from the point X̃.

Remark 4.1. An approximate distance matrix can be determined in several ways
as in the embed algorithm [5]. Indeed, by taking

uij = lij = δij for (i, j) ∈ S

and using the relationships

uij = min(uij , uik + ukj), lij = max(lij , lik − ukj , ljk − uki},

one obtains a full set of bounds [lij , uij ], and then one can take δ̃ij ∈ [lij , uij ]. In
our algorithm, we attempt to use a simpler procedure for computing the approximate
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matrix ∆̃ = (δ̃ij): the length of the shortest paths (within the connected graph G(N,S))
between atom i and atom j. Its direct calculation does not require computing both
the bounds lij and uij and so is less expensive. From our experiments we observe

that this choice of ∆̃ for DCA is the most efficient, in comparison with the choice
δ̃ij = 0.5(uij + lij) for (i, j) /∈ S and the conditional choice δ̃ij = 0.5uij + lij for
(i, j) /∈ S if lij ≤ 0.5uij.

There exist in the literature many techniques for choosing a starting point for
the distance geometry problem; among them Algorithm struct (Moré and Wu [24])
using the spanning trees procedure seems to be noteworthy. Our second technique
for finding a good starting point for DCA is a modification of Algorithm struct.
It provides a point satisfying the largest distance constraint in S and at least n − 2
different distance constraints that are the largest constraint (k, jk) among the pairs
(k, j) ∈ S for a given k.

Procedure SP. Let (i0, j0) ∈ S such that δ0ind(i0,j0) =max
{
δind(i,j) : (i, j) ∈ S}.

Let xi0 = (0, 0, 0)T and generate xj0 such that ‖xi0 − xj0‖ = δ0ind(i,j).

Set M:={i0, j0} , k := j0.

do while |M| < n

choose (k, jk) ∈ S such that δind(k,jk)0 = maxj{δ0ind(k,j) : (k, j) ∈ S}.
generate xjk such that ‖xk − xjk‖ = δ0ind(k,jk).

Set M := M∪{jk}, k := jk.

end do

This procedure is much less expensive than Phase 1 of the main algorithm EDCA,
and as we will see later in numerical experiments, it may provide good starting points
for DCA.

5. New d.c. programs for (EDP1): The nonstandard l∞ (resp., com-
bined l1 − l∞) approach. The preceding two d.c. programs (3.13) and (3.12) for
(EDP1) involve the l1-norm in the definition of their objective functions. At least
from the computational point of view, as will be shown in the numerical simulations
(section 6), it is important to use the l∞-norm to formulate the following nonstandard
d.c. programs for (EDP1). The first reformulation is

0 = min

{
Φ(X) := max

(i,j)∈S,i<j

{
Φij(X) :=

1

2
wij [dij(X)− δij ]

2

}
: X ∈Mn,p(R)

}
.

In fact we will tackle the equivalent constrained problem (Lemma 3.3 and Proposition
3.8):

0 = min{Φ(X) : X ∈ C},(5.1)

C :=


X ∈ A⊥ :

∑
i<j

‖XT
i −XT

j ‖
2

= n‖X‖2 ≤ r2


 and r2 :=

∑
i<j

δ̃2ij ,

where δ̃ij denotes the length of the shortest paths between nodes i and j (section 4).
Note that C is a compact convex set. Let us now prove that problem (5.1) is actually
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a d.c. program. It is clear that

Φij(X) =
1

2
wijd

2
ij(X) +

1

2
wijδ

2
ij − wijδijdij(X)

=
1

2
wijd

2
ij(X) +

1

2
wijδ

2
ij +

∑
(k,l)∈S, k<l
(k,l) �=(i,j)

wklδkldkl(X)− ξ(X)

is a d.c. function on Mn,p(R). Hence its finite pointwise supremum Φ is d.c. too, with
the d.c. decomposition (see [33])

(5.2)

Φ(X) = max
(i,j)∈S,i<j


ζij(X) :=

1

2
wijd

2
ij(X) +

1

2
wijδ

2
ij +

∑
(k,l)∈S, k<l
(k,l) �=(i,j)

wklδkldkl(X)− ξ(X)




= ζ(X)− ξ(X).

Hence problem (5.1) can be recast into the following d.c. program:

0 = min{ζ(X)− ξ(X) : X ∈ C}.(5.3)

In the combined l1 − l∞-approach, the distance geometry problem is equivalently
stated as the d.c. program

−ρ

2
η2δ = min

{
F2(X) := [ζ(X)− ξ(X)] + ρ

[
1

2
η2(X)− ξ(X)

]
: X ∈ C

}

= min
{
F2(X) =

[
ζ(X) +

ρ

2
η2(X)

]
− (1 + ρ)ξ(X) : X ∈ C

}
.(5.4)

The positive constant ρ is to be chosen according to the problems under considera-
tion. It is clear that problems (5.3) and (5.4) are actually nonsmooth d.c. programs;
i.e., they cannot be transformed into equivalently smooth nonconvex programs. The
practical usefulness of these reformulations resides in the fact that DCA applied to
problem (5.4) may better approximate global solutions than DCA applied to the
standard problems (3.12), (3.13).

Remark 5.1. Problems (3.12), (3.13), (5.3), and (5.4) have the same (global)
solution set. But the local optimality condition (2.5) used for constructing DCA is not
the same for the first two problems as for the last two. This fact is crucial for DCA
since we could restart DCA applied to problem (5.4) from an initial point computed by
DCA applied to problem (3.13). In this way, local solutions computed by DCA could
be improved (see the computational results in section 6).

To perform the DCA applied to the l1 − l∞ d.c. program (5.4), we have only to
calculate the subdifferential of the convex functions ζ and (ζ + ρ

2η
2 + χC)∗.

5.1. Calculation of ∂ζ. We recall that

ζ(X) := max
(i,j)∈S,i<j


ζij(X) :=

1

2
wijd

2
ij(X) +

1

2
wijδ

2
ij +

∑
(k,l)∈S, k<l
(k,l) �=(i,j)

wklδkldkl(X)


 .
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Let Sζ(X) := {(i, j) ∈ S, i < j : ζij(X) = ζ(X)}. According to subsection 3.2, it is
simpler to compute Sζ(X) with the following formulation:

Sζ(X) = {(i, j) ∈ S, i < j : Φij(X) = Φ(X)}.(5.5)

By using usual rules for subdifferential calculus, we have

∂ζ(X) = co{∪∂ζij(X) : (i, j) ∈ Sζ(X)},
where co stands for the convex hull.

According to the computation of ∂ξ in section 3.2.1 and Remark 3.6,
(1) range ∂ζ ⊂ A⊥;
(2) we can choose the particular subgradient of ζ:

B(X)X + wij [1− δijsij(X)]MijX = Bij(X)X ∈ ∂ζ(X) for (i, j) ∈ Sζ(X).(5.6)

Remark 5.2. It follows from the definition of the matrix Mij in section 3.2.1
that

(i) the symmetric matrices B(X) and Bij(X), serving to calculate subgradients of
the convex functions ξ and ζ, respectively (B(X)X ∈ ∂ξ(X) and Bij(X)X ∈ ∂ζ(X)
for (i, j) ∈ Sζ(X)), differ from each other at four entries:

[Bij(X)]ii = [B(X)]ii + wij [1− δijsij(X)],

[Bij(X)]jj = [B(X)]jj + wij [1− δijsij(X)],

[Bij(X)]ij = [Bij(X)]ji = [B(X)]ij − wij [1− δijsij(X)];

(ii) X∗ is an optimal solution to (EDP1) if and only if B(X∗) = Bij(X
∗) for all

(i, j) ∈ S.
5.2. Calculation of ∂(ζ+ ρ

2
η2+χC)∗. Since the convex function η2 is strongly

convex onA⊥ (Remark 3.10), the function (ζ+ ρ
2η
2+χC)∗ is differentiable onMn,p(R).

But unlike the preceding convex functions, it seems that the gradient ∇(ζ + ρ
2η
2 +

χC)∗(Y ), which is the unique solution of the convex program

min
{
ζ(X) +

ρ

2
η2(X)− 〈X,Y 〉 : X ∈ A⊥, n‖X‖2 ≤ r2

}
,(5.7)

cannot be explicitly calculated. On the other hand, since the projection on the convex

set C := {X ∈ A⊥ :
∑

i<j ‖XT
i −XT

j ‖2 = n‖X‖2 ≤ r2} is explicit, for solving prob-
lem (5.7) we suggest the use of the subgradient projection method [6], [34], which we
succinctly describe below.

Subgradient projection algorithm for solving problem (5.7): SGPA. From a given
initial point Z0 ∈ C, SGPA generates a sequence {Zk} in C as follows. Assume that Zk

has already been calculated. Calculate the particular subgradient Gk of the objective
function at Zk : Gk := ρV Zk +Bij(Z

k)Zk −Y with (i, j) ∈ Sζ(Zk). If Gk = 0, then
Zk is an optimal solution to problem (5.7). Otherwise, calculate the next iteration

Zk+1 := PC

(
Zk − λk

Gk

‖Gk‖
)
,

where the sequence of positive numbers{λk} is chosen such that

λk → 0 as k → +∞ and

+∞∑
k=1

λk = +∞,
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and PC stands for the orthogonal projection onto C. As said above, the projection PC
is explicit, since we have for A ∈ A⊥: PC(A) = A if A ∈ C, and r√

n
A

‖A‖ otherwise.

Zk, Gk are in A⊥. It has been shown [6], [34] that the sequence {Zk} converges to
the unique optimal solution to the convex program (5.7).

5.3. DCA for solving the l1 − l∞ d.c. program (5.4): DCA3. The results
displayed in section 4 enable us to outline the DCA for solving the l1−l∞ d.c. program
(5.4)

DCA3 (DCA applied to (5.4)). Generate two sequences {X(k)} ⊂ C and {Y (k)} ⊂
A⊥ as follows:

Let τ1 > 0, τ2 > 0, and 0 
= X(0) ∈ C be given.
For k = 0, 1, . . . until

either ‖X(k+1) −X(k)‖ ≤ τ1‖X(k+1)‖
or |F2(X(k))− F2(X

(k+1))| ≤ τ2(|F2(X(k+1))|+ 1)

take

Y (k) = (1 + ρ)B(X(k))X(k) ∈ (1 + ρ)∂ξ(X(k))

and compute the sequence {X(k,l) : l ≥ 0} generated by SGPA for solving the convex
program (starting with (X(k,0) := X(k))

min
{
ζ(X) +

ρ

2
η2(X)− 〈X,Y (k)〉 : X ∈ C

}
(5.8)

to obtain X(k+1) as the unique optimal solution to (5.8): X(k+1) := liml→+∞ X(k,l).
Remark 5.3. Like DCA1, the two sequences {X(k)} and {Y (k)} generated by

DCA3 are bounded, and the general convergence result for the DCA (section 2.1) is
strengthened by the strong convexity of ζ + ρ

2η
2 on C.

6. Computational experiments. Our algorithms are coded in FORTRAN 77
with double precision and run on an SGI Origin 2000 multiprocessor with an IRIX
system. We have tested our code on three sets of data: the first one is the artificial
data from Moré and Wu [22], the second is derived from proteins in the PDB [2], and
the third is generated by Hendrickson [12], [13].

The purpose of the experiments is threefold. The first is to show that the DCA
can efficiently solve large-scale distance geometry problems (EDP1). We consider
molecules containing at most 4096 atoms (12288 variables) in the artificial data and
at most 4189 atoms in the PDB data.

The second is to study the effect of starting points for the DCA applied to the
main problem (EDP1). We compare the efficiency of the two-phase algorithm EDCA
and Algorithm SDCA (below), i.e., DCA applied to (EDP1) with and/or without
Phase 1.

The third goal is to exploit the effect of the d.c. decomposition on the solution of
(EDP1) by the DCA via the regularization technique and the Lagrangian duality.

For these purposes, we have tested the following variants of our methods:
• EDCA1: the two-phase algorithm EDCA, which uses DCA1bis and DCA1 in

Phase 1 and Phase 2, respectively,
• EDCA2: the two-phase algorithm EDCA, which uses DCA2bis and DCA2 in

Phase 1 and Phase 2, respectively,
• SDCA: DCA1 with Procedure SP for computing a starting point,
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• RSDCA: DCA1r with Procedure SP for computing a starting point (the reg-
ularized version of SDCA),

• REDCA1: the two-phase algorithm EDCA, which uses DCA1bis and DCA1r
in Phase 1 and Phase 2, respectively (the regularized version of EDCA1),

• EDCA1-3: a variant of EDCA1, which uses a combination of DCA1 and
DCA3 in Phase 2: in EDCA1, we perform only enough iterations of DCA1 to
get a sufficiently good guess X(k) (we stop DCA1 with a quite large tolerance
τ2) and then apply DCA3 to terminate Phase 2.

We consider wij = 1 for all i 
= j in Phase 1, and wij = 1 for (i, j) ∈ S, i 
= j, in
Phase 2.

For starting DCA1bis, we use Procedure SP to compute X(0), and then set X(0) :=

PA⊥(X(0)). The initial point of DCA2bis is then set to
η̃δ̃X

(0)

(
√
n‖X(0)‖) . We take τ1 = 10−8

and τ2 = 10−9 in all algorithms (except for DCA1 in the combined EDCA1-3, where
we choose τ2 = 10−3).

For solving the linear system (3.39) (resp., (3.42)) in Phase 2, we first decompose
the matrix V + 1

nee
T = RTR (resp., V + ρI = RTR) by the Cholesky factorization,

and then at each iteration we solve two systems RTU = Y (k) and RX = U .

In the tables presented below we indicate the following values:

• data: the number of given distances, i.e., (1/2)|S|, where |S| is the cardinality
of S.

• t0: CPU time of Procedure SP and the completion of the matrix ∆̃ in the
two-phase algorithm EDCA, and/or CPU time of Procedure SP in Algorithm
SDCA.

• it1 and time1: the number of iterations and CPU time of DCA1bis and/or
DCA2bis, respectively.

• it2 and time2: the number of iteration and CPU time of DCA1 and/or DCA2,
respectively.

• ttotal: the total CPU time of the algorithm.
• aver: the average relative error defined by 1

|S|
∑
(i,j)∈S

|δij−‖X∗T
i −X∗T

j ‖|
δij

.

• maxer: the maximum relative error defined by

max

{
|δij − ‖X∗T

i −X∗T
j ‖|

δij
: (i, j) ∈ S

}
.

Note that all CPU times are computed in seconds.

6.1. The data.

6.1.1. The artificial data. We consider two models of problems given in Moré
and Wu [22], where the molecule has n = s3 atoms located in the three-dimensional
lattice

{(i1, i2, i3) : 0 ≤ i1 < s, 0 ≤ i2 < s, 0 ≤ i3 < s}

for some integer s ≥ 1.

In the first model problem the ordering for the atoms is specified by letting i be
the atom at the position (i1, i2, i3),

i = 1 + i1 + si2 + s2i3,
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Table 6.1
Summarized information about test problems from the PDB.

ID code Exp. method Classification Atoms (n) Residues
1A1D NMR (MAS) Nucleotidyltransferase 146 146
304D X-ray diffraction Deoxyribonucleic acid 237 52
8DRH NMR (MAS) Deoxyribonucleic acid/Ribonucleic acid 329 16
1AMD NMR (MAS) Deoxyribonucleic acid 380 12
2MSJ X-ray diffraction Antifreeze protein 480 66
124D NMR Deoxyribonucleic/Ribonucleic acid 509 16
141D NMR Deoxyribonucleic acid 527 26
132D NMR Deoxyribonucleic acid 750 24
1A84 NMR Deoxyribonucleic acid 758 24
104D NMR DNA/RNA chimeric hybrid duplex 766 24
103D NMR (MAS) Deoxyribonucleic acid 772 24
2EQL X-ray diffraction Hydrolase (O-Glycosyl) 1023 129
1QS5 X-ray diffraction Hydrolase 1429 162
1QSB X-ray diffraction Hydrolase 1431 162
1ITH X-ray diffraction Oxygen transport 2366 282
2CLJ Theoretical model Hydrolase 4189 543

and distance data are generated for all pairs of atoms in

S = {(i, j) : |i− j| ≤ r},(6.1)

where r is an integer between 1 and n.
In the second model problem the set S is specified by (XT

i = (i1, i2, i3))

S = {(i, j) : ‖XT
i −XT

j ‖ ≤
√
r}.(6.2)

As indicated in Moré and Wu [22], a difference between these definitions of S is that
(6.2) includes all nearby atoms, while (6.1) includes some of nearby atoms and some
relatively distant atoms. Thus these model problems may capture various features in
distance data from applications.

6.1.2. The PDB data. We consider 16 problems whose data are derived from
16 structures of proteins given in the PDB. Table 6.1 gives the summarized information
about these structures (in this table, “Exp.” is the abbreviation of “exploitation,”
and “MAS” is that of “minimized average structure”).

For each structure we generate a set of distances by using all distances between
the atoms in the same residue as well as those in the neighboring residues. More
precisely, if Rk is the kth residue, then

S = {(i, j) : xi ∈ Rk, : xj ∈ Rk ∪Rk+1}

specifies the set of distances.

6.1.3. Hendrickson’s benchmark problems. This set of data is composed of
significantly more difficult test problems. We consider the twelve problems generated
by Hendrickson [12], [13] from the bovine pancreatic ribonuclease by using fragments
consisting of the first 20, 40, 60, 80, and 100 amino acids as well as the full protein
(124 amino acids), with two sets of distance constraints for each size corresponding
to the largest unique subgraphs and the reduced graphs. These problems have from
63 up to 777 atoms. The protein actually has 1849 atoms, but some simple structure
exploitation allowed the author to start the numerical method with only 777 atoms.
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Table 6.2
The performance of REDCA1 for the second model problem, r = 1, r = 2, and r = s2.

n r data t0 iter1 time1 iter2 time2 ttotal aver maxer
64 1 144 0.00 55 0.07 23 0.02 0.09 1.24E-8 8.66E-5

2 360 0.01 209 0.26 20 0.02 0.29 2.23E-8 9.90E-5
s2 1880 0.00 68 0.09 21 0.05 0.14 2.24E-8 8.84E-5

125 1 300 0.03 74 0.37 59 0.13 0.52 8.12E-8 9.44E-5
2 780 0.05 79 0.38 24 0.07 0.50 2.21E-7 9.14E-5
s2 7192 0.03 71 0.34 26 0.24 0.61 2.13E-8 8.57E-6

216 1 540 0.17 75 1.07 80 0.47 1.71 3.02E-8 9.60E-5
2 1440 0.22 77 1.10 25 0.19 1.52 1.22E-8 9.70E-5
s2 21672 0.15 64 0.92 27 0.77 1.84 1.02E-8 9.01E-5

343 1 882 0.66 69 2.61 109 1.56 4.83 2.36E-8 9.96E-5
2 2394 0.80 71 2.69 32 0.60 4.09 2.23E-8 9.11E-5
s2 53 799 0.64 90 3.38 27 2.00 6.02 1.02E-8 8.95E-5

512 1 1344 2.75 65 6.63 145 6.43 15.81 2.12E-8 9.98E-5
2 3696 3.10 68 6.94 32 1.79 11.84 1.23E-8 9.97E-5
s2 119692 2.14 81 8.10 33 6.22 16.46 4.52E-8 9.07E-5

729 1 1944 11.40 78 20.26 184 28.10 59.76 2.23E-8 9.90E-5
2 5400 12.22 73 18.96 35 6.35 37.54 1.45E-8 9.02E-5
s2 243858 6.59 88 22.38 33 15.69 44.66 1.23E-7 9.14E-5

1000 1 2700 35.33 72 40.55 230 89.05 164.93 3.24E-7 9.90E-5
2 7560 37.00 79 44.53 37 16.83 98.36 1.23E-8 9.19E-5
s2 456872 17.55 89 48.38 1261 1197.99 1263.92 2.35E-6 2.21E-4

1331 1 3630 111.08 78 95.62 272 405.56 611.91 1.23E-7 8.92E-5
2 10230 112.95 81 99.14 40 61.48 271.52 1.24E-7 9.98E-5
s2 809763 58.52 83 115.89 28 72.19 246.60 1.28E-6 8.90E-4

1728 1 4752 368.25 75 215.89 326 860.11 1444.25 1.89E-7 7.78E-5
2 13464 349.02 76 209.58 50 135.26 693.85 2.45E-7 9.23E-5
s2 133.80 96 228.90 29 130.76 493.46 1.25E-6 8.52E-4

2197 1 6084 719.79 78 351.22 406 1642.10 2713.11 3.22E-7 1.05E-5
2 17316 726.37 77 348.01 44 208.87 1283.25 1.08E-7 6.72E-5
s2 2014666 315.59 85 383.87 60 480.28 1179.74 1.0E-6 1.0E-3

2744 1 7644 1620.07 88 741.54 237 1979.76 4341.37 8.52E-5 1.00E-3
2 21840 1629.80 77 648.85 25 280.51 2559.16 1.22E-6 1.00E-3
s2 3436528 595.18 86 729.34 75 1215.57 2600.75 1.24E-6 1.00E-3

3375 1 9450 3552.69 92 1274.72 270 3738.10 8565.50 5.23E-5 1.00E-3
2 27090 3570.90 85 1175.36 28 529.58 5275.86 2.34E-5 1.00E-3
s2 5196129 1201.28 111 1526.32 5 266.82 2994.42 1.0E-6 4.92E-2

4096 s2 7640952 5434.57 83 6668.17 3 1282.16 13384.90 1.00E-4 4.85E-2

6.2. Experimental results.

6.2.1. The performance of the two-phase algorithm REDCA1. In this
experiment we have tested Algorithm REDCA1 (the regularized version of the two-
phase algorithm EDCA1) on the first two sets of data (the second model of the artificial
data and the PDB data). To observe the behavior of our method when the number
of given distances varies, we consider three different values of r in the artificial data:
r = 1, r = 2, and r = s2 (Table 6.2). The results on the PDB data are reported in
Table 6.3. The regularization parameter ρ is set to ρ = 0.01.

6.2.2. The performance of Algorithm RSDCA. In the second experiment
we study the efficiency of DCA applied to (EDP1) without Phase 1. In Tables 6.4
and 6.5, respectively, we report our experimental results with Algorithm RSDCA (the
regularized version of Algorithm SDCA) on the second model problem of the artificial
data with r = 1 and r = 2 and on the PDB data.

6.2.3. Comparison of SDCA and RSDCA. In the third experiment we are
interested in the effect of the regularization technique for DCA. We present in Table
6.6 the results of DCA with and/or without regularization, say RSDCA and SDCA
for the second set of data, say PDB data. We consider different values for the regu-
larization parameter: ρ = 0.0001, ρ = 0.001, ρ = 0.01, ρ = 0.1, and ρ = 100.
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Table 6.3
The performance of Algorithm REDCA1 on the PDB data.

ID code n data t0 iter1 time1 iter2 time2 ttotal aver maxer

1A1D 146 145 0.0 0 0.00 0 0 0.00 0.00E+0 0.00E+0

304D 237 2319 0.38 251 4.85 175 1.52 6.76 7.00E-4 1.00E-3

8DRH 329 3549 0.91 481 17.36 660 10.65 28.92 1.80E-4 1.00E-2

1AMD 380 6186 1.91 912 40.82 844 19.31 65.51 1.00E-6 1.00E-4

2MSJ 480 715 2.04 110 9.81 918 22.96 34.81 1.50E-4 1.00E-2

124D 509 8307 4.16 401 36.06 492 18.03 58.26 2.00E-6 1.00E-3

141D 527 5615 3.44 544 52.01 498 26.95 88.53 1.00E-5 1.00E-3

132D 750 12094 14.21 262 65.94 182 29.81 106.84 1.00E-4 1.00E-2

1A84 758 12345 19.55 452 122.00 886 118.51 260.07 1.02E-6 1.00E-3

104D 766 12609 15.56 524 135.50 13281 1704.65 1855.71 1.00E-5 1.50E-3

103D 772 12777 18.08 1179 343.39 414 58.12 419.59 2.36E-5 2.02E-3

2EQL 1023 4888 54.60 169 133.42 1665 939.40 1127.41 3.00E-4 3.05E-2

1QS5 1429 6355 154.88 72 104.66 3572 4439.67 4698.99 1.10E-3 5.02E-2

1QSB 1431 6344 165.67 112 166.93 2555 3215.16 3547.75 1.20E-03 7.53E-2

1ITH 2366 6239 957.38 87 458.62 1441 6944.09 8360.08 1.00E-4 8.58E-2

2CLJ 4189 19833 8238.57 119 3056.88 1230 31949.27 43244.71 1.00E-3 1.00E-1

Table 6.4
The performance of Algorithm RSDCA in the second model with r = 1 and r = 2.

n r iter2 ttotal aver maxer
64 1 1658 1.06 1.00E-4 1.00E-3

2 447 0.42 5.81E-2 1.35E-1
125 1 3500 7.26 2.00E-4 1.50E-3

2 817 2.29 1.37E-1 7.45E-1
216 1 3500 19.81 3.00E-4 4.90E-3

2 2149 14.93 1.27E-1 5.94E-1
343 1 3500 47.49 3.00E-4 3.70E-3

2 1615 25.79 1.38E-1 6.92E-1
512 1 3500 150.00 4.00E-4 6.60E-3

2 2630 123.19 1.41E-1 7.79E-1
729 1 3499 517.59 5.00E-4 8.00E-3

2 1875 307.39 1.50E-1 8.18E-1
1000 1 1699 637.01 7.00E-4 9.20E-3

2 1518 639.93 1.50E-1 8.64E-1
1331 1 1450 1404.90 8.10E-5 7.00E-4

2 1551 1515.11 1.49E-1 8.56E-1
1728 1 1005 3018.26 7.40E-5 4.99E-4

2 1781 5489.43 1.47E-1 8.93E-1
2197 1 1105 5241.95 5.00E-4 5.70E-5

2 2429 12280.41 1.49E-1 9.14E-1
2744 1 945 6613.19 5.90E-5 4.98E-4

2 3634 29415.09 1.01E-1 1.49E+0

6.2.4. Comparison of two variants EDCA1 and EDCA2. In this exper-
iment we consider two versions of EDCA which correspond to different d.c. decom-
positions to solve the first model problem, where the parameter r in (6.1) is set to
r = s2. This data set is also considered in [41]. We note that when r = s2, the set
defined by (6.1) is included in the set defined by (6.2). In Table 6.7 we present the
performance of two algorithms EDCA1 and EDCA2.

6.2.5. The performance of EDCA1 and EDCA1-3 for Hendrickson’s
benchmark problems. In this experiment we are interested in the efficiency of
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Table 6.5
The performance of Algorithm RSDCA in the PDB data.

ID code n iter2 ttotal aver maxer
1A1D 146 0 0.00 0.00E+0 0.00E+0
304D 237 701 6.30 1.22E-7 1.00E-4
8DRH 329 560 9.08 2.10E-4 2.00E-1
1AMD 380 631 16.06 1.02E-8 9.89E-5
2MSJ 480 666 16.88 1.24E-7 8.55E-5
124D 509 715 32.53 1.24E-7 5.75E-4
141D 527 637 26.61 3.72E-3 2.28E-1
132D 750 337 46.31 2.50E-3 4.53E-1
1A84 758 4438 565.91 0.00E+0 1.70E-3
104D 766 875 151.46 2.46E-06 1.38E-04
103D 772 743 116.18 2.22E-3 4.73E-1
2EQL 1023 1219 669.25 5.76E-4 1.30E-1
1QS5 1429 1109 1402.66 8.00E-4 1.50E-1
1QSB 1431 1282 1445.91 7.56E-4 1.44E-1
1ITH 2366 2101 9799.02 4.82E-4 8.21E-2
2CLJ 4189 1002 27001.29 6.72E-4 2.03E-1

Table 6.6
Comparison between SDCA and RSDCA with different choice of ρ.

Pb Algorithm ρ iter2 ttotal aver maxer
304D SDCA 792 9.06 1.37E-6 2.66E-5

RDCA 1.0 1404 15.88 2.31E-6 7.89E-5
0.1 797 9.25 2.19E-6 7.73E-5
0.01 738 8.61 2.14E-6 4.41E-05
0.001 798 9.25 2.38E-6 5.50E-5

2MSJ SDCA 1001 39.87 1.23E-5 7.15E-5
RSDCA 1.0 902 36.80 1.12E-6 4.97E-5

0.1 919 42.37 1.29E-6 3.06E-5
0.01 735 33.49 1.96E-6 4.39E-5
0.001 688 27.53 3.30E-6 5.60E-5

141D SDCA 688 37.97 4.01E-3 2.28E-1
RSDCA 1.0 1176 63.35 4.74E-3 2.27E-1

0.1 703 51.25 4.03E-3 2.27E-1
0.01 637 26.62 4.01E-03 2.28E-1
0.001 691 37.95 4.01E-03 2.28E-1

104D SDCA 849 147.73 1.23E-6 1.18E-3
RSDCA 1.0 1540 270.46 1.02E-6 5.94E-5

0.1 987 175.39 2.06E-6 9.81E-5
0.01 2614 352.51 9.75E-6 6.62E-4
0.001 875 151.46 2.46E-06 1.38E-4

1A84 SDCA 780 137.23 8.18E-04 2.90E-1
RSDCA 1.0 1931 354.95 9.02E-7 6.22E-5

0.1 1042 173.27 3.38E-06 2.92E-4
0.01 527 90.42 8.21E-04 2.9E-1
0.001 590 118.49 8.18E-04 2.90E-1

EDCA1 and the combined EDCA1-3 with the last set of data, Hendrickson’s bench-
mark problems. The results are summarized in Table 6.8.

6.3. Comments. Our main concerns in this paper are both the ability to treat
large-scale problems and the cost of algorithms. The numerical results show that
our algorithms are quite efficient for all sets of data. Our experiments suggest the
following comments.
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Table 6.7
The performance of EDCA1 and EDCA2 for the first model problem, r = s2.

n data Algorithm t0 iter1 time1 iter2 time2 ttotal aver maxer

64 888 EDCA1 0.00 70 0.09 70 0.09 28 1.00E-3 4.84E-2

EDCA2 0.00 66 0.01 28 0.04 0.05 1.00E-3 4.85E-2

125 2800 EDCA1 0.03 117 0.58 52 0.24 0.85 6.00E-4 4.89E-2

EDCA2 0.03 112 0.52 52 0.24 0.79 6.00E-4 4.87E-2

216 7110 EDCA1 0.23 90 1.51 87 1.75 3.50 4.00E-4 4.94E-2

EDCA2 0.23 84 1.32 87 1.75 3.26 4.00E-4 4.96E-2

343 15582 EDCA1 0.54 86 3.66 137 6.56 10.77 3.00E-4 4.97E-2

EDCA2 0.54 83 3.25 136 6.55 10.34 3.00E-4 4.97E-2

512 30688 EDCA1 3.20 81 7.68 205 20.68 31.55 0.0002 4.98E-2

EDCA2 3.20 78 7.18 206 20.55 30.93 0.0002 4.97E-2

729 55728 EDCA1 15.48 92 28.61 288 77.18 121.33 1.00E-4 4.98E-2

EDCA2 15.48 90 28.24 288 77.19 120.91 1.00E-4 4.98E-2

1000 94950 EDCA1 76.20 95 61.05 369 271.33 347.53 1.00E-4 4.99E-2

EDCA2 76.20 92 59.01 369 271.33 345.49 1.00E-4 4.99E-2

1331 153670 EDCA1 178.85 85 103.68 471 537.68 820.21 1.00E-4 4.99E-2

EDCA2 178.85 83 100.64 470 537.62 817.11 1.00E-4 4.99E-2

1728 238392 EDCA1 404.15 87 285.34 581 1930.06 2619.55 1.00E-4 4.99E-2

EDCA2 404.15 84 277.92 432 1929.01 2611.14 1.00E-4 4.99E-2

2197 356928 EDCA1 1073.46 103 563.41 702 4009.28 5646.15 1.00E-4 4.99E-2

EDCA2 1073.46 99 542.84 703 4012.22 5628.52 1.00E-4 4.99E-2

2744 518518 EDCA1 2745.87 130 1132.52 848 7593.98 11472.37 1.00E-4 4.99E-2

EDCA2 2745.87 124 1073.21 850 7601.22 11420.30 1.00E-4 4.99E-2

Table 6.8
The performance of EDCA1 and EDCA1-3 for Hendrickson’s problems.

n data EDCA1 EDCA1-3
ttotal aver maxer ttotal aver maxer

63 236 12.23 9.36E-5 7.85E-4 5.74 1.81E-4 1.58E-3
102 336 17.62 9.46E-5 1.12E-3 11.48 1.34E-4 1.35E-3
174 786 28.19 5.76E-4 2.49E-2 31.62 5.59E-4 2.49E-2
236 957 100.85 2.73E-5 6.25E-4 52.88 8.56E-5 9.05E-4
287 1319 74.59 3.40E-3 1.43E-1 310.24 2.43E-4 3.60E-2
362 1526 316.24 3.24E-4 2.48E-2 111.38 3.0E-4 2.38E-2
377 1719 325.68 5.75E-4 4.32E-2 165.25 7.0E-4 2.92E-2
472 2169 359.95 3.63E-3 1.66E-1 258.22 3.67E-4 5.44E-2
480 2006 747.49 6.50E-4 4.97E-2 287.14 7.02E-4 3.89E-2
599 2532 331.56 3.24E-3 1.77E-1 1746.20 2.32E-3 7.20E-2
695 3283 1067.15 1.35E-2 2.49E-1 9899.00 1.50E-3 8.50E-2
777 3504 619.57 6.48E-4 2.50E-2 620.80 6.48E-4 2.50E-2

6.3.1. About the two-phase algorithm EDCA and its variants. The most
important fact is that in all experiments Algorithm EDCA gives an ε-global solution
of (EDP1). Moreover, since the basic DCA is efficient, EDCA can solve large-scale
problems in a short time when n ≤ 1000 (3000 variables), and in a reasonable time
when 1331 ≤ n ≤ 4189 (to 12567 variables).

We observe from Tables 6.3 and 6.7 that the rate of convergence of the DCA in
Phase 1 does not depend much on the distance data (i.e., the number and the length
of given distances between nearby or far away atoms). In other words, the DCA is
quite stable in the normal case (in the artificial data).

On the contrary, the DCA in Phase 2 (DCA1 and DCA2) is quite sensitive to the
data. In the first model (where given distances are determined between both nearby
and distant atoms), the number of iterations of DCA1 and/or DCA2 is much higher
than that in the second model. A simple explanation is that for the given distances
between relatively far away atoms the approximate distance matrix ∆̃ does not seem
to be “good,” and the resulting initial point X̃ (given by Phase 1) is not relatively
near a solution of (EDP1). Then DCA1 and DCA2 need more iterations to yield a
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solution. In general, the cost of Algorithm EDCA in the first model problem is more
important than in the second one (see Tables 6.3 and 6.7).

Consider now the influence of the number of given distances, data, in the first
experiment. We observe that, with n ≥ 1000, when the number of given distances
is small (r = 1 and r = 2), the cost for determining ∆̃ is very important in the
two-phase algorithm (21% to 68% of the total cost). However when the number of
given distances is large (r = 2 and r = s2 in the artificial data), this step is necessary
because Phase 1 is important for EDCA to obtain a global solution of (EDP1) in
such a case. The results given in Table 6.2 show that when n ≥ 512, the more the
number of given distances increases, the more t0 decreases, and thus the faster EDCA
becomes.

On the other hand, although the sequences {X(k)} in DCA1 and DCA2 are not
in an explicit form, one iteration of these algorithms (which comprises computing
the matrix B(X(k)), the product B(X(k))X(k), and the solution of two triangular
systems) is not more expensive than that of DCA1bis and DCA2bis, which need only
matrix-vector products. This shows that DCA1 and DCA2 exploit well the sparsity
of S (in the determination of matrix B(X(k)) and the product B(X(k))X(k)).

6.3.2. About the Algorithm SDCA and its regularized version. Algo-
rithm RSDCA is very efficient when the number of constraints is not large. In the
artificial data with r = 1, RSDCA provided an optimal solution for all test problems
with the maximal error maxer ≤ 0.009 (Table 6.4). In the PDB data it successfully
solved 7 of 16 problems with maxer ≤ 0.001, and the average errors in all test prob-
lems are small (smaller than 0.003). Hence, Phase 1 in the two-phase algorithm can
be replaced efficiently by Procedure SP when a small subset of distances is known.
In any case we see that the objective function decreases very fast during some first
iterations of DCA1.

6.3.3. The effect of Phase 1 in the two-phase algorithm EDCA. From
experimental results we see that Phase 1 is important for EDCA when the number
of constraints is large. In other words, for our d.c. approach, the technique using the
shortest path in Phase 1 of EDCA seems to be more advantageous than Procedure SP
when the number of distance constraints is large. Nevertheless when a small subset of
constraints is known, Phase 1 does not seem to be efficient because it is expensive to
complete the “distance” matrix, and the resulting complete dissimilarity matrix may
not be a good approximation to the complete exact distance matrix.

6.3.4. The effect of the regularization technique. As indicated in section
3.2.6, the regularization technique has a visible advantage. In all test problems (most
of them have not been presented here), with an appropriate choice of the regularization
parameter ρ, DCA1r is better than DCA1. (In our experiments the best choice of ρ
is ρ ∈ [0.01, 0.001].)

6.3.5. About two variants EDCA1 and EDCA2: The effect of d.c. de-
composition. The sequence {‖X(k+1)−X(k)‖} in DCA2 (resp., DCA2bis) decreases
faster than in DCA1 (resp., DCA1bis). In all problems, the number of iterations of
DCA2bis is smaller than that of DCA1bis. In several test problems, EDCA2 is less
expensive than EDCA1.

6.3.6. More about the results on PDB data and on Hendrickson’s
benchmark problems. Not surprisingly, the problems derived from PDB data are
more difficult to solve than the artificial problems. For these real-life problems Phase
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2 needs many more iterations than for artificial problems, while Phase 1 has the same
behavior. On the other hand, in contrast to the artificial data, here the smaller the
number of distance constraints, the more efficient EDCA1 is. We note that the av-
erage error of the obtained solution is very small in both algorithms REDCA1 and
RSDCA.

The twelve problems generated by Hendrickson [13] are the most difficult: the cost
of the algorithm is higher than that for the first two sets of test problems. However, our
algorithm is still efficient on these problems: the maximal error on distance constraints
of the solution given by EDCA1-3 is below, respectively, 0.025, 0.055, and 0.085 in
problems 6, 4, and 2. We observe that the solutions obtained by DCA3 are better
than those provided by DCA1, but that DCA3 is more expensive than DCA1. Then
it is interesting to use the combined algorithm EDCA1-3. We note that this set of test
problems has been considered in [41], with exact distances for the first seven problems
and with inexact distances, say the general problem (1.2) with 0.01 ≤ ε ≤ 0.04, for
the remaining five problems (n ≥ 472). Here we consider the exact distances for all
test problems, and these results indicate that our approach has the potential to locate
exact (or nearly exact) solutions.

7. Conclusions and future work. We have presented a nonstandard approach,
based on d.c. optimization and DCA, for solving large-scale molecular optimization
problems from distance matrices. The main points in this approach are

(1) mathematical modeling of the exact distance geometry problem (1.1) as a
d.c. program,

(2) a strategy of choosing an acceptable starting point for applying DCA to the
resulting d.c. programs,

(3) exploiting the nice effect of d.c. decompositions for DCA.
Suitable d.c. programs of problem (1.1) are indicated in the matrix framework.

These nondifferentiable nonconvex optimization problems paradoxically make it pos-
sible to express DCA in its simplest way: except for the predictor-corrector EDCA1-3,
which additionally needs to solve a convex program, it actually requires matrix-vector
products and only one Cholesky factorization and allows the exploitation of sparsity
in the large-scale setting.

To find an acceptable initial point for applying the DCA to the d.c. programs
under consideration (Phase 2), we have proposed two strategies. The first consists of
completing the missing data and applying DCA to the new problem with complete
data (Phase 1), and the second uses a spanning tree procedure to compute acceptable
starting points.

Computational experiments say that our method is successful in locating large
configurations satisfying given distance constraints: the DCA globally solved distance
geometry problems with up to 4189× 3 = 12567 variables.

Several interesting problems for future research arise from our results. First,
although the strategy of Phase 1 is quite suitable for DCA to reach global solutions
to the distance geometry problem, the running time of Phase 2 could be reduced by
improving Phase 1 and by exploiting the sparsity better still. On the other hand,
since DCA is a fast decreasing method, some methods such as a smoothing technique
may be investigated to replace Phase 1.

Second, it is possible to develop a new d.c. approach to the general distance
geometry problem (1.3). The standard optimization problem (EDP), (1.6) is a d.c.
program, but the objective d.c. function σ is too complex and not convenient for
DCA. Other d.c. formulations of problem (1.3) must be found in order to provide
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efficient DCA. Preliminary computational results concerning the new d.c. approach
to problem (1.3) seem to be quite promising. We plan to address these issues in future
work.
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[23] J.J. Moré and Z. Wu, Issues in Large-Scale Molecular Optimization, Preprint MCS-P539-
1095, Argonne National Laboratory, Argonne, IL, 1996.
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Abstract. We consider linear two-stage stochastic programs with mixed-integer recourse. In-
stead of basing the selection of an optimal first-stage solution on expected costs alone, we include into
the objective a risk term reflecting the probability that a preselected cost threshold is exceeded. Af-
ter we have put the resulting mean-risk model into perspective with stochastic dominance, we study
further structural properties of the model and derive some basic stability results. In the algorithmic
part of the paper, we propose a scenario decomposition method and report initial computational
experience.
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1. Introduction. Stochastic programming with recourse deals with two-stage or
multistage sequential decision processes under uncertainty and aims, in its traditional
setting, at the optimization of the expected value of some random objective reflecting
costs or revenues, for instance. In the present paper, we are heading for an extension
towards risk aversion with a risk measure based on excess probabilities of random
costs.

Criteria for the selection of risk measures are a topic of extensive discussion in the
literature; cf., e.g., [2, 31, 32] and the references therein. The discussion covers a wide
range of issues, such as compatibility with axiomatic settings or stochastic ordering
principles, smoothness and convexity properties, and, last but not least, algorithmic
possibilities for the resulting optimization problems. It goes without saying that,
given the variety of criteria, there is no universally recommendable risk measure.

In recourse stochastic programming, the random variables whose risk shall be
controlled are implicit entities closely related to value functions that become discon-
tinuous and nonconvex in the presence of integer decision variables. When imposing a
risk measure in this situation, care has to be taken to arrive at stochastic integer pro-
grams that are structurally sound and amenable to algorithmic treatment. In what
follows we will confirm that excess probabilities lead to a risk measure that serves
these purposes and is consistent with first-order stochastic dominance [31, 32].

Our paper is organized as follows. In section 2 we extend the traditional model-
ing in two-stage stochastic integer programming towards risk aversion. We formulate
a risk measure based on excess probabilities, put it into perspective with stochastic
dominance, and discuss relations of the resulting mean-risk model with robust opti-
mization. Section 3 analyzes structure and stability of the added model components.
Algorithmic issues including remarks on the efficient frontier and some first numerical
experiments are presented in section 4.
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2. Two-stage stochastic integer programs with excess probabilities.
Throughout the paper, we impose a cost minimization framework. We are given
the following random mixed-integer linear program:

min
x,y,y′

{cTx+ qT y + q′T y′ : Tx+Wy +W ′y′ = h(ω), x ∈ X, y ∈ Zm̄
+ , y

′ ∈ Rm′
+ }.(1)

It is assumed that all ingredients in (1) have conformal dimensions, that W,W ′ are
rational matrices, and that X ⊆ R

m is a nonempty closed set, possibly involving
integer requirements to components of x. The right-hand side h(ω) ∈ Rs is a random
vector on some probability space (Ω,A,P). Along with (1) we have the constraint
that the variables x are to be fixed before observing h(ω) and that the variables (y, y′)
may be fixed afterwards. Accordingly, x and (y, y′) are called first- and second-stage
variables, respectively. The mentioned information constraint is usually referred to as
nonanticipativity.

The mixed-integer value function

Φ(t) := min{qT y + q′T y′ : Wy +W ′y′ = t, y ∈ Zm̄
+ , y

′ ∈ Rm′
+ }(2)

is an essential object in our subsequent stochastic programming models. According
to integer programming theory [30], this function is real-valued on Rs, provided that

W (Zm̄
+ ) + W ′(Rm′

+ ) = R
s and {u ∈ Rs : WTu ≤ q, W ′Tu ≤ q′} �= ∅, which,

therefore, will be assumed throughout.
With

QE(x) :=

∫
Ω

(cTx+Φ(h(ω)− Tx))P(dω)(3)

the traditional expectation-based stochastic program with recourse is the optimization
problem

min{QE(x) : x ∈ X}.(4)

Introducing the excess probability functional

QP(x) := P
({ω ∈ Ω : cTx+Φ(h(ω)− Tx) > ϕo}

)
,(5)

problem (4) is extended into the mean-risk model

min{QE(x) + ρQP(x) : x ∈ X}.(6)

Here ϕo ∈ R denotes some preselected threshold, and ρ ∈ R+ is a suitable weight
factor. The proposal to include a probability term like (5) into the objective of a
stochastic program with recourse seemingly dates back to Bereanu [6] and, hitherto,
has not been elaborated on in much detail.

The modeling background behind the above construction is the following: The
central issue is optimizing the first-stage decisions x that have to be taken without
anticipation of future realizations of h(ω). After having decided for x and observed
h(ω), the remaining decisions (y, y′), of course, shall be taken in an optimal way.
This results in the mixed-integer linear program defining the function Φ in (2). The
costs of the sequential process of decision and observation then are expressed by the
random variable cTx+ Φ(h(ω)− Tx). Finding an optimal first-stage decision x ∈ X
can be understood as selecting a “best” random variable from the indexed family
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(
cTx + Φ(h(ω) − Tx))

x∈X
. The models (4) and (6) are based on scalar criteria for

making this selection.
The mean-risk model (6) aims at controlling variability of second-stage solutions

and, thus, is closely related to the robust optimization approach proposed by Mulvey,
Vanderbei, and Zenios in [29]. To discuss similarities and differences between (6) and
[29] we denote (yopt(x, ω), y

′
opt(x, ω)) an optimal solution to the optimization problem

defining Φ(h(ω)−Tx); cf. (2). The random variable cTx+Φ(h(ω)−Tx) then coincides
with

f(x, ω) := cTx+ qT yopt(x, ω) + q
′T y′opt(x, ω),

and the mean-risk model (6) can be written as

min
{
Eω[f(x, ω)] + ρRiskω[f(x, ω)] : x ∈ X}.(7)

Here Eω denotes the expectation, and Riskω is a symbol for an abstract risk mea-
sure, specified in our model by (5). The ROBUST model of [29] incorporates both
variability of second-stage costs and penalization of second-stage infeasibility. In our
terminology, the variability term of [29] is based on the random variable

g(x, ω) := cTx+ qT y(ω) + q′T y′(ω),

and the counterpart model of [29] to our model (6) would read

min
{
Eω[g(x, ω)] + ρRiskω[g(x, ω)] :(8)

Tx+Wy(ω) +W ′y′(ω) = h(ω), x ∈ X, y(ω) ∈ Zm̄
+ , y

′(ω) ∈ Rm′
+ ∀ω ∈ Ω

}
,

where Riskω is specified by the variance.
In (7) the statistical parameter Eω[.]+ρRiskω[.] is optimized over all feasible first-

stage solutions x ∈ X and all optimal second-stage decisions (yopt(x, ω), y
′
opt(x, ω)).

In (8) the statistical parameter is optimized jointly over all feasible first- and second-
stage decisions. The essential structural difference between (7) and (8), hence, is in
the order of integration and second-stage minimization. If the statistical parameter in
(7), (8) is just Eω[.], then (7) and (8) are equivalent, which is a basic fact of stochastic
linear programming. For statistical parameters involving risk terms this equivalence
is no longer valid in general. In particular, second-stage portions of optimal solutions
to (8) no longer need to be optimal for the second-stage, i.e., for the optimization
problem behind Φ(h(ω) − Tx). For problems without integer variables this issue is
addressed in [21, 48].

In [48] it is shown that (7) and (8) are equivalent if the risk term depends on
the second-stage costs only and fulfills a monotonicity condition. If, in addition, the
risk term is convex, then numerical treatment of the problem is possible by a direct
transfer of L-shaped decomposition techniques. Another issue discussed in [48] is
ranking the random variables

(
cTx + Φ(h(ω) − Tx))

x∈X
by means of a convex dis-

utility function. Again L-shaped techniques can readily be employed to solve the
resulting optimization problem.

Apart from the integer decision variables in both stages of our model, the major
distinction between (6) and the ranking model of [48] is in the nonconvex discon-
tinuous disutility function we employ, in fact a sum of indicator functions of level
sets. In section 4 we will show how numerical treatment of (6) becomes possible by a
reformulation using additional Boolean variables.
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Among the fundamental concepts in decision theory the relation of stochastic
dominance introduces a partial order in the space of real random variables. This
provides some basis for selecting “best” members from families of random variables.
Recently, Ogryczak and Ruszczyński have studied scalar criteria and their consistency
with the multiobjective criteria induced by stochastic dominance; see [31, 32]. Let us
quickly outline how the scalar criterion proposed in (6) can be put into the perspective
of [31, 32].

Let f(x, ω), x ∈ X ⊆ R
m, be real random variables on some probability space

(Ω,A,P). Consider the distribution function

Fx(η) := P
({ω ∈ Ω : f(x, ω) ≤ η}).

Since we prefer smaller outcomes to larger ones we define that x′ dominates x′′ to
first degree (x′ � x′′) if

Fx′(η) ≥ Fx′′(η) ∀η ∈ R.(9)

Let mx be the expectation E
(
f(x, ω)

)
, and let rx denote some functional measuring

the risk of the outcome f(x, ω). We adapt the setting of [31, 32] to our preference
for smaller outcomes and say that the mean-risk model (mx, rx) is α-consistent with
first degree stochastic dominance, where α > 0, if x′ � x′′ implies that mx′ + αrx′ ≤
mx′′ + αrx′′ .

Lemma 2.1. The mean-risk model (mx, rx) with mx := E
(
f(x, ω)

)
and rx :=

P
({ω ∈ Ω : f(x, ω) > ϕo}

)
, with fixed ϕo ∈ R, is α-consistent with first degree

stochastic dominance for all α > 0.
Proof. The fact that (9) implies that mx′ ≤ mx′′ is well known in probability

theory. Moreover, it holds that

rx′ = 1− Fx′(ϕo) ≤ 1− Fx′′(ϕo) = rx′′ ,

and the proof is complete.
In conclusion, the excess probability in (5) entails a risk measure fulfilling a weak

requirement of consistency with stochastic dominance. For further risk measures ful-
filling stronger consistencies with stochastic dominance we refer the reader to [31, 32].

In subsequent sections we will show that (6) is well-posed from the formal view-
point. We will establish structural properties of the functional QP, and we will demon-
strate that solution methodology from mixed-integer linear programming (the class
our initial random optimization problem (1) belongs to) can be employed for solving
(6).

The expectation-based optimization problem (4) meanwhile belongs to the well-
studied objects in stochastic programming. Therefore, the main focus in our further
investigations will be on the functional QP. Without going into detail, we mention
that, under mild conditions, QE is real-valued and lower semicontinuous and that QE

is continuous if the distribution of h(ω) has a density. Optimal values and optimal
solutions to (4) behave in a stable manner under perturbations of the probability
distribution of h(ω). This gives rise to discrete approximations of the probability
distribution for which (4) can be rewritten equivalently as a block-structured mixed-
integer linear program. The latter is amenable to decomposition methods splitting
(4) into smaller mixed-integer linear programs that are often tractable by standard
solvers like CPLEX [14]. Detailed expositions of the mentioned results can be found in
[1, 13, 18, 45, 46]. Without integer requirements, (4) becomes a convex optimization
problem allowing for application of various analytical and algorithmic techniques from
convex analysis; see [10, 19, 35] and the references therein.
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3. Structure and stability. The mixed-integer value function Φ from (2) is
crucial for the structural understanding of QP. From parametric optimization [4, 11]
the following is known about Φ.

Proposition 3.1. Assume that W (Zm̄
+ )+W ′(Rm′

+ ) = Rs and {u ∈ Rs : WTu ≤
q, W ′Tu ≤ q′} �= ∅. Then it holds that

(i) Φ is real-valued and lower semicontinuous on Rs;
(ii) there exists a countable partition Rs = ∪∞

i=1Ti such that the restrictions
of Φ to Ti are piecewise linear and Lipschitz continuous with a uniform constant not
depending on i; more specifically, on each Ti, the function Φ admits a representation

Φ(t) = min
y∈Y (t)

{
qT y + max

k=1,...,K
dTk (t−Wy)

}
,

where Y (t) := {y ∈ Zm̄
+ : t ∈ Wy +W ′(Rm′

+ )} and dk, k = 1, . . . ,K, are the vertices

of the polyhedron {u ∈ Rs : W ′Tu ≤ q′};
(iii) each of the sets Ti has a representation Ti = {ti + K} \ ∪N

j=1{tij + K},
where K denotes the polyhedral cone W ′(Rm′

+ ) and ti, tij are suitable points from R
s;

moreover, N does not depend on i;
(iv) there exist positive constants β, γ such that |Φ(t1)−Φ(t2)| ≤ β‖t1 − t2‖+ γ

whenever t1, t2 ∈ Rs.
To facilitate notation we introduce for all x ∈ Rm

M(x) := {h ∈ Rs : cTx+Φ(h− Tx) > ϕo},
Me(x) := {h ∈ Rs : cTx+Φ(h− Tx) = ϕo},
Md(x) := {h ∈ Rs : Φ is discontinuous at h− Tx}.

By lim infxn→xM(xn) and lim supxn→xM(xn) we denote the (set-theoretic) limes in-
ferior and limes superior, i.e., the sets of all points belonging to all but a finite number
of the sets M(xn), n ∈ N, and to infinitely many of the sets M(xn), respectively.

Lemma 3.2. Assume that W (Zm̄
+ ) +W ′(Rm′

+ ) = R
s and {u ∈ Rs : WTu ≤

q, W ′Tu ≤ q′} �= ∅. Then it holds for all x ∈ Rm that

M(x) ⊆ lim inf
xn→x

M(xn) ⊆ lim sup
xn→x

M(xn) ⊆ M(x) ∪ Me(x) ∪ Md(x).

Proof. To show the first inclusion let h ∈ M(x). By the lower semicontinuity of
Φ (Proposition 3.1(i)) we have

lim inf
xn→x

(cTxn +Φ(h− Txn)) ≥ cTx+Φ(h− Tx) > ϕo.

Therefore, there exists an no ∈ N such that cTxn + Φ(h − Txn) > ϕo for all
n ≥ no, implying that h ∈ M(xn) for all n ≥ no, and we obtain that M(x) ⊆
lim infxn→xM(xn). The second inclusion being valid by definition, we turn to the
third.

Let h ∈ lim supxn→xM(xn) \M(x). Then there exists an infinite subset Ñ of N
such that

cTxn +Φ(h− Txn) > ϕo ∀n ∈ Ñ and cTx+Φ(h− Tx) ≤ ϕo.

Now two cases are possible. First, Φ is continuous at h− Tx. Passing to the limit in
the first inequality then yields that cTx+ Φ(h− Tx) ≥ ϕo, and h ∈ Me(x). Second,
Φ is discontinuous at h− Tx. In other words, h ∈Md(x).
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For convenience, we denote µ the image measure P ◦ h−1 on Rs. By the lower
semicontinuity of Φ, the sets M(x),Me(x), and Md(x) are µ-measurable for all x ∈
R

m.
Proposition 3.3. Assume that W (Zm̄

+ )+W ′(Rm′
+ ) = Rs and {u ∈ Rs : WTu ≤

q, W ′Tu ≤ q′} �= ∅. Then QP : Rm −→ R is a real-valued lower semicontinuous
function. If, in addition, it holds that µ

(
Me(x) ∪Md(x)

)
= 0, then QP is continuous

at x. If µ has a density, then QP is continuous on Rm.
Proof. The function QP is real-valued on Rm due to the µ-measurability ofM(x).

By Lemma 3.2 and the (semi-) continuity of the probability measure on sequences of
sets we have for all x ∈ Rm

QP(x) = µ
(
M(x)

) ≤ µ
(
lim inf
xn→x

M(xn)
) ≤ lim inf

xn→x
µ
(
M(xn)

)
= lim inf

xn→x
QP(xn),

establishing the asserted lower semicontinuity. In case µ
(
Me(x) ∪Md(x)

)
= 0 this

argument extends as follows:

QP(x) = µ
(
M(x)

)
= µ

(
M(x) ∪Me(x) ∪Md(x)

) ≥ µ
(
lim sup
xn→x

M(xn)
)

≥ lim sup
xn→x

µ
(
M(xn)

)
= lim sup

xn→x
QP(xn),

and QP is continuous at x. In view of Proposition 3.1(ii), (iii), for given x ∈ Rm,
both Me(x) and Md(x) are contained in a countable union of hyperplanes, i.e., in
a set of Lebesgue measure zero. Since µ has a density, it is absolutely continuous
with respect to the Lebesgue measure; hence µ

(
Me(x) ∪Md(x)

)
= 0, and the proof

is complete.
Remark 3.4. The above lower semicontinuity of QP implies in particular that

problem (6) is well-posed in the sense that, provided that X is compact, the infimum
in (6) is finite and is attained. Given the discontinuity of Φ, the well-posedness of (6)
may become critical with other risk measures; cf. [27]. To see this let us consider the
variance, leading to the functional

QV(x) :=

∫
Ω

[
cTx+Φ(h(ω)− Tx)−

∫
Ω

(cTx+Φ(h(ω)− Tx))P(dω)
]2
P(dω).

We consider the counterpart

min{QE(x) + ρQV(x) : x ∈ X}(10)

to problem (6) with the specifications m = s = 1, c = 1, T = −1, ρ = 4, X = {x ∈
R : x ≥ 0}, Φ(t) = min{y : y ≥ t, y ∈ Z}, and h(ω) attaining the values 0 and
1
2 each with probability 1

2 . One computes that QE(x) = x + 1
2�x� + 1

2�x + 1
2� and

QV(x) =
1
4 (�x� − �x+ 1

2�)2.
Then (10) has the infimum 1, and any sequence (xn)n∈N with xn ↓ 0, xn �= 0 is a

minimizing sequence. However, the infimum is not attained since the objective value
for x = 0 is 3

2 .
Before we turn to the Lipschitz continuity of QP we study the boundary bdM(x)

of the set M(x) = {h ∈ Rs : cTx+Φ(h− Tx) > ϕo}.
Lemma 3.5. Adopt the setting of Proposition 3.1 and assume in addition that q, q′

are rational vectors. Then there exist a Ko ∈ N, affine hyperplanes Hκy ⊆ Rs, κ =
1, . . . ,Ko, y ∈ Zm̄

+ , and matrices Tκ, κ = 1, . . . ,Ko, such that
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(i)

bdM(x) ⊆
Ko⋃
κ=1

⋃
y∈Zm̄

+

{
Tκx + Hκy

} ∀x ∈ Rm;(11)

(ii) there exists r > 0 such that for any κ ∈ {1, . . . ,Ko} and any y′, y′′ ∈ Zm̄
+ ,

the hyperplanes Hκy′ , Hκy′′ are either identical or have a Hausdorff distance of at least
r.

Proof. Let us assume that W ′(Rm′
+ ) has a representation {t ∈ Rs : d̃Tl t ≤ 0, l =

1, . . . , L} with suitable vectors d̃l, l = 1, . . . , L. According to Proposition 3.1(ii) we
obtain that h belongs to the complement of M(x) if and only if there exists a y ∈ Zm̄

+

such that the following system of inequalities in h is fulfilled:

qT y + dTk (h− Tx−Wy) ≤ ϕo − cTx, k = 1, . . . ,K,(12)

d̃Tl (h− Tx−Wy) ≤ 0, l = 1, . . . , L.(13)

If dk = 0 for some k ∈ {1, . . . ,K}, then the corresponding inequality in (12) turns
into

qT y ≤ ϕo − cTx,
leading to a restriction on y but not on h. It then would actually suffice to form the
union in (11) over Zm̄

+ ∩{y : qT y ≤ ϕo− cTx} instead of Zm̄
+ . So let us assume that

dk �= 0 for all k ∈ {1, . . . ,K}. For some fixed k we assume that the first component
dk(1) of dk is nonzero. We put

T̃k := T − (dk(1))
−1

(
cT

0

)

and obtain that

dTk T̃k = dTk T − (dk(1))
−1dTk

(
cT

0

)
= dTk T − cT .

This allows us to rewrite (12) as

qT y + dTk (h− T̃kx−Wy) ≤ ϕo, k = 1, . . . ,K.(14)

If h belongs to the boundary ofM(x), then at least one of the inequalities in (13) and
(14) has to be fulfilled as an equation. Defining the affine hyperplanes

Hky := {t ∈ Rs : dTk t = ϕo + d
T
kWy − qT y}, y ∈ Zm̄

+ , k ∈ {1, . . . ,K}(15)

and

Hly := {t ∈ Rs : d̃Tl t = d̃Tl Wy}, y ∈ Zm̄
+ , l ∈ {1, . . . , L}(16)

we obtain that h ∈ bdM(x) implies that

h ∈
K⋃

k=1

⋃
y∈Zm̄

+

{
T̃kx + Hky

} ∪ L⋃
l=1

⋃
y∈Zm̄

+

{
Tx + Hly

}
=:

Ko⋃
κ=1

⋃
y∈Zm̄

+

{
Tκx + Hκy

}
,

proving (i).
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Since q′,W ′ are rational, dk, k = 1, . . . ,K, and d̃l, l = 1, . . . , L, can be selected
as rational vectors. According to the definitions in (15), (16) and the rationality
of q,W this yields that there exists r > 0 such that, for arbitrary κ ∈ {1, . . . ,Ko}
and y′, y′′ ∈ Zm̄

+ , the hyperplanes Hκy′ , Hκy′′ are either identical or have a Hausdorff
distance that is bounded below by r. The latter is seen as follows. For Hκy we have
a representation

Hκy = {t ∈ Rs : δTκ t = bκo + b
T
κ y}(17)

with rational vectors δκ, bκ. So if Hκy′ �= Hκy′′ , then bTκ (y
′ − y′′) �= 0. Let b∗ > 0

denote the least common multiple of the (absolute values of) the denominators of
the components of bκ. By y′ − y′′ ∈ Z the number bTκ (y

′ − y′′) �= 0 then has to
be a multiple of 1

b∗
. In the representations for Hκy′ and Hκy′′ the right-hand sides

therefore differ at least by 1
b∗
, proving the claim.

Proposition 3.6. Assume that q, q′ are rational vectors, W (Zm̄
+ ) +W ′(Rm′

+ ) =

R
s, {u ∈ Rs : WTu ≤ q, W ′Tu ≤ q′} �= ∅, and that for any nonsingular linear

transformation B ∈ L(Rs,Rs) all one-dimensional marginal distributions of µ◦B have
bounded densities which, outside some bounded interval, are monotonically decreasing
with the growing absolute value of the argument. Then QP is Lipschitz continuous on
any bounded subset of Rm.

Proof. Let S be a bounded subset of Rm and x′, x′′ ∈ S. It holds that

|QP(x
′)−QP(x

′′)| = |µ(M(x′))−µ(M(x′′))| ≤ µ(M(x′)\M(x′′)) + µ(M(x′′)\M(x′)).

For symmetry reasons it is sufficient to establish the assertion for the first member of
the sum on the right.

Recall the representation (17) for the hyperplanes Hκy arising in Lemma 3.5
and put δ̄κy := bκo + bTκ y such that we have Hκy = {t ∈ Rs : δTκ t = δ̄κy} for
κ = 1, . . .Ko, y ∈ Zm̄

+ . Consider the halfspaces

H−
κy := {t ∈ Rs : δTκ t ≤ δ̄κy}.(18)

Then it holds that

M(x′) \M(x′′) ⊆
Ko⋃
κ=1

⋃
y∈Zm̄

+

{
cl
[{
Tκx

′ +H−
κy

} \ {Tκx
′′ +H−

κy

}]

∪ cl
[{
Tκx

′′ +H−
κy

} \ {Tκx
′ +H−

κy

}]}
.

As usual, the symbol “cl” denotes the closure. To estimate the µ-measure of the
set on the right we fix some κ ∈ {1, . . . ,Ko}. Without loss of generality we may
assume that δTκ Tκx

′′ ≤ δTκ Tκx
′ such that {Tκx

′′ + H−
κy} \ {Tκx

′ + H−
κy} = ∅ for all

y ∈ Zm̄
+ . It remains to estimate

µ
( ⋃

y∈Zm̄
+

cl
[{
Tκx

′ +H−
κy

}\{Tκx
′′ +H−

κy

}])

= µ
( ⋃

y∈Zm̄
+

{
h ∈ Rs : δ̄κy + δ

T
κ Tκx

′′ ≤ δTκ h ≤ δ̄κy + δ
T
κ Tκx

′}).
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Let Bκ be a nonsingular matrix whose first row coincides with δTκ . Let ζ := Bκh
be the corresponding linear transformation, and let ζ(1) denote the first component
of ζ. Then it holds that

µ
({h ∈ Rs : δ̄κy + δ

T
κ Tκx

′′ ≤ δTκ h ≤ δ̄κy + δ
T
κ Tκx

′})
= (µ ◦B−1

κ )
(
Bκ({h ∈ Rs : δ̄κy + δ

T
κ Tκx

′′ ≤ δTκ h ≤ δ̄κy + δ
T
κ Tκx

′}))
= (µ ◦B−1

κ )
({ζ ∈ Rs : δ̄κy + δ

T
κ Tκx

′′ ≤ ζ(1) ≤ δ̄κy + δ
T
κ Tκx

′})
=

∫ δ̄κy+δT
κ Tκx′

δ̄κy+δT
κ Tκx′′

θκ(τ) dτ.

In the last row above, θκ denotes a marginal density of the first component with
respect to the image measure µ ◦B−1

κ . The density is selected such that it fulfills the
requirements made in the assumptions of our proposition.

Let (δ̄κi)i∈N be an enumeration of the distinct values attained by the numbers
δ̄κy, y ∈ Zm̄

+ . By the argument from the proof of Lemma 3.5(ii), the sequence (δ̄κi)i∈N

has no accumulation points.
Since x′, x′′ belong to the bounded set S and the δ̄κi do not accumulate, there ex-

ists an index ī = ī(S), independent of x′, x′′, such that the intervals [δ̄κi+δ
T
κ Tκx

′′, δ̄κi+
δTκ Tκx

′], up to renumbering, meet the bounded interval arising in the assumptions at
most for i ≤ ī. By assumption, we have an upper bound θ̄κ for θκ(.). For i > ī,
we denote τ̃κi the left or right endpoint of [δ̄κi + δ

T
κ Tκx

′′, δ̄κi + δ
T
κ Tκx

′] depending on
whether θκ is decreasing or increasing on that interval. This allows the estimate

∑
i∈N

∫ δ̄κi+δT
κ Tκx′

δ̄κi+δT
κ Tκx′′

θκ(τ) dτ ≤
∑
i≤ī

θ̄κ · ‖δTκ Tκ‖ · ‖x′ − x′′‖

+
∑
i>ī

θκ(τ̃κi) · ‖δTκ Tκ‖ · ‖x′ − x′′‖.

Next we show that
∑

i>ī θκ(τ̃κi) is finite. It is sufficient to do that for the sum over
all i > ī belonging to those τ̃κi around which θk is decreasing. For the remaining i > ī
a similar argument applies. Since the δ̄κi do not accumulate, there exists an ε > 0
such that

1 ≥
∑
i

∫ τ̃κi

τ̃κi−ε

θκ(τ) dτ ≥
∑
i

∫ τ̃κi

τ̃κi−ε

θκ(τ̃κi) dτ = ε ·
∑
i

θκ(τ̃κi).

This provides the desired finiteness. Repeating the above arguments for all κ =
1, . . . ,Ko we obtain a constant co > 0, not depending on x′, x′′, such that

µ(M(x′) \M(x′′)) ≤ co · ‖x′ − x′′‖,
and the proof is complete.

Remark 3.7. Among the probability measures fulfilling the requirements of
Proposition 3.6 there are the so-called r-convex measures, in particular the (non-
degenerate) multivariate normal distribution and the t-distribution. For details see
[44].

Remark 3.8. Without integer requirements (m̄ = 0) the function Φ is less com-

plicated. Imposing the assumptions W ′(Rm′
+ ) = R

s, {u ∈ Rs : W ′Tu ≤ q′} �= ∅, one
obtains due to linear programming duality

Φ(t) = max{tTu : W ′Tu ≤ q′} = max
k=1,...,K

dTk t,
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where dk, k = 1, . . . ,K, are the vertices of {u ∈ Rs : W ′Tu ≤ q′}. This implies that,
for all x ∈ Rm, the setMd(x) is empty and the complementM(x)c ofM(x) is a single
polyhedron. This provides a link with linear chance constraints which belong to the
well-studied objects in stochastic programming [10, 19, 35]. Lower semicontinuity of
QP, for instance, then already follows from Proposition 3.1 in [42]. Further material
about QP in the absence of integer requirements can be found in [39].

Remark 3.9. For some early work on continuity properties of general probability
functionals we refer to Raik [37, 38]; see also [20, 35].

Remark 3.10. With the additional assumption that
∫

Rs ‖h‖µ(dh) <∞ the state-
ments of Propositions 3.3 and 3.6 are valid for QE as well. The setMe(x) turns out to
be irrelevant for the continuity of QE such that the corresponding assumption turns
into µ(Md(x)) = 0. For details we refer the reader to [44, 45].

In many practical modeling situations knowledge about the underlying probabil-
ity measure µ = P◦h−1 in (6) is subjective. Furthermore, the multivariate integration
required in (3) and (5) often has to rely on approximations, in particular if h(ω) is mul-
tidimensional and follows a continuous probability distribution. These issues motivate
the stability analysis of (6) under perturbations of µ. The aim is to identify sufficient
conditions such that “small” perturbations in µ result in only “small” perturbations
of optimal values and optimal solutions to (6). Qualitative and quantitative continu-
ity of QE and QP jointly in x and µ then become a key issue. For QE this has been
settled in [1, 45, 46] such that we will now focus on QP.

Let P(Rs) denote the set of all Borel probability measures on Rs. We consider QP

as a function mapping from R
m × P(Rs) to R, where Rm is equipped with the usual

topology. On P(Rs) a notion of convergence is desirable that is both sufficiently
general to cover relevant applications and sufficiently specific to enable substantial
statements. This is met by weak convergence of probability measures for which [9]
is a basic reference. We say that a sequence {µn} in P(Rs) converges weakly to

µ ∈ P(Rs), written µn
w−→ µ, if for any bounded continuous function g : Rs → R it

holds that ∫
Rs

g(h)µn(dh)→
∫

Rs

g(h)µ(dh) as n→∞.(19)

Proposition 3.11. Assume that W (Zm̄
+ ) + W ′(Rm′

+ ) = R
s and {u ∈ R

s :

WTu ≤ q, W ′Tu ≤ q′} �= ∅. Let µ ∈ P(Rs) be such that µ
(
Me(x) ∪Md(x)

)
= 0.

Then QP : Rm × P(Rs) −→ R is continuous at (x, µ).

Proof. Let xn −→ x and µn
w−→ µ be arbitrary sequences. By χn, χ : Rs −→

{0, 1} we denote the indicator functions of the sets M(xn),M(x), n ∈ N. In addition,
we introduce the exceptional set

E := {h ∈ Rs : ∃hn → h such that χn(hn) �→ χ(h)}.

Now we have E ⊆ Me(x) ∪Md(x). To see this, consider h ∈ (Me(x) ∪Md(x)
)c

=
Me(x)

c∩Md(x)
c, where the superscript c denotes the set-theoretic complement. Then

Φ is continuous at h−Tx, and either cTx+Φ(h−Tx) > ϕo or c
Tx+Φ(h−Tx) < ϕo.

Thus, for any sequence hn → h there exists an no ∈ N such that for all n ≥ no either
cTxn + Φ(hn − Txn) > ϕo or cTxn + Φ(hn − Txn) < ϕo. Hence, χn(hn) → χ(h) as
hn → h, implying that h ∈ Ec.

In view of E ⊆ Me(x) ∪ Md(x) and µ
(
Me(x) ∪ Md(x)

)
= 0 we obtain that

µ(E) = 0. A theorem on weak convergence of image measures attributed to Rubin in
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[9, p. 34] now yields that the weak convergence µn
w−→ µ implies the weak convergence

µn ◦ χ−1
n

w−→ µ ◦ χ−1.
Note that µn ◦χ−1

n , µ◦χ−1, n ∈ N, are probability measures on {0, 1}. Their weak
convergence then particularly implies that

µn ◦ χ−1
n

({1}) −→ µ ◦ χ−1
({1}).

In other words, µn

(
M(xn)

) −→ µ
(
M(x)

)
or QP(xn, µn) −→ QP(x, µ).

To analyze the quantitative continuity of QP as a function of the underlying
probability measure let us again consider the hyperplane arrangement

Ko⋃
κ=1

⋃
y∈Zm̄

+

{
Tκx + Hκy

}
(20)

arising in Lemma 3.5. Associated with that arrangement there are the affine halfspaces

Tκx + H−
κy and Tκx + H+

κy, κ = 1, . . . ,Ko, y ∈ Zm̄
+ ,(21)

where H−
κy is defined as in (18) and, accordingly, H+

κy := {t ∈ Rs : δTκ t ≥ δ̄κy}.
Let Π(x) denote the family of all, not necessarily full-dimensional, polyhedra in

R
s arising as intersections of halfspaces from (21). In the proof of Lemma 3.5 we have

seen that the complement of M(x) is a countable union of polyhedra, each arising as
an intersection of halfspaces from (21). Thus, the set M(x) admits a representation

M(x) =

∞⋃
ι=1

Pι(x)(22)

such that Pι1(x)∩Pι2(x) = ∅ whenever ι1 �= ι2, and, for all ι ∈ N, the closure clPι(x)
belongs to Π(x).

Consider the outer normals δκ and −δκ of the affine halfspaces H−
κy and H+

κy,
respectively. By Bo we denote the family of all subsets in Rs which are given as in-
tersections of affine halfspaces with outer normals in {±δκ : κ = 1, . . . ,Ko}. Clearly,
Π(x) ⊆ Bo for all x ∈ Rm, provided that the setting of Lemma 3.5 is adopted.

The representation (22) now gives rise to the following variational distance of
probability measures in P(Rs):

αBo(µ, ν) := sup
{|µ(B)− ν(B)| : B ∈ Bo

}
.(23)

We further introduce

∆a,C(R
s) :=

{
ν ∈ P(Rs) :

∫
Rs

‖h‖a ν(dh) ≤ C

}
,

where a > 0 and C > 0 are fixed constants.
Proposition 3.12. Assume that W (Zm̄

+ ) + W ′(Rm′
+ ) = R

s and {u ∈ R
s :

WTu ≤ q, W ′Tu ≤ q′} �= ∅, and that q, q′ are rational vectors. Then there exists a
constant Lo > 0 such that

|QP(x, µ) − QP(x, ν)| ≤ Lo · αBo(µ, ν)
a

s+a

for all x ∈ Rm and all µ, ν ∈ ∆a,C(R
s) with αBo(µ, ν) �= 0.
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Proof. Let x ∈ R
m and µ, ν ∈ ∆a,C(R

s) such that αBo
(µ, ν) �= 0. With

R := αBo(µ, ν)
− 1

s+a we consider the ball BR := {h ∈ Rs : ‖h‖ ≤ R}. Recall the
representation (22) for M(x) and denote No := {ι ∈ N : Pι(x) ∩ BR �= ∅}. Then it
holds that

|QP(x, µ)−QP(x, ν)| = |µ(M(x))− ν(M(x))|
≤
∑
ι∈N

|µ(Pι(x))− ν(Pι(x))|

≤
∑
ι∈No

|µ(Pι(x))− ν(Pι(x))| + (µ+ ν)
({h ∈ Rs : ‖h‖ ≥ R})

≤
∑
ι∈No

|µ(Pι(x))− ν(Pι(x))| + 2C

Ra
,(24)

where Markov’s inequality has been used in the last estimate. We continue by estimat-
ing the cardinality of No. Due to Lemma 3.5(ii) there exists a constant c1 > 0, which
does not depend on x, such that at most c1 ·R hyperplanes from the arrangement in
(20) intersect the ball BR. From the theory of hyperplane arrangements it is known
that the complement of an arrangement of N hyperplanes in Rs consists of at most∑s

i=0

(
N
i

)
= O(Ns) connected cells of dimension s; see [12, 33]. Hence there exists a

constant c2 > 0 such that at most c2 ·Rs full-dimensional sets Pι(x) intersect the ball
BR. Since there are only finitely many normals δκ, κ = 1, . . . ,Ko, in the arrangement
(20), there exists a constant c3 > 0, again not depending on x, such that the number
of all (not necessarily full-dimensional) sets Pι(x) intersecting the ball BR, i.e., the
cardinality of No, is bounded above by c3 ·Rs.

For any ι ∈ No we have the estimate

|µ(Pι(x))− ν(Pι(x))| ≤ αBo(µ, ν),

where, in case Pι(x) is not closed, Pι(x) is approximated by a sequence that is mono-
tonically increasing with respect to set inclusion and that consists of closed polyhedra
from Bo which are contained in the relative interior of Pι(x). Altogether, this allows
us to continue the estimate (24) as follows:

≤ c3 ·Rs · αBo(µ, ν) +
2C

Ra

≤ c3 · αBo
(µ, ν)−

s
s+a+1 + 2C · αBo

(µ, ν)
a

s+a = (c3 + 2C) · αBo
(µ, ν)

a
s+a ,

and the proof is complete.
Remark 3.13. In general, αBo

need not define a metric on P(Rs) since αBo
(µ, ν)

= 0 is possible with µ �= ν. This can be overcome by enriching Bo, for instance by
adding the canonical basis vectors in Rs to the set of relevant outer normals in the
definition of Bo. Then αBo

majorizes the uniform distance of distribution functions
which is known to be a metric on P(Rs), and Proposition 3.12 holds without the
restriction that αBo(µ, ν) �= 0.

Remark 3.14. Under suitable assumptions, weak convergence of probability mea-
sures implies convergence in αBo , and Proposition 3.12 can be seen as a quantification
of Proposition 3.11: A class B of Borel sets in Rs is called a µ-uniformity class if
αB(µn, µ)→ 0 holds for every sequence µn in P(Rs) converging weakly to µ ∈ P(Rs).
By Theorem 2.11 in [8] the family of all convex Borel sets in Rs is a µ-uniformity
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class, provided that µ has a density. Since all members of Bo are convex and Borel,
weak convergence of probability measures implies convergence in αBo if the limiting
measure has a density.

Remark 3.15. The fact that the number of affine halfspaces defining the members
of Bo is uniformly bounded implies speed-of-convergence estimates for αBo in the
context of estimation by empirical measures. Given a sequence ξ1, ξ2, . . . , ξn, . . . of
independent Rs-valued random variables on some probability space (Ω,A,P) with
joint distribution µ, the empirical measures µn(ω) (ω ∈ Ω, n ∈ N) are defined by

µn(ω) =
1

n

n∑
i=1

δξi(ω),

where δξi(ω) denotes the measure with unit mass at ξi(ω) (cf. [15, 34, 47]). For
the variational distance αB(µ, µn(ω)) then the following law of iterated logarithm
established in [26] holds, provided that B is a so-called Vapnik–Červonenkis class:

lim sup
n→∞

( n

2 log log n

)1/2

· αB(µ, µn(ω)) ≤ 1

2
for P-almost all ω ∈ Ω.(25)

A family B of Borel sets in Rs is called a Vapnik–Červonenkis class if there exists an
mo ∈ N such that for any finite set E ⊂ Rs with mo elements not every subset Eo

of E arises as an intersection Eo = E ∩ B for some B ∈ B. The catch is now that,
thanks to the uniform bound on the number of defining halfspaces, the family Bo is
a Vapnik–Červonenkis class; for details see, e.g., [34, 47]. Proposition 3.12 and (25)
then provide a speed-of-convergence estimate for |QP(x, µ) − QP(x, µn(ω))|.

Propositions 3.11 and 3.12 are the essential ingredients for studying the stabil-
ity of optimal solutions to optimization problems whose objective function involves
the excess probability functional QP. Stability of the traditional expectation-based
stochastic program (4) was studied in [1, 36, 45, 46]. We will close this section with
some stability results for the risk minimization problem

P (µ) min{QP(x, µ) : x ∈ X}.

This specific problem has been chosen to display the direct impact of Propositions 3.11
and 3.12 on stability. If one is interested in the stability of the mean-risk model (6)
one has to combine the assumptions in the statements below with assumptions in
[1, 36, 45, 46].

In general, the functionQP(., µ) is nonconvex such that an analysis of local optimal
solutions is appropriate. To this end we follow [40, 24] and consider localized optimal
values and solution sets. With some subset V ⊂ Rm we define

ϕV (µ) := inf{QP(x, µ) : x ∈ X ∩ cl V },
ΨV (µ) := {x ∈ X ∩ cl V : QP(x, µ) = ϕV (µ)}.

Given µ ∈ P(Rs), a nonempty set Z ⊂ R
m is called a complete local minimizing

(CLM) set of P (µ) with respect to V if V is open and Z = ΨV (µ) ⊂ V . Examples for
CLM sets are the set of global minimizers and isolated local minimizers. The basic
feature of CLM sets is that they contain all local minimizers “nearby.” Without such
a completeness property, pathologies may occur under perturbations; see [40, 24] for
details.
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Proposition 3.16. Assume that W (Zm̄
+ ) + W ′(Rm′

+ ) = R
s and {u ∈ R

s :

WTu ≤ q, W ′Tu ≤ q′} �= ∅, that q, q′ are rational vectors, and that µ ∈ P(Rs) has a
density. Suppose further that there exists a subset Z ⊂ Rm which is a CLM set for
P (µ) with respect to some bounded open set V ⊂ Rm. Then it holds that

(i) the function ϕV : P(Rs) −→ R is continuous at µ, where P(Rs) is equipped
with weak convergence of probability measures;

(ii) the multifunction ΨV : P(Rs) −→ 2R
m

is Berge upper semicontinuous at µ;
i.e., for any open set O in Rm with O ⊇ ΨV (µ) there exists a neighborhood N of µ in
P(Rs), again equipped with the topology of weak convergence of probability measures,
such that ΨV (ν) ⊆ O for all ν ∈ N ;

(iii) there exists a neighborhood N ′ of µ in P(Rs) such that for all ν ∈ N ′ the
set ΨV (ν) is a CLM set for P (ν) with respect to V ;

(iv) there exists a constant Lo > 0 such that

|ϕV (µ)− ϕV (ν)| ≤ Lo · αBo
(µ, ν)

a
s+a

for all µ, ν ∈ ∆a,C(R
s) with αB1

(µ, ν) �= 0.
Before proving the above proposition let us add a few comments. The above asser-

tions are paradigmatic statements in the stability analysis of nonconvex optimization
problems. Their proofs rely on well-established arguments that date back (at least)
to Berge [7] and that were adapted and extended by many authors; cf. [3, 41], for
instance. The main ingredients to make these arguments work are qualitative and
quantitative continuity properties as established in Propositions 3.11 and 3.12 to-
gether with nonemptiness and compactness of the unperturbed solution set that, in
Proposition 3.16, is hidden in the boundedness assumption on V . Therefore, we will
refrain from presenting all details of the proof and merely outline its main ideas.

Proof. Using the joint continuity established in Proposition 3.11 the proof of (i)
and (ii) follows the lines of Berge’s theory as displayed, for instance, in the proof of
Theorem 4.2.2 in [3].

To prove (iii), one first confirms the nonemptiness of ΨV (ν), which is a conse-
quence of the lower semicontinuity of QP(., ν); see Proposition 3.3, together with the
nonemptiness and compactness of X∩clV . The CLM property then follows from (ii).

For proving (iv) we, as in the proof of (iii), confirm that ΨV (µ) �= ∅ and ΨV (ν) �=
∅. Let µ, ν ∈ ∆a,C(R

s) and xν ∈ ΨV (ν), xµ ∈ ΨV (µ). Then it holds that

ϕV (µ) ≤ QP(xν , µ) ≤ ϕV (ν) + |QP(xν , µ)−QP(xν , ν)|

and

ϕV (ν) ≤ QP(xµ, ν) ≤ ϕV (µ) + |QP(xµ, ν)−QP(xµ, µ)|.

Together with Proposition 3.12 this implies that

|ϕV (ν)− ϕV (µ)| ≤ Lo · αBo(ν, µ)
a

s+a ,

and the proof is complete.
Remark 3.17. Due to the lower semicontinuity ofQP(., ν) and the fact thatX∩clV

is nonempty and compact, nonemptiness of ΨV (ν) is immediate. Not immediate,
however, is that ΨV (ν) consists of local minimizers to P (ν), i.e., when minimizing
over X. The latter is confirmed by assertion (iii) above, which says that for all
ν ∈ N ′ the set ΨV (ν) is a CLM set, and hence a set of local minimizers to P (ν).
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4. Algorithm and computational experiments. The following result estab-
lishes a useful link between two-stage stochastic programs with excess probabilities
and traditional expectation-based two-stage models. Before stating the proposition
we recall that the support suppµ of µ ∈ P(Rs) is the smallest closed subset of Rs

with µ-measure 1.
Proposition 4.1. Assume that W (Zm̄

+ ) +W ′(Rm′
+ ) = R

s, {u ∈ Rs : WTu ≤
q, W ′Tu ≤ q′} �= ∅, and that µ has bounded support. Then the following holds.

(i) For any x ∈ Rm there exists a constant Mx > 0 such that

QP(x) = Q̃E(x) :=

∫
Rs

Φ̃(h− Tx, cTx− ϕo)µ(dh),(26)

where

Φ̃(t1, t2) := min{θ :Wy +W ′y′ = t1, −qT y − q′T y′ + (Mx − ϕo)θ ≥ t2,(27)

y ∈ Zm̄
+ , y

′ ∈ Rm′
+ , θ ∈ {0, 1}}.

(ii) If, in addition, X is bounded, then Mx in (i) can be chosen as a uniform
constant M for all x ∈ X, and the stochastic programs

min{QP(x) : x ∈ X} and min{Q̃E(x) : x ∈ X}
are equivalent.

Proof. To prove (i) we define

Mx := sup{cTx+Φ(h− Tx) : h ∈ suppµ}.
This supremum is finite since, by Proposition 3.1(iv) and Φ(0) = 0, it holds that

|Φ(h− Tx)| = |Φ(h− Tx)− Φ(0)| ≤ β‖h‖ + β‖Tx‖ + γ,(28)

and since suppµ is bounded.
Next we verify that the integral in (26) is taken over a real-valued function, i.e.,

that Φ̃(h− Tx, cTx− ϕo) ∈ R for all h ∈ suppµ. By Proposition 3.1(i) it holds that
Φ(t) ∈ R for all t ∈ Rs. Hence, the optimization problem associated with Φ(h− Tx)
(cf. (2)) is solvable for all h ∈ suppµ. Let h ∈ suppµ and (y, y′) ∈ Zm̄

+ × Rm′
+ be an

optimal solution associated with Φ(h− Tx). Then we have

Wy+W ′y′ = h−Tx and Mx−ϕo ≥ cTx+Φ(h−Tx)−ϕo = cTx+qT y+q′T y′−ϕo.

Hence, the tuple (y, y′, 1) is feasible for the optimization problem associated with
Φ̃(h− Tx, cTx− ϕo); cf. (27). Since this optimization problem has an objective with
values in {0, 1} only, it is solvable, and Φ̃(h− Tx, cTx− ϕo) ∈ R.

The integral in (26) makes sense for measurable functions only. Therefore, we
have to show that Φ̃ is measurable. Since Φ̃ takes values in the finite set {0, 1}, it is
sufficient to show measurability of the preimages Φ̃−1({0}) and Φ̃−1({1}). For these
sets we have the following representations:

Φ̃−1({0})
=
{
(t1, t2) ∈ Rs+1 : ∃(y, y′) ∈ Zm̄

+ × Rm′
+ Wy +W ′y′ = t1, qT y + q′T y′ ≤ −t2

}
=
{
(t1, t2) ∈ Rs+1 : Φ(t1) ≤ −t2

}
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and

Φ̃−1({1})
= Φ̃−1({0, 1}) \ Φ̃−1({0})
=
{
(t1, t2) ∈ Rs+1 : ∃(y, y′, θ) ∈ Zm̄

+ × Rm′
+ × {0, 1} Wy +W ′y′ = t1,

qT y + q′T y′ ≤ −t2 + (Mx − ϕo)θ
}

∩
{
(t1, t2) ∈ Rs+1 : Φ(t1) > −t2

}

=
[{
(t1, t2) ∈ Rs+1 : ∃(y, y′) ∈ Zm̄

+ × Rm′
+ Wy +W ′y′ = t1, qT y + q′T y′ ≤ −t2

}
∪ {

(t1, t2) ∈ Rs+1 : ∃(y, y′) ∈ Zm̄
+ × Rm′

+ Wy +W ′y′ = t1,

qT y + q′T y′ ≤ −t2 + Mx − ϕo

}]
∩
{
(t1, t2) ∈ Rs+1 : Φ(t1) > −t2

}

= {(t1, t2) ∈ Rs+1 : Φ(t1) ≤ −t2 + Mx − ϕo} ∩ {(t1, t2) ∈ Rs+1 : Φ(t1) > −t2}
= {(t1, t2) ∈ Rs+1 : −t2 < Φ(t1) ≤ −t2 + Mx − ϕo}.

In view of Proposition 3.1(i) the function Φ is lower semicontinuous, and hence
measurable. The above representations then yield measurability of the sets Φ̃−1({0})
and Φ̃−1({1}). Note that in case Mx − ϕo ≤ 0 we have Φ̃−1({1}) = ∅. Since the
integrand in (26) is globally bounded on its domain of finiteness, now measurability
of Φ̃ implies that the integral in (26) is well-defined.

To check the asserted equality in (26) we denote χM(x)(h) the indicator function

of M(x), and we show that Φ̃(h− Tx, cTx− ϕo) = χM(x)(h) for all h ∈ suppµ.

If Φ̃(h− Tx, cTx− ϕo) = 0, then there exists (y, y′) ∈ Zm̄
+ × Rm′

+ fulfilling Wy +
W ′y′ = h− Tx and cTx+ qT y + q′T y′ ≤ ϕo. Hence c

Tx+Φ(h− Tx) ≤ ϕo, implying
that h /∈M(x), and we have χM(x)(h) = 0.

If Φ̃(h−Tx, cTx−ϕo) = 1, then cTx+qT y+q′T y′ > ϕo for all (y, y
′) ∈ Zm̄

+ ×Rm′
+

fulfilling Wy + W ′y′ = h − Tx. Since the optimization problem associated with
Φ(h − Tx) is solvable, it follows that cTx + Φ(h − Tx) > ϕo. Therefore h ∈ M(x),
and we obtain χM(x)(h) = 1. This completes the proof of (i).

To verify (ii) we observe that the estimate (28) yields a uniform upper bound M

for sup{cTx + Φ(h − Tx) : h ∈ suppµ}, x ∈ X, provided that suppµ and X are
bounded. Equivalence of the listed stochastic programs then is a direct consequence
of (i).

Remark 4.2. As a particular consequence of Proposition 4.1 we obtain that the
stochastic program min{Q̃E(x) : x ∈ X} has relative complete mixed-integer recourse,
meaning that for any h ∈ suppµ and any x ∈ X there exists a feasible tuple (y, y′, θ)
to the optimization problem associated with Φ̃(h−Tx, cTx−ϕo). On the other hand,
the stochastic program fails to have complete mixed-integer recourse. Namely, if we
fix t1 ∈ Rs, consider a sequence (tn2 )n∈N tending to +∞, and assume that there exist
(yn, y

′
n, θn) ∈ Zm̄

+ × Rm′
+ × {0, 1} such that

Wyn +W ′y′n = t1 and − qT yn − q′T y′n + (M− ϕo)θn ≥ tn2 ;
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then we have found (yn, y
′
n) ∈ Zm̄

+ × Rm′
+ for which Wyn +W ′y′n = t1 and qT yn +

q′T y′n → −∞ as n → ∞. This contradicts the fact that min{qT y + q′T y′ : Wy +
W ′y′ = t1, (y, y

′) ∈ Zm̄
+ × Rm′

+ } is solvable, or, in other words, that Φ(t1) ∈ R; cf.
Proposition 3.1(i).

This lack of complete mixed-integer recourse prevented the application of exist-
ing results on structure and stability of expectation-based two-stage stochastic integer
programs (see [45, 46]) in our analysis of section 3. In addition, of course, Proposi-
tion 4.1 requires the underlying probability measures to have bounded support while
the analysis of section 3 does not.

In the remainder of this section we assume that the set X is bounded and closed,
and arises as a solution set to a system of linear inequalities, possibly involving in-
teger requirements to components of x. Moreover, we assume that the underlying
probability measure µ is discrete with finitely many realizations (or scenarios) hj and
probabilities πj , j = 1, . . . , J . Clearly, the support of µ is bounded then, and we
obtain the following corollary to Proposition 4.1.

Corollary 4.3. Adopt the setting of Proposition 4.1 and let X,µ be as above.
Then there exists a constant M > 0 such that the stochastic program

min{QP(x) : x ∈ X}(29)

can be equivalently restated as

min
x,y,y′,θ

{
J∑

j=1

πjθj : Wyj +W
′y′j = hj − Tx,(30)

−qT yj − q′T y′j + (M− ϕo)θj ≥ cTx− ϕo,

x ∈ X, yj ∈ Zm̄
+ , y

′
j ∈ Rm′

+ , θj ∈ {0, 1}, j = 1, . . . , J

}
.

Problem (30) quickly becomes large scale such that general-purpose mixed-integer
linear programming algorithms and software fail. On the other hand, the constraint
matrix of (30) obeys the same block-angular structure as with traditional expectation-
based linear two-stage stochastic programs. Second-stage variables (yj , y

′
j , θj) for

different scenarios are not linked in explicit constraints but only through the scenario-
independent first stage variable x.

In analogy to the traditional expectation-based model (cf. [13]), this suggests the
following algorithmic approach to (30) via scenario decomposition, i.e., Lagrangian
relaxation of nonanticipativity.

Introduce in (30) copies xj , j = 1, . . . , J, referring to the number of scenarios,
and add the nonanticipativity constraints x1 = · · · = xJ (or an equivalent system),

for which we use the notation
∑J

j=1Hjxj = 0 with proper (l,m)-matrices Hj , j =
1, . . . , J . Problem (30) then becomes

min
x,y,y′,θ

{
J∑

j=1

πjθj : Wyj +W
′y′j = hj − Txj ,

J∑
j=1

Hjxj = 0,(31)

−qT yj − q′T y′j + (M− ϕo)θj ≥ cTxj − ϕo,

xj ∈ X, yj ∈ Zm̄
+ , y

′
j ∈ Rm′

+ , θj ∈ {0, 1}, j = 1, . . . , J

}
.
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The constraint system of (31) can be decoupled by Lagrangian relaxation of the

constraints
∑J

j=1Hjxj = 0. To this end, we consider for λ ∈ Rl the functions

Lj(xj , yj , y
′
j , θj , λ) := πjθj + λTHjxj , j = 1, . . . , J,

and form the Lagrangian

L(x, y, y′, θ, λ) :=

J∑
j=1

Lj(xj , yj , y
′
j , θj , λ).

The Lagrangian dual of (31) reads

max{D(λ) : λ ∈ Rl},(32)

where

D(λ) = min

{
J∑

j=1

Lj(xj , yj , y
′
j , θj , λ) :Wyj +W

′y′j = hj − Txj ,

−qT yj − q′T y′j + (M− ϕo)θj ≥ cTxj − ϕo,

xj ∈ X, yj ∈ Zm̄
+ , y

′
j ∈ Rm′

+ , θj ∈ {0, 1}, j = 1, . . . , J

}
.

Separability yields

D(λ) =
J∑

j=1

Dj(λ),(33)

where

Dj(λ) = min{Lj(xj , yj , y
′
j , θj , λ) :Wyj +W

′y′j = hj − Txj ,(34)

−qT yj − q′T y′j + (M− ϕo)θj ≥ cTxj − ϕo,

xj ∈ X, yj ∈ Zm̄
+ , y

′
j ∈ Rm′

+ , θj ∈ {0, 1}}.
D(λ) is the pointwise minimum of affine functions in λ. Therefore it is piecewise

affine and concave. Thus, (32) is a nonsmooth concave maximization (or convex
minimization) problem that can be solved by bundle methods from nondifferentiable
optimization, for instance by the conic bundle method of [17] or the proximal bundle
method of [22, 23]. At each iteration, these methods require the objective value and
one subgradient ofD. The structure ofD (cf. (33)) enables substantial decomposition,
since the single-scenario problems (34) can be tackled separately. Their moderate size
often allows application of general-purpose mixed-integer linear programming codes.

Altogether, the optimal value zLD of (32) provides a lower bound to the optimal
value z of problem (30). From integer programming [30] it is well known that in
general one has to live with a positive duality gap. On the other hand, it holds that
zLD ≥ zLP , where zLP denotes the optimal value to the LP relaxation of (30). The
lower bound obtained by the above procedure, hence, is never worse than the bound
obtained by eliminating the integer requirements.

In Lagrangian relaxation, the results of the dual optimization often provide start-
ing points for heuristics to find promising feasible points. Our relaxed constraints
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being very simple (x1 = · · · = xJ), ideas for such heuristics come up straightfor-
wardly. For example, examine the xj-components, j = 1, . . . , J , of solutions to (34)
for optimal or nearly optimal λ, and decide for the most frequent value arising, or
average and round if necessary.

If the heuristic yields a feasible solution to (30), then the objective value of the
latter provides an upper bound z̄ for z. Together with the lower bound zLD this gives
the quality certificate (gap) z̄ − zLD.

The full algorithm improves this certificate by embedding the procedure described
so far into a branch-and-bound scheme for (29) seen as a nonconvex global optimiza-
tion problem. Let P denote the list of current problems, and let zLD = zLD(P ) denote
the Lagrangian lower bound for P ∈ P. The algorithm then proceeds as follows.

Algorithm 4.4.
Step 1 (Initialization): Set z̄ = +∞ and let P consist of problem (31).
Step 2 (Termination): If P = ∅, then the solution x̂ that yielded z̄ = QP(x̂) is opti-
mal.
Step 3 (Node selection): Select and delete a problem P from P and solve its La-
grangian dual. If the optimal value zLD(P ) hereof equals +∞ (infeasibility of a sub-
problem), then go to Step 2.
Step 4 (Bounding): If zLD(P ) ≥ z̄ go to Step 2 (this step can be carried out as soon
as the value of the Lagrangian dual rises above z̄). Consider the following situations:

1. The scenario solutions xj, j = 1, . . . , J , are identical: If QP(xj) < z̄, then
let z̄ = QP(xj) and delete from P all problems P ′ with zLD(P

′) ≥ z̄. Go to Step 2.
2. The scenario solutions xj, j = 1, . . . , J differ: Compute the average x̄ =∑J

j=1 πjxj and round it by some heuristic to obtain x̄R. If QP(x̄
R) < z̄, then let

z̄ = QP(x̄
R) and delete from P all problems P ′ with zLD(P

′) ≥ z̄. Go to Step 5.
Step 5 (Branching): Select a component x(k) of x and add two new problems to
P obtained from P by adding the constraints x(k) ≤ $x̄(k)% and x(k) ≥ $x̄(k)% + 1,
respectively (if x(k) is an integer component), or x(k) ≤ x̄(k) − ε and x(k) ≥ x̄(k) + ε,
respectively, where ε > 0 is a tolerance parameter to have disjoint subdomains. Go to
Step 3.

The algorithm is obviously finite if all x-components have to be integers. (Recall
that X is bounded!) If x is a mixed-integer variable some stopping criterion to avoid
endless branching on the continuous components has to be employed.

As already mentioned, the algorithm follows the same lines as the algorithm for
min{QE(x) : x ∈ X} developed in [13]. In a straightforward manner this leads to
a scenario decomposition algorithm for the mean-risk model min{QE(x) + ρQP(x) :
x ∈ X}. At the end of the present section we will report some initial computational
experience with this algorithm.

Relations with efficient points in multiobjective optimization. The mean-risk model
(6) can be seen as a scalarization of the multiobjective optimization problem

min
{(
QE(x), QP(x)

)
: x ∈ X}.(35)

A common notion of optimality in multiobjective optimization is efficiency (or non-
dominance). In terms of (35) a point x∗ ∈ X is called efficient if there is no x ∈ X
fulfilling QE(x) ≤ QE(x

∗) and QP(x) ≤ QP(x
∗), with at least one strict inequality.

For basic facts of multiobjective optimization we refer the reader to [5, 25] and the
references therein. Given ρ1, ρ2 ∈ R+, every optimal solution to

min{ρ1QE(x) + ρ2QP(x) : x ∈ X}(36)
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is efficient. This result enables computation of efficient points by solving scalar op-
timization problems. In general, only a subset of the efficient points of (35) can be
computed via (36). For computing the full efficiency set via (36), additional assump-
tions, e.g., convexity of the individual objectives and the feasible set, are needed.
Although we did not elaborate on this in section 3, it is quite easy to confirm that
neither QE nor QP is convex in general. The following example demonstrates that,
indeed, there exist efficient points for (35) not computable as solutions to (36) for any
ρ1, ρ2 ∈ R+.

Example 4.5. We specify (1) and (2) as follows. Let m = 1, m̄ = 1,m′ = 2, s = 1,
and c = 0, T = −1, X = { 4

12 ,
6
12 ,

7
12}. The random variable h(ω) is given by the

realizations 0, 4
12 ,

6
12 with the probabilities 2

5 ,
2
5 ,

1
5 . The second stage is defined by

Φ(t) = min

{
1

2
y1 + y

′
1 + y

′
2 : y1 + y

′
1 − y′2 = t, y1 ∈ Z+, (y

′
1, y

′
2) ∈ R2

+

}

= min

{
1

2
y1 + |t− y1| : y1 ∈ Z+

}
.

Finally, the probability threshold is selected as ϕo =
7
12 . We have just three points in

X such that the image set (QE, QP)(X) can be computed explicitly. It holds that

(QE, QP)(X) =
{(35

60
, 0
)
,
(34
60
,
2

5

)
,
(32
60
,
3

5

)}
.

Clearly, all three members of the image set are efficient. One confirms that the point
( 33
60 ,

2
5 ) is located at the straight line passing through (35

60 , 0) and (32
60 ,

3
5 ). Hence there

is no straight line supporting (from below) (QE, QP)(X) and passing through (34
60 ,

2
5 ).

In other words, the efficient point (34
60 ,

2
5 ) is not computable as a solution to (36) for

any ρ1, ρ2 ∈ R+.
A prominent example of efficiency in the context of mean-risk models is induced

by Markowitz’s mean-variance model for portfolio selection [28, 43]. The model aims
at finding an optimal asset allocation where the quality of the allocation is judged
by both expectation and variance of the return. The total return being the sum
of individual returns multiplied by the allocation proportions, both expectation and
variance of the return are convex functions of the allocation. Hence the full set of
efficient points, also called the efficient frontier, can be traced by solving scalarizations
as in (36).

Due to lacking convexity and the above example we cannot hope to be able to
trace the full efficient set, or efficient frontier, of (35) by solving scalarizations (36).
However, Algorithm 4.4 bears the potential of tracing the supported part of the effi-
cient frontier, i.e., those efficient points that arise as optimal solutions to scalarizations
(36). To this end, it is sufficient to vary the parameter ρ in (6) within the nonnegative
reals. For every individual ρ, Algorithm 4.4 then provides a global solution to the
nonconvex optimization problem (6). The numerics of tracing nonsupported parts of
efficient frontiers to nonconvex multiobjective optimization problems still is a widely
open field; cf. [25] for an account of existing methods.

Modeling background for computational tests. To illustrate our initial computa-
tional experience we will report tracing of supported efficient points at an example
from chemical engineering. The modeling background is given by a real-life multi-
product batch plant producing expandable polystyrene (EPS). A detailed description
of the EPS production process can be found in [16].
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The process consists of preparation, polymerization, and finishing. During prepa-
ration different kinds of intermediates are produced. In certain mixtures depending
on a finite number of recipes the intermediates are fed batchwise into the polymer-
ization reactors. After termination of each polymerization its product is transferred
immediately into a mixing tank of a finishing line, leading to a discontinuous inflow
into these tanks. Each finishing line further consists of a separation stage where dif-
ferent grain sizes of EPS are separated from each other. These grain sizes are the final
product of the process and have to match customer demand. The separation stages
are driven continuously. Shut-down and start-up procedures for separation stages are
time consuming, expensive, and have to adhere to minimum up- and down-times of
the stages.

The EPS process is controlled by fixing starting times and choices of recipes for
the polymerizations and by selecting start-up and shut-down times as well as feed rates
for the separation stages. A typical scheduling horizon is given by two weeks, with a
time discretization into five equidistant intervals. The major source of uncertainty is
customer demand. Optimization aims at minimizing a weighted sum of costs caused
by running the polymerizations, switching the separation stages, and compensating
the deficit between production and customer demand.

The above setting gives rise to different two-stage stochastic integer programs; see
[16] for details. For the numerical tests in the present paper we have used a planning
model where the first-stage variables are given by the states of the separation stages.
This places emphasis on the qualitative aspect that a smooth operation of the EPS
process is desired, which is achieved by fixing the states of the most sensible part of
the plant as early as possible.

Tracing of supported efficient points. To trace the supported parts of nonconvex,
nonconnected efficient frontiers we have formulated instances of the EPS problem
with 10, 20, 50, and 100 scenarios. With the mentioned extension of Algorithm 4.4 we
then have solved to global optimality instances of the mean-risk model min{QE(x) +
ρQP(x) : x ∈ X} for suitable values of ρ.

Tracing starts with ρ = 0, i.e., with solving min{QE(x) : x ∈ X}. If the optimal
solution is unique, then it has to be efficient as well. Since we have no indication about
unicity of optimal solutions, we solve the mean-risk model again with “small” ρ, say
ρ = 0.001. If the QE-value of the optimal solution remains the same, the optimal
solution has to be efficient, and there are no further supported efficient points for
0 < ρ < ρ.

An analogous procedure is carried out at the “upper end.” We solve min{QP(x) :
x ∈ X} and check with a “big” ρ (ρ̄ = 1000) for efficiency.

Suppose the “lower end” and “upper end” procedures have resulted in two distinct
efficient points x′, x′′ with distinct values of (QE, QP)(x). We calculate the normal
vector (1, ρ̂)T of the straight line passing through (QE, QP)(x

′) and (QE, QP)(x
′′) and

solve min{QE(x)+ ρ̂QP(x) : x ∈ X}. The optimal solution x′′′ is a supported efficient
point. If QE(x

′′′) + ρ̂QP(x
′′′) coincides with the identical values QE(x

′) + ρ̂QP(x
′) =

QE(x
′′) + ρ̂QP(x

′′), then it is clear that, up to equality of the value QE(x) + ρ̂QP(x),
there are no further supported efficient points for ρ < ρ < ρ̄. Otherwise, the search
continues with the intervals ρ ≤ ρ ≤ ρ̂ and ρ̂ ≤ ρ ≤ ρ̄.

The procedure is iterated at subintervals for ρ where further supported efficient
points still may be expected. It terminates when such intervals no longer exist. With
a discrete probability distribution, QP attains only finitely many values, implying that
the procedure terminates after finitely many steps.
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Table 1
Computational results for the EPS problem.

Scenarios Cont/Int/Bin Constraints ρ (QE, QP) Time (h:mm) CPLEX

500/400/352 1370 0 (114.81, 1.00) 0:11 3.23%
500/400/362 1380 0.001 (114.81, 1.00) 0:12 3.16%
500/400/362 1380 44.17 (141.31, 0.40) 0:22 14.17%

10 500/400/362 1380 94.78 (141.31, 0.40) 0:21 7.22%
500/400/362 1380 246.60 (141.31, 0.40) 0:19 11.77%
500/400/362 1380 1000 (190.64, 0.20) 0:10 0.67%
500/400/362 1380 +∞ (302.52, 0.20) 0:01 ∞
1000/800/692 2740 0 (120.50, 1.00) 0:21 4.79%
1000/800/712 2760 0.001 (120.50, 1.00) 0:21 5.51%
1000/800/712 2760 66.57 (120.50, 1.00) 0:37 11.87%
1000/800/712 2760 67.80 (137.14, 0.75) 0:38 12.24%

20 1000/800/712 2760 68.68 (161.18, 0.40) 0:38 12.03%
1000/800/712 2760 177.13 (161.18, 0.40) 0:37 9.68%
1000/800/712 2760 833.08 (161.18, 0.40) 0:37 23.56%
1000/800/712 2760 1000 (244.49, 0.30) 0:34 7.18%
1000/800/712 2760 +∞ (402.55, 0.30) 0:01 ∞
2500/2000/1712 6850 0 (124.00, 1.00) 0:59 5.77%
2500/2000/1762 6900 0.001 (124.00, 1.00) 1:00 6.23%
2500/2000/1762 6900 111.25 (166.27, 0.62) 1:53 29.73%

50 2500/2000/1762 6900 222.05 (166.27, 0.62) 1:40 28.03%
2500/2000/1762 6900 413.43 (257.23, 0.40) 1:48 22.80%
2500/2000/1762 6900 1000 (257.23, 0.40) 1:04 24.86%
2500/2000/1762 6900 +∞ (502.07, 0.40) 0:09 ∞
5000/4000/3412 13700 0 (122.10, 1.00) 2:21 5.98%
5000/4000/3512 13800 0.001 (122.10, 1.00) 2:14 13.40%
5000/4000/3512 13800 80.33 (153.43, 0.61) 3:27 31.81%

100 5000/4000/3512 13800 153.57 (153.43, 0.61) 3:09 33.11%
5000/4000/3512 13800 263.42 (221.92, 0.35) 3:18 ∞
5000/4000/3512 13800 1000 (221.92, 0.35) 1:45 ∞
5000/4000/3512 13800 +∞ (452.39, 0.35) 0:22 ∞

Table 1 documents our computations. The parameter M (cf. (30)) was put to
1000 in all instances. The threshold values ϕo are 102.52, 102.55, 102.07, and 102.39
for the 10-, 20-, 50-, and 100-scenario instances, respectively.

The ρ column displays the values that were necessary for the search. Let us
explain at the 10-scenario instance: ρ = 0 and ρ = +∞ correspond to minimizing
QE and QP, respectively. The values ρ = 0.001 and ρ̄ = 1000 are the mentioned
safeguards for efficiency at the “lower ends” and “upper ends.” Simultaneously, they
serve to initialize the search interval for ρ. The first value for ρ̂ is 94.78. It yields
an efficient point whose value of QE(x) + ρ̂QP(x) is distinct from the corresponding
value of the two efficient points already found. Hence, the subintervals [ρ, ρ̂] and
[ρ̂, ρ̄] must be considered further, what is done with the updated ρ̂-values 44.17 and
246.60, respectively. In both cases, the optimal values of QE(x) + ρ̂QP(x) coincide
with (QE + ρ̂QP)-values of efficient points already known. (In fact, even the optimal
solution points coincide with an efficient point already known.) The search terminates.
Altogether, we have found three supported efficient points with (QE, QP)-values of
(114.81, 1.00), (141.31, 0.40), and (190.64, 0.20). Up to equality of values QE(x) +
ρ̂QP(x) for ρ̂ ∈ {44.17, 246.60}, these are all supported efficient points of the instance.

The time column displays the time needed by our decomposition algorithm to
find an optimal point and prove its optimality with a relative gap of 0.001%.

The CPLEX column shows the relative optimality gaps achieved by CPLEX 8.0
(with default parameters) in the time listed in the column before. The symbol ∞
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indicates that no feasible solution was found in this time. All computations were
carried out on a Linux PC with an AMD Athlon XP 2200+ processor (1.8 GHz) and
1 GB RAM.

The Cont/Int/Bin column has the numbers of continuous, integer (nonbinary),
and binary variables in the block-angular mixed-integer linear programs corresponding
to the models. The numbers of constraints are listed in the next column.

Altogether, the table confirms that our algorithm is able to trace with reasonable
effort supported parts of efficient frontiers of realistic instances of the nonconvex
multiobjective program (35).
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138 RÜDIGER SCHULTZ AND STEPHAN TIEDEMANN

[21] A. J. King, S. Takriti, and S. Ahmed, Issues in Risk Modeling for Multi-Stage Systems, IBM
Research Report, RC-20993, Yorktown Heights, NY, 1997.

[22] K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable optimization,
Math. Programming, 46 (1990), pp. 105–122.

[23] K. C. Kiwiel, User’s Guide for NOA 2.0/3.0: A Fortran Package for Convex Nondifferentiable
Optimization, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland,
1994.

[24] D. Klatte, On the Stability of Local and Global Optimal Solutions in Parametric Problems
of Nonlinear Programming, Part I and Part II, Seminarbericht 75, Sektion Mathematik,
Humboldt-Universität zu Berlin, Berlin, Germany, 1985, pp. 1–39.

[25] P. Korhonen, Multiple objective programming support, in Encyclopedia of Optimization,
Vol. III, C. A. Floudas and P. M. Pardalos, eds., Kluwer Academic Publishers, Dordrecht,
The Netherlands, 2001, pp. 566–574.

[26] J. Kuelbs and R. M. Dudley, Log log laws for empirical measures, Ann. Probab., 8 (1980),
pp. 405–418.

[27] A. Märkert and R. Schultz, Variance and Two-Stage Stochastic Programs, manuscript.
[28] H. M. Markowitz, Portfolio selection, J. Finance, 7 (1952), pp. 77–91.
[29] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios, Robust optimization of large-scale systems,

Oper. Res., 43 (1995), pp. 264–281.
[30] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, Wiley, New

York, 1988.
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Abstract. We build upon the work of Fukuda et al. [SIAM J. Optim., 11 (2001), pp. 647–674]
and Nakata et al. [Math. Program., 95 (2003), pp. 303–327], in which the theory of partial positive
semidefinite matrices was applied to the semidefinite programming (SDP) problem as a technique
for exploiting sparsity in the data. In contrast to their work, which improved an existing algorithm
based on a standard search direction, we present a primal-dual path-following algorithm that is based
on a new search direction, which, roughly speaking, is defined completely within the space of partial
symmetric matrices. We show that the proposed algorithm computes a primal-dual solution to the
SDP problem having duality gap less than a fraction ε > 0 of the initial duality gap in O(n log(ε−1))
iterations, where n is the size of the matrices involved. Moreover, we present computational results
showing that the algorithm possesses several advantages over other existing implementations.
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1. Introduction. The semidefinite programming (SDP) problem has been stud-
ied extensively in recent years, and many different types of algorithms for solving
SDPs have been proposed. Various primal-dual interior-point methods for linear pro-
gramming can be extended to SDP with equivalent iteration complexities, typically
O(

√
n log(ε−1)), where n is the size of matrices in the SDP problem and ε > 0 is the

desired fractional reduction in the duality gap; for example, see [1, 15, 17, 22, 23, 25,
28, 30, 32]. In practice, these methods have many advantages, including applicability
to any standard form SDP, accurate primal-dual optimal solutions in a small num-
ber of iterations, and exploitation of sparsity in certain key stages of the algorithm.
On the other hand, they also exhibit some notable disadvantages, such as the need
to compute, store, and work with dense matrices—in particular, handling the n × n
primal iterate X and the m×m Schur complement matrix M , where m is the num-
ber of linear constraints in the primal SDP, as well as solving the Schur complement
equation involving M .

Techniques for dealing with the disadvantages of primal-dual methods have also
been developed. For example, to avoid working with the dense matrix X (while
maintaining the use of M), Benson, Ye, and Zhang [2] have developed a polynomial-
time interior-point method that involves only the dual variables (S, y) and the lower
Cholesky factor L of S, since S and L are generally sparse when the SDP data is
sparse. In contrast, others have eliminated the need to compute and store M (while
maintaining the use of primal-dual iterates (X,S, y)) by using iterative methods such
as the preconditioned conjugate gradient method to solve the Schur complement equa-
tion (see [20, 27, 29]). When solving the Schur complement equation using an iterative
method, however, an inevitable side effect is the increased difficulty of obtaining ac-
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curate primal-dual optimal solutions, due to the ill-conditioning of the matrix near
optimality.

Other methods, the so-called first-order nonlinear programming algorithms for
SDP, depart even more significantly from the standard primal-dual interior-point
methods. Generally speaking, these methods solve special classes of SDPs, work
in either the primal or dual space, operate on sparse matrices (or compact repre-
sentations of dense matrices), and sacrifice the underlying theoretical guarantee of
polynomial convergence for better opportunities to exploit sparsity and structure. As
a result of these algorithmic choices as well as the ill-conditioning that is inherent near
optimality, these methods typically can compute optimal solutions of low to medium
accuracy in a reasonable balance of iterations and time. See [4, 6, 5, 8, 13, 14] for
more information on this class of algorithms.

So far, no one has proposed a method that possesses theoretical polynomial con-
vergence, can solve any standard-form SDP, works in both the primal and dual spaces,
and can aggressively exploit sparsity in all stages of computation, including the com-
plete avoidance of dense matrices. In this paper, we propose such a method and
explore its theoretical and practical characteristics.

The basic idea of the method presented in this paper is drawn from the recent
work of Fukuda et al. [9], in which they show that the theory of partial positive
semidefinite matrices can be applied to SDPs to help better take advantage of sparsity.
In particular, their “completion method” demonstrates that primal-dual interior-point
algorithms can be implemented using a certain “partial” representation of the dense
matrix variable X. Computational results given in Nakata et al. [26], which employ
the sparse representation of X together with the computation and storage of M in
each iteration, indicate the efficiency of the completion method on several classes of
problems.

The completion method can be viewed as a computational enhancement of an
existing primal-dual path-following implementation that is based on the Helmberg–
Rendl–Venderbei–Wolkowicz/Kojima–Shindoh–Hara/Monteiro (or HRVW/KSH/M)
search direction (which was first defined in Helmberg et al. [15]). From a theoretical
point of view, however, the completion method is not known to converge in polyno-
mial time, with the main obstacle being how to measure the proximity of a partial
primal-dual solution to the central path. (See the concluding comments of section 5
in [9], where a polynomial potential-reduction algorithm is discussed but the problem
of a path-following algorithm is considered open.) In addition, since the completion
method employs the Schur complement matrix M directly, there is a practical limita-
tion to the size of SDP that can be solved by this method. Of course, a simple idea to
eliminate the direct use of M would be to use an iterative method to solve the Schur
complement equation.

The method of this paper improves upon the completion method of Fukuda et al.
in two primary ways. The first is theoretical: the method is a polynomial-time path-
following algorithm based entirely on partial positive semidefinite matrices, where the
main idea is a reformulation of the central path that yields search directions in the
space of partial matrices and that also motivates a new neighborhood of the central
path, which has some critical properties when viewed in the context of matrix com-
pletion. The second is practical: when the Schur complement equation in our method
is solved using an iterative method, our approach provides even more opportunity to
take advantage of the sparsity of the SDP data. In section 5, computational results
are given to demonstrate this.
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Computational results are also given comparing our method with two other suc-
cessful methods: a primal-dual interior-point method that possesses polynomial con-
vergence but computes and stores both X and M ; and a dual-only first-order algo-
rithm that works exclusively with sparse matrices but does not possess polynomial
convergence. The overall conclusion of this paper is that our method achieves sev-
eral advantages that were previously found only in separate algorithms: theoretically
strong convergence, applicability to any SDP, a primal-dual framework, and the op-
portunity to exploit sparsity in all stages of computation.

1.1. Basic notation and terminology. In this paper, �, �p, and �p×q denote
the typical Euclidean spaces, and Sp, Sp+, and Sp++ denote symmetric, symmetric
positive semidefinite, and symmetric positive definite matrices, respectively. Lower
triangular matrices are denoted by Lp, and those with positive diagonal entries are
signified by Lp++. Similarly, we define Up and Up++ for upper triangular matrices.

For any v ∈ �p, vi is the ith component of v; for any A ∈ �p×q, Aij , Ai·, and A·j
denote the standard subparts of A. For vectors or matrices, the notation ·T denotes the
transpose, and for any A ∈ �p×p, tr(A) =

∑p
i=1 Aii denotes the trace function. The

standard inner product on �p×q is denoted as A•B = tr(ATB) =
∑p
i=1

∑q
j=1 AijBij ,

and the Frobenius norm, which is induced by the inner product •, is denoted ‖A‖F =
(A•A)1/2. For any A ∈ Sp (which necessarily has real eigenvalues), we note that tr(A)
also equals the sum of the eigenvalues of A. The maximum and minimum eigenvalues
of A are denoted by λmax[A] and λmin[A]. For any A ∈ �p×q, we define the 2-norm
of A to be ‖A‖ =

√
λmax[ATA]. Some important inequalities are as follows: for all

A,B ∈ �p×q, A •B ≤ ‖A‖F ‖B‖F , and for all A ∈ �p×q, ‖A‖ ≤ ‖A‖F .
If a function f defined between �p and �q is twice differentiable at v ∈ �p, then

the first derivative of f at v is denoted as the linear operator f ′(v) : �p → �q, which
operates on a ∈ �p as f ′(v)[a]. In addition, if q = 1, then the gradient ∇f(v) ∈ �p
uniquely satisfies ∇f(v)Ta = f ′(v)[a] for all a ∈ �p. The second derivative of f at v
is denoted by the bilinear map f ′′(v) : �p × �p → �q, which is written as f ′′(v)[a, b]
for all (a, b) ∈ �p × �p. If b = a, then we write f ′′(v)[a](2). If f is also invertible,
then f−1 denotes its inverse, and if f is linear, then its adjoint is denoted by f∗. In
addition, if p = q and f is linear, then f is called positive definite if vT f(v) > 0 for
all v �= 0.

The function chol : Sp++ → Lp++ computes the lower Cholesky factor; that is,
chol(S) = L, where S = LLT . Letting M−1 denote the matrix inverse of M and
inv the matrix inverse function, we have that inv′(M)[A] = −M−1AM−1. We also
let argmax denote the unique optimal solution of a given maximization problem, and
we define argmin similarly. The matrix I denotes the identity matrix (of appropriate
size), and for any A ∈ �p×p, diag(A) extracts the diagonal of A. Also, for any
M ∈ Sp+, M1/2 denotes the matrix square root of M .

2. The partial SDP problem. We consider the standard-form primal SDP
problem

(P̂ ) min
{
C • X̂ : A(X̂) = b, X̂ ∈ Sn+

}
and its dual

(D̂) max
{
bT y : A∗(y) + Ŝ = C, Ŝ ∈ Sn+

}
,

where the variables are (X̂, Ŝ, y) ∈ Sn × Sn ×�m and the data are C ∈ Sn, b ∈ �m,
and {Ak}mk=1 ⊂ Sn. The symbol A denotes the linear map A : Sn → �m defined by



142 SAMUEL BURER

A(X̂)k = Ak • X̂, and its adjoint A∗ : �m → Sn is defined by A∗(y) =
∑m
k=1 ykAk.

We use similar notation for the sets of primal-dual feasible solutions and primal-dual
interior feasible solutions as in [22]—F(P̂ )×F(D̂) and F0(P̂ )×F0(D̂), respectively—
and we also make the following standard assumptions:

Â1. the matrices {Ak}mk=1 are linearly independent;

Â2. the set of primal-dual interior feasible solutions F0(P̂ )×F0(D̂) is nonempty.
It is well known that, under assumptions Â1 and Â2, both (P̂ ) and (D̂) have op-

timal solutions X̂∗ and (Ŝ∗, y∗), which are characterized by the equivalent conditions
that the duality gap X̂∗ • Ŝ∗ is zero and that the matrix product X̂∗Ŝ∗ is zero. More-
over, for every ν > 0, there exists a unique primal-dual feasible solution (X̂ν , Ŝν , yν),
which satisfies the perturbed optimality equation X̂Ŝ = νI. The set of all solutions
Ĉ ≡ {(X̂ν , Ŝν , yν) : ν > 0} is known as the central path, and Ĉ serves as the basis
for path-following algorithms that solve (P̂ ) and (D̂). The basic idea is to construct
a sequence {(X̂k, Ŝk, yk)}k≥0 ⊂ F0(P̂ ) × F0(D̂) that stays in a neighborhood of the

central path such that the duality gap X̂k • Ŝk goes to zero.
A scaled measure of the duality gap that proves useful in the presentation and

analysis of path-following algorithms is

µ(X̂, Ŝ) ≡ X̂ • Ŝ
n

∀ (X̂, Ŝ) ∈ Sn × Sn.(2.1)

Note that, for all (X̂, Ŝ) ∈ Sn+ × Sn+, we have µ(X̂, Ŝ) > 0 unless X̂Ŝ = 0. Moreover,

µ(X̂ν , Ŝν) = ν for all points (X̂ν , Ŝν , yν) on the central path.

2.1. The positive semidefinite matrix completion. Recently, Fukuda et
al. [9] introduced techniques for exploiting sparsity using ideas from the theory of
matrix completions. In this section, we recapitulate their main results and introduce
corresponding notation that will be used throughout the paper.

Let V = {1, . . . , n} denote the row and column indices of an n× n matrix. Also
define the aggregate density pattern E of the data {C} ∪ {Ak}mk=1 as follows:

E ≡ {(i, j) ∈ V × V : ∃ y ∈ �m such that [C −A∗(y)]ij �= 0}.
We assume throughout that {(i, i) : i ∈ V } ⊆ E, that is, that E contains all of the
diagonal entries. Notice also that E is symmetric in the sense that (i, j) ∈ E if and
only if (j, i) ∈ E because, by definition, C − A∗(y) ∈ Sn. (We also remark that the
alternative terminology, “aggregate sparsity pattern,” has been used in [9] to describe
E.)

Given any (Ŝ, y) ∈ F(D̂), it is clear from the definition of E that those elements of
V ×V that correspond to the nonzeros of Ŝ are contained in E. Hence, Ē ≡ V ×V \E
represents the generic sparsity pattern of the variable Ŝ of (D̂). Unlike Ŝ, the variable
X̂ of (P̂ ) has no sparsity in general, but the sparsity represented by Ē does affect
the primal problem in terms of evaluation of the objective function C • X̂ and the
constraints A(X̂). In particular, it is not difficult to see that the quantities C • X̂
and Ak • X̂ are dependent upon only those entries X̂ij of X̂, where (i, j) ∈ E. In

other words, the entries X̂ij for (i, j) ∈ Ē are irrelevant for the objective function and

constraints, but still, they do impact the positive semidefiniteness constraint X̂ ∈ Sn+.
These were precisely the observations that were exploited in [9], as we detail next.

Given a symmetric G ⊆ V × V , we define the following subset of Sn, which has
the density pattern G:

SG ≡ {M̂ ∈ Sn : M̂ij = 0 ∀ (i, j) �∈ G}.
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We also define the corresponding operator πG : Sn → SG, which performs orthogonal
projection onto SG:

[πG(M̂)]ij =

{
M̂ij , (i, j) ∈ G,

0, (i, j) �∈ G.

We then define the following subsets of SG:

SG+ = SG ∩ Sn+,
SG++ = SG ∩ Sn++,

SG?
+ = {M ∈ SG : ∃ M̂ ∈ Sn+ such that πG(M̂) = M},

SG?
++ = {M ∈ SG : ∃ M̂ ∈ Sn++ such that πG(M̂) = M}.

In words, we describe the last two sets defined above as follows: SG?
+ and SG?

++ consist
of those matrices in SG that can be completed to matrices in Sn+ and Sn++, respec-
tively. We use the question mark (?) notation to illustrate the informal idea that, for
example, M ∈ SG?

+ is a positive semidefinite matrix except that the entries Mij for
(i, j) �∈ G have yet to be specified. In addition, an important observation is that SG?

++

is an open subset of SG, which will play an important role when we investigate the
derivatives of functions defined on SG?

++.
Using these ideas from matrix completion along with the discussion of E above,

it is not difficult to see that problems (P̂ ) and (D̂) are equivalent to the following two
problems, respectively:

min
{
C •X : A(X) = b, X ∈ SE?

+

}
, max

{
bT y : A∗(y) + S = C, S ∈ SE+

}
.

It is interesting to note that the above equivalence holds even when E is replaced by
any symmetric F ⊇ E. In fact, for technical reasons that will become clear later, it
is desirable to apply this idea with an F that satisfies specific structural properties,
as discussed next.

It is straightforward to identify a symmetric G ⊆ V × V with a simple graph G̃
on V , and we make the following graph theoretic definitions. G is said to be chordal
if G̃ is chordal, that is, if every cycle in G̃ having length greater than three has a
chord. A perfect elimination ordering for G is an ordering (v1, . . . , vn) of the vertices
V = {1, . . . , n} of G̃ such that, for each 1 ≤ i ≤ n − 1, the G̃-neighbors of vi in
{vi+1, . . . , vn} form a clique in G̃. A fundamental fact (see Fulkerson and Gross [10])
is that G is chordal if and only if it has a perfect elimination ordering.

Now let F be a symmetric extension of E, i.e., F ⊇ E, that satisfies two properties:
(i) F is chordal; and (ii) the standard ordering (1, . . . , n) is a perfect elimination
ordering for F . We then define the pair of SDP problems

(P ) min
{
C •X : A(X) = b, X ∈ SF?

+

}
and

(D) max
{
bT y : A∗(y) + S = C, S ∈ SF+

}
,

which, from the discussion above, are equivalent to (P̂ ) and (D̂), respectively. It
is worthwhile to note that, under the assumption that no numerical cancellations
occur during the calculation of the lower Cholesky factor L ∈ Ln++ of S ∈ SE++,
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the symmetrized density pattern of L yields a chordal extension F of E such that
(1, . . . , n) is a perfect elimination ordering.

How do the standard assumptions Â1 and Â2 translate to the problems (P ) and
(D)? It is not difficult to see that, with the analogous definitions F(P ) × F(D) and
F0(P ) ×F0(D), both of the following assumptions hold easily:

A1. the matrices {Ak}mk=1 are linearly independent;
A2. the set of interior feasible solutions F0(P ) ×F0(D) is nonempty.

2.2. The partial central path. A critical observation is that the central path
equation X̂Ŝ = νI implies that X̂−1 has the same density pattern as Ŝ. That is,
X̂−1 ∈ SF , as was proven by Grone et al. in [12] (and used extensively by Fukuda et
al. in [9]). The following observation represents an important connection between the
spaces SF?

++ and Sn++.

Theorem 2.1. Let X ∈ SF?
++. Then there exists a unique X̂ ∈ Sn++ satisfying

πF (X̂) = X and X̂−1 ∈ SF . Moreover,

X̂ = argmax
{

det(Ŷ ) : πF (Ŷ ) = X, Ŷ ∈ Sn++

}
.

As in [9], we call X̂ the maximum-determinant positive definite completion of X,
and we also let X̂ : SF?

++ → Sn++ denote the function that yields X̂ from X, that is,

X̂ ≡ X̂(X). Using the function X̂ and the direct correspondence Ŝ = S between the
spaces of problems (D̂) and (D), the central path equation X̂Ŝ = νI can be described
in terms of X and S as X̂(X)S = νI.

For the algorithm presented in this paper, we wish to reformulate the central path
equation X̂(X)S = νI once more, and so we now introduce some notation and a few
small results. We define the following sets of lower triangular matrices, each of which
have a density pattern equal to the lower triangular part of F :

LF ≡ {L ∈ Ln : Lij = 0 ∀ i ≥ j such that (i, j) �∈ F} ,
LF++ ≡ LF ∩ Ln++.

Noting the standard fact that the Cholesky factorization has no fill-in when the asso-
ciated density pattern is chordal and (1, . . . , n) is a perfect elimination ordering, we
see that, for all (X,S) ∈ SF?

++ × SF++, chol(X̂(X)−1) ∈ LF++ and chol(S) ∈ LF++. We
thus define

V : SF?
++ → LF++, V (X) ≡ chol(X̂(X)−1),(2.2)

L : SF++ → LF++, L(S) ≡ chol(S).(2.3)

Using these definitions, it is now possible to further reformulate the central path
equation X̂(X)S = νI.

Proposition 2.2. Let (X,S) ∈ SF?
++ × SF++ and ν > 0. Then X̂(X)S = νI if

and only if V (X)−1L(S) =
√
ν I.

Proof. Let X̂ ≡ X̂(X), V ≡ V (X), and L ≡ L(S). From (2.2) and (2.3), we see
that X̂S = νI is equivalent to V −1LLTV −T = νI, which itself shows that V −1L is
the lower Cholesky factor of νI, that is, V −1L =

√
ν I.

Proposition 2.2 now allows us to characterize the point (Xν , Sν , yν) on the central
path C corresponding to ν > 0 as the unique solution of the system

A(X) = b,(2.4a)
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A∗(y) + S = C,(2.4b)

V (X)−1L(S) =
√
ν I.(2.4c)

Having expressed the central path in terms of the variables (X,S), we now wish
to express the duality gap in terms of X and S as well. Given (X̂, Ŝ) and defining
(X,S) = (πF (X̂), Ŝ), we have

X̂ • Ŝ = X̂ • S = πF (X̂) • S = X • S.

Alternatively, given (X,S) and letting X̂ be any completion of X, we see that the
equality also holds. Hence, X • S is the appropriate measure of the duality gap in
the space F(P ) × F(D). Furthermore, from (2.1) and the above equality, we have
µ(X̂, Ŝ) = µ(X,S).

The equation of the previous paragraph introduces a simple but important idea
that will be used several times throughout the paper, and so we now give it a verbal
description in order to make it simpler to refer to. Given A,B ∈ SF and Â ∈ Sn such
that πF (Â) = A, we see that Â •B = πF (Â) •B = A •B, and we say that (Â, A,B)
are trace-compatible.

Given our usage of (2.4c) in this paper, we also wish to define the square root of
the scaled duality gap measure µ(·, ·):

ρ(X,S) ≡ µ(X,S)1/2 ∀ (X,S) ∈ SF?
+ × SF+ .(2.5)

Note that, using the fact that (X̂(X), X, S) are trace-compatible, (2.2), (2.3), and
(2.1), along with standard properties of the trace function and the Frobenius norm,
we easily have that

ρ(X,S) =
‖V (X)−1L(S)‖F√

n
.(2.6)

Equation (2.6) will come in handy throughout the presentation of this paper.

2.3. Nonsingularity of the partial central path. In section 4, we will de-
velop a primal-dual path-following algorithm based on the central path equations
(2.4), and so in this subsection we consider the nonsingularity of the Jacobian of the
equations defining the central path, which will be necessary for the existence of the
SDP direction proposed in section 4.

Noting that V (X)−1 is generically dense, it is not difficult to see that the left-hand
sides of the equations (2.4) are not “square” since they map a point SF?

++ ×SF++ ×�m
to �m × SF × Ln. As has become standard in the SDP literature, however, we
can reconfigure the central path equations to obtain a square system. In this case,
we replace (2.4c) with L(S) − √

ν V (X) = 0, which yields a system of equations
H(X,S, y) = (0, 0, 0), where H : SF?

++ × SF++ ×�m → �m × SF × LF is given by

H(X,S, y) ≡

 A(X)

A∗(y) + S
L(S) −√

ν V (X)


 .(2.7)

Note that the definition of H is dependent on ν > 0, which we consider fixed in
the subsequent discussion. We remark that (2.7) is reminiscent of the central path
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equation Ŝ − νX̂−1 = 0, where the usual complementarity equation X̂Ŝ = νI has
been reconfigured. This formulation is not appropriate for primal-dual path-following
algorithms because, at any (X̂, Ŝ, y) ∈ Sn++×Sn++×�m, the resulting Newton direction

(∆X̂,∆Ŝ,∆y) has the property that ∆X̂ depends only on X̂ and not on (Ŝ, y); i.e.,
the Newton direction is not “primal-dual.” In fact, an analogous system for partial
matrices uses S − νX̂(X)−1 = 0 instead of X̂(X)S = νI, but this system also suffers
a similar drawback. Hence, we have chosen to model the central path as in (2.7), in
part because, in section 4, (2.7) will yield a primal-dual Newton direction due to the
special structure of the functions L and V .

We now wish to investigate the Jacobian of H and to determine whether it is
nonsingular (perhaps under suitable conditions). Since the derivative of H clearly
depends on the derivatives of V (·) and L(·), we first describe these in the set of
propositions and corollaries below (whose proofs are not difficult and are hence left
to the reader).

Proposition 2.3. Let M ∈ Sn++. Then the first derivative of chol(·) at M
is given by the invertible, linear map chol ′(M) : Sn → Ln, which is defined by the
following: for all N ∈ Sn, K ′ ≡ chol ′(M)[N ] ∈ Ln is the unique solution of the
equation N = K ′KT + K(K ′)T , where K ≡ chol(M).

Corollary 2.4. Let S ∈ SF++. Then the first derivative of L(·) at S is the
invertible, linear map L′(S) : SF → LF , which is defined by the following: for all
B ∈ SF , L′ ≡ L′(S)[B] ∈ LF is the unique solution of the equation

B = L′LT + L(L′)T ,(2.8)

where L ≡ L(S).
Proposition 2.5. Let X ∈ SF?

++. Then the linear map X̂ ′(X) : SF → Sn is

defined by the following: for all A ∈ SF , X̂ ′ ≡ X̂ ′(X)[A] ∈ Sn uniquely satisfies the
requirements

πF (X̂ ′) = A, X̂−1X̂ ′X̂−1 ∈ SF ,(2.9)

where X̂ ≡ X̂(X).
Corollary 2.6. Let X ∈ SF?

++. Then the linear map V ′(X) : SF → LF is
defined by the following: for all A ∈ SF , V ′ ≡ V ′(X)[A] ∈ LF is the unique solution
of the equation

−X̂−1X̂ ′X̂−1 = V ′V T + V (V ′)T ,(2.10)

where V ≡ V (X), X̂ = X̂(X), and X̂ ′ ≡ X̂ ′(X)[A]. In addition, V ′(X) is invertible.
Having described the derivatives of V (·) and L(·), we now turn to the derivative

of H. From (2.7), we see that the linear map H ′ : SF × SF × �m → �m × SF × LF
is defined by

H ′(X,S, y)[A,B, c] =


 A(A)

A∗(c) + B
L′(S)[B] −√

ν V ′(X)[A]


 .(2.11)

In Lemma 2.8, Corollary 2.9, and Theorem 2.10, we show that H ′(X,S, y) is invertible
as long as the product V (X)−1L(S) is sufficiently close to some positive multiple of
the identity matrix, but first we need a technical lemma whose proof is straightforward
that will prove useful below and also throughout the paper.
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Lemma 2.7. Let J ∈ Ln. Then ‖J‖F ≤ ‖J + JT ‖F /
√

2, with equality holding if
and only if J is strictly lower triangular.

Lemma 2.8. Let (X,S) ∈ SF?
++ × SF++. Define V ≡ V (X) and L ≡ L(S), and let

V ′(X) and L′(S) be as in Corollaries 2.6 and 2.4, respectively. Then, for all A ∈ SF
and for all β > 0,

−A • (V ′(X)−1 ◦ L′(S)
)

[A] ≥ ∥∥L−1AL−T∥∥2

F

(
(1 +

√
2)β3 −

√
2(β + ‖Q‖F )3

)
,

(2.12)

where Q ≡ V −1L− βI.
Proof. With L′ ≡ L′(S)[A], we see from (2.8) that

A = L′LT + L(L′)T .(2.13)

Also defining X̂ ≡ X̂(X) and X̂ ′ ≡ X̂ ′(X)[V ′(X)−1[L′]], we see from (2.9) and (2.10)
that

πF (X̂ ′) = V ′(X)−1[L′], −X̂−1X̂ ′X̂−1 = L′V T + V (L′)T .(2.14)

Now using (2.14), (2.2), and the trace-compatibility of (X̂ ′, V ′(X)−1[L′], A), we see
that the left-hand side of (2.12) equals

−A • V ′(X)−1[L′] = −A • X̂ ′ = A • X̂ (L′V T + V (L′)T
)
X̂

= 2A • V −TV −1L′V −1.(2.15)

Introducing the notation Ã ≡ L−1AL−T and L̃ ≡ L−1L′ so that Ã = L̃ + L̃T by
(2.13) and using the definition of Q, we observe that

A • V −TV −1L′V −1 = Ã • (V −1L)T (V −1L)L̃(V −1L)

= Ã • (Q + βI)
T

(Q + βI) L̃ (Q + βI) .(2.16)

Expanding the right-hand argument of the inner-product just obtained, we see that

(Q + βI)
T

(Q + βI) L̃ (Q + βI) = QTQL̃Q + βQTQL̃ + βQT L̃Q + β2QT L̃

+ βQL̃Q + β2QL̃ + β2L̃Q + β3L̃.(2.17)

Now combining (2.15), (2.16), and (2.17), applying Lemma 2.7 with J = L̃, and using
standard properties of the trace function and the Frobenius norm, we have

−A • V ′(X)−1[L′]= 2 Ã •QTQL̃Q + 2β Ã •QTQL̃ + 2β Ã •QT L̃Q + 2β2 Ã •QT L̃
+ 2β Ã •QL̃Q + 2β2 Ã •QL̃ + 2 Ã • β2L̃Q + 2β3 Ã • L̃

≥ β3‖Ã‖2
F −

√
2‖Ã‖2

F ‖Q‖3
F −3

√
2β‖Ã‖2

F ‖Q‖2
F −3

√
2β2‖Ã‖2

F ‖Q‖F
= ‖Ã‖2

F

(
(1 +

√
2)β3 −

√
2
(‖Q‖3

F + 3β ‖Q‖2
F + 3β2 ‖Q‖F + β3

))
= ‖Ã‖2

F

(
(1 +

√
2)β3 −

√
2 (‖Q‖F + β)

3 )
,

which proves the lemma. (Note that, within the inequality, we have also used the
equality 2β3 Ã • L̃ = β3 ‖Ã‖2

F .)
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Corollary 2.9. Let (X,S) ∈ SF?
++ × SF++. Define V ≡ V (X) and L ≡ L(S),

and let V ′(X) and L′(S) be as in Corollaries 2.6 and 2.4, respectively. Then, if
‖V −1L − β I‖F ≤ β/6 for some β > 0, the operator −V ′(X)−1 ◦ L′(S) is positive
definite.

Proof. By (2.12), −V ′(X)−1 ◦ L′(S) is positive definite as long there exists some
β such that

(1 +
√

2)β3 −
√

2 (‖Q‖F + β)
3
> 0,

where Q ≡ V −1L− βI, which is equivalent to

‖Q‖F <
[
2−1/6(1 +

√
2)1/3 − 1

]
β.

Since the coefficient in front of β is approximately 0.1951, the result follows.
Corollary 2.9 now allows us to prove that H ′ is nonsingular under certain condi-

tions.
Theorem 2.10. Let (X,S, y) ∈ SF?

++ ×SF++ ×�m, and suppose there exists some
β > 0 such that ‖V −1L − β I‖F ≤ β/6, where V ≡ V (X) and L ≡ L(S). Then the
linear map H ′ : SF × SF ×�m → �m × SF × LF defined by (2.11) is invertible.

Proof. To show that H ′ is invertible, we show that (0, 0, 0) is the only solution
of the equation H ′(X,S, y)[A,B, c] = (0, 0, 0), where (A,B, c) ∈ SF × SF × �m. As
is standard in the SDP literature, it is not difficult to see that this equation can be
reduced to the m×m system

(A ◦ V ′(X)−1 ◦ L′(S) ◦ A∗) (c) = 0.

Since V ′(X)−1 ◦ L′(S) is negative definite by Corollary 2.9 and since A∗ is injective
by assumption A1, we conclude that c = 0, which immediately implies that (A,B) =
(0, 0), as desired.

The above theorem will help us establish the existence of the Newton direction
that will be used as the basis for our algorithm to solve problems (P ) and (D) in
section 4. Moreover, the theorem motivates the need for the neighborhood condition
‖V −1L− βI‖F ≤ β/6 that we will formally introduce next in section 3.

3. Technical results. In this section, we prove several results that will be used
for establishing the polynomial convergence of the algorithm that we propose in sec-
tion 4.

3.1. Properties of the partial central path map. Given γ ∈ [0, 1/6], we
define a feasible neighborhood of the central path as follows:

N (γ) ≡ {(X,S, y) ∈ F0(P ) ×F0(D) : ‖V (X)−1L(S) − ρ(X,S) I‖F ≤ γ ρ(X,S)
}
.

(3.1)

Clearly N (γ) is nonempty as (Xν , Sν , yν) ∈ N (γ) for all ν > 0. Note also, by Theorem
2.10 with β = ρ(X,S) as well as the fact that γ ≤ 1/6, that H ′(X,S, y) is invertible
for all (X,S, y) ∈ N (γ).

We now wish to establish several fundamental results concerning both the cen-
tral path function V (X)−1L(S) and the neighborhood N (γ). The first result estab-
lishes how the neighborhood condition can be restated simply as an inequality on
tr(V (X)−1L(S)).
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Proposition 3.1. (X,S, y) ∈ N (γ) if and only if (X,S, y) is primal-dual feasible
and

tr
(
V (X)−1L(S)

) ≥ Γ ρ(X,S),(3.2)

where Γ ≡ n − γ2/2. Moreover, for any (X,S) ∈ SF?
++ × SF++, it holds that

tr(V (X)−1L(S)) ≤ nρ(X,S).
Proof. Letting V ≡ V (X), L ≡ L(S), and ρ ≡ ρ(X,S) and using (2.6), we have

‖V −1L−ρI‖2
F = (V −1L− ρI) • (V −1L− ρI)=V −1L • V −1L− 2ρV −1L • I+ρ2I • I

=‖V −1L‖2
F − 2 ρ tr(V −1L) + nρ2 = 2nρ2 − 2 ρ tr(V −1L),

from which the first statement of the proposition follows, using (3.1). The second
statement of the proposition also follows from the above equations, which imply
‖V −1L− ρ I‖2

F /(2 ρ) = nρ− tr(V −1L).
The next proposition establishes some results concerning the second derivative of

the function V̂ (X̂)−1L̂(Ŝ), which, as described in (3.3), is analogous to V (X)−1L(S)
but is defined on all of Sn++ × Sn++.

Proposition 3.2. Let V̂ : Sn++ → Ln++ and L̂ : Sn++ → Ln++ be defined by

V̂ (X̂) = chol(X̂−1), L̂(Ŝ) = chol(Ŝ) ∀ X̂, Ŝ ∈ Sn++.(3.3)

Then the function Φ : Sn++×Sn++ → Ln++ defined by Φ(X̂, Ŝ) = V̂ (X̂)−1L̂(Ŝ) satisfies
the following:

(i) for any fixed Ŝ ∈ Sn++, tr(Φ(·, Ŝ)) is a strictly concave function;

(ii) for all Â, B̂ ∈ Sn,

∥∥Φ′′(X̂, Ŝ)[Â, B̂](2)
∥∥
F
≤ 1√

2
‖V̂ −1L̂‖(‖V̂ T ÂV̂ ‖F + ‖L̂−1B̂L̂−T ‖F

)2
,(3.4)

where V̂ ≡ V̂ (X̂) and L̂ ≡ L̂(Ŝ).
Proof. In certain places throughout this proof, we will avoid the use of the hat (̂·)

notation, which indicates fully dense matrices, in order to simplify the notation; the
meanings of the expressions will be clear from the context. Also to simplify notation,
we define Û : Sn++ → Un++ as being defined by Û(X̂) = V̂ (X̂)−T . With this definition,

we see that Φ(X̂, Ŝ) = Û(X̂)T L̂(Ŝ) and that X̂ = Û(X̂)Û(X̂)T .
To prove both (i) and (ii), we consider the second derivative of Φ. Using (3.3)

along with arguments similar to those found in the derivation of V ′(X) and L′(S) in
section 2.3, we see that, for all A,B ∈ Sn,

Φ′ ≡ Φ′(X̂, Ŝ)[A,B] = (U ′)TL + UTL′,(3.5)

where U ≡ Û(X̂) and L ≡ L̂(Ŝ) and U ′ ≡ Û ′(X̂)[A] ∈ Un and L′ ≡ L̂′(Ŝ)[B] ∈ Ln
are, respectively, the unique solutions of the equations

A = U ′UT + U(U ′)T , B = L′LT + L(L′)T .(3.6)

Differentiating once again, we see that

Φ′′ ≡ Φ′′(X̂, Ŝ)[A,B](2) = (U ′′)TL + 2 (U ′)TL′ + UTL′′,(3.7)
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where U ′′ ≡ Û ′′(X̂)[A](2) ∈ Un and L′′ ≡ L̂′′(Ŝ)[B](2) ∈ Ln are, respectively, the
unique solutions of the equations

0 = U ′′UT + 2U ′(U ′)T + U(U ′′)T , 0 = L′′LT + 2L′(L′)T + L(L′′)T .(3.8)

We now prove (i). Letting h denote the function tr(Φ(·, Ŝ)), where Ŝ is fixed, it is
straightforward to verify that h′′(X̂)[A](2) = tr((U ′′)TL), where U ′′ and L are defined
as above. From (3.8), we have

U−1U ′′ + (U ′′)TU−T = −2(U−1U ′)(U−1U ′)T ,(3.9)

which implies that diag(U−1U ′′) ≤ 0, since the right-hand side of (3.9) is negative
semidefinite, which in turn implies that diag(U ′′) ≤ 0, since U−1 ∈ Un++. It follows

that h′′(X̂)[A](2) < 0 unless diag(U ′′) = 0. So suppose diag(U ′′) = 0. Then, by (3.9),
we see

diag
(
(U−1U ′)(U−1U ′)T ) = 0 ⇐⇒ U−1U ′ = 0 ⇐⇒ U ′ = 0 ⇐⇒ A = 0.

Thus, we conclude that for all A �= 0, h′′(X̂)[A](2) < 0. This proves that h is strictly
concave.

We now prove (ii). Using (3.5)–(3.8), Lemma 2.7, and standard properties of the
2-norm and the Frobenius norm, we have

‖Φ′′‖F ≤ ‖(U ′′)TL‖F + 2‖(U ′)TL′‖F + ‖UTL′′‖F
≤ ‖UTL‖ (‖U−1U ′′‖F + 2‖U−1U ′‖F ‖L−1L′‖F + ‖L−1L′′‖F

)
≤ ‖UTL‖(

√
2 ‖(U−1U ′)(U−1U ′)T ‖F + 2‖U−1U ′‖F ‖L−1L′‖F

+
√

2‖(L−1L′)(L−1L′)T ‖F )

≤ ‖UTL‖(
√

2 ‖U−1U ′‖2
F + 2‖U−1U ′‖F ‖L−1L′‖F +

√
2‖L−1L′‖2

F )

≤ ‖UTL‖
(

1√
2
‖U−1AU−T ‖2

F + ‖U−1AU−T ‖F ‖L−1BL−T ‖F

+
1√
2
‖L−1BL−T ‖2

F

)

≤ 1√
2
‖UTL‖ (‖U−1AU−T ‖F + ‖L−1BL−T ‖F

)2
.

The result now follows from the definition of Û(·).
The next result plays a crucial role in the analysis of section 4. In words, the

theorem says that, given a fixed pair (X,S) ∈ SF?
++×SF++, the maximum-determinant

completion X̂(X) also maximizes the function tr(V̂ (·)−1L(S)) among all positive def-
inite completions of X.

Theorem 3.3. Let (X,S) ∈ SF?
++ × SF++, and let V̂ : Sn++ → Ln++ be defined as

in Proposition 3.2. Then

X̂(X) = argmax
{

tr
(
V̂ (Ŷ )−1L(S)

)
: πF (Ŷ ) = X, Ŷ ∈ Sn++

}
.

Proof. Noting that L̂(S) = L(S) and letting L ≡ L(S), we have from Proposition
3.2 that h(Ŷ ) ≡ tr(V̂ (Ŷ )−1L) is a strictly concave function of Ŷ . Hence, since the
constraints of the optimization problem under consideration are convex, any station-
ary point of this problem is a unique global maximum, and so we prove the theorem
by showing that X̂ ≡ X̂(X) is a stationary point.
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The derivative h′(Ŷ ) : Sn → � of h at Ŷ is given by

h′ ≡ h′(Ŷ )[Â] = −tr
(
V̂ −1V̂ ′V̂ −1L

)
(3.10)

for all Â ∈ Sn, where V̂ ≡ V̂ (Ŷ ) and V̂ ′ ≡ V̂ ′(Ŷ )[Â] is the unique solution of the
system

−Ŷ −1ÂŶ −1 = V̂ ′V̂ T + V̂ (V̂ ′)T .(3.11)

Premultiplying (3.11) by V̂ −1, postmultiplying by V̂ −T , and using the fact that Ŷ −1 =
V̂ V̂ T , we see that −V̂ T ÂV̂ = V̂ −1V̂ ′+(V̂ ′)T V̂ −T , which shows that −diag(V̂ T ÂV̂ ) =
2 diag(V̂ −1V̂ ′). Applying this equality to (3.10) and letting W ∈ Sn++ be the diagonal

matrix defined by Wjj = V̂ −1
jj Ljj/2, we deduce that

h′ =
1

2
diag(V̂ T ÂV̂ )T diag(V̂ −1L) = W • V̂ T ÂV̂ = V̂ W V̂ T • Â,

which implies that ∇h(Ŷ ) = V̂ W V̂ T .
Let F̄ ≡ V × V \ F . Considering that the variables Ŷij for (i, j) ∈ F can be

eliminated by the equation πF (Ŷ ) = X, we see that a stationary point Ŷ of the
optimization problem satisfies πF̄ (∇h(Ŷ )) = 0, that is, ∇h(Ŷ ) = V̂ W V̂ T ∈ SF .
Since W ∈ Sn++ is diagonal, V̂ W V̂ T ∈ SF is equivalent to V̂ V̂ T = Ŷ −1 ∈ SF ,

which is precisely the condition that X̂ satisfies uniquely by Theorem 2.1. So X̂ is a
stationary point of the optimization problem, which completes the proof.

3.2. Miscellaneous results. In this subsection, we catalog a few results that
will prove useful in section 4. The first two results give details about the system
H ′(X,S, y)[A,B, c] = (0, 0, R), where H ′ is given as in (2.11).

Lemma 3.4. Let (X,S, y) ∈ SF?
++ ×SF++ ×�m and R ∈ LF be given, and suppose

that (A,B, c) ∈ SF × SF ×�m satisfies H ′(X,S, y)[A,B, c] = (0, 0, R). Then

A •B = (V −1V ′ + (V ′)TV −T ) • V −1BV −T = 0,(3.12)

where V ≡ V (X) and V ′ ≡ V ′(X)[A].
Proof. From (2.11), we see that A(A) = 0 and A∗(c) + B = 0. Hence, A • B =

−A • A∗(c) = −cTA(A) = 0. Also, letting X̂ ≡ X̂(X), X̂ ′ ≡ X̂ ′(X)[A] and using
(2.9), (2.10), (2.2), and the trace-compatibility of (X̂ ′, A,B), we see that

A •B = X̂ ′ •B = −X̂(V ′V T + V (V ′)T )X̂ •B = (V −1V ′ + (V ′)TV −T ) • V −1BV −T ,

which completes the proof.
Proposition 3.5. Let the conditions of Lemma 3.4 hold, and define Q ≡ V −1L−√

ν I, where L ≡ L(S) and ν > 0 is as in (2.7). Suppose that ‖Q‖F <
√
ν/

√
2. Then

‖V −1V ′‖F ≤ 1√
2ν

(√
ν −

√
2 ‖Q‖F

)−1‖V −1(RLT + LRT )V −T ‖F ,(3.13)

‖V −1BV −T ‖F ≤ √
ν(
√
ν −

√
2 ‖Q‖F )−1‖V −1(RLT + LRT )V −T ‖F .(3.14)

Proof. From (2.11), we have B = L′(S)−1[R+
√
ν V ′] = (R+

√
ν V ′)LT +L(R+√

ν V ′)T . Hence, letting R̃ ≡ RLT + LRT ,

V −1BV −T = V −1R̃V −T +
√
ν V −1V ′(V −1L)T +

√
ν V −1L(V −1V ′)T .
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It follows that

1√
ν
V −1BV −T −√

ν
(
V −1V ′ + (V ′)TV −T )

=
1√
ν
V −1R̃V −T + V −1V ′QT + Q(V −1V ′)T ,

which, from (3.12), implies

max

{
1√
ν

∥∥V −1BV −T∥∥
F
,
√
ν
∥∥V −1V ′ + (V ′)TV −T∥∥

F

}

≤
∥∥∥∥ 1√

ν
V −1BV −T −√

ν
(
V −1V ′ + (V ′)TV −T )∥∥∥∥

F

(3.15)

≤ 1√
ν
‖V −1R̃V −T ‖F + 2 ‖Q‖F ‖V −1V ′‖F .

Applying Lemma 2.7 with J = V −1V ′ to (3.15), we see that

√
2
(√

ν −
√

2 ‖Q‖F
)‖V −1V ′‖F ≤ 1√

ν
‖V −1R̃V −T ‖F ,

which proves (3.13). To prove (3.14), we combine (3.13) and (3.15) to obtain

1√
ν
‖V −1BV −T ‖F ≤ 1√

ν
‖V −1R̃V −T ‖F

(
1 +

√
2 ‖Q‖F√

ν −√
2‖Q‖F

)

=
(√

ν −
√

2‖Q‖F
)−1‖V −1R̃V −T ‖F .

We next establish several inequalities that relate to bounds on the maximum and
minimum eigenvalues of X̂(X)S for (X,S) ∈ SF?

++ × SF++.

Proposition 3.6. Let (X,S) ∈ SF?
++ ×SF++, and define X̂ ≡ X̂(X), V ≡ V (X),

L ≡ L(S), and ρ ≡ ρ(X,S). Suppose ‖V −1L − ρ I‖ ≤ γ ρ for some γ ≥ 0 satisfying
γ2 + 2γ < 1. Then the following hold:

(i) ‖V −1L‖ ≤ (γ + 1)ρ;
(ii) ‖L−1V ‖ ≤ (1 − (γ2 + 2γ))−1/2ρ−1.

Proof. Let Q ≡ V −1L− ρ I, and note that

‖Q‖2 = ‖QTQ‖ = ‖LTV −TV −1L− ρV −1L− ρLTV −T + ρ2I‖
= ‖LTV −TV −1L− ρ2I − ρ(Q + QT )‖.

Hence, from (2.2), (2.3), standard properties of ‖ · ‖, and the assumptions of the
proposition,

‖X̂S − ρ2I‖ = ‖LTV −TV −1L− ρ2I‖
= ‖LTV −TV −1L− ρ2I − ρ(Q + QT ) + ρ(Q + QT )‖
≤ ‖Q‖2 + 2 ρ ‖Q‖ ≤ (γ2 + 2γ)ρ2.(3.16)

Recall from the definition of ρ that X̂ • S = X • S = nρ2, that is, nρ2 equals the
sum of the eigenvalues of X̂S. It follows that λmax[X̂S] ≥ ρ2 and that λmin[X̂S] ≤ ρ2.
Hence,

‖X̂S − ρ2I‖ = max{λmax[X̂S] − ρ2, ρ2 − λmin[X̂S]}.
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Thus, using (3.16), (2.2), and (2.3), we have

‖V −1L‖2 =‖LTV −TV −1L‖ = ‖X̂S‖ = λmax[X̂S] ≤ ‖X̂S − ρ2I‖ + ρ2 ≤ (γ2 + 2γ + 1)ρ2,

which proves (i). Similarly,

‖L−1V ‖2 = ‖V TL−TL−1V ‖ = ‖S−1X̂−1‖ = λmin[X̂S]−1

≤ (ρ2 − ‖X̂S − ρ2I‖)−1 ≤ (ρ2 − (γ2 + 2γ)ρ2
)−1

,

which proves (ii).
We remark that the condition (X,S, y) ∈ N (γ) implies that the hypotheses of

Proposition 3.6 hold since ‖V −1L− ρ I‖ ≤ ‖V −1L− ρ I‖F .
Finally, we state the following proposition, which follows as a direct extension of

Lemmas 3.4 and 3.5 of Monteiro and Tsuchiya [24].
Proposition 3.7. Let (X,S) ∈ SF?

++ × SF++ and X̄, S̄ ∈ Sn. Define X̂ ≡ X̂(X),
V ≡ V (X), and L ≡ L(S). Suppose that there exists some τ ∈ (0, 1) such that

max
{‖V T (X̄ − X̂)V ‖, ‖L−1(S̄ − S)L−T ‖} ≤ τ.

Then X̄, S̄ ∈ Sn++,

max
{‖V −1V̄ ‖, ‖V̄ −1V ‖, ‖L−1L̄‖, ‖L̄−1L‖} ≤ 1√

1 − τ
, and ‖V̄ −1L̄‖ ≤ ‖V −1L‖

1 − τ
,

where V̄ = chol(X̄−1) and L̄ = chol(S̄).

4. The partial primal-dual algorithm. The algorithm described in this sec-
tion is based on the same ideas that typical path-following algorithms are based on—
namely, the use of a Newton direction to decrease the duality gap, and a bound on
the step-size to ensure proximity to the central path. Using these ideas, we establish
the polynomiality of the algorithm in Theorem 4.9.

Suppose that (X,S, y) ∈ N (γ), where γ ∈ [0, 1/6]. Then, for a fixed constant
0 ≤ σ < 1, we define the Newton direction (∆X,∆S,∆y) at (X,S, y) as the solution
of the system

H ′(X,S, y)[∆X,∆S,∆y] = (0, 0, σ ρ V − L),(4.1)

where ν ≡ ρ2 is implicit in the definition of H, ρ ≡ ρ(X,S), V ≡ V (X), and L ≡ L(S).
Note that (∆X,∆S,∆y) is well defined by Theorem 2.10. We also make the following
definitions for all α ∈ � such that (Xα, Sα) ∈ SF?

+ × SF+ :

(Xα, Sα, yα) ≡ (X,S, y) + α(∆X,∆S,∆y),

µα ≡ µ(Xα, Sα),

ρα ≡ ρ(Xα, Sα).

We have the following proposition.
Proposition 4.1. Let (X,S, y) ∈ N(γ), and define µ ≡ µ(X,S), ρ ≡ ρ(X,S),

and ζ = (∆X • S + X • ∆S)(nµ)−1. Then for all α ∈ � such that (Xα, Sα, yα) ∈
SF?

+ × SF+ ,

µα = µ(1 + α ζ), ρα ≤ ρ
(

1 +
α ζ

2

)
.(4.2)
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Proof. Note that ∆X • ∆S = 0 from (3.12). Using (2.1), we thus have

µα =
(X + α∆X) • (S + α∆S)

n
=

X • S + αζnµ

n
= µ + αζµ,

which proves the equality. Similarly, using (2.5), we see that

ρα = ρ(1 + α ζ)1/2 ≤ ρ
(

1 +
α ζ

2

)
,

where the inequality follows from the real-number relation 1 + 2x ≤ 1 + 2x+x2.
With regard to the above proposition, it is important to mention that we antici-

pate that ζ is negative due to the fact that σ < 1, which would imply that µα < µ and
ρα < ρ; that is, the duality gap decreases along the direction (∆X,∆S,∆y). This,
however, must be proven under certain assumptions, as will be shown below. For the
discussion of the generic algorithm next, it would be useful for the reader to assume
that ζ < 0.

We now state the generic primal-dual path-following algorithm that we study in
this section.

Algorithm SDP.
Let ε > 0, γ ∈ [0, 1/6], σ ∈ [0, 1), and (X0, S0, y0) ∈ N (γ) be given. Set k = 0.
Repeat until Xk • Sk ≤ ε do

1. Set (X,S, y) ≡ (Xk, Sk, yk) and ρ ≡ ρ(X,S).
2. Compute the Newton direction (∆X,∆S,∆y) at (X,S, y).
3. Choose α ≥ 0 such that (Xα, Sα, yα) ∈ N (γ).
4. Set (Xk+1, Sk+1, yk+1) = (Xα, Sα, yα) and increment k by 1.

End
The remainder of this section is devoted to determining constants γ and σ and a
constant step-size α such that Algorithm SDP terminates within a polynomial number
of loops, where the polynomial depends on n, ε, and X0 • S0.

To this end, we introduce constants γ ≥ 0, δ ∈ [0,
√
n), and τ ∈ (0, 1) satisfying

γ ≤ 1

6
, 0 < 1 − (γ2 + 2γ) ≤ 1√

2
(4.3)

and

2 (γ + 1)
(
δ2 + γ2

)1/2 ≤ (1 −
√

2 γ
) (

1 − (γ2 + 2 γ)
)
τ.(4.4)

Note that, for example, the triple (γ, δ, τ) = (0.138, 0.138, 0.79) satisfies (4.3) and
(4.4) irrespective of the value of n. We also define

σ ≡ 1 − δ√
n
.(4.5)

In addition, we make the mild assumption that n is large enough so that

δ
√
n ≥ τγ(γ + 1),(4.6)

σ ≥ τθ,(4.7)

√
n ≥ γ2(σ − τθ)(1 − τ)

2
√

2 τ2(γ + 1)
,(4.8)

where θ ≡ 1 + γ(γ + 1)/(2n). In fact, taking (γ, δ, τ) = (0.138, 0.138, 0.79) as above
shows that (4.6)–(4.8) are also satisfied for all values of n.
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Lemma 4.2. Define V ≡ V (X), L ≡ L(S), and ρ ≡ ρ(X,S), and suppose that
(X,S) ∈ SF?

++ × SF++ satisfies ‖V −1L− ρI‖F ≤ γρ. Then

‖σρI − V −1L‖F ≤ (δ2 + γ2)1/2ρ.

Proof. Using the definition of the Frobenius norm, we have

‖σρI − V −1L‖2
F = ‖ρI − V −1L + (σ − 1)ρI‖2

F

= ‖ρI − V −1L‖2
F + 2(σ − 1)ρ(ρI − V −1L) • I + (σ − 1)2nρ2,

= ‖ρI − V −1L‖2
F + 2(σ − 1)ρ

(
nρ− tr(V −1L)

)
+ (σ − 1)2nρ2

≤ γ2ρ2 + (σ − 1)2nρ2,

where the inequality follows by assumption and by the second statement of Proposition
3.1. Since (σ − 1)2n = δ2 by (4.5), the result follows.

Proposition 4.3. Let (X,S, y) ∈ N (γ). Then

max
{‖V T X̂ ′V ‖F , ‖L−1∆SL−T ‖F

} ≤ τ,

where X̂ ′ ≡ X̂ ′(X)[∆X]. As a result, X̂ + X̂ ′ ∈ Sn++ and S + ∆S ∈ SF++, where

X̂ ≡ X̂(X).
Proof. Let V ≡ V (X), L ≡ L(S), and ρ ≡ ρ(X,S). Also, letting V ′ ≡ V ′(X)[∆X]

and using (2.10) and (2.2), we see that

−V T X̂ ′V = V −1V ′ + (V ′)TV −T =⇒ ‖V T X̂ ′V ‖F ≤ 2 ‖V −1V ′‖F .
Note that the hypotheses of Proposition 3.5 hold, with R ≡ σρV − L, ν ≡ ρ2, and
Q ≡ V −1L − ρI. Hence, using (3.13), standard properties of norms, (3.1), Lemma
4.2, Proposition 3.6(i), (4.3), and (4.4), we have

2 ‖V −1V ′‖F ≤
√

2

ρ

(
ρ−

√
2 ‖Q‖F

)−1‖V −1((σρV − L)LT + L(σρV − L)T )V −T ‖F

≤ 2
√

2

ρ

(
ρ−

√
2 γ ρ

)−1‖V −1(σρV − L)LTV −T ‖F

≤ 2
√

2

ρ2

(
1 −

√
2 γ
)−1‖σρI − V −1L‖F ‖V −1L‖

≤ 2
√

2
(
1 −

√
2 γ
)−1(

δ2 + γ2
)1/2

(γ + 1)

≤ 2
(
1 − (γ2 + 2 γ)

)−1(
1 −

√
2 γ
)−1(

δ2 + γ2
)1/2

(γ + 1) ≤ τ.(4.9)

Now using (3.14) and Proposition 3.6(ii) along with similar arguments, we have

‖L−1∆SL−T ‖F ≤ ‖L−1V ‖2 ‖V −1∆SV −T ‖F
≤ ‖L−1V ‖2 ρ

(
ρ−

√
2 ‖Q‖F

)−1‖V −1((σρV − L)LT + L(σρV − L)T )V −T ‖F
≤ 2

(
1 − (γ2 + 2γ)

)−1 (
1 −

√
2 γ
)−1 (

δ2 + γ2
)1/2

(γ + 1) ≤ τ,

which concludes the proof of the first statement of the proposition. The second
statement follows from Proposition 3.7, with X̄ = X̂ + X̂ ′ and S̄ = S + ∆S (and the
fact that ∆S ∈ SF ).

Corollary 4.4. Let (X,S, y) ∈ N (γ). Then for all 0 ≤ α ≤ 1, (Xα, Sα) ∈
SF?

++ × SF++.



156 SAMUEL BURER

Proof. By Proposition 4.3, we see that S1 = S + ∆S ∈ SF++. Since Sα is a convex
combination of S and S1 for any 0 ≤ α ≤ 1, it follows that Sα ∈ SF++. Likewise,

X̂ + αX̂ ′ ∈ Sn++ for all 0 ≤ α ≤ 1. Noting that, by Theorem 2.1 and (2.9),

πF (X̂ + αX̂ ′) = X + α∆X = Xα,

we see that X̂ + αX̂ ′ is a positive definite completion of Xα, which implies Xα ∈
SF?

++.
Lemma 4.5. Let (X,S, y) ∈ N (γ), and define V ≡ V (X), L ≡ L(S), ρ ≡ ρ(X,S),

V ′ ≡ V ′(X)[∆X], and L′ ≡ L′(S)[∆S]. Also let Γ be defined as in Proposition 3.1.
Then

V −1L • (V −1L′ − V −1V ′V −1L
) ≤ ((σ − 1)n +

1

2
τ(γ + 1)γ

)
ρ2,(4.10)

Γ

n
V −1L • (V −1L′ − V −1V ′V −1L

)− ρ tr
(
V −1V ′(ρI − V −1L)

)
≤
(

(σ − 1)Γ +
1

2
τγ2

(
1 +

1

2n
γ(γ + 1)

))
ρ2.(4.11)

Proof. We first prove some simple bounds that will allow us to prove (4.10) and
(4.11) more easily. Defining P ≡ V −1V ′ (ρI − V −1L

)
and using standard properties

of tr(·), ‖ · ‖, and ‖ · ‖F along with (3.1), Proposition 3.6(i), and (4.9) (which appears
inside the proof of Proposition 4.3), we see that

|V −1L • P |= |(V −1V ′)T (V −1L) • (ρI − V −1L)|≤ ‖V −1V ′‖F ‖V −1L‖ ‖ρI − V −1L‖F
≤ 1

2
τ(γ + 1)γρ2.(4.12)

Similarly,

|(V −1L− ρI) • P | ≤ ‖V −1V ′‖F ‖V −1L− ρI‖2
F ≤ 1

2
τγ2ρ2.(4.13)

Now, the equation (4.1) for the Newton direction (∆X,∆S,∆y) shows that L′ −
ρV ′ = σρV −L, which implies V −1L′ = σρI−V −1L+ρV −1V ′. Substituting for V −1L′

in the left-hand side of (4.10) and using (2.6), the second statement of Proposition
3.1, and (4.12), we see that

V −1L • (V −1L′ − V −1V ′V −1L
)

= V −1L • (σρI − V −1L + ρV −1V ′ − V −1V ′V −1L
)

= σρ tr(V −1L) − ‖V −1L‖2
F + V −1L • P

≤ (σ − 1)nρ2 +
1

2
τ(γ + 1)γρ2,

as desired. Using similar arguments along with (4.13) and the fact that Γ/n = 1 −
γ2/(2n), (4.11) is proven as follows:

Γ

n
V −1L • (V −1L′ − V −1V ′V −1L

)− ρ tr
(
V −1V ′(ρI − V −1L)

)
=

Γ

n
σρ tr(V −1L) − Γ

n
‖V −1L‖2

F +

(
Γ

n
V −1L− ρI

)
• P

=
Γ

n
σρ tr(V −1L) − Γ

n
‖V −1L‖2

F +
(
V −1L− ρI

) • P − γ2

2n
V −1L • P

≤ Γσρ2 − Γρ2 +
1

2
τγ2ρ2 +

1

4n
τ(γ + 1)γ3ρ2.
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Proposition 4.6. Let (X,S, y) ∈ N (γ), and define µ ≡ µ(X,S). Then

ζ ≡ ∆X • S + X • ∆S

nµ
≤ − δ√

n
.

Hence, µ(·, ·) and ρ(·, ·) decrease from (X,S, y) along the direction (∆X,∆S,∆y).
Proof. Let X̂ ≡ X̂(X), X̂ ′ ≡ X̂ ′(X)[∆X], V ≡ V (X), V ′ ≡ V ′(X)[∆X], L ≡

L(S), L′ ≡ L′(S)[∆S], and ρ ≡ ρ(X,S). Then using Theorem 2.1, (2.9) with A = ∆X,
the fact that S ∈ SF and ∆S ∈ SF , (2.10) with A = ∆X, (2.8) with B = ∆S, (2.2),
and (2.3), we see that

∆X • S + X • ∆S = X̂ ′ • S + X̂ • ∆S

=
(− X̂(V ′V T + V (V ′)T )X̂

) • LLT +V −TV −1 • (L′LT + L(L′)T )

= 2V −TV −1 • L′LT − 2 X̂V ′V T X̂ • LLT
= 2V −TV −1 • L′LT − 2V −TV −1V ′V −1 • LLT
= 2V −1L • (V −1L′ − V −1V ′V −1L

)
(4.14)

≤ 2

(
(σ − 1)n +

1

2
τ(γ + 1)γ

)
ρ2,

where the inequality follows from (4.10). By the definition of ζ, the inequality just
proven, (4.5), and (4.6), we have

ζ ≤ 2(σ − 1) + τ(γ + 1)
γ

n
≤ − 2δ√

n
+

δ√
n

= − δ√
n
.

The conclusion that the duality gap measures µ(·, ·) and ρ(·, ·) both decrease along
(∆X,∆S,∆y) can now be seen from Proposition 4.1.

Proposition 4.7. Let (X,S, y) ∈ N (γ), and define the constant Γ as in Propo-
sition 3.1 and the functions Φ, V̂ , and L̂ as in Proposition 3.2. Suppose that α ≥ 0
satisfies the inequality

α ≤ γ2(σ − τθ)(1 − τ)

2
√

2 τ2(γ + 1)

1√
n
,(4.15)

where θ ≡ 1 + γ(γ + 1)/(2n). Then

tr(Φ(X̂ + αX̂ ′, Sα)) = tr(V̂ (X̂ + αX̂ ′)−1L̂(Sα)) ≥ Γρα,

where X̂ ≡ X̂(X) and X̂ ′ ≡ X̂ ′(X)[∆X].
Proof. We first remark that the right-hand side of (4.15) is nonnegative by (4.7),

and is less than or equal to 1 by (4.8), and thus 0 ≤ α ≤ 1, which clearly shows
that X̂ + αX̂ ′ ∈ Sn++ and Sα ∈ Sn++ by Proposition 4.3. Hence, Φ is defined at

(X̂ + αX̂ ′, Sα).
Define V̂ ≡ V̂ (X̂), V̂ ′ ≡ V̂ ′(X̂)[∆X], L̂ ≡ L̂(S), and L̂ ≡ L̂′(S)[∆S]. In addition,

define V ≡ V (X), V ′ ≡ V ′(X)[∆X], L ≡ L(S), and L′ ≡ L′(S)[∆S]. Noting that
V (·) = V̂ (X̂(·)) and that L̂(·) is identical to L(·) on the domain SF++, we see that

V = V̂ , V ′ = V̂ ′, L = L̂, L′ = L̂′.(4.16)

The Taylor integral formula implies that

Φ(X̂ + αX̂ ′, Sα) = Φ(X̂, S) + αΦ′(X̂, S)[X̂ ′,∆S] + α2 Tα,(4.17)
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where

Tα ≡
∫ 1

0

(1 − t)Φ′′(X̂ + tαX̂ ′, Stα)[X̂ ′,∆S](2)dt.(4.18)

Analyzing the first two components of (4.17), we first see by (4.16) that Φ(X̂, S) =
V̂ −1L̂ = V −1L. Secondly, letting ρ ≡ ρ(X,S), we have

Φ′(X̂, S)[X̂ ′,∆S] = −V̂ −1V̂ ′V̂ −1L̂ + V̂ −1L̂′

= V −1L′ − V −1V ′V −1L

= σρI − V −1L + V −1V ′(ρI − V −1L),

where the third equality comes from substituting for V −1L′ as was done in the proof
of Lemma 4.5. Hence, we can rewrite (4.17) as

Φ(X̂ + αX̂ ′, Sα) = V −1L + α
(
σρI − V −1L + V −1V ′(ρI − V −1L)

)
+ α2 Tα

= (1 − α)V −1L + ασρI + αP + α2 Tα,(4.19)

where P ≡ V −1V ′(ρI − V −1L). Taking the trace of (4.19) and using Proposition 3.1
and Proposition 4.1, where ζ ≡ (∆X • S + X • ∆S)/(nρ2), we see

tr
(
Φ(X̂ + αX̂ ′, Sα)

) ≥ (1 − α)Γρ + ασnρ + αtr(P ) + α2 tr(Tα)

≥ Γ
(
ρα − αρ

(
1 +

ζ

2

))
+ ασnρ + αtr(P ) + α2 tr(Tα)

= Γρα − αΓρ

(
1 +

1

2nρ2
(∆X • S + X • ∆S)

)
+ ασnρ + αtr(P ) + α2 tr(Tα)

= Γρα − αΓρ + ασnρ + αρ−1

(
ρtr(P ) − Γ

2n
(∆X • S + X • ∆S)

)
+ α2 tr(Tα).

From (4.14) (which is inside the proof of Proposition 4.6), we have ∆X •S+X •∆S =
2V −1L • (V −1L′ − V −1V ′V −1L). Thus, letting θ ≡ 1 + γ(γ + 1)/(2n), we can apply
(4.11) to the above inequality to get

tr
(
Φ(X̂ + αX̂ ′, Sα)

) ≥ Γρα − αΓρ + ασnρ + αρ

(
−(σ − 1)Γ − τγ2θ

2

)
+ α2 tr(Tα)

= Γρα + ασnρ + αρ

(
−σΓ − τγ2θ

2

)
+ α2 tr(Tα)

= Γρα + αρ

(
σγ2

2
− τγ2θ

2

)
+ α2 tr(Tα)

= Γρα +
αργ2(σ − τθ)

2
+ α2 tr(Tα),

where the second equality comes from the definition Γ ≡ n− γ2/2.
From the above inequality, the statement of the proposition will hold if

ργ2(σ − τθ)

2
+ α tr(Tα) ≥ 0,(4.20)

and so we now devote our efforts to establishing (4.20). We start by providing a bound
on ‖Tα‖F , which can be obtained as follows from (4.18), the standard properties of
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integration, and Proposition 3.2(ii):

‖Tα‖F ≤
∫ 1

0

(1 − t)
∥∥Φ′′(X̂ + tαX̂ ′, Stα)[X̂ ′,∆S](2)

∥∥
F
dt

≤ 1√
2

∫ 1

0

(1 − t)‖V̂ −1
tα L̂tα‖

(‖V̂ T
tαX̂

′V̂tα‖F + ‖L̂−1
tα ∆SL̂−T

tα ‖F
)2
dt

≤ 1√
2

∫ 1

0

(1 − t)‖V̂ −1
tα L̂tα‖

(‖V −1V̂tα‖2‖V T X̂ ′V ‖F

+ ‖L̂−1
tα L‖2‖L−1∆SL−T ‖F

)2
dt,

where V̂tα ≡ V̂ (X̂ + tαX̂ ′) and L̂tα ≡ L̂(Stα). We note that the hypotheses of Propo-
sition 3.7 hold with (X̂, S), (X̂+tαX̂ ′, Stα), and the scalar tατ due to Proposition 4.3.
Now using Propositions 4.3, 3.7, and 3.6(i) as well as (4.16) and simple integration
with respect to t, the above inequality shows that

‖Tα‖F ≤ 1√
2

∫ 1

0

(1 − t)
‖V̂ −1L̂‖
1 − tατ

(
(1 − tατ)−1τ + (1 − tατ)−1τ

)2
dt

= 2
√

2 τ2‖V −1L‖
∫ 1

0

1 − t

(1 − tατ)3
dt

≤ 2
√

2 τ2 ((γ + 1)ρ) (2(1 − ατ))−1

≤
√

2 τ2(1 − τ)−1(γ + 1)ρ.

Hence,

ργ2(σ − τθ)

2
+ αtr(Tα) ≥ ργ2(σ − τθ)

2
− α |tr(Tα)| ≥ ργ2(σ − τθ)

2
− α

√
n ‖Tα‖F

≥ ργ2(σ − τθ)

2
− α

√
2τ2(1 − τ)−1(γ + 1)

√
nρ

= ρ

(
γ2(σ − τθ)

2
− α

√
2τ2(1 − τ)−1(γ + 1)

√
n

)
≥ 0,

where the last inequality follows from (4.15). This completes the proof of the propo-
sition.

Corollary 4.8. Let (X,S, y) ∈ N (γ), and suppose that α ≥ 0 satisfies (4.15).
Then (Xα, Sα, yα) ∈ N (γ).

Proof. As discussed in the proof of Proposition 4.7, we have α ≤ 1, and so
(Xα, Sα) ∈ SF?

++ × SF++ by Corollary 4.4. In addition, the Newton system defining
(∆X,∆S,∆y) clearly shows that (Xα, Sα, yα) ∈ F0(P ) ×F0(D).

As was shown in the proof of Corollary 4.4, X̂+αX̂ ′ is a positive definite comple-
tion of Xα, where X̂ ≡ X̂(X) and X̂ ′ ≡ X̂ ′(X)[∆X]. By Theorem 3.3, we have that,
among all positive definite completions of Xα, the maximum-determinant completion
X̂(Xα) of Xα maximizes the function tr(V̂ (·)−1L̂(Sα)), where V̂ (·) and L̂(·) are as in
Proposition 3.2. Thus, using the fact that V (·) = V̂ (X̂(·)) and combining Theorem
3.3 and Proposition 4.7, we see

tr(V (Xα)−1L(Sα)) = tr(V̂ (X̂(Xα))−1L̂(Sα)) ≥ tr(V̂ (X̂ + αX̂ ′)−1L̂(Sα)) ≥ Γρα.

Combining this inequality with the fact that (Xα, Sα, yα) ∈ F0(P ) × F0(D), and
applying Proposition 3.1, we conclude that (Xα, Sα, yα) ∈ N (γ).
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Theorem 4.9. Let n ≥ 1 and constants γ ≥ 0, δ ∈ [0,
√
n), and τ ∈ (0, 1) be

given such that (4.3)–(4.8) are satisfied. Suppose that Algorithm SDP is initialized
with (X0, S0, y0) ∈ N (γ) and a tolerance ε ≥ 0, and suppose that the constant step-
size α ≥ 0 is used in each iteration of the algorithm, where α is given by the right-hand
side of (4.15). Then, for each k ≥ 0, the sequence {(Xk, Sk, yk)}k≥0 produced by the
algorithm satisfies the following:

(i) (Xk, Sk, yk) ∈ N (γ);
(ii) µ(Xk, Sk) ≤ (1 − α δ/

√
n)kµ(X0, S0).

As a consequence, Algorithm SDP terminates with a point (Xk, Sk, yk) satisfying
Xk • Sk ≤ ε in at most O(n log(X0 • S0/ε)) iterations.

Proof. Item (i) follows from Corollary 4.8 and induction on k. Likewise, item
(ii) follows from the combination of Propositions 4.1 and 4.6 along with induction on
k. The bound on the number of iterations now follows from (ii) and the standard
argument that shows that the duality gap is reduced in each iteration by a factor on
the order of O(1 − α δ/

√
n), which is O(1 − 1/n) due to (4.15).

5. Computational issues and results. In this section, we discuss several com-
putational issues related to Algorithm SDP, and then present computational results
comparing our method with three other SDP implementations.

5.1. Implementation features of Algorithm SDP. We now demonstrate
how the theoretical presentation of Algorithm SDP in section 4 can be specified into
a practical implementation.

First, as is typical with practical primal-dual interior-point algorithms, we imple-
ment Algorithm SDP as an infeasible method. Thus, we do not require full primal-dual
feasibility of the iterates (X,S, y) but rather require only X ∈ SF?

++ and S ∈ SF++ and
then define the Newton direction (∆X,∆S,∆y) by

H ′(X,S, y)[∆X,∆S,∆y] = (b−A(X), C −A∗(y) − S, σ ρ V − L),(5.1)

where ρ ≡ ρ(X,S) and 0 ≤ σ < 1, instead of by (4.1). In particular, this makes the
choice of initial iterate trivial. (In fact it is chosen as described in the SDPT3 user’s
guide [31] in all of the computational results presented in the following subsections.)

Second, we choose a different stopping criterion than that originally given for
Algorithm SDP. A more practical stopping criterion is based on the relative duality
gap and relative feasibility of the current iterate (X,S, y), which we define respectively
as

X • S
1 + (|C •X| + |bT y|)/2

and max

{‖b−A(X)‖
1 + ‖b‖ ,

‖C −A∗(y) − S‖F
1 + ‖C‖F

}
.

Target values for the gap and feasibility can then be specified at run time.
Third, in our implementation of Algorithm SDP, we do not bother to stay in the

neighborhood N (γ), since our computational experience indicates that this does not
yield a substantial practical improvement. Instead, we essentially take α as large as
possible, while keeping (Xα, Sα, yα) in SF?

++ × SF++ × �m. In fact, as is common in
SDP implementations, we differentiate two step-sizes, αp for the primal and αd for
the dual. Then, for the primal and dual separately, the actual step-size is calculated
by estimating the infeasible boundary step-size ᾱ to within an absolute accuracy of
1.0e−2 using a simple bisection method and then choosing the step-size slightly less
than min(ᾱ, 1).
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Fourth, we have found it advantageous for reducing the duality gap in the early
stages of Algorithm SDP to update X and S in each iteration by performing an
alternative linesearch in the spaces of V and L. More specifically, we choose αp ≤ 1
and αd ≤ 1 so that Lαd

≡ L(S) + αdL
′(S)[∆S] and Vαp ≡ V (X) + αpV

′(X)[∆X]
are close to the boundary of LF++, and we then define Xαp = πF (V −T

αp
V −1
αp

) and

Sαd
= Lαd

LTαd
. (We note that the calculation of Xαp and Sαd

can be done efficiently;
see below.) This update method, however, does not effectively achieve feasibility, and
so it is always necessary to revert back to the typical linesearch in the space of X
and S.

Fifth, our choice of σ in each iteration is adaptive rather than constant as in the
statement of Algorithm SDP. Roughly speaking, we choose σ conservatively whenever
we are experiencing small step-sizes, but then more aggressively when our step-sizes
are larger. In particular, we set σ = 1 − γ min(αp, αd), where αp and αd are the suc-
cessful step-sizes of the preceding iteration and γ ∈ [0.1, 0.3] is an adaptive parameter
that is incrementally increased when step-sizes satisfying αp = αd = 1 are encoun-
tered, and incrementally reduced otherwise. As such, our typical values for σ are
smaller than those for other SDP implementations. (For example, SDPT3 employs
a constant γ = 0.9.) In addition, it is not immediately clear whether a predictor-
corrector approach will improve the choice of σ or even whether such an approach
would be computationally efficient (see following subsections), and so our current
implementation of Algorithm SDP does not use a predictor-corrector strategy.

Finally, we mention some details regarding the calculation of the Newton direction
(∆X,∆S,∆y). As with other primal-dual path-following algorithms, the calculation
can be reduced to the solution of the system M∆y = h, where M is the so-called
Schur complement matrix and h is in accordance with the system (5.1). Here, M is
the m ×m matrix representation of the linear operator −A ◦ V ′(X)−1 ◦ L′(S) ◦ A∗,
so that M is positive definite by Corollary 2.9. Two fundamental techniques for cal-
culating ∆y can then be considered: either (1) solution of the system via forward
and backward substitution after the direct formation and factorization of M ; or (2)
solution of the equation via an iterative method. We present numerical results for
both methods in later subsections. It is important to note, however, that M has
no inherent sparsity (as is typical with other methods) and that M is nonsymmetric
(which is atypical). Hence, the first method for calculating ∆y requires Gaussian
elimination with pivoting, and the second requires an efficient iterative method for
nonsymmetric systems (like BiCGSTAB, which we have chosen in the computational
results). Thus, the ill-conditioning of M near optimality can have a negative impact
upon both methods. A natural way to reduce this impact in the case of BiCGSTAB
is to perform some pre-conditioning of the linear system, but this has not been imple-
mented in the current version of Algorithm SDP since more investigation is necessary
to develop reasonable preconditioning strategies.

Having described the key implementation choices of Algorithm SDP, we now
consider the basic operations of the algorithm and in particular discuss their compu-
tational complexities. From the statement of Algorithm SDP and the definition of
the Newton direction, we see that the main operations are checking X ∈ SF?

++ and
S ∈ SF++ and evaluating V (X), V ′(X)−1[N ], L(S), and L′(S)[B] for any N ∈ LF
and B ∈ SF . To describe the complexity of these operations, we introduce a few
definitions. For each j = 1, . . . , n we define

Kj ≡ {i ∈ V : (i, j) ∈ F, i ≥ j}.
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That is, for each j = 1, . . . , n, Kj is the set of row indices of the jth column of the
lower part of F . We have the following fact (detailed in Fukuda et al. [9]), which
expresses the chordal structure F as a union of dense blocks, or cliques:

F =
n⋃
j=1

Kj ×Kj .(5.2)

We also define

f2 ≡
n∑
j=1

|Kj |2.

A common way to check whether S is in SF++ is to simply attempt the calculation
of L(S) (then S ∈ SF++ if and only if the calculation is successful), and standard
methods for calculating L(S) show that the time required is O(f2). Moreover, in a
similar manner, the defining equation (2.8) shows that L′(S)[B] can also be calculated
in time O(f2). Hence, each of the key operations involving S is O(f2).

To calculate the times required for the key operations involving X, we introduce
some additional notation and ideas. First, for any P,Q ⊆ V and any W ∈ Sn, we let
WPQ ∈ �|P |×|Q| denote the matrix obtained from W by deleting all rows p �∈ P and
all columns q �∈ Q. Second, it is clear that (5.2) can be simplified to F = ∪�r=1Cr×Cr,
where {Cr}�r=1 are the maximal members of {Kj}nj=1, i.e., those members of {Kj}nj=1

that are not properly contained in any other members. We then define

f3 ≡
�∑

r=1

|Cr|3

and have the following critical theorem, proved in [12].
Theorem 5.1. Let X ∈ SF . Then

(i) X ∈ SF?
+ if and only if XCrCr

∈ S |Cr|
+ for all r = 1, . . . , >;

(ii) X ∈ SF?
++ if and only if XCrCr

∈ S |Cr|
++ for all r = 1, . . . , >.

This theorem shows immediately that testing whether X ∈ SF?
++ can be done in

time O(f3) by simply attempting the factorizations of the submatrices XCrCr
of X.

Next, we determine the time required for V (X) and V ′(X)−1[A] by considering
the following proposition, which gives a formula for V (X) that will be convenient for
computation. In the proposition, πFl is the operator that is defined similarly to πF

except that it projects onto LF instead of SF .
Proposition 5.2. Let X ∈ SF?

++. Then V ≡ V (X) ∈ LF++ uniquely satisfies the
equation

πFl(XV ) = πFl(V −T ).(5.3)

Proof. We first consider solving the simpler equation πFl(XQ) = 0 for Q ∈ LF .
Because the jth column of this equation can be expressed compactly as XKjKjqj = 0,
where qj is the nonzero part of Q·j , we conclude from Theorem 5.1(ii) that qj = 0,
which implies that Q = 0.

Now suppose that V1, V2 ∈ LF++ each satisfy (5.3), and note that the right-hand
side of (5.3) is a diagonal matrix. For i = 1, 2, let Di be the diagonal matrix defined
by the diagonal entries of Vi. Then (5.3) implies that πFl(XV1D1) = πFl(XV2D2)
or, equivalently, that πFl(X(V1D1 − V2D2)) = 0. Using the result of the previous
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paragraph, this shows V1D1 = V2D2. Examining the jjth position of this equation
and employing the definition of Di, we see that [V1]jj = [V2]jj , which in turn implies
that D1 = D2 and hence V1 = V2. In other words, at most one V ∈ LF++ satisfies
(5.3).

We now show that V ≡ V (X) satisfies (5.3), which will complete the proof of
the proposition. For i ≥ j such that (i, j) ∈ F , consider the ijth entry of the matrix
(X̂ −X)V , where X̂ ≡ X̂(X):

[(X̂ −X)V ]ij =

n∑
k=j

[X̂ −X]ikVkj .

We claim that the above expression equals zero. So suppose for contradiction that
it is nonzero. Then there exists k ≥ j such that [X̂ − X]ik �= 0 and Vkj �= 0.

Because πF (X̂) = X and V ∈ LF++, this implies that (i, k) �∈ F and (k, j) ∈ F .
However, due to the chordal structure of F and the fact that the ordering (1, . . . , n)
is a perfect elimination ordering for F , we have that (i, j), (k, j) ∈ F imply (i, k) ∈ F ,
which is a contradiction. Hence, the above expression equals 0. Said differently,
we have πFl((X̂ − X)V ) = 0, which implies πFl(XV ) = πFl(X̂V ) = πFl(V −T ), as
desired.

As the proposition and its proof indicate, the nonzero part vj ∈ �|Kj | of the jth
column of V is simply the solution of the system XKjKjvj = V −1

jj e1, where e1 ∈ �|Kj |

has a one in its first position and zeros elsewhere. Hence, as long as the factorizations
of XKjKj for j = 1, . . . , n are readily available, the calculation of V can be done in
time O(f2).

Are these factorizations readily available, however? The operation to verify X ∈
SF?

++ yields the factorizations of XCrCr
only for r = 1, . . . , >, and so the factorizations

of XKjKj are not explicitly available. This is not a significant obstacle, however,
since it is possible to reorder the vertices V (in a preprocessing phase, for example) so
that factorizations of the matrices XKjKj

are embedded in a natural manner in the
upper Cholesky factorizations of the matrices XCrCr . Moreover, this reordering can
be done without altering the chordal structure of F or the property that (1, . . . , n) is
a perfect elimination ordering. This property is discussed in detail in section 2.1 of [9]
and section 2.2 of [26], where it is described as a perfect elimination ordering induced
from an ordering of maximal cliques satisfying the running intersection property, and
this feature has been incorporated into Algorithm SDP.

Differentiating (5.3) with respect to X in the direction A ∈ SF and defining
N ≡ V ′(X)[A], we see that

πFl(AV ) = −πFl(V −TNTV −T ) − πFl(XN).

Note that the first term on the right-hand side does not require the full matrix
V −TNTV −T but rather just its diagonal. The above equation also provides a conve-
nient form for calculating A = V ′(X)−1[N ] for an arbitrary N ∈ LF , once X and V
are available. In fact, it is not difficult to see that A can be computed from N in time
O(f2).

We summarize the complexities obtained from the preceding discussion in the
following proposition.

Proposition 5.3. Let X,S ∈ SF . Determining whether X is in SF?
++ requires

time O(f3), and under the mild assumption that certain calculations are stored upon
the successful determination of X ∈ SF?

++, calculation of V (X) and V ′(X)−1[N ], for
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any N ∈ LF , requires time O(f2). Determining whether S is in SF++ is performed by
attempting the computation of L(S), which requires time O(f2). Upon the successful
computation of L(S), the calculation of L′(S)[B], for any B ∈ SF , requires time
O(f2).

5.2. Comparison with a standard primal-dual method. In order to see
how Algorithm SDP compares with other primal-dual path-following implementa-
tions, in this subsection we compare Algorithm SDP with SDPT3 version 3.0, a suc-
cessful implementation by Tütüncü, Toh, and Todd (see [31]). We have chosen to run
SDPT3 with the HRVW/KSH/M direction using the Mehrotra predictor-corrector
strategy. Both algorithms use the same starting point and terminate when the rela-
tive duality gap is less than 1.0e−4 and the relative feasibility is less than 1.0e−5.

We remark that these moderate values for the target gap and feasibility have been
chosen for two reasons. First, it makes our presentation consistent with later subsec-
tions where larger SDPs are considered and solved to the same accuracies. Second, we
have chosen moderate values in keeping with our discussion of the previous subsection
concerning how the ill-conditioning of M near optimality affects the calculation of ∆y
in Algorithm SDP. In fact, for all but a few of the problems presented below (most
notably the control and qap instances), Algorithm SDP can easily obtain even higher
accuracy.

For these computational results, we solve the system M∆y = h in Algorithm
SDP using either Gaussian elimination or BiCGSTAB, depending on the stage of the
algorithm. In the early stages of the algorithm when the conditioning of M is good, we
employ BiCGSTAB. As soon as the number of multiplications by M (or equivalently,
the number of evaluations of −A◦V ′(X)−1 ◦L′(S)◦A∗) exceeds m during one call to
the BiCGSTAB subroutine, however, we switch to Gaussian elimination. Assuming
that evaluations of the functions A and A∗ require time O(f2) (as is the case for
most of the test problems below), the direct method requires time O(mf2) to form
the matrix M and then an additional O(m3) time to factor M and solve for ∆y.
We have thus chosen problems having mf2 + m3 ≤ 1.0e+9 as a heuristic guide for
selecting problems for which the direct method is not too computationally intensive.
In particular, no problems having m > 1000 have been selected.

The test problems come from the SDPLIB collection of problems maintained by
Borchers [3], and their statistics are listed in Table 1. The first three columns are
self-explanatory, and the last two give the percentage of nonzeros in the iterates S
and X represented by the density patterns E and F . Complete computational results
on a 2.4 GHz Pentium 4 computer are given in Table 2 and are self-explanatory, with
times given in seconds.

We remark that, although Algorithm SDP is designed primarily for sparse prob-
lems, i.e., when F is a relatively small subset of V × V , it can of course be applied
to dense problems with F = V × V , as with a few of the test problems in Table
1. We have included these problems because we feel it is instructive to compare the
performance of Algorithm SDP and SDPT3 on such instances.

The results indicate several interesting points. First and foremost, both methods
were able to solve all problems to the desired accuracy in a reasonable amount of time.
Second, Algorithm SDP outperformed SDPT3 on several sets problems (the arch,
max , qp, and ss problems, as well as a subset of the mcp problems) for which the
chordal pattern F was very small, indicating Algorithm SDP’s capability for exploiting
this structure. On the other hand, SDPT3 significantly outperformed Algorithm
SDP on the control and qap problems, as Algorithm SDP was challenged by the
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Table 1
Statistics for SDPLIB test problems.

Problem n m Dens E (%) Dens F (%)
arch2 335 174 3.29 6.87
arch4 335 174 3.29 6.87
arch8 335 174 3.29 6.87
control5 75 351 45.61 46.88
control6 90 496 45.42 46.76
control7 105 666 45.28 46.68
control8 120 861 45.18 46.43
gpp100 100 101 100.00 100.00
gpp124-2 124 125 100.00 100.00
gpp124-3 124 125 100.00 100.00
gpp124-4 124 125 100.00 100.00
maxG11 800 800 0.75 2.61
mcp250-2 250 250 2.75 15.27
mcp250-3 250 250 4.89 36.76
mcp250-4 250 250 8.51 58.63
mcp500-1 500 500 0.90 2.58
mcp500-2 500 500 1.38 11.99
qap7 50 358 100.00 100.00
qap8 65 529 100.00 100.00
qap9 82 748 100.00 100.00
qpG11 1600 800 0.25 0.73
ss30 426 132 4.43 9.85
theta1 50 104 100.00 100.00
theta2 100 498 100.00 100.00
truss5 331 208 3.31 3.31
truss6 451 172 0.88 0.88
truss7 301 86 0.99 0.99
truss8 628 496 3.18 3.18

conditioning and density of these problems. In addition, SDPT3 was faster on the
remaining mcp problems, most likely due to the related fact that Algorithm SDP
consistently required more iterations than SDPT3, which itself is indicative of the
strong convergence properties of the HRVW/KSH/M direction when combined with
the Merhrotra predictor-corrector strategy.

5.3. Comparison with the completion method. In this subsection, we com-
pare Algorithm SDP with the completion method (CM) of Fukuda et al. on problems
for which the large size of m requires the solution of the Schur complement equation
by an iterative method. As in the previous subsection, Algorithm SDP is run with
BiCGSTAB as the iterative solver, and the SDPs are solved to an accuracy of 1.0e−4
for the relative duality gap and 1.0e−5 for relative feasibility.

As described in [9, 26], CM stores X and S in the same sparse format as Algo-
rithm SDP does, and the search direction in each iteration is the sparse projection
of the HRVW/KSH/M direction. Moreover, the sparsity of X and S is exploited in
the formation of the Schur complement matrix M , which is then factored directly to
solve for ∆y. Here, however, we have implemented our own version of CM which com-
putes ∆y using an iterative method, namely, the conjugate gradient method, which
is appropriate since, in this case, M is symmetric positive definite. Other algorithmic
choices for our implementation of CM mimic those of SDPT3 in the previous subsec-
tion, except that the predictor-corrector method has not been implemented due to its
need to solve an extra m×m system in each iteration.
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Table 3
Statistics for test problems with large m.

Problem n m Dens E (%) Dens F (%)
brock200-1.co 200 5067 100.00 100.00
brock200-4.co 200 6812 100.00 100.00
c-fat200-1.co 200 18367 100.00 100.00
hamming6-4.co 64 1313 100.00 100.00
hamming8-4.co 256 11777 100.00 100.00
johnson16-2-4.co 120 1681 100.00 100.00
keller4.co 171 5101 100.00 100.00
san200-0.7-1.co 200 5971 100.00 100.00
sanr200-0.7.co 200 6033 100.00 100.00
MANN-a27.co 379 1081 2.03 3.12
vibra3 1185 544 0.62 1.53
vibra4 2545 1200 0.30 0.90
vibra5 6801 3280 0.11 0.45
copo14 560 1275 1.17 1.17
copo23 2300 5820 0.31 0.31

In CM, multiplication by M is equivalent to an evaluation of the operator
A(X̂A∗(·)S−1), where X̂ ≡ X̂(X). It is not difficult to see that, using the sparse
matrices V and L and assuming that evaluations of A and A∗ require time O(f2) (as
assumed in the previous subsection), this operator can be evaluated in time O(nf),
where f =

∑n
j=1 |Kj |, by using sparse triangular solves. We thus have that

f2 =

n∑
j=1

|Kj |2 <
n∑
j=1

n|Kj | = nf.

Since f2 is the time required to multiply by M in Algorithm SDP, this demonstrates
an advantage of Algorithm SDP over CM.

For comparing Algorithm SDP with CM, we have chosen fifteen test problems
from several sources; the problems are listed in Table 3. The first ten are Lovász
theta SDPs based on graphs used in the Second DIMACS Challenge [16]. The first
nine use the original SDP formulation of Lovász (see [21]) in which both E and F
are completely dense due to the fact that C is the matrix of all ones, while the tenth
employs a different formulation (see [19]), which better respects the sparsity of the
underlying graph. Experimentally, we have found that the general conditioning of the
first formulation is better than that of the second, and so the first formulation should
be preferred whenever the underlying graph is relatively dense (which is the case for
the first nine but not the tenth). In addition, in the case of the first nine problems,
we have that f2 and nf are both O(n3), which allows us to compare Algorithm SDP
and CM on a more equal footing for these problems. The next three, the so-called
vibra problems, were studied in [18], and the final two were test problems in the
Seventh DIMACS Challenge [7]. Both methods were given an upper bound of 5 hours
computation time and so were terminated after the first iteration past this time limit,
if necessary. The computational results are listed in Table 4.

The table shows that Algorithm SDP converged on all problems except the vibra
problems, for which achieving both small gap and small feasibility was difficult. (We
remark that Algorithm SDP was terminated when progress became slow.) Interest-
ingly, however, on all three vibra problems, the objective values achieved by Algorithm
SDP were close to optimal (see [18]). CM also failed to converge on the vibra problems
as well as copo23. In terms of running times, Algorithm SDP outperformed CM in
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Table 5
Statistics for Maxcut and theta test problems.

Problem n m Dens E (%) Dens F (%)
G43 1001 10991 2.39 55.46
G51 1001 6910 1.58 16.12
brock400-1.co 401 20478 25.90 90.92
p-hat300-1.co 301 34218 75.95 98.28
toruspm3-8-50 512 512 1.56 15.60
torusg3-8 512 512 1.56 15.60
toruspm3-15-50 3375 3375 0.24 6.08
torusg3-15 3375 3375 0.24 6.08
hamming-07-5-6 129 1921 24.44 73.71
hamming-08-3-4 257 16385 50.19 93.27
hamming-09-5-6 513 54273 41.55 92.82
hamming-09-8 513 2817 2.53 15.98
hamming-10-2 1025 24065 4.77 38.40
hamming-11-2 2049 58369 2.88 36.57

nearly all instances—it was approximately twice as fast for the first nine and an order
of magnitude or more faster for the last six problems.

5.4. Comparison with a first-order method. Finally, we compare Algorithm
SDP with the first-order method (BMZ) of Burer, Monteiro, and Zhang [6]. BMZ is
a dual-only method that solves a special class of so-called fixed-diagonal SDPs by
optimizing the log-barrier function for a decreasing sequence of barrier parameters
{νk}k≥0 using a first-order gradient-based nonlinear programming approach. Two of
the key features of BMZ are that it works only with S and L and that its function
and gradient evaluations each take time O(f2), which matches the complexity of the
fundamental operations of Algorithm SDP.

We compare Algorithm SDP and BMZ on the fourteen problems shown in Table
5. The first two problems (which come from the Gset test problem suite [14]) and the
last six problems (which come from the Seventh DIMACS Challenge) are Lovász theta
SDPs and employ the sparse formulation (as mentioned in the previous subsection).
The remaining problems are maximum cut SDP relaxations (see [11]) and also come
from the Seventh DIMACS Challenge. Each method was given an upper bound of
5 hours running time on each problem and was thus terminated upon completion of
the first iteration after 5 hours, if necessary. BMZ was stopped once the log-barrier
subproblem corresponding to ν = 1.0e−4 was solved, which yielded a comparable
accuracy to Algorithm SDP’s stopping criterion. The computational results are shown
in Table 6.

The results show that both methods had difficulty solving such large problems
in the time allotted. Even still, when comparing objective values, on twelve of the
fourteen problems Algorithm SDP made more progress towards optimality than BMZ.
An advantage of BMZ, of course, is that each iterate is dual feasible, while an ad-
vantage of Algorithm SDP is that primal information is produced in addition to dual
information.

6. Concluding remarks. The results of this paper involve both theoretical and
practical aspects of solving SDPs. Theoretically, we have shown that it is possible
to express the central path using sparse equations rather than the usual dense ones,
and we have, moreover, shown how to measure the proximity of a partial primal-dual
solution to the central path, which was a question left open in [9]. Combining these
ideas, we have also shown how to solve the SDP in polynomial time using a “partial”
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Newton direction. Even so, there seem to be many interesting theoretical questions
left open by the ideas presented in this paper. For example, can the nonsingularity
of H ′ be established under conditions weaker than those presented in Theorem 2.10?
Or can a wider neighborhood of the central path be used to improve the iteration
complexity of the method? (The relatively small step-size established in section 4 was
forced by the neighborhood, not by the positive semidefiniteness of the new iterates.)
Or can other directions with better properties be defined?

Of course, one of the most appealing aspects of applying the idea of matrix com-
pletions to SDP is the prospect of actually solving sparse SDPs more efficiently, and
the results of section 5 indicate that the algorithm proposed in this paper is highly
effective on varying classes of problems—especially for those having a small density
pattern F . An area of further investigation for Algorithm SDP is the conditioning of
the Schur complement matrix M near optimality, particularly as it affects the con-
vergence of the BiCGSTAB subroutine. Currently, it is unclear how preconditioning
techniques can best be employed to mitigate the inevitable ill-conditioning.

Overall, we feel that Algorithm SDP makes a significant contribution to the ex-
isting algorithms for SDP, allowing one to solve any SDP in a primal-dual framework
while taking advantage of sparsity in all stages of computation.

Acknowledgments. The author would like to thank Stephen Vavasis and Kim
Chuan Toh for helpful comments that improved the presentation of section 5. In
addition, the author is in debt to two anonymous referees, who provided extremely
detailed and insightful comments on the first and second drafts of this paper.
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A PRIMAL-DUAL INTERIOR-POINT METHOD FOR NONLINEAR
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Abstract. An exact-penalty-function-based scheme—inspired from an old idea due to Mayne
and Polak [Math. Program., 11 (1976), pp. 67–80]—is proposed for extending to general smooth
constrained optimization problems any given feasible interior-point method for inequality constrained
problems. It is shown that the primal-dual interior-point framework allows for a simpler penalty
parameter update rule than the one discussed and analyzed by the originators of the scheme in the
context of first order methods of feasible direction. Strong global and local convergence results are
proved under mild assumptions. In particular, (i) the proposed algorithm does not suffer a common
pitfall recently pointed out by Wächter and Biegler [Math. Program., 88 (2000), pp. 565–574]; and
(ii) the positive definiteness assumption on the Hessian estimate, made in the original version of the
algorithm, is relaxed, allowing for the use of exact Hessian information, resulting in local quadratic
convergence. Promising numerical results are reported.
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1. Introduction. Consider the problem

min
x∈Rn

f (x)

s.t. cj (x) = 0, j = 1, . . . ,me,
dj (x) ≥ 0, j = 1, . . . ,mi,

(P)

where f : Rn → R, cj : Rn → R, j = 1, . . . ,me, and dj : Rn → R, j = 1, . . . ,mi, are
smooth. No convexity assumptions are made. A number of primal-dual interior-point
methods have been proposed to tackle such problems; see, e.g., [26, 27, 5, 8, 7, 3, 4, 22].
While all of these methods make use of a search direction generated by a Newton or
quasi-Newton iteration on a perturbed version of some first order necessary conditions
of optimality, they differ in many respects. For example, some algorithms enforce
feasibility of all iterates with respect to inequality constraints [8, 7], while others,
sometimes referred to as “infeasible,” sidestep that requirement via the introduction
of slack variables [26, 27, 5, 3, 4, 22]. As for equality constraints, some schemes
include them “as is” in the perturbed optimality conditions [26, 27, 5, 8, 3, 4], while
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some soften this condition by making use of two sets of slack variables [22] or by
introducing a quadratic penalty function, yielding optimality conditions involving a
perturbed version of “c(x) = 0” [7]. Also, some proposed algorithms (e.g., [27, 3, 4])
involve a trust region mechanism. In many cases (e.g., [27, 8, 22]), promising numerical
results have been obtained. In some cases (e.g., [26, 27, 5, 3]), convergence properties
have been proved under certain assumptions. Often, however, it is not proved that
the line search eventually accepts a step size close enough to one to allow fast local
convergence; i.e., a Maratos-like effect [14] is not ruled out. An exception is [27], but
rather strong assumptions are used there.

Recently, Wächter and Biegler [23] showed that many of the proposed algorithms
suffer a major drawback in that for problems with two or more equality constraints and
a total number of constraints in excess of the dimension of the space, the constructed
primal sequence can converge to spurious, infeasible points. They produced a simple,
seemingly innocuous example where such behavior is observed when starting from
rather arbitrary initial points. They pointed out that where global convergence had
been proved, it was under a linear independence assumption that often fails to hold in
the case of problems with such a number of constraints. One exception to this is [3],
where the proposed trust-region-based method is proved to converge globally under
fairly mild assumptions; another is the recent paper [24].

In this paper, we propose a line-search-based primal-dual interior-point algorithm
of the “feasible” variety for which global and fast local convergence are proved to
hold under rather mild assumptions. In particular, it involves a scheme to circumvent
Maratos-like effects and is immune to the phenomenon observed in [23]. A distinguish-
ing feature of the proposed algorithm is that it makes use of both a barrier parameter
and an “exterior” penalty parameter, both of which are adaptively adjusted to ensure
global and fast local convergence. The algorithm originates in two papers dating back
more than one and two decades, respectively: [17] and [15]. The former proposed a
feasible interior-point method for inequality constrained problems, proven to converge
globally and locally superlinearly under appropriate assumptions. The latter offered
a scheme for dealing with equality constraints in the context of a (largely arbitrary)
algorithm for inequality constraint optimization.

In the 1980s, a feasible-iterate algorithm for solving (P) was proposed for the
case without equality constraints, based on the following idea. First, given strictly
feasible estimates x̂ of a solution and ẑ of the corresponding Karush–Kuhn–Tucker
(KKT) multiplier vector, compute the Newton (or a quasi-Newton) direction for the
solution of the equations in the KKT first order necessary conditions of optimality.
Then solve again the same system of equations but with the right-hand side appropri-
ately perturbed so as to tilt the primal direction away from the constraint boundaries
into the feasible set. The amount of perturbation is determined from the solution of
the unperturbed system. Both the original and tilted primal directions are directions
of descent for f . Decrease of f is then enforced by the line search to ensure global
convergence. Maratos-like effects are avoided by means of a second order correction
(adapted from an idea of Mayne and Polak [16]), allowing for fast local convergence
to take place. These ideas were put forth in [17]. The central idea in the algorithm
of [17] originated in earlier work by Segenreich, Zouain, and Herskovits [20] and Her-
skovits [10, 11]; see [21] for a detailed historical account. Ideas were also borrowed
from [6] and [18].

In the mid-1970s Mayne and Polak proposed an ingenious scheme to incorporate
equality constraints in methods of feasible directions [15]. The idea is to (1) relax
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each equality constraint (cj(x) = 0) by replacing it with an inequality constraint
(cj(x) ≥ 0) and (2) penalize departure from the constraint boundaries associated
with these relaxed constraints by adding a simple penalty term (ρ

∑
cj(x), ρ > 0) to

the cost function. For fixed values of the penalty parameter ρ, the feasible direction
method under consideration is used. It is readily shown that, locally, convergence to
KKT points of the original problem takes place, provided the penalty parameter is in-
creased to a value larger than the magnitude of the most negative equality constraint
multiplier (for the original problem) at the solution. Accordingly, in [15] the penalty
parameter is adaptively increased based on estimates of these multipliers. While [15]
is concerned with classical first order feasible directions methods, it is pointed out in
the introduction of that paper that the proposed scheme can convert “any (emphasis
from [15]) interior point algorithm for inequality constrained optimization problems
into an algorithm for optimization subject to combined equality and inequality con-
straints.”

A careful examination of the proposed algorithm, however, reveals two short-
comings. The first one concerns the computation of multiplier estimates. In [15],
this is done by solving a linear least squares problem for all equality constraint mul-
tipliers and all multipliers associated with ε-active inequality constraints (that is,
with inequality constraints whose current value is less than some fixed, prescribed
ε—denoted ε′ in [15]). The price to pay is that if ε is “large,” then (1) the computa-
tional overhead may become significant and (2) the set of active constraints may be
overestimated, leading to incorrect multiplier estimates. On the other hand, if ε is
selected to be very small, the set of active constraints will be underestimated, again
yielding incorrect multipler estimates. The second shortcoming is that global con-
vergence is proved under the strong assumption that at every point in the extended
feasible set (where one-side violation of equality constraints is allowed) the gradients
of all equality constraints and of the active inequality constraints are linearly inde-
pendent. Indeed, as pointed out in [23], such an assumption does not hold in the
example discussed there, and it is typically violated on entire manifolds in problems
with two or more equality constraints and a total number of constraints in excess of
n.1 In [11] it is suggested that the idea introduced in [15] could be readily applied
to the interior-point algorithm proposed there, but no details are given. The Mayne–
Polak idea was used in [13] in the context of feasible SQP. The ready availability of
multiplier estimates (for the penalized problem) in that context allows an improved
multiplier estimation scheme (for the original problem), thus improving on the first
shortcoming just pointed out; however, no attempt is made in [13] to dispense with
the strong linear independence assumption.

In the 1980s and 1990s, other penalty parameter update rules were proposed for
�1 (as in [15]) or �∞ exact penalty functions in the context of SQP and trust region
methods, among others. (See, e.g., [16, 19, 2, 28].) In most cases, just like in [15]
and [13], the updating rule involves multiplier estimates whose computation requires
the solution of a linear system of equations or even that of a linear program. An
exception is [28], where the following simple rule is used: at iteration k, increase ρ
if the constraint is far from being satisfied, specifically if ‖c(xk)‖ > υk, where υk
appropriately decreases to zero as k goes to infinity. This rule is proposed in the
context of a trust region method, and υk involves the model decrease. A challenge
when extending it to other contexts is that if υk is chosen too small, ρ will increase
unnecessarily, perhaps without bound.

1See the discussion following the statement of Assumption 3 in section 3 below.
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The contributions of the present paper are as follows. First it is shown that all
the convergence results proved in [17] for the algorithm proposed in that paper still
hold if the positive definiteness assumption on the Hessian estimate is relaxed and
replaced with a significantly milder assumption. In particular, the new assumption
allows for use of the exact Hessian. Subject to a minor modification of the algorithm,
local quadratic convergence in the primal-dual space is proved when the exact Hessian
is indeed used. Second, the algorithm is extended to general constrained problems by
incorporating a modified Mayne–Polak scheme. Specifically, a new, simple penalty
parameter update rule is introduced involving no additional computation. Such a rule
is made possible by the availability of multiplier estimates for the penalized problem
through the primal-dual iteration. The resulting algorithm converges globally and
locally superlinearly without the requirement that a strong regularity assumption be
satisfied, thus avoiding the pitfall observed in [23].

The balance of the paper is organized as follows. In section 2, the algorithm
from [17] is described in “modern” terms from a barrier function perspective. It is
shown how certain assumptions made in [17] can be relaxed, and quadratic conver-
gence is shown for the case when the “exact Hessian” is used. The overall algorithm
is then motivated and described in section 3. In section 4, global and local superlin-
ear convergence are proved. Preliminary numerical results are reported in section 5,
starting with results on the example discussed in [23]. Finally, section 6 is devoted to
concluding remarks. Throughout, ‖ · ‖ denotes the Euclidean norm or corresponding
operator norm and, given two vectors v1 and v2, inequalities such as v1 ≤ v2 and
v1 < v2 are to be understood componentwise. Much of our notation is borrowed
from [8].

2. Problems without equality constraints. We briefly review the algorithm
of [17] in the primal-dual interior-point formalism and then point out how the as-
sumptions made in [17] can be relaxed without affecting the convergence theorems.2

2.1. Brief review of [17]. Consider problem (P) with me = 0, i.e.,

min
x∈Rn

f (x)

s.t. dj (x) ≥ 0, j = 1, . . . ,mi .
(2.1)

The algorithm proposed in [17] for problems such as (2.1) can equivalently be stated
based on the logarithmic barrier function

β(x, µ) = f(x)−
mi∑
j=1

µ(j) log dj(x),(2.2)

where µ = [µ(1), . . . , µ(mi)]T ∈ Rmi and the µjs are positive. The barrier gradient is
given by

∇xβ(x, µ) = g(x)−B(x)TD(x)−1µ,(2.3)

where g denotes the gradient of f , B the Jacobian of d, and D(x) the diagonal matrix
diag(dj(x)).

Problem (2.1) can be tackled via a sequence of unconstrained minimizations of
β(x, µ) with µ→ 0. In view of (2.3), z = D(x)−1µ can be viewed as an approximation

2While the present paper was under review, this algorithm was further enhanced; see [1].
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to the KKT multiplier vector associated with a solution of (2.1) and the right-hand
side of (2.3) as the value at (x, z) of the gradient (with respect to x) of the Lagrangian

L(x, z) = f(x)− 〈z, d(x)〉.
Accordingly, and in the spirit of primal-dual interior-point methods, consider using a
(quasi-)Newton iteration for the solution of the system of equations in (x, z)

g(x)−B(x)Tz = 0,(2.4)

D(x)z = µ,(2.5)

i.e., [ −W B(x)T

ZB(x) D(x)

] [
∆x
∆z

]
=

[
g(x)−B(x)Tz

µ−D(x)z

]
,(2.6)

where Z = diag(z(j)) and where W is equal to, or approximates, the Hessian (with
respect to x) of the Lagrangian L(x, z). When µ = 0, a primal-dual feasible solution
to (2.4)–(2.5) is a KKT point for (2.1). Moreover, under the assumption made in [17]
that W is positive definite3 and given any strictly feasible primal-dual pair (x, z), the
primal direction ∆x0 obtained by solving (2.6) with µ = 0 is a descent direction for
f at x. In [17], such a property is sought for the search direction and used in the
line search. On the other hand, while any primal direction is “feasible” when starting
from an interior point, ∆x0 is not necessarily a direction of ascent for “almost active”
constraints, whereas when the components of µ are chosen to be strictly positive,
such desirable ascent property is guaranteed, but descent for f may be lost. Thus,
the components of µ should

• be positive enough to prevent the primal step length from collapsing due to
infeasibility,
• be small enough that significant descent for f is maintained, and
• go to zero fast enough to preserve the fast local convergence properties asso-
ciated with the (quasi-)Newton iteration for (2.4)–(2.5) with µ = 0.

This is achieved in [17] by selecting

µ = ϕ‖∆x0‖νz,(2.7)

with ϕ ∈ (0, 1] as large as possible subject to the constraint
〈g(x),∆x〉 ≤ θ〈g(x),∆x0〉,(2.8)

where ν > 2 and θ ∈ (0, 1) are prespecified;4 condition (2.8) ensures that ∆x is still a
descent direction for f .

In [17] primal and dual strict feasibility is enforced at each iteration. An arc
search is performed to select a next primal iterate x+. The search criterion includes
decrease of f and strict primal feasibility. It involves a second order correction ∆x̃
to allow a full Newton (or quasi-Newton) step to be taken near the solution. With
index sets I and J defined by

I = {j : dj(x) ≤ z(j) +∆z(j)},
3Below (section 2.2) we show that this assumption can be relaxed.
4Note that ∆x depends on ϕ affinely and thus ∆x is computed at no extra cost once (2.6) has

been solved with, say, µ = ‖∆x0‖νz.
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J = {j : z(j) +∆z(j) ≤ −dj(x)},
∆x̃ is the solution of the linear least squares problem

min
1

2
〈∆x̃,W∆x̃〉 s.t. dj(x+∆x) + 〈∇dj(x),∆x̃〉 = ψ ∀j ∈ I,(2.9)

where

ψ = max

{
‖∆x‖τ , max

j∈I

∣∣∣∣ ∆z(j)

z(j) +∆z(j)

∣∣∣∣
κ

‖∆x‖2
}

,(2.10)

with τ ∈ (2, 3) and κ ∈ (0, 1) prespecified. If J �= ∅ or (2.9) is infeasible or unbounded
or ‖∆x̃‖ > ‖∆x‖, ∆x̃ is set to 0. The rationale for the first of these three conditions
is that computing the Maratos correction involves some cost, and it is known to be
of help only close to a solution: when J �= ∅, the correction is not computed. Note
that I estimates the active index set and that J (multipliers of “wrong” sign) should
be empty near the solution when strict complementarity holds. An (Armijo-type) arc
search is then performed as follows: given η ∈ (0, 1), compute the first number α in
the sequence {1, η, η2, . . . } such that

f
(
x+ α∆x+ α2∆x̃

) ≤ f(x) + ξα〈g(x),∆x〉,(2.11)

dj
(
x+ α∆x+ α2∆x̃

)
> 0 ∀j,(2.12)

dj
(
x+ α∆x+ α2∆x̃

) ≥ dj(x) ∀j ∈ J,(2.13)

where ξ ∈ (0, 1/2) is prespecified. The third inequality is introduced to prevent
convergence to points with negative multipliers. The next primal iterate is then set
to

x+ = x+ α∆x+ α2∆x̃.

Finally, the dual variable z is reinitialized whenever J �= ∅; if J = ∅, the new value
z+,(j) of z(j) is set to

z+,(j) = min{max{‖∆x‖, z(j) +∆z(j)}, zmax},(2.14)

where zmax > 0 is prespecified. Thus z+,(j) is allowed to be close to 0 only if ‖∆x‖ is
small, indicating proximity to a solution.

It is observed in [17, section 5] that the total work per iteration (in addition
to function evaluations) is essentially one Cholesky decomposition of size mi and
one Cholesky decomposition of size equal to the number of active constraints at the
solution.5

On the issue of global convergence, it is shown in [17] that given an initial strictly
feasible primal-dual pair (x0, z0) and given a sequence of symmetric matrices {Wk},
uniformly bounded and uniformly positive definite, the primal sequence {xk} con-
structed by the algorithm just described (with Wk used as W at the kth itera-
tion) converges to KKT points for (2.1), provided the following assumptions hold:
(i) {x : f(x) ≤ f(x0), d(x) ≥ 0} is bounded so that the primal sequence remains

5There are two misprints in [17, section 5]: in equation (5.3) (statement of Proposition 5.1) as
well as in the last displayed equation in the proof of Proposition 5.1 (expression for λ0k), MkB

−1
k

should be B−1
k Mk.
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bounded, (ii) for all feasible x the vectors ∇dj(x), j ∈ {j : dj(x) = 0}, are linearly
independent, and (iii) the set of feasible points x for which (2.4)–(2.5) hold for some
z (with no restriction on the sign of the components of z)6 is finite.

Superlinear convergence of the primal sequence—in particular, eventual accep-
tance of the full step of one by the arc search—is also proved in [17] under appropriate
second order assumptions, provided that none of the KKT multipliers at the solution
are larger than zmax and that, asymptotically, Wk suitably approximates the Hessian
of the Lagrangian at the solution on the tangent plane to the active constraints.

Finally, stronger convergence results hold for a variation of the present algorithm,
under weaker assumptions, in the LP and convex QP cases. In particular, global
convergence to the solution setX∗ takes place wheneverX∗ is nonempty and bounded,
the feasible set X has a nonempty interior, and for every x ∈ X the gradients of the
active constraints at x are linearly independent. See [21] for details.

2.2. Global convergence under milder assumptions. Two assumptions
made in [17] can be relaxed without affecting the convergence results proved there.
First, Assumption A4 (x0 is the initial point):

The set X ∩ {x s.t. f(x) ≤ f(x0)} is compact
can be eliminated altogether. Indeed, this assumption is invoked only in the proof of
Lemmas 3.8 and 3.9 of [17]. The former is readily proved without such assumption:
convergence of {xk−1} on K directly follows from the assumed convergence on K of
{xk} and {dk−1} (in the notation of [17]) and from the last displayed equation in
the proof. As for the latter, a weaker statement by which K is selected under the
additional restriction that {xk} converges on K is sufficient for the use made of that
lemma in Proposition 3.10 and Theorem 3.11.

Second and more significantly, Assumption A6 of [17] (in the notation of this
paper):

There exist σ1, σ2 > 0 such that σ1‖v‖2 ≤ 〈v,Wkv〉 ≤ σ2‖v‖2, for
all k, for all v ∈ Rn

can be replaced with the following milder assumption.
Assumption PTH-A6∗. Given any index set K such that {xk}k∈K is bounded,

there exist σ1, σ2 > 0 such that, for all k ∈ K,

‖Wk‖ ≤ σ2

and 〈
v,

(
Wk +

mi∑
i=1

z
(i)
k

di(xk)
∇di(xk)∇di(xk)

T

)
v

〉
≥ σ1‖v‖2 ∀v ∈ Rn.

(Here {xk}, {zk}, and {Wk} are the sequences of values of x, z, and W generated
by the algorithm outlined above. The restriction of this assumption to bounded
subsequences of {xk} is made in connection with our dropping Assumption A4.)

The difference with Assumption A6 of [17] is significant because, as is readily
verified, the (exact) Hessian of the Lagrangian satisfies the relaxed assumption in
the neighborhood of any solution of (2.1) at which strong second order sufficiency
conditions of optimality hold. It is shown in the appendix that all the results proved
in [17] still hold under the new assumption. In particular, it is proven that the
direction ∆x0 (in the notation of this paper) is still well defined and is a direction

6Such points are referred to in [17] as stationary points.
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of descent for f . It should be noted that when W is not positive definite, there
are two ways (rather than one) in which (2.9) can fail to have a solution: when its
feasible set is nonempty, its cost function could possibly be unbounded from below.
As observed in the appendix, the analysis of [17] still implies that locally around a
“strong” minimizer, (2.9) still has a solution.

2.3. Local quadratic convergence. As noted at the end of subsection 2.1,
superlinear convergence of {xk} is proved in [17] under appropriate local assumptions.
Here we show that under the further assumption that, eventually, Wk is the Hessian
evaluated at (xk, zk) of the Lagrangian associated with problem (2.1), the pair (xk, zk)
converges Q-quadratically, provided the following minor modification is made to the
algorithm of [17]: replace (2.14) with

z+,(j) = min{max{‖∆x‖2, z(j) +∆z(j)}, zmax},
i.e., allow zk to go to zero like ‖∆xk‖2 rather than merely ‖∆xk‖. It can be checked
that this modification does not affect the analysis carried out in [17].

The proof is based on Proposition 3.10 of [21], which we restate here for ease of
reference. (Related result are obtained in [5] and [25].)

Lemma 2.1. Let F : R → R be twice continuously differentiable, and let
w∗ ∈ R and r > 0 be such that F (w∗) = 0 and ∂F

∂w (w) is nonsingular whenever
w ∈ B(w∗, r) := {w : ‖w∗ − w‖ ≤ r}. Let vN : B(w∗, r) → R be defined by

vN (w) = − (∂F∂w (w))−1
F (w). Then given any Γ1 > 0 there exists Γ2 > 0 such that

‖w+ − w∗‖ ≤ Γ2‖w − w∗‖2(2.15)

for every w ∈ B(w∗, r) and w+ ∈ R for which, for each i ∈ {1, . . . , �}, either
(i) |w+,(i) − w∗,(i)| ≤ Γ1‖vN (w)‖2

or
(ii) |w+,(i) − (w(i) + vNi (w))| ≤ Γ1‖vN (w)‖2.
Let w := [xT, zT]T, wk := [x

T
k , z

T
k ]

T, etc., let

Φ(w, µ) =

[ −(g(x)−B(x)Tz)
D(x)z − µ

]
,(2.16)

and let M(w) denote the matrix in the left-hand side of (2.6) with W the “exact
Hessian,” i.e.,

W = ∇2
xxf(x)−

m∑
i=1

z(i)∇2
xxdi(x).

Thus M(w) is the Jacobian of Φ(w, µ) with respect to w. (Note that M(w) does not
depend on µ.) We will invoke Lemma 2.1 with F := Φ(·, 0). Observe that

∆w0
k = −M(wk)

−1Φ(wk, 0)

and

∆wk = −M(wk)
−1Φ(wk, µk),

and, since µk = O(‖∆x0k‖ν) and M(wk)
−1 is bounded (in view of Lemma PTH-3.5∗

in the appendix), that

∆wk −∆w0
k = O(‖∆x0k‖ν).(2.17)
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Next, we observe that with a simple additional observation, the proof of Lemma
4.4 in [17] establishes that

‖∆x̃‖ = O(‖∆w‖2).(2.18)

Indeed, in connection with the last displayed equation in that proof, since under our

strict complementarity assumption z
(i)
k +∆z

(i)
k (λk,i in the notation of [17]) is bounded

away from zero for large k, we can write

z
(i)
k

z
(i)
k +∆z

(i)
k

− 1 = O(|∆z
(i)
k |) = O(‖∆wk‖),

and the claim follows.
Now, proceed analogously to the proof of Theorem 3.11 in [21]. Thus, with

reference to Lemma 2.1, let r > 0 be such that M(w) is nonsingular for all w ∈
B(w∗, r). (In view of Lemma PTH-3.5∗ in the appendix, such an r exists.) Since
{wk} → w∗ as k → ∞, there exists k0 such that wk ∈ B(w∗, r) for all k ≥ k0. Now
let us first consider {zk}. For i ∈ I(x∗), in view of strict complementarity, z(i)k+1 =
z
(i)
k +∆z

(i)
k for k large enough so that, in view of (2.17), condition (ii) in Lemma 2.1

holds for k large enough. Next, for i �∈ I(x∗), for each k either again z
(i)
k+1 = z

(i)
k +∆z

(i)
k

or (in view of our modified updating formula for zk) z
(i)
k+1 = ‖∆xk‖2. In the latter

case, since z∗,(i) = 0, noting again (2.17), we conclude that condition (i) in Lemma 2.1
holds. Next, consider {xk}. Since αk = 1 for k large enough, we have

‖xk+1 − (xk +∆x0k)‖ = ‖∆xk −∆x0k +∆x̃k‖,
which in view of (2.17) and (2.18) implies that condition (ii) again holds. Thus the
conditions of Lemma 2.1 hold, and Q-quadratic convergence follows.

3. Overall algorithm. Suppose now that me is not necessarily zero. Let X
denote the feasible set for (P); i.e., let

X := {x ∈ Rn : cj(x) = 0, j = 1, . . . ,me, dj(x) ≥ 0, j = 1, . . . ,mi}.(3.1)

Further, let A denote the Jacobian of c, let C(x) = diag(cj(x)) and, just as above, let
B denote the Jacobian of d and let D(x) = diag(dj(x)).

In [15], Mayne and Polak proposed a scheme to convert (P) to a sequence of
inequality constrained optimization problems of the type

min
x∈Rn

fρ(x)

s.t. cj(x) ≥ 0, j = 1, . . . ,me,
dj(x) ≥ 0, j = 1, . . . ,mi,

(Pρ)

where fρ(x) = f(x)+ρ
∑me

j=1 cj(x), and where ρ > 0. Examination of (Pρ) shows that
large values of ρ penalize iterates satisfying cj (x) > 0 for any j, while feasibility for
the modified problem ensures that cj(x) ≥ 0. Thus, intuitively, for large values of ρ,
iterates generated by a feasible-iterate algorithm will tend towards feasibility for the
original problem (P). In fact, the penalty function is “exact” in that convergence to
a solution of (P) is achieved without the need to drive ρ to infinity. In other words,
under mild assumptions, for large enough but finite values of ρ, solutions to (Pρ) are
solutions to (P).



182 TITS, WÄCHTER, BAKHTIARI, URBAN, AND LAWRENCE

Let X̃ and X̃0 be the feasible and strictly feasible sets for problems (Pρ); i.e., let

X̃ := {x ∈ Rn : cj(x) ≥ 0, j = 1, . . . ,me, dj(x) ≥ 0, j = 1, . . . ,mi},(3.2)

X̃0 := {x ∈ Rn : cj(x) > 0, j = 1, . . . ,me, dj(x) > 0, j = 1, . . . ,mi}.(3.3)

Also, for x ∈ X̃, let Ie(x) and I i(x) be the active index sets corresponding to c and
d, i.e.,

Ie(x) = {j : cj(x) = 0}; I i(x) = {j : dj(x) = 0}.
Before proceeding, we state some basic assumptions.
Assumption 1. X is nonempty.
Assumption 2. f , ci, i = 1 . . . ,me, and di, i = 1, . . . ,mi, are continuously

differentiable.
Assumption 3. For all x ∈ X̃, (i) the set {∇cj(x) : j ∈ Ie(x)} ∪ {∇dj(x) : j ∈

I i(x)} is linearly independent; (ii) if x �∈ X, then no scalars y(j) ≥ 0, j ∈ Ie(x), and
z(j) ≥ 0, j ∈ I i(x), exist such that

me∑
j=1

∇cj(x) =
∑

j∈Ie(x)
y(j)∇cj(x) +

∑
j∈Ii(x)

z(j)∇dj(x).(3.4)

Note that Assumption 1 implies that X̃ is nonempty and, together with Assump-
tions 2 and 3(i), that X̃0 is nonempty, X̃ being its closure.7

Our regularity assumption, Assumption 3, is considerably milder than linear inde-
pendence of the gradients of all ci’s and all active di’s. As observed in [23], the latter
assumption is undesirable, in that whenever there are two or more equality constraints
and the total number of constraints exceeds n, it is typically violated over entire sub-
manifolds of X̃ \X. On the other hand, as stated in the next lemma, Assumption 3(ii)
is equivalent to the mere existence at every x ∈ X̃ \X of a feasible (with respect to X̃)
direction of strict descent for the �1 norm of c(x). (Indeed Assumption 3(ii) simply
states that the sum in the left-hand side of (3.4) does not belong to the closed convex
cone generated by the listed constraint gradients, and existence of such strict descent
direction amounts to strict separation of that sum from this cone.)

Lemma 3.1. Suppose Assumptions 2 and 3(i) hold. Then Assumption 3(ii) is
equivalent to the following statement (S): for every x ∈ X̃ \ X, there exists v ∈ Rn
such that 〈

me∑
j=1

∇cj(x), v

〉
< 0,

〈∇cj(x), v〉 > 0 ∀j ∈ Ie(x),

〈∇dj(x), v〉 > 0 ∀j ∈ I i(x).

In [23], a simple optimization problem was exhibited, on which many recently
proposed interior-point methods converge to infeasible points at which such a direction

7Nonemptiness of X̃0 follows from the Mangasarian–Fromovitz constraint qualification (and As-
sumption 2), which in turn follows from Assumption 3(i).
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v exists, in effect showing that convergence of these algorithms to KKT points cannot
be proved unless a strong assumption is used that rules out such seemingly innocuous
problems. On the other hand, it is readily checked that directions v as in Lemma 3.1 do
exist at all spurious limit points identified in [23]. Indeed, in the problem from [23], for
some a, b, with b ≥ 0, c1(x) = (x(1))2−x(2)+a, c2(x) = −x(1)+x(3)+b,8 d1(x) = x(2),
and d2(x) = x(3), and the spurious limit points are points of the form (ζ, 0, 0)T, with
ζ < 0, at which both c1 and c2 are nonzero; v = (1, 1, 1)T meets our conditions at
such points. In fact, it is readily verified that Assumption 3(ii) is satisfied whenever
a ≥ 0 and that, when a < 0, the only point x ∈ X̃ \ X at which the condition in
Assumption 3(ii) is violated is (−√|a|, 0, 0)T, at which c1(x) = 0. In section 5 we will
discuss the behavior on this example of the algorithm proposed below.

Before presenting our algorithm, we briefly explore a connection between prob-
lems (P) and (Pρ). A point x is a KKT point of (P) if there exist y ∈ Rme , z ∈ Rmi

such that

g (x)−A (x)
T
y −B (x)

T
z = 0,(3.5)

c (x) = 0,(3.6)

d (x) ≥ 0,(3.7)

z(j)dj (x) = 0, j = 1, . . . ,mi,(3.8)

z ≥ 0.(3.9)

Following [17] we term a point x stationary for (P) if there exist y ∈ Rme , z ∈ Rmi

such that (3.5)–(3.8) hold (but possibly not (3.9)). Next, for given ρ, a point x ∈ X̃
is a KKT point of (Pρ) if there exist y ∈ Rme , z ∈ Rmi such that

g(x) +A(x)T(ρe)−A(x)Ty −B(x)Tz = 0,(3.10)

c(x) ≥ 0,(3.11)

d(x) ≥ 0,(3.12)

y(j)cj(x) = 0, j = 1, . . . ,me,(3.13)

y ≥ 0,(3.14)

z(j)dj(x) = 0, j = 1, . . . ,mi,(3.15)

z ≥ 0,(3.16)

where e ∈ Rme is a vector whose components are all 1. A point x is stationary
for (Pρ) if there exist y ∈ Rme , z ∈ Rmi such that (3.10)–(3.13) and (3.15) hold (but
possibly not (3.14) and (3.16)). The following proposition, found in [15], is crucial to
the development and is repeated here for ease of reference.

Proposition 3.2. Suppose Assumptions 1 and 2 hold. Let ρ be given. If x is
stationary for (Pρ) with multiplier vectors y and z and c(x) = 0, then it is stationary
for (P) with multiplier vectors y− ρe and z. Furthermore, if z ≥ 0, then x is a KKT
point for (P).

Proof. Using the fact that c(x) = 0, equations (3.10)–(3.13) and (3.15) imply

g(x)−A(x)T(y − ρe)−B(x)Tz = 0, c(x) = 0, d(x) ≥ 0, z(j)dj(x) = 0 ∀j.

8Our c2(x) is the negative of that in [23] because in our framework equality constraints must
take on positive values at the initial point, while at the initial points of interest (as per Theorem 1
in [23]) c2(x) as defined in [23] is negative.
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Thus x is stationary for (P) with multipliers y − ρe ∈ Rme and z ∈ Rmi . The second
assertion follows similarly.

The proposed algorithm is based on solving problem (Pρ) for fixed values of ρ > 0
using the interior-point method outlined in section 2. The key issue will then be to
determine how to adjust ρ to force the iterate to asymptotically satisfy c(x) = 0.

For problem (Pρ), the barrier function (2.2) becomes

β(x, ρ, µ) = f(x) + ρ

me∑
j=1

cj(x)−
me∑
j=1

µe
(j) ln(cj(x))−

mi∑
j=1

µi
(j) ln(dj(x)).

Its gradient is given by

∇xβ(x, ρ, µ) = g(x) +A(x)T(ρe)−A(x)TC(x)−1µe −B(x)TD(x)−1µi.(3.17)

Proceeding as in section 2, define

y = C (x)
−1

µe, z = D (x)
−1

µi,

and consider solving the nonlinear system in (x, y, z):

g(x) +A(x)T(ρe− y)−B(x)Tz = 0,(3.18)

µe − C(x)y = 0,(3.19)

µi −D(x)z = 0,(3.20)

by means of the (quasi-)Newton iteration


 −W A(x)T B(x)T

Y A(x) C(x) 0
ZB(x) 0 D(x)




 ∆x
∆y
∆z


 =


 g(x) +A(x)T(ρe− y)−B(x)Tz

µe − C(x)y
µi −D(x)z


 ,

(L(x, y, z,W, ρ, µe, µi))

where Y = diag(y(j)), Z = diag(z(j)), andW is equal to, or approximates, the Hessian
with respect to x, at (x, y, z), of the Lagrangian associated with (Pρ).

System L(x, y, z,W, ρ, µe, µi) is solved first with (µe, µi) = (0, 0) and then with
(µe, µi) set analogously to (2.7). Following that, a correction ∆x̃ is computed by
solving the appropriate linear least squares problem, and new iterates x+, y+, and z+

are obtained as in section 2.
There remains the central issue of how ρ is updated. As noted in the introduction,

Mayne and Polak [15] adaptively increase ρ to keep it above the magnitude of the
most negative equality constraint multiplier estimate. They use a rather expensive
estimation scheme, which was later improved upon in [13] in a different context. A
simpler update rule is used here, which involves no computational overhead. It is
based on the observation that ρ should be increased whenever convergence is detected
to a point—a KKT point for (Pρ), in view of the convergence properties established
in [17] and reviewed in section 2—where some equality constraint is violated. Care
must be exercised because, if such convergence is erroneously signaled (false alarm),
a runaway phenomenon may be triggered, with ρ increasing uncontrollably without
a KKT point of (P) being approached. We avoid this by requiring that the following
three conditions—all of which are needed in the convergence proof—be satisfied in
order for an increase of ρ to be triggered (here γ1, γ2, and γ3 are prescribed positive
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constants): (a) ‖∆x0k‖ ≤ γ1, indicating the proximity of a stationary point for (Pρk);
(b) yk + ∆y0k �≥ γ2e; i.e., not all cjs become strongly binding as the limit point is
approached; (c) yk +∆y0k ≥ −γ3e and zk +∆z0k ≥ −γ3e; i.e., no components of yk or
zk are diverging to −∞ due to ρk being increased too fast (i.e., if ρk is growing large,
either yk and zk become nonnegative or their negative components become negligible
compared to ρk), the violation of which would indicate that the limit point is not
KKT.

We are now ready to state the algorithm.
Algorithm A.

Parameters. ξ ∈ (0, 1/2), η ∈ (0, 1), γ1 > 0, γ2 > 0, γ3 > 0, ν > 2, θ ∈ (0, 1),
wmax > 0, δ > 1, τ ∈ (2, 3), κ ∈ (0, 1).
Data. x0 ∈ X̃0, ρ0 > 0, y

(i)
0 ∈ (0, wmax], i = 1, . . . ,me, z

(i)
0 ∈ (0, wmax], i = 1, . . . ,mi;

W0 ∈ Rn×n such that

W0 +
[

A(x0)
T B(x0)

T
] [ C(x0)

−1Y0 ©
© D(x0)

−1Z0

] [
A(x0)
B(x0)

]
(3.21)

is positive definite.

Step 0: Initialization. Set k = 0.

Step 1: Computation of search arc:
i. Compute (∆x0k,∆y0k,∆z0k) by solving L(xk, yk, zk,Wk, ρk, 0, 0). If ∆x0k = 0
and me = 0, then stop.

ii. Check the following three conditions: (i) ‖∆x0k‖ ≤ γ1, (ii) yk + ∆y0k �≥ γ2e,
(iii) yk+∆y0k ≥ −γ3e and zk+∆z0k ≥ −γ3e. If all three conditions hold, then
set ρk+1 = δρk, xk+1 = xk, yk+1 = yk, zk+1 = zk, Wk+1 =Wk, set k = k+1,
and go back to Step 1i. Otherwise, proceed to Step 1iii.

iii. Compute (∆x1k,∆y1k,∆z1k) by solving L(xk,yk,zk,Wk,ρk,‖∆x0k‖νyk,‖∆x0k‖νzk).
iv. Set

ϕk=

{
1 if 〈∇fρk(xk),∆x1k〉 ≤ θ〈∇fρk(xk),∆x0k〉,
(1− θ)

〈∇fρk (xk),∆x
0
k〉

〈∇fρk (xk),∆x0
k−∆x1

k〉
otherwise.

v. Set

∆xk = (1− ϕk)∆x0k + ϕk∆x1k,

∆yk = (1− ϕk)∆y0k + ϕk∆y1k,

∆zk = (1− ϕk)∆z0k + ϕk∆z1k.

vi. Set

Iek = {j : cj(xk) ≤ y
(j)
k +∆y

(j)
k }, I ik = {j : dj(xk) ≤ z

(j)
k +∆z

(j)
k },

Je
k = {j : y(j)k +∆y

(j)
k ≤ −cj(xk)}, J i

k = {j : z(j)k +∆z
(j)
k ≤ −dj(xk)}.

vii. Set ∆x̃k to be the solution of the linear least squares problem

min 1
2 〈∆x̃,Wk∆x̃〉 s.t. cj(xk +∆xk) + 〈∇cj(xk),∆x̃k〉 = ψk ∀j ∈ Iek,

dj(xk +∆xk) + 〈∇dj(xk),∆x̃k〉 = ψk ∀j ∈ I ik,

(3.22)
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where

ψk=max

{
‖∆xk‖τ,max

j∈Iek

∣∣∣∣∣ ∆y
(j)
k

y
(j)
k +∆y

(j)
k

∣∣∣∣∣
κ

‖∆xk‖2,max
j∈Iik

∣∣∣∣∣ ∆z
(j)
k

z
(j)
k +∆z

(j)
k

∣∣∣∣∣
κ

‖∆xk‖2
}
.

If Je
k ∪ J i

k �= ∅ or (3.22) is infeasible or unbounded or ‖∆x̃k‖ > ‖∆xk‖, set
∆x̃k to 0.

Step 2. Arc search. Compute αk, the first number α in the sequence {1, η, η2, . . . }
satisfying

fρk(xk + α∆xk + α2∆x̃k) ≤ fρk(xk) + ξα〈∇fρk(xk),∆xk〉,
cj(xk + α∆xk + α2∆x̃k) > 0 ∀j,
dj(xk + α∆xk + α2∆x̃k) > 0 ∀j,
cj(xk + α∆xk + α2∆x̃k) ≥ cj(xk) ∀j ∈ Je

k,

dj(xk + α∆xk + α2∆x̃k) ≥ dj(xk) ∀j ∈ J i
k.

Step 3. Updates. Set xk+1 = xk + αk∆xk + α2
k∆x̃k. If J

e
k ∪ J i

k = ∅, set

y
(j)
k+1 = min{max{‖∆xk‖2, y(j)k +∆y

(j)
k }, wmax}, j = 1, . . . ,me,

z
(j)
k+1 = min{max{‖∆xk‖2, z(j)k +∆z

(j)
k }, wmax}, j = 1, . . . ,mi;

otherwise, set yk+1 = y0 and zk+1 = z0. Set ρk+1 = ρk and select Wk+1 such that

Wk+1 +
[

A(xk+1) B(xk+1)
]T [ C(xk+1)

−1Yk+1 ©
© D(xk+1)

−1Zk+1

] [
A(xk+1)
B(xk+1)

]

is positive definite. Set k = k + 1 and go back to Step 1.
Remark 1. The values assigned to yk+1 and zk+1 in Step 1ii are of no conse-

quence as far as the theoretical properties of the algorithm are concerned, provided
dual feasibility is preserved. Rather than reusing the previous values as stated in the
algorithm, it may be advisable to make use of the just computed corrections ∆y0k and
∆z0k, e.g., by setting

y
(j)
k+1 = min{max{y(j)k , y

(j)
k +∆y

0,(j)
k }, wmax}, j = 1, . . . ,me,

z
(j)
k+1 = min{max{z(j)k , z

(j)
k +∆z

0,(j)
k }, wmax}, j = 1, . . . ,mi,

which still ensures dual feasibility. (A side effect of such a rule is that the components
of yk and zk are possibly increased but never decreased when ρk is increased, which
makes some intuitive sense.)

Remark 2. Similarly, variations can be considered for the dual variable update
rule in Step 3 in the case when Je

k ∪ J i
k �= ∅. Indeed the convergence analysis of [17]

remains unaffected as long as the components of yk+1 and zk+1 stay bounded away
from zero (and bounded) over the set of iterates k at which Je

k ∪ J i
k �= ∅. A possible

choice would be

y
(j)
k+1 = min{max{wmin, y

(j)
k +∆y

(j)
k }, wmax}, j = 1, . . . ,me,

z
(j)
k+1 = min{max{wmin, z

(j)
k +∆z

(j)
k }, wmax}, j = 1, . . . ,mi,
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where wmin ∈ (0, wmax) is prescribed. Unlike the update rule used in the algorithm
statement (taken from [17]) this rule attempts to make use of some of the multiplier
estimates even when Je

k ∪ J i
k �= ∅.

Remark 3. If an initial point x0 ∈ X̃0 is not readily available, a point x0 ∈ X̃ can
be constructed as follows: (i) Perform a “Phase I” search by maximizing minj dj(x)
without constraints. This can be done, e.g., by applying Algorithm A to the problem

max
(x,ζ)∈Rn+1

ζ s.t. dj(x)− ζ ≥ 0 ∀j.

A point x0 satisfying minj dj(x) ≥ 0 will eventually be obtained (or the constructed
sequence {xk} will be unbounded), provided minj dj(x) has no stationary point with
negative value, i.e., provided that, for all x such that ζ := minj dj(x) < 0, the origin
does not belong to the convex hull of {∇dj(x) : dj(x) = ζ}. (ii) Redefine cj(x) to take
values −cj(x) for every j such that the original cj(x) is negative. As a result, x0 will

be in X̃ for the reformulated problem. If it is on the boundary of X̃ rather than in its
interior X̃0, it can be readily perturbed into a point in X̃0 (under Assumption 3(i)).

4. Convergence analysis. We first show that Algorithm A is well defined.
First of all, the conditions imposed on W0 and (in Step 3) on Wk in Algorithm A are
identical, for every fixed k, to the second condition in Assumption PTH-A6∗. Thus
the matrix in our (quasi-)Newton iteration is nonsingular, and it is readily checked
that if ∆x0k = 0 for some k, then ∇fρk(xk) = 0; i.e., xk is an unconstrained KKT
point for (Pρ) (cf. Proposition 3.4 of [17]); and it is readily checked that in such a
case, yk+∆y0k and zk+∆z0k are the associated KKT multiplier vectors, i.e., are both
zero. Thus, if finite termination occurs at Step 1i (i.e., me = 0), then ∇f(xk) = 0;
i.e., xk is an unconstrained KKT point for (P); and if ∆x0k = 0 but finite termination
does not occur (i.e., me > 0), then conditions (i) through (iii) in Step 1ii are satisfied,
and the algorithm loops back to Step 1i. Thus Step 1iii is never executed when ∆x0k
is zero. It then follows from Proposition 3.3 of [17] that under Assumptions 1, 2,
and 3(i), Algorithm A is well defined. (Assumptions A4 through A6 of [17] are not
needed in that proposition.)

From now on, we assume that the algorithm never stops, i.e., that an infinite
sequence {xk} is constructed. Our next task will be to show that unless {xk} itself
is unbounded, ρk is increased at most finitely many times. Assumption 3(ii) will be
crucial here. An additional assumption, adapted from PTH-A6∗, will be needed as
well.

Assumption 4. Given any index set K such that the sequence {xk} constructed
by Algorithm A is bounded, there exist σ1, σ2 > 0 such that, for all k ∈ K,

‖Wk‖ ≤ σ2

and 〈
v,

(
Wk +

me∑
i=1

y
(i)
k

ci(xk)
∇ci(xk)∇ci(xk)

T +

mi∑
i=1

z
(i)
k

di(xk)
∇di(xk)∇di(xk)

T

)
v

〉

≥ σ1‖v‖2 ∀v ∈ Rn.
Lemma 4.1. Suppose Assumptions 1–4 hold. If the infinite sequence {xk} gen-

erated by Algorithm A is bounded, then ρk is increased at most finitely many times.
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Proof. The proof is by contradiction. Suppose ρk is increased infinitely many
times; i.e., there exists an infinite index set K such that ρk+1 > ρk for all k ∈ K.
The criteria that trigger ρk to increase must thus be satisfied for all k ∈ K, i.e., with
y′k = yk +∆y0k and z′k = zk +∆z0k,

‖∆x0k‖ ≤ γ1 ∀k ∈ K,(4.1)

y′k �≥ γ2e ∀k ∈ K,(4.2)

y′k ≥ −γ3e ∀k ∈ K,(4.3)

z′k ≥ −γ3e ∀k ∈ K.(4.4)

As per Step 1i of Algorithm A, we have

Wk∆x0k + g(xk) +A(xk)
T(ρke− y′k)−B(xk)

Tz′k = 0,(4.5)

YkA(xk)∆x0k + C(xk)y
′
k = 0,(4.6)

ZkB(xk)∆x0k +D(xk)z
′
k = 0.(4.7)

Since {ρk} tends to infinity, it follows from (4.2) that {‖ρke− y′k‖∞} tends to infinity
on K. Consequently, the sequence {αk}, with

αk = max {‖ρke− y′k‖∞, ‖z′k‖∞, 1} ,
tends to infinity on K as well. Define

ŷk = α−1
k (ρke− y′k),(4.8)

ẑk = α−1
k z′k(4.9)

for k ∈ K. By construction max{‖ŷk‖∞, ‖ẑk‖∞} = 1 for all k ∈ K, k large enough.
Since in addition the sequence {xk}k∈K is bounded by assumption, there must exist
an infinite index set K′ ⊆ K and vectors x∗ ∈ Rn, ŷ∗ ∈ Rme , and ẑ∗ ∈ Rmi , with ŷ∗

and ẑ∗ not both zero, such that

lim
k→∞
k∈K′

xk = x∗, lim
k→∞
k∈K′

ŷk = ŷ∗, lim
k→∞
k∈K′

ẑk = ẑ∗.

Boundedness of {xk} and the continuity assumptions imply that {A(xk)} and {B(xk)}
are bounded. Further, {Yk} and {Zk} are bounded by construction. Dividing both
sides of (4.6) by αk, letting k →∞, k ∈ K′, and using (4.1) shows that

α−1
k C(xk)y

′
k → 0 as k →∞, k ∈ K′,

implying that, for every j �∈ Ie(x∗),

α−1
k y

′,(j)
k → 0 as k →∞, k ∈ K′.

Together with (4.8), this implies that {ρk/αk} converges to some limit ω ≥ 0 as
k →∞, k ∈ K′, with

ŷ∗,(j) = ω ∀ j �∈ Ie(x∗).

Next it follows from (4.3), (4.4), (4.8), and (4.9) that

ŷ∗,(j) ≤ ω ∀j, ẑ∗ ≥ 0.(4.10)
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Further, dividing (4.7) by αk and taking the limit as k →∞, k ∈ K′, yields

D (x∗) ẑ∗ = 0.

Thus ẑ∗,(j) = 0 for all j �∈ I i(x∗). Finally, in view of (4.1) and Assumption 4, dividing
(4.5) by αk and taking the limit as k →∞, k ∈ K′, yields

A(x∗)Tŷ∗ −B(x∗)Tẑ∗ = 0,

i.e.,

me∑
j=1

ŷ∗,(j)∇cj(x
∗)−

∑
j∈Ii(x∗)

ẑ∗,(j)∇dj(x
∗) = 0.(4.11)

Since ŷ∗ and ẑ∗ are not both zero, (4.11) together with Assumption 3(i) implies that
Ie(x∗) �= {1, . . . ,me} (i.e., x∗ �∈ X) and ω > 0. Dividing both sides of (4.11) by ω
and adding and subtracting

∑
j∈Ie(x∗)∇cj(x

∗) then yields

me∑
j=1

∇cj(x
∗)−

∑
j∈Ie(x∗)

y(j)∇cj(x
∗)−

∑
j∈Ii(x∗)

z(j)∇dj(x
∗) = 0,

where we have defined y(j) = 1 − ŷ∗,(j)

ω and zj = ẑ∗,(j)
ω . In view of (4.10) and since

x∗ �∈ X, this contradicts Assumption 3(ii).
In what follows, ρ̄ denotes the final value of ρk.
Algorithm A now reduces to the algorithm described in section 2 applied to prob-

lem (Pρ̄). It is shown in [17] that under Assumptions 1–4, if the sequence {xk} con-
structed by Algorithm A is bounded, then all its accumulation points are stationary
for (Pρ̄). To conclude that they are KKT points for (Pρ̄), an additional assumption
is used. Recall that ρ̄ is of the form ρ0δ

 for some nonnegative integer �.
Assumption 5. For ρ ∈ {ρ0δ : � a nonnegative integer}, all stationary points

of (Pρ) are isolated.
Thus, under Assumptions 1–5, all accumulation points of {xk} are KKT points

for (Pρ̄) (Theorem 3.11 in [17]). Now, since ρk eventually stops increasing, at least
one of the conditions in Step 1ii of Algorithm A is not eventually always satisfied. For
convergence to KKT points of (P) to be guaranteed, the fact that condition (ii) in
Step 1ii of Algorithm A must eventually be violated if ρk stops increasing is crucial,
since this would imply that c(xk) goes to zero. A glance at the three conditions in
that step suggests that this will be the case if the dual variables converge to the KKT
multipliers for (Pρ̄) (since in such a case conditions (i) and (iii) will eventually hold).
To prove that the latter indeed occurs, one more assumption is used.

Assumption 6. The sequence {xk} generated by Algorithm A has an accumula-
tion point which is an isolated KKT point for (Pρ̄) and at which strict complementarity
holds.

Proposition 4.2. Suppose Assumptions 1–6 hold. If the infinite sequence {xk}
generated by Algorithm A is bounded, then it converges to a KKT point x∗ of (Pρ̄).
Moreover, with y∗ and z∗ the associated KKT multiplier vectors corresponding, re-
spectively, to the “c” and “d” constraints,

(i) {∆xk} → 0 as k → ∞, {yk +∆yk} → y∗ as k → ∞, and {zk +∆zk} → z∗

as k →∞;
(ii) for k large enough, Je

k = ∅ = J i
k, I

e
k = Ie(x∗), and I ik = I i(x∗);
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(iii) if y∗,(j) ≤ wmax for all j, then {yk} → y∗ as k →∞; if z∗,(j) ≤ wmax for all
j, then {zk} → z∗ as k →∞.

Proof. The proof follows from Proposition 4.2 in [17], noting that our Assump-
tion 6 is the only portion of Assumption A8 of [17] that is needed in the proofs of
Lemma 4.1 of [17] and Proposition 4.2 of [17].

Theorem 4.3. Suppose Assumptions 1–6 hold. If the infinite sequence {xk}
generated by Algorithm A is bounded, then it converges to a KKT point x∗ of (P).
Moreover, in such a case, {yk +∆yk − ρe} converges to ȳ∗ and {zk +∆zk} converges
to z∗, where ȳ∗ and z∗ are the multiplier vectors associated with x∗ for problem (P).

Proof. We know from Proposition 4.2 that (i) {xk} → x∗, a KKT point for (Pρ̄);
(ii) {∆xk} → 0; (iii) {yk + ∆yk} → y∗ ≥ 0, the multiplier vector associated with
the “c” constraints; and (iv) {zk + ∆zk} → z∗ ≥ 0, the multiplier vector associ-
ated with the “d” constraints. Further, in view of strict complementarity, it follows
from Lemma PTH-3.1∗ in the appendix that the matrix in L(x∗, y∗, z∗,W ∗, ρ̄, 0, 0)
is nonsingular given any accumulation point W ∗ of {Wk}. Together with (i), (iii),
and (iv) above, and since L(x∗, y∗, z∗,W ∗, ρ̄, 0, 0) admits (0, y∗, z∗) as its unique so-
lution, this implies that on every subsequence on which {Wk} converges, {∆x0k} goes
to 0, {yk +∆y0k} goes to y∗, and {zk +∆z0k} goes to z∗. As a consequence (invoking
Assumption 4 and a simple contradiction argument), without the need to go down to
a subsequence, {∆x0k} → 0, {yk+∆y0k} → y∗, and {zk+∆z0k} → z∗. Thus conditions
(i) and (iii) in Step 1ii of Algorithm A are all satisfied for k large enough. Since
ρk = ρ̄ for k large enough, it follows from Step 1ii of Algorithm A that condition
(ii) must fail for k large enough, i.e., yk + ∆y0k ≥ γ2e for k large enough, implying
that y∗ ≥ γ2e. Since γ2 > 0, it follows from complementary slackness that c(x∗) = 0.
Since the algorithm generates feasible iterates, we are guaranteed that dj(x

∗) ≥ 0,
j = 1, . . . ,mi. Application of Proposition 3.2 concludes the proof of the first claim.
The second claim then follows from Proposition 3.2 and Proposition 4.2(i).

Rate of convergence results are inherited from the results in [17]. We report them
here for ease of reference. As above, let ȳ∗ and z∗ be the multipliers associated with
KKT point x∗ of (P). The Lagrangian associated with (P) is given by

L(x, ȳ, z) = f(x)− 〈ȳ, c(x)〉 − 〈z, d(x)〉.

With the correspondence ȳ = y − ρ̄e, it is identical to the Lagrangian associated
with (Pρ̄), i.e.,

Lρ̄(x, y, z) = f(x) + ρ̄

me∑
j=1

cj(x)− 〈y, c(x)〉 − 〈z, d(x)〉.

Assumption 7. f , cj, j = 1, . . . ,me, and dj, j = 1, . . . ,mi, are three times
continuously differentiable. Furthermore, the second order sufficiency condition holds
(with strict complementarity under Assumption 6) for (P) at x∗; i.e., ∇2Lxx(x∗,ȳ∗,z∗)
is positive definite on the subspace

{v ∈ Rn 〈∇cj(x
∗), v〉 = 0 ∀j, 〈∇dj(x

∗), v〉 = 0 ∀j ∈ I i(x∗)}.

It is readily checked that the second order sufficiency condition for (Pρ̄) is identical
to that for (P).

As a final assumption, superlinear convergence requires that the sequence {Wk}
asymptotically carry appropriate second order information.
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Assumption 8.

‖Nk(Wk −∇2
xxL(x∗, ȳ∗, z∗))Nk∆xk‖
‖∆xk‖ → 0 as k →∞,(4.12)

where

Nk = I − ĜT
k

(
ĜkĜ

T
k

)−1

Ĝk

with

Ĝk = [∇cj(xk), j = 1, . . . ,me,∇dj(xk), j ∈ I i(x∗)]T ∈ R(me+|I(x∗)|)×n.

Theorem 4.4. Suppose Assumptions 1–8 hold, and suppose that y∗,(j) ≤ wmax,
j = 1, . . . ,me, and z∗,(j) ≤ wmax, j = 1, . . . ,mi. Then the arc search in Step 2 of
Algorithm A eventually accepts a full step of one, i.e., αk = 1 for all k large enough,
and {xk} converges to x∗ two-step superlinearly, i.e.,

lim
k→∞

‖xk+2 − x∗‖
‖xk − x∗‖ = 0.

Finally, it is readily verified that, under Assumption 7, for k large enough, As-
sumption 4 holds when Wk is selected to be equal to the Hessian of the Lagrangian
Lρ̄. In view of the discussion in section 2.3, Q-quadratic convergence follows.

Theorem 4.5. Suppose Assumptions 1–7 hold, suppose that, at every iteration
except possibly finitely many, Wk is selected as

Wk = ∇2
xxLρk(xk, yk, zk),

and suppose that y∗,(j) ≤ wmax, j = 1, . . . ,me, and z∗,(j) ≤ wmax, j = 1, . . . ,mi.
Then (xk, yk, zk) converges to (x

∗, y∗, z∗) Q-quadratically; equivalently, (xk, yk−ρke, zk)
converges to (x∗, ȳ∗, z∗), Q-quadratically; i.e., there exists a constant Γ > 0 such that∥∥∥∥∥∥


 xk+1 − x∗

yk+1 − y∗

zk+1 − z∗



∥∥∥∥∥∥ ≤ Γ

∥∥∥∥∥∥

 xk − x∗

yk − y∗

zk − z∗



∥∥∥∥∥∥
2

∀k;(4.13)

equivalently, ∥∥∥∥∥∥

 xk+1 − x∗

yk+1 − ρk+1e− ȳ∗

zk+1 − z∗



∥∥∥∥∥∥ ≤ Γ

∥∥∥∥∥∥

 xk − x∗

yk − ρke− ȳ∗

zk − z∗



∥∥∥∥∥∥
2

∀k.

5. Numerical tests.

5.1. Technical aspects. We tested a MATLAB 6.1 implementation of Algo-
rithm A with the following differences in comparison with the algorithm statement of
section 3:

• The suggestion made in Remark 2 was adopted.
• In the update formulae for the multipliers in Step 3, ‖∆xk‖2 was changed to
min{wmin, ‖∆xk‖2} in both places. The motivation is that ‖∆xk‖ is mean-
ingful only when it is small. This change does not affect the convergence
analysis.
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The following parameter values were used: ξ = 10−4, η = 0.8, γ1 = 1, γ2 = 1, γ3 = 1,
ν = 3, θ = 0.8, wmin = 10−4 (see Remark 2), wmax = 1020, δ = 2, τ = 2.5, and
κ = 0.5.

In our tests, we allowed for the initial point x0 to lie on the boundary of the
feasible set X̃. It is readily checked that in such a case, under our assumptions,
L(x0, y0, z0,W0, ρ0, 0, 0) is still uniquely solvable and, unless ∆x00 = 0, the initial
iteration is still well defined and yields a strictly feasible second iterate. (When
∆x00 = 0 and c(x0) = 0, x0 is stationary for (P). When ∆x00 = 0 but c(x0) �= 0, x0 is
stationary for (Pρ0) but not for (P), and unless the sum of the gradients of inactive
cj(x0)’s belongs to the span of the gradients of all active constraints, increasing ρ
forces a nonzero ∆x00 and the iteration can proceed.) When x0 is not in the interior
of X̃, the condition to be satisfied by W0 must be modified by replacing in (3.21) the
infinite (diagonal) entries of C(x0)

−1 and D(x0)
−1 by 0, and by requiring positive

definiteness of the modified expression merely on the tangent plane to the active
constraints, i.e., on{

v ∈ Rn : 〈∇ci(x0), v〉 = 0, 〈∇dj(x0), v〉 = 0 ∀i ∈ Ie(x0), j ∈ I i(x0)
}
.

In the numerical tests reported below, the initial value x0 was selected in each
case as specified in the source of the test problem. Initial values y0, z0, and ρ0 were
selected as follows. Let y′0 and z′0 be the (linear least squares) solution of

min
y′0,z

′
0

‖g(x0)−A(x0)y
′
0 −B(x0)z

′
0‖2.

Then ρ0 was set to the smallest power of δ that is no less than max{1,maxj{γ2−y′0
(j)}},

and, for all j, y
(j)
0 was set to y

(j)
0 + ρ0 and z

(j)
0 to max{0.1, z(j)0 }. In all the tests,

y0 and z0 thus defined satisfied the condition specified in the algorithm that their
components should all be no larger than wmax.

Next, for k = 0, 1, . . . ,Wk was constructed as follows from second order derivative
information. Let λmin be the leftmost eigenvalue of the restriction of the matrix

∇2
xxLρk(xk, yk, zk) +

∑
i∈Ie′k

y
(i)
k

ci(xk)
∇ci(xk)∇ci(xk)

T +
∑
i∈Ii′k

z
(i)
k

di(xk)
∇di(xk)∇di(xk)

T,

where Ie
′
k and I i

′
k are the sets of indices of “c” and “d” constraints with value larger

than 10−10, to the tangent plane to the constraints left out of the sum, i.e., to the
subspace {

v ∈ Rn : 〈∇ci(xk), v〉 = 0, 〈∇dj(xk), v〉 = 0 ∀i �∈ Ie
′
k , j �∈ I i

′
k

}
.

Then, set

Wk = ∇2
xxLρk(xk, yk, zk) + hkI,

where

hk =



0 if λmin > 10−5,
−λmin + 10

−5 if |λmin| ≤ 10−5,
2|λmin| otherwise.
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Note that under our regularity assumptions (which imply that Wk is bounded when-
ever xk is bounded), this ensures that Assumption 4 holds. The motivation for the
third alternative is to preserve the order of magnitude of the eigenvalues and condition
number.

The stopping criterion (inserted at the end of Step 1i) was as follows, with εstop =
10−8. First, accounting for the fact that in our tests we allowed the initial point to
lie on the boundary of X̃, we stopped with the error message “initial point stationary
for (P)” if ‖∆x00‖ < 0.001εstop and ‖c(x0)‖∞ < εstop. Second, the run was deemed to
have terminated successfully if at any iteration k

max

{
‖c(xk)‖∞, max

j

{
−
(
y
(j)
k +∆y

0(j)
k

)}
, max

j

{
−
(
z
(j)
k +∆z

0(j)
k

)}}
< εstop

and either

‖∆x0k‖∞ < εstop

or

max

{
‖∇xL(xk, yk, zk)‖∞, max

j

{
z
(j)
k dj(xk)

}}
< εstop.

Iterations at which only Steps 1i and 1ii are executed were not included in our
iteration counts. The reason is that the computational cost of these iterations is
dramatically less than that of “regular” iterations: no additional function evaluations
and no additional matrix factorization—the same factorization is later used at the
next regular iteration. All tests were run within the CUTEr testing environment [9],
on a SUN Enterprise 250 with two UltraSparc-II 400MHz processors, running Solaris
2.7.

5.2. Numerical results. We first considered two instances of the example
from [23] briefly discussed in section 3 (immediately following Lemma 3.1), specif-
ically (a, b) = (1, 1) with (−3, 1, 1)T as initial guess, and (a, b) = (−1, 1/2) with
(−2, 1, 1)T as initial guess, both of which satisfy the conditions in Theorem 1 of [23].
In both cases we used f(x) = x(1) as objective function (as in the example of section 4
of [23]). Recall that under those conditions, all methods of type “Algorithm I” in [23]
construct sequences that converge to points of the form (ζ, 0, 0)T, with ζ < 0, where
both c1 and c2 are nonzero. As noted in our earlier discussion, Assumption 3(ii) is
satisfied in the first instance, while in the second instance the condition in that as-
sumption is violated only at x̂ := (−1, 0, 0)T (with c1(x̂) = 0). Thus, at x̂, there is no
direction of strict descent for c1(x) + c2(x) (the �1 norm of c(x) when x ∈ X̃) that is
feasible for c1(x) ≥ 0, d1(x) ≥ 0, and d2(x) ≥ 0.

In the first instance, our Algorithm A was observed to converge to the unique
global solution (1, 2, 0)T in 13 iterations, with a final penalty parameter value ρ̄ of 4.
In the second instance, Algorithm A failed in that the constructed sequence converged
to the infeasible point x̂. Interestingly, it can be checked that, at x̂, there is not even a
descent direction for ‖c(x)‖1 that is feasible for the mere bound constraints d1(x) ≥ 0
and d2(x) ≥ 0.

Remark 4. For the second instance of the example of [23] just discussed, direc-
tions do exist at x̂ that are of strict descent for the Euclidean norm of c(x) and are
feasible for the bound constraints. The existence of such directions allows the algo-
rithm proposed in [3] to proceed from such a point. (Also see the related discussion in
the penultimate paragraph of [23].)
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We then ran the MATLAB code on all but four of those problems from [12] for
which the initial point provided in [12] satisfies all inequality constraints. (While a
phase I-type scheme could be used on the other problems—see Remark 3—testing such
a scheme is outside the main scope of this paper.) Problems 67, 68, 69, and 87 were left
out: the first one because it is irregular,9 the next two because of numerical difficulties
in connection with the use of Chebyshev approximations in function evaluations, and
the last one because the objective function in that problem is nonsmooth. In problems
31, 35, 44, 55, 71, and 86, the given x0 is stationary for problem (P) and in problem 74,
the given x0 is stationary for (Pρ) for every ρ. Results on the remaining 63 problems
are reported in Table 5.1. The first column in the table gives the problem number
from [12], the second column the total number of iterations, the third column the final
value ρ̄ of the penalty parameter, and the last column the final value of the objective
function.

Table 5.1
Results on test problems from [12].

Prob. #Itr ρ̄ ffinal Prob. #Itr ρ̄ ffinal

HS1 24 1 6.5782e-27 HS51 8 4 0.0000e+00
HS3 4 1 8.5023e-09 HS52 4 8 5.3266e+00
HS4 4 1 2.6667e+00 HS53 5 8 4.0930e+00
HS5 6 1 -1.9132e+00 HS54 23 4 -1.6292e-54
HS6 7 2 0.0000e+00 HS56 12 4 -3.4560e+00
HS7 9 2 -1.7321e+00 HS57 15 1 2.8460e-02
HS8 14 1 -1.0000e+00 HS60 7 1 3.2568e-02
HS9 10 1 -5.0000e-01 HS61 44 128 -1.4365e+02
HS12 5 1 -3.0000e+01 HS62 5 1 -2.6273e+04
HS24 14 1 -1.0000e+00 HS63 5 2 9.6172e+02

HS25 62 1 1.8185e-16 HS66 1000† 1 5.1817e-01
HS26 19 2 2.8430e-12 HS70 22 1 1.7981e-01
HS27 14 32 4.0000e-02 HS73 16 1 2.9894e+01
HS28 6 1 0.0000e+00 HS75 28 16 5.1744e+03
HS29 8 1 -2.2627e+01 HS77 13 1 2.4151e-01
HS30 7 1 1.0000e+00 HS78 4 4 -2.9197e+00
HS32 24 4 1.0000e+00 HS79 7 2 7.8777e-02
HS33 29 1 -4.5858e+00 HS80 6 2 5.3950e-02
HS34 30 1 -8.3403e-01 HS81 9 8 5.3950e-02
HS36 10 1 -3.3000e+03 HS84 30 1 -5.2803e+06

HS37 7 1 -3.4560e+03 HS85 296‡ 1 -2.2156e+00
HS38 37 1 3.1594e-24 HS93 12 1 1.3508e+02
HS39 19 4 -1.0000e+00 HS99 8 2 -8.3108e+08
HS40 4 2 -2.5000e-01 HS100 9 1 6.8063e+02

HS42 6 4 1.3858e+01 HS107 1000† 8192 5.0545e+03
HS43 9 1 -4.4000e+01 HS110 6 1 -4.5778e+01

HS46 25 2 6.6616e-12 HS111 1000† 1 -4.7760e+01
HS47 25 16 8.0322e-14 HS112 11 1 -4.7761e+01
HS48 6 4 0.0000e+00 HS113 10 1 2.4306e+01
HS49 69 64 3.5161e-12 HS114 39 256 -1.7688e+03
HS50 11 512 4.0725e-17 HS117 25 1 3.2349e+01

On three of the problems (66, 107, and 111) our stopping criterion was not met
after 1000 iterations. However, in all three cases the final objective value was equal,
with three or more figures of accuracy, to the optimal value given in [12]. (Indeed, four

9It is termed irregular in [12]: computation of the cost and constraint functions involves an
iterative procedure with variable number of iterations, rendering these functions discontinuous.
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figures of accuracy were obtained on problems 66 and 111, after 120 and 887 iterations,
respectively; and three figures of accuracy were reached on problem 107 after 95 itera-
tions.) A large number of iterations was needed on problem 85, on which the algorithm
failed in the last iteration to produce an acceptable step size due to numerical diffi-
culties. When the algorithm stopped, near x = (704.41, 68.60, 102.90, 282.03, 37.46)T,
the value of ‖∆x0k‖ was less than 2 · 10−8, and the objective value obtained was lower
than the (locally) optimal value given in [12]. Overall, comparison with published re-
sults obtained on the same problems with other interior-point methods suggests that
Algorithm A has promise. In particular, on 39 of the 63 problems listed in Table 5.1,
our results in terms of number of iterations are better than those reported in [22]. (On
three other problems they are identical, and problem 67 is not listed in [22].) More
extensive testing on larger size problems is in order for a more definite assessment
of the value of the proposed approach. Such testing will require a more elaborate
implementation of the algorithm.

6. Concluding remarks. An interior-point algorithm for the solution of general
nonconvex constrained optimization problems has been proposed and analyzed. The
algorithm involves a novel, simple exact penalty parameter updating rule. Global
convergence as well as local superlinear and quadratic convergence have been proved
under mild assumptions. In particular, it was pointed out that the proposed algorithm
does not suffer a common pitfall recently pointed out in [23]. Promising preliminary
numerical results were reported.

While the present paper focused on applying a version of the Mayne–Polak scheme
to the algorithm of [17], there should be no major difficulty in similarly extending
other feasible interior-point algorithms for inequality constrained problems to handle
general constrained problems.

7. Appendix. We discuss the implications of substituting Assumption PTH-
A6∗, as stated in section 2, for Assumption A6 of [17]. For the reader’s ease of
reference, throughout this appendix, we use the notation of [17]; Assumption PTH-
A6∗ then reads as follows.

Assumption PTH-A6∗. Given any index set K such that {xk}k∈K is bounded,
there exist σ1, σ2 > 0 such that, for all k ∈ K,

‖Hk‖ ≤ σ2

and 〈
d,

(
Hk −

m∑
i=1

µk,i
gi(xk)

∇gi(xk)∇gi(xk)
T

)
d

〉
≥ σ1‖d‖2 ∀d ∈ Rn.

First of all, under this weaker assumption, a stronger version of Lemma 3.1 of [17]
is needed.

Lemma PTH-3.1∗. Let x ∈ X, let µ ∈ Rm be such that µi ≥ 0 for all i and
µi > 0 for all i ∈ I(x), and let H be a symmetric matrix satisfying the condition〈

d,


H −

∑
i �∈I(x)

µi
gi(x)

∇gi(x)∇gi(x)
T


 d

〉
> 0 ∀d ∈ T (x) \ {0},(7.1)

where

T (x) = {d ∈ Rn : 〈∇gi(x), d〉 = 0 ∀i ∈ I(x)}.
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Then the matrix F (x,H, µ) defined by

F (x,H, µ) =




H ∇g1(x) . . . ∇gm(x)
µ1∇g1(x)

T g1(x) ©
...

. . .

µm∇gm(x)
T © gm(x)




is nonsingular.
Proof. It is enough to show that the only solution (d, λ) of the homogeneous

system

Hd+
m∑
i=1

λi∇gi(x) = 0,(7.2)

µi〈∇gi(x), d〉+ λigi(x) = 0, i = 1, . . . ,m,(7.3)

is (0,0). Scalar multiplication of both sides of (7.2) by d yields

〈d,Hd〉+
m∑
i=1

λi〈∇gi(x), d〉 = 0.(7.4)

On the other hand, it follows from (7.3) and the assumption on µ that

〈∇gi(x), d〉 = 0 ∀ i ∈ I(x).(7.5)

Now, from (7.4) and (7.5), we get

〈d,Hd〉+
∑
i �∈I(x)

λi〈∇gi(x), d〉 = 0.(7.6)

Solving (7.3) for λi (for i �∈ I(x)) and substituting in (7.6) yields

〈d,Hd〉 −
∑
i �∈I(x)

〈∇gi(x), d〉 µi
gi(x)

〈∇gi(x), d〉 = 0.

In view of (7.5), it follows from (7.1) that d = 0. It then follows from (7.3) that
λi = 0 for all i �∈ I(x). Assumption A5 of [17] together with (7.2) then implies that
(d, λ) = (0, 0).

Next, the first inequality in equation (3.6) of [17] is unaffected. While the second
inequality in that equation still holds as well, it is not of much value now that Hk is
no longer assumed to be positive definite. However, we note that with Sk denoting
the Schur complement of Gk := diag(gi(xk)) in F (xk, Hk, µk) (see page 794 of [17]),
i.e.,

Sk := Hk −AkG
−1
k MkA

T
k ,

where Ak and Mk are defined on page 808 in [17], we get

d0k = −S−1
k ∇f(xk)
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yielding

〈∇f(xk), d
0
k〉 = −〈d0k, Skd0k〉 ≤ −σ1‖d0k‖2,(7.7)

where we have invoked Assumption PTH-A6∗. Where equation (3.6) (of [17]) is used
in the analysis of [17], equation (7.7) must sometimes be used instead.

Propositions 3.3 and 3.4 of [17] then readily follow. The only remaining notable
issue is that a stronger version of Lemma 3.5 of [17] is needed, as follows.

Lemma PTH-3.5∗. Let K be an infinite index set such that, for some x∗ and µ∗,

lim
k→∞
k∈K

xk = x∗ and lim
k→∞
k∈K

µk = µ∗.

Suppose, moreover, that µ∗
i > 0 if gi(x

∗) = 0. Then, given any accumulation point
H∗ of {Hk}k∈K , F (x∗, H∗, µ∗) is nonsingular. Moreover, there exists C such that,
for all k ∈ K,

‖dk − d0k‖ ≤ C‖d0k‖ν .

Proof. LetK ′ ⊆ K be an infinite index set such thatHk → H∗ as k →∞, k ∈ K ′.
We first show that (x∗, H∗, µ∗) satisfies the assumptions of Lemma PTH-3.1∗. Thus
let v �= 0 be such that

〈∇gi(x
∗), v〉 = 0 ∀i ∈ I(x∗).

In view of our linear independence assumption, there exists10 a sequence {vk}k∈K′

converging to v on K ′ such that for all k ∈ K ′

〈∇gi(xk), vk〉 = 0 ∀i ∈ I(x∗).

It then follows from Assumption PTH-A6∗ (by adding zero terms) that for all k ∈ K ′

〈
vk,


Hk −

∑
i �∈I(x∗)

µk,i
gi(xk)

∇gi(xk)∇gi(xk)
T


 vk

〉
≥ σ1‖vk‖2.

Letting k →∞, k ∈ K ′ shows that

〈
v,


H∗ −

∑
i �∈I(x∗)

µ∗
i

gi(x∗)
∇gi(x

∗)∇gi(x
∗)T


 v

〉
≥ σ1‖v‖2 > 0.

Thus the assumptions of Lemma PTH-3.1∗ are satisfied. It follows that F (x∗, H∗, µ∗)
is nonsingular. Since F (xk, Hk, µk) is nonsingular for all k, boundedness of {Hk} and
our continuity assumptions imply that F (xk, Hk, µk)

−1 is uniformly bounded on K.
The remainder of the proof is as in [17].

With these strengthened results, the remainder of the analysis in [17] is essen-
tially unaffected by the weakening of the assumption on Hk. Specifically, Lemma 3.6
of [17] (where the “old” Assumption A6 of [17] is invoked) still follows, using the
stronger Lemmas PTH-3.1∗ and PTH-3.5∗. While the “boundedness of Hk” portion

10For instance, vk can be selected to be the orthogonal projection of v on the orthogonal comple-
ment of the span of the ∇gi(xk)’s.
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of Assumption A6 is used at many other places in the analysis of [17], the “positive
definiteness” portion of that assumption (which is the only portion that is relaxed in
Assumption PTH-A6∗) is not used anywhere else. The strengthened Lemmas PTH-
3.1∗ and PTH-3.5∗ are needed in the proof of Lemma 4.1 of [17]: Lemma 3.1 of [17]
is implicitly used in the last sentence of that proof to conclude that the limit system
(4.1)–(4.2) of [17] is invertible.

Finally, Lemma 4.4 of [17] still holds under the milder Assumption PTH-A6∗ (and
so do Proposition 4.5 of [17] and Theorem 4.6 of [17]), but again the strengthened
Lemmas PTH-3.1∗ and PTH-3.5∗ are needed in its proof. In particular, for k large
enough, the second order sufficiency condition still holds at the solution of (LS3)
of [17], and thus solving (LS3) is still equivalent to solving the stated linear system
of equations (in the proof of Lemma 4.4). (The notation ‖d‖2Hk

used in (LS3) is now
inappropriate though, and should be replaced with 〈d,Hkd〉.) Furthermore, it follows
from Lemma PTH-3.5∗ and the fact that µk,i tends to zero for i �∈ I(x∗) that, for
k large enough, this linear system still has a unique solution; i.e., (LS3) still has a
well-defined (unique) minimizer.
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Abstract. Multistage stochastic programming problems arise in many practical situations, such
as production and manpower planning, portfolio selections, and so on. In general, the deterministic
equivalents of these problems can be very large and may not be solvable directly by general-purpose
optimization approaches. Sequential quadratic programming (SQP) methods are very effective for
solving medium-size nonlinear programming. By using the scenario analysis technique, a decom-
position method based on SQP for solving a class of multistage stochastic nonlinear programs is
proposed, which generates the search direction by solving parallelly a set of quadratic programming
subproblems with much less size than the original problem at each iteration. Conjugate gradient
methods can be introduced to derive the estimates of the dual multiplier associated with the nonan-
ticipativity constraints. By selecting the step-size to reduce an exact penalty function sufficiently, the
algorithm terminates finitely at an approximate optimal solution to the problem with any desirable
accuracy. Some preliminary numerical results are reported.

Key words. multistage stochastic nonlinear programs, sequential quadratic programming, sce-
nario analysis, decomposition
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1. Introduction. Stochastic programming studies optimization problems with
uncertain data. Multistage stochastic programming problems arise in many practical
situations, such as production and manpower planning, portfolio selections, and so
on. Consider the following multistage stochastic program with recourse:

min
x∈X

ĉ0(x) + Eξ1Q1(x, ξ1),(1.1)

where X = {x|c0(x) = 0} ⊆ �n0 , the recourse function is

(1.2)

Q1(x, ξ̂1) = min
y1

q1(x, y1, ξ̂1) + Eξ2Q2(x, y1, ξ̂1, ξ2) subject to (s.t.) c1(x, y1, ξ̂1) = 0,

and for t = 2, . . . , T − 1, recursively we have

Qt(x, y1, . . . , yt−1, ξ̂1, . . . , ξ̂t) = min
yt

qt(x, y1, . . . , yt−1, yt, ξ̂1, . . . , ξ̂t)

+ Eξt+1Qt+1(x, y1, . . . , yt, ξ̂1, . . . , ξ̂y, ξt+1)(1.3)

s.t. ct(x, y1, . . . , yt, ξ̂1, . . . , ξ̂t) = 0,(1.4)

∗Received by the editors January 23, 2002; accepted for publication (in revised form) March 6,
2003; published electronically July 18, 2003. This research was partially supported by grant R-146-
000-032-112 of the National University of Singapore.

http://www.siam.org/journals/siopt/14-1/36144.html
†Singapore-MIT Alliance, National University of Singapore, E4-04-10, 4 Engineering Drive 3,

Singapore 117576 (smaliuxw@nus.edu.sg). This work was done when this author was a research
fellow of the Department of Mathematics of the National University of Singapore. This author is on
leave from the Hebei University of Technology, Tianjin, China. His research was partially supported
by a Hebei doctoral fund.

‡Department of Mathematics, National University of Singapore, Singapore 119260 (matzgy@nus.
edu.sg).

200



A DECOMPOSITION SQP FOR STOCHASTIC PROGRAMS 201

QT = 0. Vector x ∈ �n0 is the deterministic vector, and ξ̂i is the realization of
the random vector ξi. Vector yi ∈ �ni is the decision vector in the ith stage, which
is generated recursively by x, y1, . . . , yi−1 and ξ̂1, . . . , ξ̂i; hence yi is a function on
(x, y1, . . . , yi−1, ξ̂1, . . . , ξ̂i) actually. Functions ĉ0 and c0 are real-valued functions on

�n0 , and ct is random since it is related to ξ̂1, . . . , ξ̂t. For the discrete random vector
ξ = (ξ1, . . . , ξT−1), if ct has finite realizations cti(i = 1, . . . , St), then all these cti
form the constraint functions on stage t. The details on the formulation of multistage
stochastic programs can be found, e.g., in Kall and Wallace [17].

Scenario analysis was introduced to deal with multistage stochastic programs by
Rockafellar and Wets in 1987, by which the program is specified into a finite number
of scenarios for the considered time period. Let ξ = (ξ1, . . . , ξT−1), and assume
that (Ω,Θ , P ) is the associated probability space. Suppose that we have S scenarios

ξ(s) = (ξ
(s)
1 , ξ

(s)
2 , . . . , ξ

(s)
T−1), s = 1, . . . , S, and have a fixed and known probability

distribution {(ξ(s), ps)|s = 1, 2, . . . , S}. Then program (1.1)–(1.4) can be reformulated
as the following nonlinear programming problem:

min

S∑
s=1

fs(z
(s))(1.5)

s.t. hs(z
(s)) = 0, s = 1, 2, . . . , S,(1.6)

S∑
s=1

Asz
(s) = 0,(1.7)

where z(s) = (x(s), y
(s)
1 , . . . , y

(s)
T−1) ∈ �n, n =

∑T−1
i=0 ni,

fs(z
(s)) = ps

(
ĉ0(x

(s)) +

T−1∑
t=1

qt(x
(s), y

(s)
1 , . . . , y

(s)
t , ξ

(s)
1 , . . . , ξ

(s)
t )

)
,(1.8)

hs(z
(s)) = (c0(x

(s)), c1(x
(s), y

(s)
1 , ξ

(s)
1 ), . . . ,(1.9)

cT−1(x
(s), y

(s)
1 , . . . , y

(s)
T−1, ξ

(s)
1 , . . . , ξ

(s)
T−1)).

Constraints (1.7) are the so-called nonanticipativity constraints, which reflect the
fact that scenarios sharing a common history up to any moment of time must have a
common decision at that moment. Readers can refer to Rockafellar and Wets [25] for
more details on this reformulation.

In this paper, we consider solving the program (1.5)–(1.7). It is assumed that
fs : �n → � and hs : �n → �m are twice continuously differentiable functions,
z(s) ∈ �n, hsi : �n → �(i = 1, . . . ,m) and hs(z

(s)) = (hs1(z
(s)), . . . , hsm(z(s))).

Matrix As ∈ �m0×n(s = 1, . . . , S), A = [A1 A2 · · · AS ] is an m0 × nS matrix with
full row rank and has a special structure, which will be further identified for the
concrete examples in section 5.

When the scenario number S is large, program (1.5)–(1.7) can be very large and
may not be solvable directly by general-purpose optimization approaches. One of
the important selections for solving the stochastic programming is to develop efficient
decomposition techniques; see, e.g., Ruszczyński [28, 29]. Moreover, the parallelization
of computers provides the feasibility for implementing the decomposition methods.

There are many references contributed to the decomposition methods in linear
and nonlinear programming in the literature; e.g., see Lasdon [18], Feinberg [10],
Han [14], Ruszczyński [26, 27], et al. Most of them are related to the well-known
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decomposition principle of Dantzig and Wolfe [9], and to the duality theory based on
the Lagrangian and augmented Lagrangian functions.

The L-shaped decomposition method is efficient for solving multistage stochastic
linear programs. In each cycle, sets of feasibility cuts and optimality cuts are gener-
ated recursively, and a sequence of decreasing feasible regions is derived. Some other
methods for multistage stochastic linear programs can be found, e.g., in Birge [2],
Birge and Louveaux [3], and the references therein. More recently, Zhao [33, 34] pro-
posed logarithmic barrier methods for solving multistage stochastic linear programs.
Since all these methods are based on the special structures and properties of stochas-
tic linear programs, it is difficult to generalize them to solve the stochastic nonlinear
programs.

Based on scenario analysis technique, Rockafellar and Wets [25] proposed the
progressive hedging algorithm (PHA) for multistage stochastic programming, which
is an iterative method. Mulvey and Vladimirou [20] applied the PHA to the stochas-
tic generalized networks and achieved satisfactory numerical results. The additional
works on the PHA include Chun and Robinson [8], Helgason and Wallace [16], et al.
One of the difficulties in implementing the PHA is the selection of a suitable penalty
parameter. Chun and Robinson [8] showed that the PHA is not the best candidate
for the loosely coupled scenario analysis problems, and the bundle-based decompo-
sition method in Robinson [24] is more competitive than the PHA. A new iterative
method based on scenario analysis was proposed recently by Zhao [35], which relaxes
the nonanticipativity constraints by the Lagrangian dual approach and combines with
the use of logarithmic barrier methods.

Sequential quadratic programming (SQP) is an iterative method and is very effec-
tive for solving medium-size nonlinear programming; e.g., see Fukushima [12], Powell
and Yuan [22], Boggs and Tolle [6], Liu and Yuan [19], et al. Recently, it has been
applied to solve the complementarity problems, the variational inequality problems,
and the nonsmooth problems; e.g., see Fukushima [13], Pang, Han, and Rangaraj
[21], Han, Pang, and Rangaraj [15], and Qi [23]. In this paper, SQP is applied to the
program (1.5)–(1.7). By combining with the Lagrangian dual approach, we present a
decomposition method based on SQP. Conjugate gradient methods can be introduced
to derive the estimates of the dual multiplier associated with the nonanticipativity
constraints (1.7), and the search direction is generated by solving parallelly a set
of quadratic programming (QP) subproblems with much less size than the original
problem at each iteration. The global convergence of the algorithm is analyzed. The
algorithm is also used to solve some stochastic nonlinear programs, and the prelimi-
nary numerical results are reported. Our method can be taken as one of the examples
of SQP for solving large-scale structural nonlinear optimization.

Our method has some similarity to the very recently published papers [4, 5, 31]
in that all of them need to solve some kinds of QP subproblems or the Karush–Kuhn–
Tucker (KKT) systems equivalently. Steinbach [31] and Blomvall and Lindberg [4, 5]
considered the solution of multistage stochastic convex programming with linear and
bound constraints by interior point methods. Some decomposition techniques based
on KKT systems and the approximate QP of the barrier subproblem, which were
induced by scenario tree formulation, were developed so that the sparsity in local
constraints was not destroyed. However, the method in this paper is to exploit the spe-
cial structure of the scenario formulation with explicit nonanticipativity constraints.
Some induced difficulties including the rank deficiency of the Jacobian should be coped
with. A different decomposition method for QP subproblems is presented, by which
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QP splits apart into separate subproblems according to the scenarios.
This paper is organized as follows. In section 2, some discussions for the algorithm

are presented, including the decomposition of a large-scale QP and the boundedness
of the dual multiplier corresponding to the nonanticipativity constraints. The algo-
rithm is then proposed in section 3. In section 4 we analyze the global convergence of
the algorithm. We consider the extension of the algorithm to the stochastic nonlin-
ear programs with inequality constraints in section 5. Some preliminary results are
reported in section 6.

Although all notations can be identified easily from the context, we list some
of the notations used in the paper for the reader’s convenience: A letter with the
superscript (s) or subscript s is associated with the sth scenario; for example, z(s)

is the decision vector and fs is the function associated with the sth scenario. A
letter with the subscript k corresponds to the iteration k. For vectors z(1), . . . , z(S),
(z(1), . . . , z(S)) = [z(1)� · · · z(S)�]�. We also use symbols

∇s· = ∂·
∂z(s)

, ∇ · (z) = ∂·
∂z
, ∇ · (µ) = ∂·

∂µ
.(1.10)

Thus, ∇ · (z) = [∇1·� ∇2·� · · · ∇S ·�]�. For simplicity of statement, when we use
some functions, we may omit the corresponding variables; for example, ∇shs and

hks represent ∇shs(z(s)) and hs(z
(s)
k ), respectively. If it is not specified, all vectors

throughout the paper are column vectors, and norm ‖ · ‖ is the Euclidean norm.

2. Basic discussions. Suppose that λ(s) ∈ �m(s = 1, . . . , S) and µ ∈ �m0

are the multipliers corresponding to the constraints (1.6) and (1.7), respectively. Let
λ = (λ(1), . . . , λ(S)). The Lagrangian of the program (1.5)–(1.7) is

L(z, λ, µ) =

S∑
s=1

Ls(z
(s), λ(s), µ),(2.1)

where Ls(z
(s), λ(s), µ) = fs(z

(s)) + λ(s)�hs(z(s)) + µ�Asz(s). Thus, the Lagrangian
Hessian has a block diagonal structure with the s-diagonal block being

∇2
sLs(z

(s), λ(s), µ) = ∇2
sfs(z

(s)) +

m∑
i=1

λ
(s)
i ∇2

shsi(z
(s)).(2.2)

SQP was developed by Wilson, Han, and Powell for solving nonlinear program-
ming problems. At current iteration z, a QP is solved to generate the search direction
d. The new iteration point z+ is derived by the formula

z+ = z + αd,(2.3)

where α ∈ (0, 1] is the step-size decided by some line search procedure. SQP for the
program (1.5)–(1.7) needs to solve the following QP at each iteration:

min
S∑
s=1

(
∇sf�s d(s) +

1

2
d(s)�Hsd(s)

)
(2.4)

s.t. hs +∇sh�s d(s) = 0, s = 1, . . . , S,(2.5)
S∑
s=1

As(z
(s) + d(s)) = 0,(2.6)
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where Hs is an approximation to the Lagrangian Hessian block ∇2
sLs(z

(s), λ(s), µ) for
s = 1, . . . , S and is supposed to be positive definite.

It is well known that the bottleneck in applying SQP to the large-scale nonlinear
programs is in the effective solution of all QPs. Evidently, problem (2.4)–(2.6) has
the same size as the original problem (1.5)–(1.7). When the number S of scenarios is
large, the number nS of variables and the number (mS+m0) of constraints are large
correspondingly, which may bring about severe difficulties in solving QP (2.4)–(2.6)
directly due to the necessity of huge memory (at least O(S3)). These difficulties may
also happen in applying direct SQP to the scenario tree formulation (see [4, 5, 31]).

To overcome these kinds of difficulties, we use a Lagrangian dual to exploit the
separable structure of (2.4)–(2.6). What is more special and subtle, constraints (2.5)
and (2.6) may be inconsistent for any given z, since the coefficient vectors of (2.5)–(2.6)
may be linearly dependent even if the coefficient vectors of (2.5) and the coefficient
vectors of (2.6), respectively, are linearly independent. The problem becomes even
more involved when the Lagrangian dual approach is used.

We relax the constraint (2.6) and obtain the Lagrangian dual of (2.4)–(2.6) as
follows:

max
µ

ϕ(µ),(2.7)

where

ϕ(µ) = min
(d(1),...,d(S))

S∑
s=1

(
∇sf�s d(s) +

1

2
d(s)�Hsd(s) + µ�As(z(s) + d(s))

)
(2.8)

s.t. hs +∇sh�s d(s) = 0, s = 1, . . . , S.(2.9)

It is easy to verify that ϕ(µ) is a concave function. We have the following properties
on ϕ(µ).

Lemma 2.1. If, for s = 1, . . . , S, ∇shs have full column rank and Hs are positive
definite, then ϕ(µ) is continuously differentiable, and for any µ ∈ �m0 we have

(i)

∇ϕ(µ) =
S∑
s=1

As(z
(s) + d(µ)(s)),(2.10)

where d(µ) = (d(µ)
(1)
, . . . , d(µ)

(S)
) is the unique solution of program (2.8)–(2.9);

(ii)

∇2ϕ(µ) = −
S∑
s=1

As(H
−1
s −H−1

s ∇shs(∇sh�s H−1
s ∇shs)−1∇sh�s H−1

s )A�
s .(2.11)

Proof. Under the conditions of the lemma, for any given µ ∈ �m0 , problem (2.8)–
(2.9) has the unique solution d(µ). By the KKT conditions of (2.8)–(2.9), there is a
λ(µ) ∈ �mS such that, for s = 1, 2, . . . , S,

Hsd(µ)
(s) +∇shsλ(µ)(s) = −∇sfs −A�

s µ,(2.12)

∇sh�s d(µ)(s) = −hs.(2.13)
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Since Hs is positive definite and ∇shs has full column rank, the Jacobian of (2.12)–
(2.13) is invertible. Thus, d(µ) is a linear function on µ. Hence, ϕ(µ) is differentiable
by (2.8).

(i) For convenience of statement, let f = (f1, . . . , fS), A = [A1 A2 · · · AS ].
Then, for any µ̃,

ϕ(µ̃) ≤ ∇f(z)�d(µ) + 1

2
d(µ)

�
Hd(µ) + µ̃�A(z + d(µ))

= ∇f(z)�d(µ) + 1

2
d(µ)

�
Hd(µ) + µ�A(z + d(µ)) + (µ̃− µ)�A(z + d(µ))

= ϕ(µ) + (µ̃− µ)�A(z + d(µ)),(2.14)

which implies the result.
(ii) Differentiating (2.12)–(2.13) w.r.t. µ, and doing some calculations, we have

∇d(µ)(s) = (H−1
s ∇shs(∇sh�s H−1

s ∇shs)−1∇sh�s H−1
s −H−1

s )A�
s .(2.15)

By (i),

∇2ϕ(µ) =

S∑
s=1

As∇d(µ)(s).(2.16)

Thus, the result follows from (2.15).
It follows from Lemma 2.1(ii) that ϕ(µ) is a quadratic function, provided the

conditions of Lemma 2.1 hold. Moreover, by Lemma 2.1(i),

∇ϕ(0) =
S∑
s=1

As(z
(s) + d̂(s)),(2.17)

where (d̂(1), . . . , d̂(S)) is the solution of the problem

min
(d(1),...,d(S))

S∑
s=1

(
∇sf�s d(s) +

1

2
d(s)�Hsd(s)

)
(2.18)

s.t. hs +∇sh�s d(s) = 0, s = 1, . . . , S.(2.19)

It is easy to note that problem (2.18)–(2.19) is a case of problem (2.8)–(2.9) with
µ = 0.
Lemma 2.2. Under the conditions of Lemma 2.1, suppose that there exists a

µ+ ∈ �m0 which maximizes the concave quadratic function

q(µ) =
1

2
µ�∇2ϕ(0)µ+∇ϕ(0)�µ,(2.20)

where ∇2ϕ(0) is the same as (2.11). Let d+ = d(µ+). Then

(i)
∑S
s=1As(z

(s) + d
(s)
+ ) = 0;

(ii) d+ is the optimal solution of program (2.4)–(2.6).
Proof. (i) It follows from Lemma 2.1(i) that

S∑
s=1

As(z
(s) + d

(s)
+ ) = ∇2ϕ(0)µ+ +∇ϕ(0).(2.21)
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Thus, the result (i) follows immediately from the supposition of the lemma.

(ii) d+ is the solution of (2.8)–(2.9); thus there is a λ+ ∈ �mS such that (d+, λ+)
satisfies the system of equations (2.12)–(2.13). Hence, the result follows from (i).

By (2.20) and (2.8)–(2.9), we have

ϕ(µ) = q(µ) + ϕ(0),(2.22)

where ϕ(0) =
∑S
s=1(∇sf�s d̂(s) + 1

2 d̂
(s)�Hsd̂(s)).

The following result gives a sufficient condition on the boundedness of µ+ in
Lemma 2.2.

Lemma 2.3. Under the conditions of Lemma 2.1, ∇2ϕ(0) given by (2.11) is
negative semidefinite. Furthermore, if the matrix [∇h1(z) ∇h2(z) · · · ∇hS(z) A�]
has full column rank, then ∇2ϕ(µ) is negative definite.

Proof. The first part of the lemma is straightforward.

With some linear algebraic manipulation, one can show that for any matrices V
and U , if [V U ] has full column rank, then

B̃ = U�(I − V (V �V )−1V �)U(2.23)

is positive definite.

Since Hs is symmetric positive definite, letting

U = diag(H
− 1

2
1 , H

− 1
2

2 , . . . , H
− 1

2

S )A�,(2.24)

V = diag(H
− 1

2
1 , H

− 1
2

2 , . . . , H
− 1

2

S )diag(∇1h1,∇2h2, . . . ,∇ShS),(2.25)

it follows from the supposition that [V U ] has full column rank. Thus, the lemma
follows from (2.11) and the positive definiteness of B̃.

Unfortunately, by the observations in section 5, the condition in Lemma 2.3 that
[∇h1(z) ∇h2(z) · · · ∇hS(z) A�] has full column rank may not hold in many cases for
multistage stochastic nonlinear programs. Thus, functions ϕ(µ) and q(µ) may not be
strictly concave, in which case µ+ may tend to infinity if the linearized constraints
(2.5) and the constraints (2.6) are inconsistent. The next lemma shows that if the
current iterate z meets the nonanticipativity constraints (1.7), then (2.5) and (2.6)
are consistent under suitable conditions. Thus, the existence and boundedness of µ+

are guaranteed by the duality theory of convex programming.

Lemma 2.4. Let W = {z|Az = 0} and n̄ be the dimension of W . For any z̄ ∈ �n̄,
suppose that all ∇cti (t = 0, . . . , T − 1; i = 1, . . . , St) are linearly independent, where
cti is defined in (1.1)–(1.4). Then

(i) the linearized constraints (2.5) and (2.6) are consistent at any z ∈W ;

(ii) there exists a µ+ which maximizes (2.20) at z ∈W . Moreover, µ+ is bounded
if z is bounded.

Proof. (i) Let the columns of E comprise a basis of the subspace W , and let F
be a matrix such that FE = I. Then E ∈ �nS×n̄, F ∈ �n̄×nS , W = {Ez̄|z̄ ∈ �n̄}.
Define θ(z) = Fz; it is easy to verify that θ is a bijection, and θ−1(z̄) = Ez̄. Evidently,
∇θ−1(z̄)� = E for any z̄ ∈ �ñ.

Let h(z) = (h1(z
(1)), . . . , hS(z

(S))). For any z̄ ∈ �n̄, θ−1(z̄) ∈ W . Define h̃(z̄) =
h(θ−1(z̄)) for any z̄ ∈ �n̄. Then

∇h̃(z̄) = ∇θ−1(z̄)∇h(θ−1(z̄)) = E�∇h(θ−1(z̄)).(2.26)
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For any z ∈W let z̄ = θ(z) ∈ Rñ. We consider the equation

h̃(z̄) +∇h̃(z̄)�d̄ = 0.(2.27)

Let c = (c0, c11, . . . , cT−1ST−1
) be the collection of all constraints in (1.1)–(1.4).

By (1.9) and the definitions of h and h̃, (2.27) is equivalent to

c(z̄) +∇c(z̄)�d̄ = 0.(2.28)

(Actually, (2.28) can be obtained by deleting those repetitious constraints in (2.27).)
It follows from the assumption that ∇c(z̄) is of full column rank that there is a d̄ ∈ �n̄
such that (2.28) holds. Thus d̄ is also a solution of (2.27).

Let d = Ed̄. By using (2.26), we can write (2.27) as

h(z) +∇h(z)�d = 0.(2.29)

Moreover, Ed̄ ∈W since d̄ ∈ �ñ, and we have

Ad = 0.(2.30)

The result follows directly from (2.29) and (2.30).
(ii) Since (2.7) is the dual of (2.4)–(2.6), and (2.5)–(2.6) has feasible solution, by

the weak duality theorem, (2.7) is bounded. Furthermore, because ϕ(µ) is a convex
quadratic function, the boundedness of the unconstrained problem (2.7) implies the
existence of optimal solutions of (2.7). By (2.22), we have the result.

It is easy to note that the condition in Lemma 2.4 is based on problem (1.1)–(1.4).
This is natural since our aim is to solve problem (1.1)–(1.4). Under the condition of
Lemma 2.4, by (1.9), we must have ∇shs to be of full column rank for all s = 1, . . . , S.
However, the following example demonstrates the converse may not be true.
Example 2.5. Consider a two-stage problem with cti(t = 0, 1;S0 = 1, S1 = 2)

defined by

x1 − x2 = 0,(2.31)

x1 + y(1) − 1 = 0,(2.32)

−x1 + x2 + y
(1) = 0,(2.33)

x1 + y(2) − 2 = 0,(2.34)

−x1 + x2 + y(2) = 0,(2.35)

where (x1, x2) correspond to the first stage, and y
(1), y(2) correspond to two different

realizations, respectively. By notation (1.9), we have h1(z
(1)) = 0 and h2(z

(2)) = 0,
which are below (2.36)–(2.38) and (2.39)–(2.41), respectively:

z
(1)
1 − z(1)2 = 0,(2.36)

z
(1)
1 + z

(1)
3 − 1 = 0,(2.37)

−z(1)1 + z
(1)
2 + z

(1)
3 = 0,(2.38)

z
(2)
1 − z(2)2 = 0,(2.39)

z
(2)
1 + z

(2)
3 − 2 = 0,(2.40)

−z(2)1 + z
(2)
2 + z

(2)
3 = 0.(2.41)
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It is easy to verify that the Jacobian of (2.36)–(2.41) is of full column rank, but the
Jacobian of (2.31)–(2.35) is not, which induces that the result of Lemma 2.4 does not
hold.

Fortunately, under the condition of Lemma 2.4, owing to the simplicity of the
nonanticipativity constraints, we can easily select an initial point z0 ∈W . By Lemma
2.2, first maximizing (2.20) and then solving (2.8)–(2.9) to generate the search di-
rection, we can ensure that the nonanticipativity constraints (1.7) hold at the new
iterate. Thus, the algorithm can proceed to the new iteration. The details for the
algorithm are stated in the next section.

3. The algorithm. Based on the previous discussions, we present our algorithm
for solving problem (1.5)–(1.7) in this section. The efficiency of solving problem (1.5)–
(1.7) relies on the efficiency of solving the QP (2.4)–(2.6). Here we first brief the idea
of solving the QP

min

S∑
s=1

φs(d
(s))(3.1)

s.t. Rsd
(s) = rs, s = 1, . . . , S,(3.2)

Ad = a,(3.3)

where φs(s = 1, . . . , S) are convex quadratic functions and Ad = a comes from the
nonanticipativity constraint. A ∈ �m0×nS , where m0 is dependent on S. However, A
has a simple structure.

S is typically very large for multistage stochastic programs. Thus, without making
use of special structures, problem (3.1)–(3.3) is in general intractable.

Our decomposition-based method solves the Lagrangian dual of (3.1)–(3.3):

max
µ
ϕ(µ),(3.4)

where

ϕ(µ) =

S∑
s=1

min
d(s)
{φ(d(s)) + µ�Asd(s) | Rsd(s) = rs} − µ�a.(3.5)

The function ϕ is concave. Typically, finding the optimal dual solution µ∗ needs
infinitely many iterations. Because (3.1)–(3.3) is a quadratic program with linear
equality constraints, it is observed that ϕ defined by (3.5) is a quadratic function (see
Lemmas 2.1 and 2.2). Thus, we can find µ∗ in one iteration. This can be seen in Notes
2 and 3 of the algorithm below. Step 1 of Algorithm 3.4 starts with an arbitrary µ0,
e.g., µ0 = 0, and solves (3.5), obtaining d(µ0). We can compute ∇ϕ(µ) and ∇2ϕ(µ0)
with d(µ0) (see the formulas in Lemma 2.1), and represent

ϕ(µ) = ϕ(µ0) +∇ϕ(µ0)T (µ− µ0) + (µ− µ0)T∇2ϕ(µ0)(µ− µ0).(3.6)

Step 2 maximizes this quadratic function (an unconstrained convex quadratic pro-
gram) obtaining the optimal dual solution µ∗. Step 3 solves (3.5) with µ = µ∗,
obtaining the optimal solution d∗ to the QP (3.1)–(3.3).

If we represent the original stochastic program with scenario tree formulation,
then the QP employed by the SQP method looks as follows:

min ψ(d)(3.7)

s.t. Pd = p,(3.8)
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where ψ is a convex quadratic function and the size of P is O(nS). Since it is a
multistage stochastic program, P has a complicated structure.

One can use, e.g., the projected gradient method to solve problem (3.7)–(3.8),
and the structure of P may be exploited in the process of projection on the subspace
defined by P . This, however, involves very complicated algebraic operations which,
besides heavy computational load, incur great difficulty in writing computer programs
to implement them.

Our decomposition-based method solves 2S small-scale (m by n) quadratic pro-
grams (in Steps 1 and 3 of Algorithm 3.4) and an unconstrained convex quadratic
program of dimension m0 (in Step 2). Obviously, the computational load of perform-
ing each of these three steps is much lower than that directly solving the large-scale
constrained quadratic program (3.7)–(3.8).

In summary:
(i) Exploiting the structure of the multistage stochastic program with a decom-

position method is much easier than with the direct SQP. Thus, writing computer
programs for our method is easier than for a direct SQP.

(ii) A decomposition-based method is more suitable to parallel computation.
(iii) The computational load and memory occupation of our method are not more

than the direct SQP, even if we assume the direct SQP can properly exploit the
sparsity and structure of coefficients of the program.

Before presenting our algorithm, we state some preliminary definitions and prop-
erties of the SQP method.

We define the l1 exact penalty function

M(z, ρ) =
S∑
s=1

(
fs(z

(s)) + ρ‖hs(z(s))‖1
)

(3.9)

as the merit function, where ρ > 0 is the penalty parameter. The merit function is
used to force the global convergence of the algorithm.

The following lemma is known so that we omit the proof.
Lemma 3.1. Let N(z) =

∑S
s=1 ‖hs(z(s))‖1. Suppose that hs(s = 1, . . . , S)

are continuously differentiable; then for all z = (z(1), . . . , z(S)) ∈ �nS and d =
(d(1), . . . , d(S)) ∈ �nS, the directional derivative of function N along d, defined by

N
′
(z; d) = lim

α↓0
N(z + αd)−N(z)

α
,(3.10)

exists, and we have

N
′
(z; d) ≤

S∑
s=1

(
‖hs(z(s)) +∇shs(z(s))�d(s)‖1 − ‖hs(z(s))‖1

)
.(3.11)

It follows from Lemma 3.1 that

M
′
(z, ρ; d) ≤

S∑
s=1

[∇sfs(z(s))�d(s)

+ ρ(‖hs(z(s)) +∇shs(z(s))�d(s)‖1 − ‖hs(z(s))‖1)].(3.12)

The inequality (3.12) implies that if the right-hand side of (3.11) is negative, then the
penalty parameter ρ can be increased such that M

′
(z, ρ; d) < 0. Thus, the d such
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that the right-hand side of (3.11) is negative can be a descent direction of the merit
function M(z, ρ) for large ρ. On the other hand, if the right-hand side of (3.11) is
zero, then M

′
(z, ρ; d) < 0 if ∇sfs(z(s))�d(s) < 0 for s = 1, . . . , S.

The next result has little difference from the common one for general SQP meth-
ods (e.g., see Fukushima [12]).
Lemma 3.2. If (z∗, λ∗, µ∗) ∈ �nS×mS×m0 is a KKT triple of problem (1.5)–(1.7),

ρ∗ > max(‖λ∗‖∞; ‖µ∗‖∞), then M
′
(z∗, ρ∗; d) ≥ 0 for all d ∈ {d ∈ �nS : Ad = 0}.

An appropriate stopping criterion should be designed to guarantee that the algo-
rithm terminates finitely at the “desirable” point of the problem. For convenience of
statement, we need the following definition.
Definition 3.3. For any ε > 0, we call (z(1), . . . , z(S)) ∈ �nS an ε-optimal

solution to the program (1.5)–(1.7) if there is a (λ(1), . . . , λ(S)) ∈ �mS and a µ ∈ �m0

such that

max{‖∇sfs(z(s)) +∇shs(z(s))λ(s) +A�
s µ‖, s = 1, 2, . . . , S} ≤ ε,(3.13)

max{‖hs(z(s))‖1, s = 1, 2, . . . , S} ≤ ε,(3.14) ∥∥∥∥∥
S∑
s=1

Asz
(s)

∥∥∥∥∥
1

≤ ε.(3.15)

If ε = 0, then z = (z(1), . . . , z(S)) is a KKT point of program (1.5)–(1.7).
We select Hks, for s = 1, 2, . . . , S, to be the approximation of the Hessian of the

Lagrangian

Ls(z
(s), λ(s)) = fs(z

(s)) + λ(s)�hs(z(s))(3.16)

at the iteration point (z
(s)
k , λ

(s)
k ) (which is the same as (2.2)), where λ

(s)
k is an estimate

of the multiplier associated with hs:

Bk =

S∑
s=1

As(H
−1
ks −H−1

ks ∇shks(∇sh�ksH−1
ks ∇shks)−1∇sh�ksH−1

ks )A
�
s ,(3.17)

which is the value of −∇2ϕ(0) at zk.
Algorithm 3.4 (the decomposition method for program (1.5)–(1.7)).

Step 0. Given (z
(1)
0 , . . . , z

(S)
0 ) ∈ �nS such that (1.7) holds, H0s ∈ �n×n(s =

1, 2, . . . , S), ρ0 > 0, and positive constants δ < 1
2 , ε, β < 1, and σ0 > 0.

Evaluate fs(z
(s)
0 ), hs(z

(s)
0 ), ∇sfs(z(s)0 ), ∇shs(z(s)0 ) for s = 1, 2, . . . , S

and B0. Let µ0 = 0, k = 0;
Step 1. For s = 1, 2, . . . , S, solve the subproblems

min φ
(s)
k (d) = ∇sfs(z(s)k )�d+

1

2
d�Hksd(3.18)

s.t. hs(z
(s)
k ) +∇shs(z(s)k )�d = 0.(3.19)

Let d̂
(s)
k , s = 1, . . . , S be the solutions. Set ν0 = σk, µ0 = µk, j = 0;

Step 2. Compute µj+1 = µj + dµ, where dµ is the solution to the unconstrained
quadratic programming subproblem

max
dµ

q̄k(dµ) = (Ad̂k −Bkµj)�dµ − 1

2
d�µ (Bk + νjI)dµ(3.20)
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and can be derived by conjugate gradient methods. If

Bkµj+1 = Ad̂k,(3.21)

then µk+1 = µj+1, σk+1 = νj and go to Step 3; Else compute r =
Aredj/Predj, where Aredj = qk(µj+1)− qk(µj) and Predj = q̄k(dµ)−
q̄k(0). The scalar νj is updated as follows:

νj+1 =




0.5νj if r > 0.75;
4νj if r < 0.25;
νj otherwise.

(3.22)

Let j = j + 1 and go to Step 2;
Step 3. For s = 1, 2, . . . , S, solve the subproblems

min ψ
(s)
k (d) = (∇sfs(z(s)k ) +A�

s µk+1)
�d+

1

2
d�Hksd(3.23)

s.t. hs(z
(s)
k ) +∇shs(z(s)k )�d = 0(3.24)

to generate d
(s)
k (s = 1, 2, . . . , S);

Step 4. Check if the stopping criterion∣∣∣∣∣M(zk, ρk)−
S∑
s=1

fs(z
(s)
k )−

S∑
s=1

ψ
(s)
k (d

(s)
k )

∣∣∣∣∣ < ε(3.25)

is satisfied. If yes, stop; Otherwise, go to Step 5;
Step 5. Update the penalty parameter ρ. If

S∑
s=1

(
∇sfs(z(s)k )�d(s)k +

1

2
d
(s)�
k Hksd

(s)
k − ρk‖hs(z(s)k )‖1

)
≤ 0,(3.26)

let ρk+1 = ρk; Otherwise,

ρk+1

= max



∑S
s=1

(
∇sfs(z(s)k )�d(s)k + 1

2d
(s)�
k Hksd

(s)
k

)
∑S
s=1 ‖hs(z(s)k )‖1

, 2ρk


 ;(3.27)

Step 6. Select the least positive integer < such that

M(zk + β
�dk, ρk+1)−M(zk, ρk+1)

≤ δβ�
S∑
s=1

(
∇sfs(z(s)k )�d(s)k − ρk+1‖hs(z(s)k )‖1

)
.(3.28)

Let αk = β� and z
(s)
k+1 = z

(s)
k + αkd

(s)
k (s = 1, . . . , S);

Step 7. Update Hks to H(k+1)s, and calculate fs(z
(s)
k+1), hs(z

(s)
k+1), ∇sfs(z(s)k+1),

∇shs(z(s)k+1) for s = 1, . . . , S and Bk+1. Set k = k + 1 and go to Step 1.
Note 1. One of the key difficulties for an iterative method is how to generate

the search direction, by which the new approximate to the solution is generated. In
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Algorithm 3.4, we generate the search direction by solving a set of QP subproblems
(3.18)–(3.24), where (3.18)–(3.19) is the decomposition of the problem (2.18)–(2.19).
It is noted that (3.18)–(3.19) and (3.23)–(3.24) are QP subproblems with n variables
and m constraints. Thus, they can be solved by standard algorithms for QP. On the
other hand, for s = 1, 2, . . . , S, (3.18)–(3.19) and (3.23)–(3.24) can be solved parallelly.

Note 2. Problem (3.20) is a strictly concave unconstrained quadratic minimiza-
tion problem with m0 variables, which may be very large. The Newton method can
find the optimal solution in one iteration. Large memory, however, is required for the
inverse of matrix Bk + νjI. We suggest using conjugate gradient methods with exact
line search procedure, which do not need the information on (Bk + νjI)

−1, and the
optimal solution will be derived in a finite number of iterations (e.g., see Bazaraa,
Sherali, and Shetty [1]). It is well known that the conjugate gradient method can be
more efficient than the Newton method in dealing with the large-scale unconstrained
convex optimization problems.

Note 3. Step 2 is designed for maximizing function qk(µ), which is defined
by (2.20). Since the Hessian of qk(µ) may be singular, our algorithm for maximiz-
ing (2.20) is similar to the well-known Levenberg–Marquardt method for the linear
least squares problems. However, if we use some heuristics to process the matrix

[∇h1(z
(1)
k ) · · · ∇hS(z(S)

k ) A�] such that the condition of Lemma 2.3 holds (the exis-
tence of solution is guaranteed by Lemma 2.4) at each iterate k, then we need only
solve one strictly convex unconstrained quadratic optimization, which can be done
easily.

Note 4. The approximate Hessian Hks is updated by Powell’s damped BFGS
formulae:

H(k+1)s = Hks −
Hksu

(s)
k u

(s)�
k Hks

u
(s)�
k Hksu

(s)
k

+
v
(s)
k v

(s)�
k

u
(s)�
k v

(s)
k

,(3.29)

where

v
(s)
k =

{
v̂sk, v̂

(s)�
k u

(s)
k ≥ 0.2u

(s)�
k Hksu

(s)
k ,

θkv̂
(s)
k + (1− θk)Hksu(s)

k otherwise,

v̂
(s)
k = ∇sLs(z(s)k+1, λ

(s)
k+1)−∇sLs(z(s)k , λ

(s)
k+1), u

(s)
k = z

(s)
k+1 − z(s)k , and

θk = 0.8u
(s)�
k Hksu

(s)
k /(u

(s)�
k Hksu

(s)
k − u(s)�

k v̂
(s)
k ).

It can be proved that H(k+1)s is positive definite if Hks is positive definite.

It may be helpful for us to understand the algorithm and its differences from
the direct SQP based on the scenario tree formulation (see [4, 5, 31]) by a two-stage
stochastic program example. Suppose there are 5 variables and 3 constraints for the
first stage, and 10 variables and 6 constraints for the second stage. If the number S of
scenarios is 2000, then we need to solve 2000 QPs with 15 variables and 9 constraints
for each QP (which are small-size QPs and can be solved very easily parallelly or
sequentially; for any s, we need only save the coefficients corresponding to s which
will be replaced by the coefficients corresponding to s + 1) in Step 1 and Step 3 of
Algorithm 3.4, respectively. The program (3.20) in Step 2 of Algorithm 3.4 is an un-
constrained convex optimization problem with 5×(2000-1) variables. Comparatively,
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all QPs derived from the direct SQP applied to the scenario tree formulation (see
[4, 5, 31]) have 20005 variables and 12003 constraints, which is much larger than the
QPs in Algorithm 3.4. Moreover, the scales of QPs increase in S times as the numbers
of variables and constraints in the second stage increase, whereas the scale of program
(3.20) remains unchanged. In some sense, the algorithm in this paper diminishes the
bottleneck of SQP in solving some classes of stochastic programs. We think our al-
gorithm can be an alternative to the existing algorithms in solving the very difficult
stochastic nonlinear programs.

4. Global convergence. In this section, we prove that the algorithm will ter-
minate finitely at a KKT point of problem (1.5)–(1.7), or an ε-optimal solution with
any desirable accuracy ε will be derived after a finite number of iterations. If ε = 0,
Algorithm 3.4 will converge to a KKT point of the problem.
Assumption 4.1.
(1) For s = 1, 2, . . . , S, fs and hs are twice continuously differentiable functions

on �n, respectively.
(2) The sequence {zk} is bounded.
(3) For all k ≥ 0 and s = 1, . . . , S, ∇shks has full column rank.
(4) There exist positive constants δ1 and δ2 such that δ1 < δ2 and δ1‖p‖2 ≤

p�Hksp ≤ δ2‖p‖2 for all p ∈ �n and all k ≥ 0, and s = 1, 2, . . . , S.
(5) The sequence {µk} is bounded.
In Assumption 4.1, we assume that the sequence {µk} exists, in which case we do

not use any condition on (1.1)–(1.4). The conditions (1) and (2) are common in an
analysis on global convergence of the algorithm for nonlinear smoothing optimization,
and (4) is general for convergence of SQP methods. Although (3) may not hold for
some problem, it is not restrictive and critical for the algorithm, and some technique
for general nonlinear programs (e.g., see [19]) can be introduced to deal with it.
Assumption 4.1 (5) is necessary for the global convergence of our algorithm, which is
not special in the class of multiplier methods.
Lemma 4.2. There holds

S∑
s=1

Asd
(s)
k = 0(4.1)

for all k ≥ 0.
Proof. The result follows from (3.21), Lemma 2.2 (i), and from the fact that∑S

s=1Asz
(s)
0 = 0.

If (d
(1)
k , . . . , d

(S)
k ) = 0 for some iterate k, then it follows from the KKT conditions

of (3.23)–(3.24) that zk is a KKT point of problem (1.5)–(1.7).
The next lemma shows that the penalty parameter will remain constant after a

finite number of iterations.
Lemma 4.3. Under Assumption 4.1, there is a constant ρ̄ > 0 such that ρk = ρ̄

for all sufficiently large k.

Proof. Since d
(s)
k solves problem (3.23)–(3.24), there exists a λ

(s)
k ∈ �m such that

∇sfks +A�
s µk+1 +Hksd

(s)
k +∇shksλ(s)

k = 0,(4.2)

hks +∇sh�ksd(s)k = 0.(4.3)

Thus, by (4.1),
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S∑
s=1

(
∇sf�ksd(s)k +

1

2
d
(s)�
k Hksd

(s)
k − ρk‖hks‖1

)

=

S∑
s=1

(
−µ�k+1Asd

(s)
k + λ

(s)�
k hks − 1

2
d
(s)�
k Hksd

(s)
k − ρk‖hks‖1

)
(4.4)

≤
S∑
s=1

(
‖λ(s)

k ‖∞ − ρk
)
‖hks‖1.

Under Assumption 4.1, by (4.2)–(4.3) and doing some calculations, we have

λ
(s)
k = (∇sh�ksH−1

ks ∇shks)−1(hks −∇sh�ksH−1
ks (∇sfks +A�

s µk+1)).(4.5)

Thus, by Assumption 4.1, there is a constant γ > 0 such that

max{‖λ(s)
k ‖∞, s = 1, 2, . . . , S and all k ≥ 0} ≤ γ.(4.6)

Hence, by Step 5 of the algorithm and (4.4), there exists a ρ̄ ≥ γ and integer k0 > 0
such that ρk ≥ ρ̄ for all k ≥ k0.

By (4.2), d
(s)
k = −H−1

ks (∇sfks+A�
s µk+1+∇shksλ(s)

k ). Thus, it follows from (4.6)

and Assumption 4.1 that {(d(1)k , . . . , d(S)
k )} is bounded.

Without loss of generality, we suppose that ρk = ρ̄ for all k ≥ 0. Let

Πk(d) =

S∑
s=1

[
∇sf�ksd(s) + ρ̄(‖hks +∇sh�ksd(s)‖1 − ‖hks‖1)

]
.(4.7)

Then Πk is a convex function on d, Πk(0) = 0, and

Πk(dk) =

S∑
s=1

(
∇sf�ksd(s)k − ρ̄‖hks‖1

)
.(4.8)

For s = 1, 2, . . . , S, fs and hs are twice continuously differentiable functions, so
∇fs and ∇hs are Lipschitz continuous on a given bounded set Q. In particular, there
exists a positive constant a0 such that

‖∇sfs(ẑ(s))−∇sfs(z̃(s))‖ ≤ a0‖ẑ(s) − z̃(s)‖,(4.9)

‖∇shs(ẑ(s))−∇shs(z̃(s))‖ ≤ a0‖ẑ(s) − z̃(s)‖(4.10)

for all ẑ ∈ Q and z̃ ∈ Q.
Lemma 4.4. Under Assumption 4.1, for α ≥ 0 and k ≥ 0, there is a constant C1

such that

M(zk + αdk, ρ̄)−M(zk, ρ̄)−Πk(αdk) ≤ C1

2
α2‖dk‖2.(4.11)

Proof. By (4.9),

fs(z
(s)
k + αd

(s)
k )− fks − α∇sf�ksd(s)k

=

∫ α

0

(∇sfs(z(s)k + td
(s)
k )−∇sfks)�d(s)k dt(4.12)

≤ 1

2
a0α

2‖d(s)k ‖2.
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Similarly, by (4.10), we have that ‖hs(z(s)k +αd
(s)
k )−hks−α∇sh�ksd(s)k ‖ ≤ 1

2a0α
2‖d(s)k ‖2.

Thus, by the properties of the norm,

M(zk + αdk, ρ̄)−M(zk, ρ̄)−Πk(αdk) ≤ 1

2
α2

S∑
s=1

(a0 + ρ̄a0C0)‖d(s)k ‖2,(4.13)

where C0 > 0 is a constant. Let C1 = a0(1 + ρ̄C0). The desired result follows
immediately.

The following result shows that the line search procedure in Algorithm 3.4 is
well-defined.
Lemma 4.5. Under Assumption 4.1, there holds

αk > βα̂,(4.14)

where α̂ = min{1, (1− δ)δ1/C1}.
Proof. By Πk(0) = 0 and the convexity of Πk, for α ∈ [0, 1], we have that

Πk(αdk)− δαΠk(dk) ≤ (1− δ)αΠk(dk).(4.15)

It follows from (4.8), (3.26), and Assumption 4.1(3) that

Πk(dk) ≤ −1

2

S∑
s=1

d
(s)�
k Hksd

(s)
k ≤ −

1

2
δ1‖dk‖2.(4.16)

Thus, by (4.11), (4.15), and (4.16),

M(zk + αdk, ρ̄)−M(zk, ρ̄)− δαΠk(dk) ≤ 1

2
α(C1α− (1− δ)δ1)‖dk‖2,(4.17)

which implies that αk/β > α̂ by (3.28).
The following result shows the global convergence of our algorithm.
Theorem 4.6. Suppose that Assumption 4.1 holds. For any given ε > 0, Algo-

rithm 3.4 will terminate finitely at a KKT point or an ε-optimal solution of problem
(1.5)–(1.7). If ε = 0 and {zk} is an infinite sequence, then any cluster point of {zk}
is a KKT point of problem (1.5)–(1.7).

Proof. If for some positive integer k̃, dk̃ = 0, then Algorithm 3.4 terminates
finitely at the KKT point zk̃.

Suppose that the algorithm will not terminate finitely; i.e., there is an infinite
sequence {zk} which does not satisfy (3.25) for any given ε

′
.

Let ε
′
= 2ρ̄ε. By Lemma 4.3, there is an integer k0 > 0 such that for k ≥ k0,

ρk = ρ̄.(4.18)

It follows from (3.28), (4.14), and (4.16) that for k ≥ k0,

M(zk+1, ρ̄)−M(zk, ρ̄) ≤ δαkΠk(dk) < −1

2
δβα̂δ1‖dk‖2 < 0,(4.19)

which implies that {M(zk, ρ̄)} is a monotonically decreasing sequence. Thus, by
Assumption 4.1, {M(zk, ρ̄)} is convergent, which results in

‖dk‖2 → 0.(4.20)
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It follows that there is a constant C0 > 0 and a positive integer k1 such that for
k ≥ k1,

S∑
s=1

‖hs(z(s)k )‖1 ≤
S∑
s=1

C0‖hs(z(s)k )‖

=

S∑
s=1

C0

(
‖hs(z(s)k )‖ − ‖hs(z(s)k ) +∇shs(z(s)k )�d(s)k ‖

)

≤
S∑
s=1

C0‖∇shs(z(s)k )‖‖d(s)k ‖(4.21)

≤ 1

2(ρ̄+ γ)
ε
′ ≤ ε,

where γ is defined in (4.6).
Moreover, by (4.1),∥∥∥∥∥

S∑
s=1

Asz
(s)
k

∥∥∥∥∥
1

=

∥∥∥∥∥
S∑
s=1

As(z
(s)
k−1 + αk−1d

(s)
k−1)

∥∥∥∥∥
1

=

∥∥∥∥∥
S∑
s=1

Asz
(s)
k−1

∥∥∥∥∥
1

=

∥∥∥∥∥
S∑
s=1

Asz
(s)
0

∥∥∥∥∥
1

= 0.(4.22)

Furthermore, by Assumption 4.1, there is an integer k2 > 0 such that for k ≥ k2,
S∑
s=1

1

2
d
(s)�
k Hksd

(s)
k ≤

ε
′

4
(4.23)

and ‖Hksd(s)k ‖ ≤ ε for s = 1, 2, . . . , S. Combining with (4.21) and (4.22), we see
that for all k ≥ max{k0, k1, k2}, zk is an ε-optimal solution of problem (1.5)–(1.7) by
Definition 3.3 and (4.2), and∣∣∣∣∣M(zk, ρ̄)−

S∑
s=1

fs(z
(s)
k )−

S∑
s=1

ψ
(s)
k (d

(s)
k )

∣∣∣∣∣
≤ (ρ̄+ max

s=1,·,S
‖λ(s)

k ‖∞)

S∑
s=1

‖hs(z(s)k )‖1 +
S∑
s=1

1

2
d
(s)�
k Hksd

(s)
k(4.24)

≤ 3

4
ε
′
< ε

′
,

which is a contradiction. The contradiction implies the first part of the result.
Now we prove the last half of the result. Suppose that zk → z∗ for k ∈ K.

Then ‖∑S
s=1Asz

∗(s)‖1 = 0. The boundednesses of {λk} and {µk} imply that there

is K
′ ⊂ K such that λk → λ∗ and µk → µ∗ for k → ∞ and k ∈ K ′

. Let ε
′ → 0

and k →∞ for k ∈ K ′
. Taking the limit on the two sides of the second inequality of

(4.24), we have

S∑
s=1

‖hs(z∗(s))‖1 = 0, and d
(s)
k → d∗(s) = 0 (s = 1, . . . , S).(4.25)

Thus, the desired result follows immediately from (4.2).
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5. Extension to the stochastic nonlinear programs with inequality con-
straints. According to the discussion in the introduction, the stochastic nonlinear
programs with inequality constraints can be reformulated as the following nonlinear
programming problem with equality and inequality constraints (including the nonan-
ticipativity constraints):

min

S∑
s=1

fs(z
(s))(5.1)

s.t. hs(z
(s)) = 0, s = 1, . . . , S,(5.2)

gs(z
(s)) ≤ 0, s = 1, . . . , S,(5.3)

S∑
s=1

Asz
(s) = 0,(5.4)

where gs : �n → �m1(s = 1, . . . , S). By introducing slack vectors w(s) ∈ �m1(s =
1, . . . , S), and transforming the nonnegative constraints on w(s) to the barrier terms
in the objective function, we derive the following program:

min

S∑
s=1

[
fs(z

(s))− β
m1∑
i=1

lnw
(s)
i

]
(5.5)

s.t. hs(z
(s)) = 0, s = 1, . . . , S,(5.6)

gs(z
(s)) + w(s) = 0, s = 1, . . . , S,(5.7)

S∑
s=1

Asz
(s) = 0,(5.8)

where β > 0 is a parameter.
It is easy to note that program (5.5)–(5.8) has precisely the form of program (1.5)–

(1.7) if we set z(s) := (z(s), w(s)), fs(z
(s)) := fs(z

(s)) − β∑m1

i=1 lnw
(s)
i , hs(z

(s)) :=
(hs(z

(s)), gs(z
(s)) + w(s)), and As := [As 0] in program (1.5)–(1.7). By [11], under

suitable conditions, as β → 0, the sequence of the solution of problem (5.5)–(5.8)
converges to the solution of program (5.1)–(5.4). Thus, the decomposition method in
this paper may be extended to solve stochastic nonlinear programs with inequality
constraints. The difficulties include how to avoid that some slack variables are reduced
too fast, which may result in failures of many interior point methods for nonconvex
nonlinear programming in converging to any stationary point of a simple and very
regular problem (see [32]). If any of functions ĉ0, c0, qt, and ct(t = 1, . . . , T − 1) in
problem (1.1)–(1.4) is nonconvex, the difficulty could be reflected in generating the
estimates of the dual multiplier corresponding to the nonanticipativity constraints.
Although Byrd, Gilbert, and Nocedal [7] presented a trust region method to circum-
vent the convergence difficulties for nonlinear programming, we have no idea how
to deal with the trust region constraints in the decomposition. We think the other
possible extension is to further develop the active set technique in the decomposition.

6. Preliminary numerical results. A MATLAB subroutine was programmed
to test Algorithm 3.4 and run under version 5.3. All QP subproblems in Algorithm 3.4
were solved by quadprog.m, an M-file in MATLAB toolbox. Four test problems are
originated from the modifications on the standard nonlinear programming problem
263 in Schittkowski [30].
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We chose termination tolerance scalar ε = 10−6. Moreover, in our implementa-
tion, instead of (3.21), we use

‖Bkµj+1 −Ad̂k‖ ≤ ε0 or ‖dµ‖ ≤ ε0,(6.1)

where ε0 = 10−8 is a small tolerance scalar. The initial parameters are δ = 0.01,
β = 0.8, σ0 = 1, and ρ0 = 1. The initial approximation to the Lagrangian Hes-

sian H0s is selected to be the n × n identity matrix. The starting point is z
(s)
0 =

(10, 10, 10, 10, 10, 10) for s = 1, . . . , S.
In order to see the performance of Algorithm 3.4 clearly, we just use two inde-

pendent random variables ξ1 and ξ2, and suppose that each may be 1 and 4 with the
same probability 1

2 . Thus, we have S = 4.
The first test problem (TP1) is

min −24z1 + 2z22 + 4z23 + 4z24 + EQ(z1, z2, z3, z4, ξ1, ξ2),(6.2)

where

Q(z1, z2, z3, z4, ξ̂1, ξ̂2) =min−12z5 + 4z26(6.3)

s.t. −z31 + z2 − z23 + z25 = ξ̂1,(6.4)

z21 − z2 − z24 + z26 = ξ̂2(6.5)

and (ξ̂1, ξ̂2) is the realization of ξ = (ξ1, ξ2). We have the same case if it is not specified
later.

TP1 is a two-stage stochastic program, where (z1, z2, z3, z4) is the decision vector
in the first stage and (z5, z6) is the decision vector in the second stage. Thus, the
coefficient matrix of the nonanticipativity constraints can be written as follows:

A =


 I4 04×2 −I4 04×2

I4 04×2 −I4 04×2

I4 04×2 −I4 04×2


 ,(6.6)

where I4 is the 4 × 4 identity matrix. By scenario analysis in section 1, TP1 is
reformulated as a nonlinear program with 24 variables, 8 separable constraints, and
12 nonanticipativity constraints,

fs(z
(s)) = −6z(s)1 +

1

2
z
(s)
2

2
+ z

(s)
3

2
+ z

(s)
4

2 − 3z
(s)
5 + z

(s)
6

2
.(6.7)

The separable constraints corresponding to the sth scenario are{
−z(s)1

3
+ z

(s)
2 − z(s)3

2
+ z

(s)
5

2
= ξ

(s)
1 ,

z
(s)
1

2 − z(s)2 − z(s)4

2
+ z

(s)
6

2
= ξ

(s)
2 .

(6.8)

It is easy to prove that the assumption on full column rank in Lemma 2.3 holds at z0
for this problem. However, this assumption does not hold at any iterate for the other
test problems.

The solution to the decision vector in the first stage is (10.1701, 0.9538, 0.0, 10.0736).
The dual multiplier µ corresponding to the nonanticipativity constraints is (−33.8223,
1.6633, 0.0, 33.5114, 6.8685, −0.3367, 0.0, −6.7831, −40.6703, 2.0, 0.0, 40.2945). The
optimal value of the objective function is−219.8369. The numerical results of program
(6.2)–(6.5) are listed in Table 1.
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Our second test example (TP2) is

min −24z1 + 2z22 + 4z23 + 4z24 + Eξ1Q1(z1, z2, z3, z4, ξ1)(6.9)

s.t. −z31 + z2 − z23 = 0,(6.10)

z21 − z2 − z24 = 0,(6.11)

where

Q1(z1, z2, z3, z4, ξ̂1) =min − 12z5 + Eξ2Q2(z1, z2, z3, z4, z5, ξ̂1, ξ2)(6.12)

s.t. −z31 + z2 + z
2
5 = ξ̂1(6.13)

and

Q2(z1, z2, z3, z4, z5, ξ̂1, ξ̂2) =min 4z26(6.14)

s.t. z21 − z2 − z25 + 2z26 = ξ̂2.(6.15)

It is a three-stage program, where (z1, z2, z3, z4) is the decision vector in the first stage
and (6.10)–(6.11) are the constraints in the first stage. z5, ξ1, and constraint (6.13)
correspond to the second stage, while z6, ξ2, and (6.15) correspond to the third stage.
In this case,

A =



I4 0 0 −I4 0 0

I4 0 0 −I4 0 0
I4 0 0 −I4 0 0

1 0 0 −1 0
1 0 0 −1 0


 ,(6.16)

where sizes of block 0’s can be identified easily.

By scenario analysis, similar to (6.8), constraints (6.10)–(6.11) are reformulated
as 8 constraints, and it is easy to verify that the set of their gradients are linearly
dependent with the transposes of the first 12 row vectors of A and the rank is 14. In
fact, for this problem and the next two test problems, that the Jacobian of (2.5)–(2.6)
does not have full column rank at any iterate can be judged directly from the fact that
the number of constraints is larger than the number of variables in the reformulation
of the problem.

The solution corresponding to the first stage is (1.0, 1.0, 0.0, 0.0), and the dual
multiplier µ∗ = (0.0291, 0.0127, 0.0, 0.0, 0.1116, 0.0672, 0.0354, 0.0, 0.0, 0.0298, 0.0159,
0.0, 0.0, 0.0964). The optimal value of the objective function is −30.

The third test example (TP3) is

min −24z1 + 2z22 + Eξ1Q1(z1, z2, ξ1)(6.17)

s.t. z1 + z
2
2 = 2,(6.18)

where

Q1(z1, z2, ξ̂1) =min 4z23 + 4z24 + Eξ2Q2(z1, z2, z3, z4, ξ̂1, ξ2)(6.19)

s.t. −z31 + z2 + z
2
3 = ξ̂1,(6.20)

z21 − z2 + z24 = ξ̂1(6.21)
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Table 1

Problem TP1 TP2 TP3 TP4

nS 24 24 24 24
mS 8 16 20 24
m0 12 14 10 10
NI 16 16 10 9
NF 27 23 11 10
NG 17 17 11 10

R-KT 4.9749e-05 4.6236e-04 7.1064e-06 8.8052e-13
R-CN 2.7528e-08 2.1505e-07 1.1953e-07 2.5381e-09
R-NA 6.2045e-09 7.4422e-09 5.9241e-09 0
R-ND 3.3235e-05 4.2445e-05 7.1280e-07 6.3453e-10

and

Q2(z1, z2, z3, z4, ξ̂1, ξ̂2) =min − 12z5 + 4z26(6.22)

s.t. −z31 + z2 − z23 + z25 = ξ̂2,(6.23)

z21 − z2 − z24 − z25 + 2z26 = ξ̂2.(6.24)

In this problem, z1 and z2 are the decision variables corresponding to the first
stage. z3 and z4 correspond to the second stage, and z5, z6 belong to the third stage.
Thus,

A =



I2 0 0 −I2 0 0

I2 0 0 −I2 0 0
I2 0 0 −I2 0 0

I2 0 0 −I2 0
I2 0 0 −I2 0


 .(6.25)

The solution is z∗1 = 1.3451, z∗2 = 0.8093. µ∗ = (−1.6951, 1.5582, −5.7042, 0.0,
−4.2031, 15.4878, −1.0663, 1.2661, 0.9857, −6.1159). The optimal value of the objec-
tive function is −20.1446.

The objective function in our fourth test problem (TP4) is −4z1, which does
not relate to the variables in stages 2 and 3; thus it is a stochastic program with no
recourse. A constraint

z21 − z2 = 0(6.26)

is added to (6.18) to form the constraints of the first stage of TP4. Since there are the
same number of stages, variables, and scenarios in each stage as TP3, the coefficient
matrix A is the same as (6.25). The solution to this problem is z∗1 = 1.0, z∗2 = 1.0.
Vector µ∗ is a 10-dimensional zero vector. The optimal value of the objective function
is −4. The numerical results of problems TP2, TP3, and TP4 are also summarized
in Table 1.

In Table 1, nS is the number of all variables of the reformulation problem, andmS
andm0 are the numbers of separable constraints and the nonanticipativity constraints,
respectively. NI, NF, and NG represent, respectively, the numbers of iterations, func-
tion evaluations, and gradient calculations. R-KT is the l2 norm of the gradient of the
Lagrangian, and R-CN, R-NA, R-ND represent the l2 norms of the residuals of the
separable constraints and the nonanticipativity constraints, and the search direction,
respectively.
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The numerical results in Table 1 show us that Algorithm 3.4 has solved the test
problems TP1–TP4 successfully, and the approximate KKT points for these problems
have been derived. Although there are some algorithms for stochastic nonlinear pro-
grams, as we note, this is the first paper for stochastic nonconvex programs. It is not
enough to draw a conclusion for our algorithm by these numerical experiments, and
further computation should be done for larger scale stochastic programs with larger
scenario numbers S and larger m and n; we think that the discussion in this paper
may give us some clue to develop better algorithms for solving stochastic nonlinear
programs.

Acknowledgments. We would like to thank the associate editor and anonymous
referees for their valuable comments, which improved the paper greatly.
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initial-value numerical integration technique with a Gauss–Newton method for optimization. This
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1. Introduction. The behavior of many physical processes can be described
mathematically by ordinary differential or differential-algebraic equations. Commonly
a finite number of parameters appear in the description of the system dynamics. A
parameter estimation problem arises when it is necessary to compute values for these
parameters based on observations of the system dynamics. Methods for solving these
so-called inverse problems have been used for many years [10]. In fact, most techniques
in use today are based on ideas proposed by Gauss more than 100 years ago, which
he used to solve orbit determination problems.

One approach to solving estimation problems is to parameterize the dynamic vari-
ables using values at mesh points on the interval. A consequence of this discretization
is that the original problem is transcribed into a finite dimensional nonlinear program-
ming problem. Since the discrete variables directly optimize the approximate problem
this approach is referred to as the direct transcription method. Furthermore, this
nonlinear programming problem has two important properties that can be exploited.
First, it is possible to efficiently compute the (Hessian) matrix of second derivatives,
thereby overcoming one of the major limitations of the Gauss algorithm. Second,
the Hessian and Jacobian matrices are sparse, and as a consequence very efficient
linear algebra techniques can be utilized. In this paper we describe a quadratically
convergent algorithm for solving parameter estimation problems.

2. The parameter estimation problem. Typically the dynamics of the sys-
tem are defined for tI ≤ t ≤ tF by a set of ordinary differential equations written in
explicit form, which are referred to as the state equations

ẏ = f [y(t),u(t),p, t],(2.1)

where y is the ny dimension state vector, and u is an nu dimension vector of algebraic
variables. In addition the solution must satisfy algebraic path constraints of the form

gL ≤ g[y(t),u(t),p, t] ≤ gU ,(2.2)
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where g is a vector of size ng, with elements of the form

g[y(t),u(t),p, t] = αTv + βTa[v, t],(2.3)

where

v =


 y(t)u(t)
p


(2.4)

and

a[v, t] =




a0(y,u,p, t)
a1(y,u,p, t)

...
ana(y,u,p, t)


 .(2.5)

The constraint definition can include analytic terms involving αTv, where the (ny +
nu + np) vector α is constant, as well as linear combinations of the na auxiliary
functions ak(v, t) for k = 0, . . . , na, where the coefficients βk are nonzero constants.
By convention, a path constraint with a single nonlinear term a0(y,u,p, t) has no
auxiliary functions (na = 0). Observe that each individual path constraint may have
a different number of auxiliary functions and analytic terms. In addition to the general
constraints (2.2) it is computationally useful to include simple linear bounds on the
state variables

yL ≤ y(t) ≤ yU ,(2.6)

the algebraic variables

uL ≤ u(t) ≤ uU ,(2.7)

and the np parameters

pL ≤ p ≤ pU .(2.8)

Note that an equality constraint can be imposed if the upper and lower bounds
are equal; e.g., (gL)k = (gU )k for some k. Boundary conditions at the initial time tI
and/or final time tF are defined by

ψL ≤ ψ[y(tI),u(tI), tI ,y(tF ),u(tF ), tF ,p] ≤ ψU .(2.9)

The basic parameter estimation problem is to determine the np-dimensional vector
p to minimize the performance index

F =
1

2
rTr =

1

2

�∑
k=1

r2
k,(2.10)

where r is the �-dimensional residual vector. Components of the residual vector can
be of two forms. State residuals are of the form

rk = wk
[
yi(k)(θk)− ŷi(k)

]
,(2.11)
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where yi(k)(θk) is the value of state variable i(k) computed at time θk and ŷi(k) is the
observed value at the same point. Algebraic residuals are of the form

rk = wk
[
ui(k)(θk)− ûi(k)

]
,(2.12)

where ui(k)(θk) is the value of algebraic variable i(k) computed at time θk and ûi(k)
is the observed value at the same point. The residual weights are typically positive,
i.e., wk > 0. It is required that data evaluation points satisfy

tI ≤ θk ≤ tF .(2.13)

Often the evaluation points are arranged monotonically, that is, θk ≤ θk+1. It is
also common to have many residuals evaluated at the same time, e.g., θk = θk+1.
Although neither of these assumptions is necessary for our approach, we do require
that the initial and final times tI and tF be fixed.

It is worth noting that more complicated problem descriptions can be accommo-
dated by the formulation given. For example, suppose it is required to minimize the
expression

F =
1

2

N∑
k=1

[h(y(θk),u(θk),p, θk)− ĥk]TΛ[h(y(θk),u(θk),p, θk)− ĥk],(2.14)

where ĥk are the observed values of the function h at the times θk and Λ is the
inverse covariance matrix of these quantities. Since the positive definite matrix can
be factored as Λ = QTQ we can define a new set of algebraic variables

z(t) = Qh(y(t),u(t),p, t)(2.15)

and transform the observed data

ẑk = Qĥk.(2.16)

The maximum likelihood objective function (2.14) then becomes

F =
1

2

N∑
k=1

[zk − ẑk]T[zk − ẑk],(2.17)

where the residuals have the form given by (2.12) and the transformation (2.15) can
be treated as an equality path constraint as in (2.2).

This example suggests that in general the discrete data may involve complicated
expressions of the “real” state and algebraic variables y(t),u(t) and the parameters
p. When this occurs the problem can be restated in terms of an augmented system.
In the most common situation the observation

z(t) = h[y(t),u(t), t](2.18)

is treated as an (additional) algebraic constraint and it is natural to augment the
“real” algebraic variable u(t) to include the additional algebraic variable z(t). On the
other hand, if the observation is given by

z(t) = h[y(t), t],(2.19)
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then it is possible to augment the “real” state variable y(t) to include the additional
state z(t). In this case the state equations (2.1) must be augmented to include

ż(t) = hyẏ + ḣ = hyf + ḣ,(2.20)

where the vector hy
.
= (∂h/∂y1, . . . , ∂h/∂yn) is considered a row vector.

For the sake of simplicity we have not introduced problems with multiple “phases.”
Nevertheless, our software implementation [4] does not have these restrictions.

3. Transcription formulation. The basic approach for solving the optimal
control problem by transcription has been presented in detail elsewhere [1]. For com-
pleteness we give a brief outline of the method. All approaches divide the time domain
into ns intervals

tI = t1 < t2 < · · · < tM = tF ,(3.1)

where the points are referred to as node, mesh, or grid points. Define the number of
mesh points as M ≡ ns+1. Note that the grid points do not necessarily coincide with
the data evaluation points given by the values θk. Let us introduce the notation yj ≡
y(tj) to indicate the value of the state variable at a grid point. In like fashion denote
the algebraic variable at a grid point by uj ≡ u(tj). In addition some discretization
schemes require values for the algebraic variable at the midpoint of an interval, and we
denote this quantity by uj ≡ u(t) with t = 1

2 (tj + tj−1). Two primary discretization
schemes will be considered, namely trapezoidal and Hermite–Simpson. Each scheme
produces a distinct set of nonlinear programming (NLP) variables and constraints.

For the trapezoidal discretization, the NLP variables are

xT = [y1,u1,y2,u2, . . . ,yM ,uM ,p] .(3.2)

The state equations (2.1) are approximately satisfied by solving the defect constraints

ζj = yj+1 − yj −
hj
2

[f j+1 + f j ] = 0(3.3)

for j = 1, . . . , ns. The step size is denoted by hj ≡ tj+1 − tj , and the right-hand side
of the differential equations (2.1) are given by f j ≡ f [y(tj),u(tj),p, tj ].

For the Hermite–Simpson discretization scheme, the NLP variables are

xT = [y1,u1,u2,y2,u2,u3, . . . ,yM ,uM ,p] .(3.4)

The defects for this discretization are given by

ζj = yj+1 − yj −
hj
6

[
f j+1 + 4f j+1 + f j

]
,(3.5)

where

f j+1 = f [yj+1,uj+1, t](3.6)

with

yj+1 =
1

2

[
yj + yj+1

]
+

hj
8

[f j − f j+1](3.7)

for j = 1, . . . , ns.
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For the Hermite–Simpson discretization scheme written in separated form, the
NLP variables are

xT = (y1,u1,y2,u2,y2,u2, . . . ,yM ,uM ,yM ,uM ,p).(3.8)

For this discretization, the defect constraints ζj = 0 are given by

0 = yj+1 −
1

2
(yj+1 + yj)−

hj
8
(f j − f j+1),(3.9)

0 = yj+1 − yj −
hj
6

[
f j+1 + 4f j+1 + f j

]
.(3.10)

When there are no algebraic constraints the discretization error is O(hp), where p = 2
for the trapezoidal scheme and p = 4 for the Hermite–Simpson methods. However,
when path constraints are active the order can be reduced, and the ultimate choice
of the discretization scheme is determined by a number of conflicting criteria. For a
more complete discussion of the mesh refinement procedure the reader should consult
[1].

As a result of the transcription, dynamic constraints (2.1)–(2.2) are replaced by
the NLP constraints

cL ≤ c(x) ≤ cU ,(3.11)

where the m-vector

c(x) =
[
ζ1, ζ2, . . . , ζM−1,ψI ,ψF ,g1,g2, . . . ,gM

]�
(3.12)

with

cL = [0, . . . ,0,gL, . . . ,gL]
�

(3.13)

and a corresponding definition of cU . The first nyns equality constraints require that
the defect vectors from each of the ns segments be zero, thereby approximately satis-
fying the differential equations (2.1). The boundary conditions are enforced directly
by the equality constraints on ψ, and the nonlinear path constraints are imposed at
the grid points. Note that nonlinear equality path constraints are enforced by set-
ting cL = cU . In a similar fashion the state and algebraic variable bounds (2.6) and
(2.7) become simple bounds on the NLP variables. The path constraints and variable
bounds are always imposed at the grid points, and for the Hermite–Simpson dis-
cretization the path constraints and variable bounds are also imposed at the interval
midpoints.

4. Parameter estimation algorithm. There are three primary operations
that are performed when solving a parameter estimation problem using a transcription
method. Briefly the approach is as follows:

Direct transcription. Transcribe the parameter estimation problem into a NLP
problem by discretization.

Sparse nonlinear program. Solve the sparse NLP using sequential quadratic pro-
gramming.

Mesh refinement. Assess the accuracy of the approximation (i.e., the finite di-
mensional problem), and if necessary refine the discretization, and then repeat the
optimization steps.
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The NLP problem can be stated as follows: Find the n-vector x defined by (3.2),
(3.4), or (3.8) which minimizes the objective function (2.10) subject to the constraints
(3.11). This large, sparse NLP can be solved efficiently using a sequential quadratic
programming (SQP) method as described in [1, 2, 3]. Optimal control problems have
been solved using similar techniques (cf. [6, 9, 11]). Although it is not necessary
to employ an SQP method as we do in this paper, it is very important to exploit
the nonlinear least squares form of the objective function for efficiency in the NLP
algorithm. Specifically, the �× n residual Jacobian matrix R is defined by

RT = [∇r1, . . . ,∇r�](4.1)

and the gradient vector is

∇F = RTr =

�∑
i=1

ri∇ri.(4.2)

And finally, the Hessian of the Lagrangian is given by

HL(x,λ) =

�∑
i=1

ri∇2ri −
m∑
i=1

λi∇2ci +R
TR(4.3)

≡ V +RTR.(4.4)

The matrix RTR is referred to as the normal matrix and the matrix V is referred
to as the residual Hessian. Our NLP algorithm uses full second order information
constructed using the sparse finite difference technique discussed in section 6. Conse-
quently it converges quadratically, even for problems with nonlinear residuals and/or
nonzero sum of squares. In contrast, the widely used Gauss method does not utilize
the residual Hessian (V = 0), and for this reason it converges at a linear rate unless
either F (x∗) = 0 or the residuals are linear functions of x.

5. Computing the residuals. In order to evaluate the residuals (2.11) it is
necessary to compute the value of the state variable at the data evaluation time
θk as illustrated in Figure 1. This quantity can be constructed from the Hermite
interpolating polynomial. Thus for any particular residual k there is an interval
tj ≤ θk ≤ tj+1, and a particular state ν = i(k). Then the value of the state needed in
the residual calculation is

yν(θk) = (1− 3δ2 + 2δ3)yνj + (3δ2 − 2δ3)yν,j+1

+(hjδ − 2hjδ
2 + hjδ

3)fνj + (−hjδ2 + hjδ
3)fν,j+1,(5.1)

where hj = tj+1 − tj is the length of the discretization interval and δ = (θk − tj)/hj
defines the location of the evaluation time relative to the beginning of the interval.
In this expression, yνj is the value of state variable ν at grid point j and fνj is
the corresponding value of the right-hand side (2.1) at the same grid point. The
value of the algebraic variable required in (2.12) can be constructed from a quadratic
interpolant when the Hermite–Simpson discretization is used, i.e., according to

uν(θk) = (1− δ)(1− 2δ)uνj + 4δ(1− δ)ūν,j+1 − δ(1− 2δ)uν,j+1,(5.2)
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Fig. 1. Residual evaluation.

where δ = (θk − tj)/hj . Similarly, when a trapezoidal discretization is used, linear
interpolation between the grid points yields

uν(θk) = (1− δ)uνj + δuν,j+1.(5.3)

It is important to observe that the residuals are computed by interpolation and do not
have any direct effect on the location of the discretization grid points. This is often
referred to as dense output in methods for numerical integration (cf. [8]). It is worth
emphasizing another property of the interpolation scheme. In each of the expressions
(5.1), (5.2), and (5.3) the interpolated value is written as a linear combination of the
NLP variables and the right-hand side functions f at the grid points. In particular
the quantities hj are fixed by the mesh refinement procedure, and the quantities δ
are fixed by the location of the discrete data points within a mesh. Thus, within a
particular mesh refinement step, the coefficients defining the interpolants are constant
during the NLP optimization iterations. For example, the term (−hjδ2+hjδ

3) in (5.1)
remains unchanged by the NLP variables. This will be exploited when constructing
derivatives as described in section 6.

6. Computing derivatives. First and second derivatives are constructed by
exploiting the sparse finite differencing techniques described in [1, sects. 2.10.3 and
4.6.8]. The key notion is to write the complete set of transcribed NLP functions as

[
c(x)
r(x)

]
= Ax+Bq(x) + ζ,(6.1)

where A and B are matrices (constant during the NLP) and q involves the nonlinear
functions at grid points. The vector ζ is typically zero for defect constraints. Similar
information for the nonlinear boundary functions ψ can also be incorporated. We then
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construct finite difference estimates for the first derivatives of the set of υ functions
qi(x) with respect to the n variables x in the υ × n matrix

D ≡




(∇q1)
�

(∇q2)
�

...
(∇qυ)

�


 =

∂q

∂x
.(6.2)

The efficiency of the differencing technique depends on the sparsity of the matrix
D (cf. [1, sect. 2.2.1]). The columns of D can be partitioned into subsets called index
sets such that each subset has at most one nonzero element per row. Derivatives
are constructed by perturbing all variables in an index set at the same time, and
consequently the number of perturbations needed to constructD can be much smaller
than the number of variables n. In our software, we construct this problem dependent
sparsity template information by random sampling of the user functions. From the
sparsity template information, it is possible to construct the sparsity for the matrix D
and compute the finite difference index sets. The first derivative information needed
to solve the NLP can then be computed from

[
G
R

]
= A+BD,(6.3)

where G is the Jacobian of the constraints and R is the residual Jacobian.
If we define

ωT = (−λ1, . . . ,−λm, r1, . . . , r�),(6.4)

where λk are the Lagrange multipliers with υ = m+ �, then we can also utilize sparse
differencing to compute second derivatives of the function

Ω(x) =

υ∑
i=1

ωiqi(x) = −
m∑
i=1

λici(x) +

�∑
i=1

[ri]ri(x).(6.5)

Note that elements of ω are not perturbed during the finite difference operation. To
emphasize this, we have written the second term above as [ri]ri(x) since the quantities
[ri] do not change during the perturbations. Then, it follows that the residual Hessian
in (4.4) is given by

V ≡ ∇2Ω(x) =

υ∑
i=1

ωi∇2qi(x).(6.6)

It is also easy to demonstrate that the sparsity pattern for the NLP Hessian is a subset
of the sparsity for the matrix (BD)

T
(BD), which can be constructed from the known

sparsity of D.
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Let us now present the details of the decomposition (6.1) for the various terms.
To express a state residual given by (2.11) and (5.1) in the decomposed form we write

rk(x) = Ak+mx+Bk+mq(x) + ζk+m

=
[
0 wk(1− 3δ2 + 2δ3) 0 wk(3δ

2 − 2δ3) 0
]


·

yνj
·

yν,j+1

·




+
[
0 wk(hjδ − 2hjδ

2 + hjδ
3) 0 wk(−hjδ2 + hjδ

3) 0
]


·

fνj
·

fν,j+1

·




−wkŷνj .(6.7)

Observe that there are only two nonzero values in row (k+m) of the matrices A and
B denoted by Ak+m and Bk+m, respectively. The nonlinear portions of the residual
have been isolated in the vector q. Furthermore, the problem dependent sparsity
of the nonlinear quantities can be exploited because of separability; i.e., there is no
interdependence between grid points. Finally, it should be clear that the algebraic
residuals (2.12) can also be written in the separable form required by (6.1) using either
the quadratic (5.2) or the linear (5.3) interpolant.

The user can exploit the benefits of sparsity by utilizing the separable form for
the algebraic equations. Specifically an algebraic constraint function g[y(t),u(t),p, t]
as given in (2.3) can be expressed as

ck(x) = Akx+Bkq(x) + ζk

=
[
0 αT 0

]


·
yj
uj
p
·


+

[
0 β0 , . . . , βna 0

]



·
a0(tj)
. . .

ana
(tj)
·


 .(6.8)

Here, Ak = [0,αT,0], Bk = [0, β0, . . . , βna ,0], and ζk = 0. In contrast to the decom-
position of the residual specified by (6.7), which can be performed algorithmically,
this formulation must be given by the user. Nevertheless, the efficiency improvements
are similar. Again, the key notion is to define the vector q which is differentiated so
that the nonlinearities are isolated and involve quantities at a single grid point.

Ultimately the software implementation must compute derivatives of user sup-
plied quantities via sparse finite differences. However, the user can reduce the cost of
finite differencing by exploiting separability in the functions. To illustrate this point
consider three different, yet mathematically equivalent, formulations of the same prob-
lem. Suppose the dynamic system has one state variable y, one control variable u,
and one parameter p that satisfy the DAE system:

ẏ = f(u),

0 = g(y, u, p),(6.9)

where g(y, u, p) ≡ b0(y)+u+b1(p). There is some flexibility in how to group the terms
in the path constraint when constructing the expression g(y, u, p) = αTv+ βTa[v, t].
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One approach is to ignore separability and simply compute the terms enclosed between
“{” and “}” together, i.e., compute g(y, u, p) = {b0(y)+u+b1(p)}. With this approach
we define the quantities in the path constraint function (2.3) as follows:

αT = (0, 0, 0),

na = 0,

a0(y, u, p) = b0(y) + u+ b1(p),

βT = (1).(6.10)

For this formulation the user must compute the functions f and a0, and the matrix
D will contain repeated blocks with the sparsity template

struct


 ∂f

∂y
∂f
∂u

∂f
∂p

∂a0

∂y
∂a0

∂u
∂a0

∂p


 =

[
0 x 0
x x x

]
.

Since the rows of the matrix D corresponding to the path constraint will have three
nonzero elements, this formulation will require three index sets and hence three per-
turbations to compute a finite difference approximation for D.

A second alternative is to compute the first two terms together and explicitly
identify an auxiliary function, i.e., g(y, u, p) = {b0(y) + u}+ {b1(p)}. Here we define

αT = (0, 0, 0),

na = 1,

a0(y, u, p) = b0(y) + u,

a1(y, u, p) = b1(p),

βT = (1, 1).(6.11)

Since the user must compute the functions f , a0, and a1 individually the corresponding
sparsity template will have the form

struct




∂f
∂y

∂f
∂u

∂f
∂p

∂a0

∂y
∂a0

∂u
∂a0

∂p

∂a1

∂y
∂a1

∂u
∂a1

∂p


 =


 0 x 0

x x 0
0 0 x


 .

Using this formulation the finite difference derivatives can be computed using two
perturbations.

A third alternative is to define

αT = (0, 1, 0),

na = 1,

a0(y, u, p) = b0(y),

a1(y, u, p) = b1(p),

βT = (1, 1).(6.12)

Here we explicitly identify both the analytic term and the auxiliary function. Since
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the sparsity template is

struct




∂f
∂y

∂f
∂u

∂f
∂p

∂a0

∂y
∂a0

∂u
∂a0

∂p

∂a1

∂y
∂a1

∂u
∂a1

∂p


 =


 0 x 0

x 0 0
0 0 x


 ,

this formulation requires only one perturbation to compute the finite difference ap-
proximation for D.

This example illustrates the need for a more general software interface with the
user. Typically when solving a semiexplicit DAE such as (6.9), the user must provide
a subroutine to compute the “right-hand side” functions f(y, u, p, t) and g(y, u, p, t)
for given values of the arguments (y, u, p, t). However, to fully exploit sparsity our
software implementation requires the user to compute the augmented set of right-hand
side functions f(y, u, p, t) and ak(y, u, p, t) for k = 0, . . . , na. Nevertheless, a twofold
computational benefit is observed by exploiting separability. First, the Hessian matrix
is usually more sparse since it is determined by the structure of (BD)

T
(BD). This

leads to computational savings when solving the linear systems required by the NLP
algorithm. Second, since gradient information can be computed with fewer perturba-
tions, it is not necessary to call the user function routines as many times, leading to
additional computational savings.

There are a number of aspects of the approach that deserve emphasis. First,
because the grid points (3.1) do not necessarily coincide with the data evaluation
points (2.13), the sparsity pattern of the matrices R and V do not have a simple
block form. Second, the grid points are placed to efficiently control the discretization
error by the mesh refinement procedure. However, the data points at θk do not have
any direct relation to the grid points at tj . In essence the numerical integration of
the differential equations is not controlled by the observation data. This also has an
impact on the sparsity of the residual Jacobian and Hessian as illustrated in Figure 2.
In this illustration, when the mesh includes the points at tj and tj+1, the partial
derivative of the residual rk = wk [yν(θk)− ŷνj ] with respect to the state at the left
grid point is nonzero, i.e.,

∂rk
∂y(tj)


= 0.

However, when the mesh is refined by adding a new grid point at tr = 1
2 (tj+1 + tj),

we find that

∂rk
∂y(tr)


= 0 but
∂rk

∂y(tj)
= 0.

Thus, mesh refinement alters the sparsity pattern of the residual Jacobian and Hessian
matrices. Although it is more complicated to implement the construction of the
sparsity pattern, there is no apparent impact on the solution times.

7. Computational experience.

7.1. Test examples. A collection of test examples from the literature have been
used to check the performance and behavior of the algorithm. One example described
by Bock [7] as a “notorious test problem” was originally introduced by Bulirsch [5].
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Fig. 2. Mesh refinement alters sparsity.

The differential equations are

ẏ1 = y2,(7.1)

ẏ2 = µ2y1 − (µ2 + p2) sin(pt)(7.2)

with y1(0) = 0, y2(0) = π, µ = 60, and 0 ≤ t ≤ 1. It is easily verified that if the
parameter p = π, then the corresponding analytic solution to (7.2) is given by

y1 = sin(πt),(7.3)

y2 = π cos(πt).(7.4)

Data for this problem can be constructed by evaluating the true solution at the data
points θk and then adding normally distributed random variables with mean zero,
and standard deviation σ = .05. It is easy to demonstrate that the optimal value
of the objective function F ∗ ≈ �σ2, where � is the total number of residuals. This
deceptively simple example is extremely difficult to solve using any type of shooting
method, because the differential equations are unstable. In contrast, the parameter
estimation process using direct transcription is very well behaved. Furthermore, we
can use the example to demonstrate two major features of the new algorithm, namely,

• the grid distribution is not determined by the data location, and
• the algorithm converges quadratically for nonzero, nonlinear residuals.

Consider three different cases:
1. for k = 1, 10 select θk = .1k;
2. for k = 1, 2000 select θk as a uniformly distributed random variable in the

region 0 ≤ θk ≤ 1; and
3. for k = 1, 10 select θk = .1k; for k = 11, 2000 select θk as a normally dis-

tributed random variable with mean = .4, and standard deviation = .1.
The first case has a relatively small number of residuals, and as such a small, albeit,
nonzero objective at the solution. The second case has a large amount of data spread
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Table 1
Algorithm performance summary.

Case 1 2 3
No. mesh it. 5 4 5
No. grid pt. 92 73 91
No. NLP it. 23 20 23
F ∗ .030372674 2.6563759 2.4887179
|p∗ − π| 3.6×10−8 4.7×10−8 3.6×10−8

Fig. 3. Stepsize history (case 1: dashed; case 3: solid).

over the entire domain, whereas the third case has lots of data clustered in only one
portion of the time domain near t = .4. Table 1 summarizes the performance of the
algorithm. Notice that the number of mesh refinement iterations, grid points, and
NLP iterations is essentially the same for all three cases. This occurs even though the
objective function is significantly nonzero at the solution. Furthermore, the optimal
parameter estimate is quite good, especially since the discretization error tolerance
was also 10−7.

Figure 3 illustrates the final mesh distribution for case 1 and case 3. The solid
line plots the stepsize history as a function of time for case 3. The shading illustrates
the distribution of data points over the domain—the darkest representing the highest
concentration. The stepsize for case 1 is shown with dotted lines. Even though case 1
has only 11 points evenly spread over the time domain, and case 3 has 2000 data points
clustered near t = .4, the final mesh distribution is nearly identical. Obviously for this
example the location of the discrete data does not directly influence the location of
the mesh points because the stepsize is constructed to control error in the differential
equation. We have observed similar behavior of the mesh refinement procedure in
other examples not reported here.

7.2. Reentry trajectory reconstruction. A problem of some practical inter-
est occurs when attempting to reconstruct the trajectory of an object as it reenters
the earth’s atmosphere using information from radar observations. Let us consider
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a nonlifting body of unknown size, shape, and mass, reentering the atmosphere over
an oblate rotating earth. The translational motion is described by the differential
equations:

ṙ = v,(7.5)

v̇ = −D vr
‖vr‖ + g(r),(7.6)

where rT = (x, y, z) is the earth centered inertial (ECI) position vector, vT = (ẋ, ẏ, ż)
is the ECI velocity vector, and g(r) is the gravitational acceleration. An oblate earth
model including the first four zonal harmonics is used. The earth relative velocity
vector is defined by

vr = v − ω × r,(7.7)

where ωT = (0, 0, ω) is the earth rotation rate vector. The drag on the object is given
by

D =
g0ρ‖vr‖2

2β
,(7.8)

where ρ(h) is the atmospheric density as a function of the altitude above the oblate
spheroid, g0 = 32.174, and β is the ballistic coefficient. For this application the
atmospheric density is computed using a cubic spline approximation to the 1962
Standard Atmosphere.

The goal is to reconstruct the position and velocity time history from radar in-
formation. Thus we would like to minimize

F =
1

2

N∑
k=1

qT
kqk(7.9)

with

qk =



(ψk − ψ̂k)/σ1

(ηk − η̂k)/σ2

(sk − ŝk)/σ3

(ṡk − ˆ̇sk)/σ4


 ,(7.10)

where ψk = ψ(r(θk),v(θk), θk) is the azimuth angle from the radar site to the object

evaluated at time θk, and ψ̂k is the corresponding radar measurement data, with
standard deviation σ1. Similarly, ηk is the elevation, sk is the slant range, and ṡk
is the (slant) range rate. In order to restate the problem involving residuals of the
form (2.12) we introduce the algebraic variables (u1, u2, u3, u4) and the corresponding
algebraic path equations

0 = ψ(r,v, t)− u1(t),(7.11)

0 = η(r,v, t)− u2(t),(7.12)

0 = s(r,v, t)− u3(t),(7.13)

0 = ṡ(r,v, t)− u4(t).(7.14)

After introducing the new algebraic variables it is clear that (7.9) can be rewritten in
the form (2.12).
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To complete the definition of the problem it is sufficient to describe how the radar
quantities in (7.11)–(7.14) are computed. The position of the radar site at time t is
given by

w(t) = re


cos θs cosϕcos θs sinϕ

sin θs


 ,(7.15)

where θs is the geocentric latitude of the radar site, ϕ = φs + φ0 + ωt is the inertial
longitude of the radar site, φs is the longitude of the radar site, and re is the radius
to the site. The inertial velocity of the radar site is

ẇ(t) =


−ω [sin(ωt)r1 + cos(ωt)r2]

ω [cos(ωt)r1 − sin(ωt)r2]
0


 .(7.16)

The line-of-sight vector from the radar site to the vehicle is given by

s = r−w(7.17)

which yields the slant range

s(r,v, t) = ‖s‖.(7.18)

The range rate is then given by

ṡ(r,v, t) =
sT(v − ẇ)
‖s‖ .(7.19)

The azimuth angle is given by

ψ(r,v, t) = arctan

[
w1s2 − w2s1

[(w2
1 + w2

2)s3 − w3(w1s1 + w2s2)] r
−1
e

]
.(7.20)

Now the local geodetic vertical direction at the radar site is

d =


cos(ϕ) cos(θd)sin(ϕ) cos(θd)

sin(θd)


 ,(7.21)

where θd is the geodetic latitude of the radar site, and the geodetic elevation is given
by

η(r,v, t) =
π

2
− arccos

(
dTs

‖s‖

)
.(7.22)

7.2.1. Compton Gamma Ray Observatory reentry. On June 4, 2000 the
NASA Compton Gamma Ray Observatory satellite reentered the atmosphere, and a
portion of the trajectory was observed by the Kaena Point tracking station in Hawaii.
The 17 ton spacecraft, one of the largest ever launched by NASA, was deliberately de-
orbited after one of the observatory’s three attitude-control gyros failed in December
1999. The radar site provided azimuth, elevation, range, and range rate data for a
portion of the trajectory above 70nm altitude during a time span of approximately four
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Table 2
Mesh refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)
1 25 8 4 184 9016 1.24×10−2 2.40
2 49 5 2 110 10670 8.27×10−4 2.41
3 97 5 2 110 21230 4.02×10−5 4.71
4 193 3 1 59 22715 2.40×10−6 5.11
5 385 3 1 59 45371 1.53×10−7 9.09
6 410 4 2 96 78624 9.91×10−8 14.1

Total 410 28 12 618 187626 37.84

Fig. 4. Normalized residual errors.

minutes. The authors gratefully acknowledge the assistance provided by Dr. Wayne
Hallman of The Aerospace Corporation concerning this example.

The parameter estimation method was used to reconstruct the reentry trajectory,
and the results of the algorithm are summarized in Table 2. The algorithm began
with 25 equally spaced grid points, and after six refinement iterations increased the
number of points to 410 (cf. column 2). This refinement reduced the discretization
error ε from 1.24×10−2 to 9.91×10−8 as shown in column 7. The number of gradient,
Hessian, function, and right-hand side evaluations are given by the columns labeled
NGC, NHC, NFE, and NRHS, respectively. Figure 4 displays the normalized error
residuals, i.e., the components of qk given by (7.10) for each set of data. The total
normalized residual ‖qT

kqk‖ is plotted in Figure 5.

7.3. Commercial aircraft rotational dynamics analysis. When construct-
ing a dynamic simulation of a commercial aircraft, flight test data is used to refine
analytic models of the aerodynamic characteristics. A representative example of a
parameter estimation problem occurs when attempting to estimate rotational accel-
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Fig. 5. Total normalized residual error.

erations from measured information about the aircraft orientation. We consider a
particular maneuver called a “windup turn” for a 767-ER aircraft and gratefully ac-
knowledge the contributions of Dr. Jia Luo of The Boeing Company for information
related to this example. The rotational dynamics are described by

φ̇ = p+ q
sinφ sin θ

cos θ
+ r

cosφ sin θ

cos θ
,(7.23)

θ̇ = q cosφ− r sinφ,(7.24)

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ
,(7.25)

ṗ = ap(b),(7.26)

q̇ = aq(b),(7.27)

ṙ = ar(b),(7.28)

where φ is the bank angle (rad), θ is the pitch angle (rad), ψ is the heading angle
(rad), p is the roll rate (rad/sec), q is the pitch rate (rad/sec), and r is the yaw rate
(rad/sec). During flight testing measurements of the bank, pitch, and heading angle

are made; i.e., we have measured values φ̂k, θ̂k, and ψ̂k at a sequence of time points—
in this case 1841 values corresponding to measurements every .05 secs for 92 seconds.
We would like to compute the unknown accelerations ap, aq, and ar such that the
objective

F =
1

2

N∑
k=1

[
φk − φ̂k

σ1

]2

+

[
θk − θ̂k

σ2

]2

+

[
ψk − ψ̂k

σ3

]2

(7.29)

is minimized, where the standard deviations on the data are given by σj . It should
be clear that the residuals are of the form given by (2.11) with weights wk = 1/σν .
Note for this example the symbol θ is used to denote a state variable, and not an
evaluation time as in (2.11).

There are many ways to parameterize the accelerations ap, aq, and ar. Since
the accelerations are smooth functions of time, a particularly effective approach is to
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Table 3
Mesh refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)
1 200 10 1 105 39900 3.51×10−4 13.0
2 380 3 1 38 28120 2.32×10−5 6.19
3 740 3 1 38 55480 1.48×10−6 10.9
4 1429 3 1 38 107844 9.39×10−8 20.9

Total 1429 19 4 219 231344 51.07

utilize piecewise polynomial approximations. Let us introduce Np phases, where the

independent variable t for phase k is defined in the region t
(k)
I ≤ t ≤ t

(k)
F and the

phases are sequential, that is, t
(k+1)
I = t

(k)
F . In addition let us construct the beginning

of the first phase to coincide with the beginning of the problem t
(1)
I = 0, and the end

of the last phase to coincide with the end of the problem t
(Np)
F = 92. If we treat the

values of the acceleration and their slopes at the phase boundaries as parameters the
accelerations within a phase are of the form

a(b) = H
[
a(t

(k)
I ), ȧ(t

(k)
I ), a(t

(k)
F ), ȧ(t

(k)
F )
]

(7.30)

for k = 1, . . . , Np. In this expression the Hermite interpolation H is given by (5.1),
with the appropriate definition of symbols. Finally, we require continuity and differ-
entiability in the state variables and accelerations across the phase boundaries. It is
worth noting that in general there are three distinct levels of discretization. Within
a phase, there may be many grid points selected to satisfy the differential equation
accuracy requirements. Furthermore, the data observation points may or may not
coincide with the phase times and/or the differential equation grid. For this 20 phase
example, Np = 20 and the total number of parameters p is np = 12Np = 240. The
particular data set used for this illustration had N = 1841 data points or 5523 resid-
uals in (7.29). A summary of the mesh refinement procedure is presented in Table 3.
The process was initiated with 10 grid points per phase or a total of M = 200. The
first NLP problem was solved after 10 gradient evaluations (NGC), and one Hessian
evaluation (NHC), which required 39900 evaluations of the right-hand sides of the
differential equations (NRHS). This problem was solved in 13 seconds of CPU time
with a discretization error of ε = 3.51 × 10−4. The mesh was refined three more
times as tabulated in rows 2–4. The overall solution was obtained in 51.07 seconds,
and required 1429 mesh points. Notice that only one Hessian evaluation was required
for each NLP problem, even though the objective function is quite nonlinear and the
optimal value F ∗ = 1.715105× 10−2 
= 0.

From this information it is also possible to infer how the new approach compares
with a more traditional shooting method. Suppose we assume that a fourth order
Runge–Kutta scheme is used to integrate the trajectory (which requires four right-
hand side evaluations per step), and there are 1429 steps (corresponding to the final
grid size M = 1429). Then, the number of right-hand side evaluations (231344)
required by the new approach is equivalent to 231344/(1429 × 4) ≈ 41 integrated
trajectories. In comparison at least 240 trajectories would be required just to compute
a single finite difference gradient in a traditional shooting method! Furthermore, if a
quasi-Newton method is used to optimize this function with 132 degrees of freedom,
one would expect that at least 132 iterations (and gradient evaluations) would be
required to converge. An estimate of the total number of trajectories for a traditional
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Fig. 6. Angular variable history.

shooting method is (132 × 240 = 31680). Thus, comparing the new versus the old
algorithm suggests a ratio of 41 : 31680 ≈ 1 : 773. In short, a traditional shooting
method would be extremely impractical for this application! The cost of computing
first derivatives could be reduced somewhat for this problem by using a multiple
shooting method; however, this approach still lacks quadratic convergence because it
does not provide Hessian information.

Figure 6 presents the optimal time history for all of the angles as well as the data.
Figure 7 illustrates the angular rates for the optimal solution and Figure 8 plots the
corresponding accelerations. The phase boundaries are illustrated in all figures.
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Fig. 7. Angular rate history.

8. Summary and conclusions. This paper describes an algorithm for parame-
ter estimation that exploits state of the art methods for sparse NLP. The new method
is unique because it exploits a full second order approximation to the Hessian matrix.
As a consequence very large scale parameter estimation problems can be solved effi-
ciently. In contrast, most traditional parameter estimation algorithms are based on
a Gauss–Newton method, which is linearly convergent unless the residuals are linear
and/or approach zero. In contrast to methods based on “shooting,” the new algo-
rithm constructs the relevant second order information without integrating the system
dynamics. In short, the method is fast because it does not integrate the differential
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Fig. 8. Angular acceleration history.

equations but does use full second order information in the optimization process. The
software implementation is illustrated on a set of realistic aerospace applications.
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Abstract. In this paper we present several new results on minimizing an indefinite quadratic
function under quadratic/linear constraints. The emphasis is placed on the case in which the con-
straints are two quadratic inequalities. This formulation is termed the extended trust region sub-
problem in this paper, to distinguish it from the ordinary trust region subproblem, in which the
constraint is a single ellipsoid. The computational complexity of the extended trust region sub-
problem in general is still unknown. In this paper we consider several interesting cases related to
this problem and show that for those cases the corresponding semidefinite programming relaxation
admits no gap with the true optimal value, and consequently we obtain polynomial-time procedures
for solving those special cases of quadratic optimization. For the extended trust region subproblem
itself, we introduce a parameterized problem and prove the existence of a trajectory that will lead to
an optimal solution. Combining this with a result obtained in the first part of the paper, we propose
a polynomial-time solution procedure for the extended trust region subproblem arising from solving
nonlinear programs with a single equality constraint.
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1. Introduction. This paper is concerned with solving quadratic optimization
problems by means of semidefinite programming (SDP). In particular, we focus on
indefinite quadratic optimization with two or more quadratic constraints.

In the literature, quadratic optimization has received much attention. It is a
fundamental problem in optimization theory and practice. Economic equilibrium,
combinatorial optimization, numerical partial differential equations, and general non-
linear programming are all sources of quadratic optimization.

Recent results on quadratic optimization include the following: Bellare and Rog-
away [1] established several negative results on approximating this problem; Goemans
and Williamson [5], using an SDP relaxation, proved an approximation result for the
Maxcut problem, which is a special quadratic optimization problem; Nesterov [11] and
Ye [19] extended their SDP relaxation to approximate quadratic optimization with
simple bound and diagonally homogeneous quadratic constraints; Nesterov [12] and
Nemirovskii, Roos, and Terlacky [10] established a quality bound when the constraints
are convex and homogeneous; and Fu, Luo, and Ye [4] constructed a quality bound
for approximating quadratic optimization for general convex quadratic constraints.

More recently, Sturm and Zhang [18] proposed a quite different approach to
quadratic optimization. They introduced a concept called matrix copositivity over
a domain; that is a set of matrices which, in the quadratic form, is nonnegative over
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the given domain. For several specific choices of the domain, Sturm and Zhang [18]
proved that such a matrix set can be characterized using linear matrix inequalities
(LMI). Examples of such domains are (1) the level set of an arbitrary quadratic func-
tion, (2) the contour of a strictly concave quadratic function at zero level, and (3)
the intersection of the level set of a convex quadratic function and a half-space. The
key techniques used in [18] include a dual cone representation approach and a spe-
cific matrix rank-one decomposition scheme. As a consequence of the results in [18],
optimizing an indefinite quadratic function under a single (nonconvex) quadratic con-
straint (equality or inequality), or under a convex quadratic inequality constraint
and a linear inequality constraint, can be done in polynomial time, by first solving a
specific form of SDP relaxation, followed by a matrix decomposition procedure.

In the current paper, we consider quadratic optimization directly. It turns out
that there are more classes of quadratic optimization problems for which the SDP
relaxation is exact, in the sense that its optimal value is equal to the true optimal
value, and an optimal solution for the original problem can be obtained from the
optimal solution of the SDP relaxation. More specifically, in section 2 we extend
the matrix decomposition idea to solve the following classes of nonconvex quadratic
minimization problems with two quadratic constraints:

(1) one of the two constraints in the SDP relaxation is not binding;
(2) the two constraint functions and the objective are all homogeneous quadratic

functions;
(3) there are one ellipsoidal and one linear complementarity constraint.
To see why these cases are of interest, we mention that a special case of (1)

is a problem studied by Stern and Wolkowicz in [16], where the analysis is lengthy
and technical. The classical trust region problem (see [3]), namely, minimizing a
quadratic function subject to an ellipsoid constraint, is a special case of (2). To see
this, we note that the classical trust region problem can be homogenized, so that
the problem becomes that of minimizing a homogeneous quadratic function, subject
to two homogeneous quadratic constraints. Problem (3) is a typical problem known
as mathematical program with equilibrium constraint (MPEC); see [9]. The MPEC
problems have many practical applications and are very hard to solve in general. As
far as we know, the computational complexity of the problems in (1) and (3) described
above was unknown (see [14] for an alternative solution for (2)), and their solutions
turn out to indeed be both interesting and nontrivial, as the current paper reveals.

The problem of minimizing an indefinite quadratic function with two (general)
convex quadratic constraints arises from applying the trust region method to solving
equality constrained nonlinear programs. Such a method was first proposed by Celis,
Dennis, and Tapia in [3]. To distinguish it from the usual trust region subproblem,
which is minimizing an indefinite quadratic function over a unit ball, we call the above
problem the extended trust region subproblem. Although some of the cases discussed in
the previous paragraph can be considered as special cases of the extended trust region
subproblem, the computational complexity of the latter problem is still unknown. In
section 3 of the current paper, we introduce a parameterized problem and show that
by following a trajectory generated by the parameterized problem, one will arrive at
the optimal solution of the original problem. Some examples are worked out in the
same section to show how the method works.

Finally, we consider the extended trust region subproblem for nonlinear program-
ming with one equality constraint. By combining results from sections 2 and 3, we
present in section 4 a polynomial-time procedure for solving the subproblem. Some
discussion and conclusions can be found in the same section.
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Notation and convention. We let ‖ · ‖ denote the Euclidean norm. ei is the
unit vector, where the ith component is 1 and others are all 0. “X � 0” stands for the
fact that the symmetric matrix X is positive semidefinite. “X • Y := tr (XTY )” is
the usual matrix inner product. For a quadratic function q(x) = xTQx− 2bTx+ c we

denote the matrix representation of the function q(·) as M(q(·)) = [ c,−b,
−bT
Q ]. “SOC”

stands for the second order cone, namely, SOC = {[ tx ] | t ≥ ‖x‖}. All the vectors and
matrices are assumed to have appropriate dimensions, which we suppress in several
places for the sake of simplicity, in such a way that the operations to follow are
validated. To simplify the expression, the notion of “polynomial-time solvability” in
this paper is used in the following loose sense. All basic operations such as addition,
subtraction, multiplication, division, and comparison are considered as real number
operations and are assumed to be executed exactly. Hence, a procedure is called
polynomial if the total number of basic operations is bounded by a polynomial of
the problem data. When an optimization model is under consideration, the problem
data include the problem dimension and log 1/ε, where ε > 0 is the precision of the
solution. Porkolab and Khachiyan [15] proved the following complexity result for
SDP. Consider a standard SDP problem. Let n be the order of the decision matrix,
and let m be the number of inequality constraints. Then the problem can be solved
in mnO(min{m,n2}) basic operations over LnO(min{m,n2})-bit numbers, where L is the
input length of the SDP problem. A consequence of this result is that, when m is a
fixed constant, which is the case in this paper, the SDP relaxation problem can be
solved in polynomial time.

2. Exact SDP relaxations. This section is concerned with quadratic optimiza-
tion whose SDP relaxation admits no gap with the true optimal value, and whose
optimal solution can be found in polynomial time using the SDP optimal solution.

Formally we consider the following general quadratic optimization problem:

(Q) minimize xTQ0x− 2bT0 x
subject to xTQix− 2bTi x + ci ≤ 0, i = 1, . . . ,m.

Let qi(x) = xTQix− 2bTi x + ci, i = 1, . . . ,m.
We assume throughout the paper that the Slater regularity condition is satisfied;

i.e., there exists x0 such that qi(x
0) < 0 for all i = 1, . . . ,m.

For convenience, we adopt the following notation. For a quadratic function q(x) =
xTQx− 2bTx + c we denote its matrix representation by

M(q(·)) =

[
c, −bT
−b, Q

]
.

The homogenized version of (Q) is

(HQ) minimize xTQ0x− 2bT0 xt
subject to xTQix− 2bTi xt + cit

2 ≤ 0, i = 1, . . . ,m,
t2 = 1.

Clearly, if [ tx ] solves (HQ), then x/t solves (Q).
The so-called SDP relaxation of (HQ) is

(SP) minimize M(q0(·)) •X
subject to M(qi(·)) •X ≤ 0, i = 1, . . . ,m,

X00 = 1, X � 0,
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where X = [X00,
x0,

xT
0

X̄
], qi(x) = xTQix− 2bTi x + ci for i = 0, 1, . . . ,m.

The SDP problem (SP) has a dual, which is given by

(SD) maximize y0

subject to Z = M(q0(·))− y0[
1,
0,

0
0 ] +

∑m
i=1 yiM(qi(·)),

Z � 0, yi ≥ 0, i = 1, . . . ,m.

Since (Q) satisfies the Slater condition, it follows that (SP) satisfies the Slater
condition too.

Additionally, we assume that (SD) satisfies the Slater condition as well. This is
true at least for the following two interesting cases, as shown by the next proposition.

Proposition 2.1. The problem (SD) satisfies the Slater regularity condition
when either at least one of the m constraints is ellipsoidal or the objective function is
strictly convex.

Proof. In the first case, let us assume without loss of generality that the first
constraint is ellipsoidal. In mathematical terms, this means that Q1 � 0 and c1 −
bT1 Q−1

1 b1 < 0.
By fixing y2 = · · · = ym = 1 and letting y1 > 0 be sufficiently large, we will have

Q0 +

m∑
i=1

yiQi � 0.

Then we let y0 < 0 be sufficiently large in absolute value to obtain

M(q0(·))− y0

[
1, 0
0, 0

]
+

m∑
i=1

yiM(qi(·)) � 0.

In the second case, the objective function is strictly convex, i.e., Q0 � 0. In
that case, we let yi = ε > 0 be sufficiently small, i = 1, . . . ,m, and y0 < 0 be
sufficiently large in absolute value. The Slater condition follows from the fact that
M(q0(·))− y0[

1,
0,

0
0 ] � 0.

Following a well-known result in optimization (see, e.g., [13]), if both (SP) and
(SD) satisfy the Slater condition, then they have complementary optimal solutions.

In the subsequent discussion we are mainly concerned with the case in which
m = 2, and we assume that the assumptions in Proposition 2.1 are satisfied.

Before proceeding we first quote a matrix decomposition result from [18]. For the
sake of completeness, we also provide a proof here.

Lemma 2.2. Let G be an arbitrary symmetric matrix. Let X be a positive semidef-
inite matrix with rank r. Suppose that G • X ≤ 0. Then there exists a rank-one
decomposition for X such that

X =
r∑
i=1

xix
T
i

and xTi Gxi ≤ 0 for all i = 1, . . . , r. If, in particular, G •X = 0, then xTi Gxi = 0 for
all i = 1, . . . , r.

Proof. The proof is constructive. Let

X =
r∑
i=1

uiu
T
i
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be an arbitrary rank-one decomposition, using, e.g., the Cholesky decomposition of
X.

If uTi Gui ≤ 0 for all i = 1, . . . , r, then we let xi := ui, i = 1, . . . , r, and the proof
is complete.

If there is a ui with uTi Gui > 0 for some 1 ≤ i ≤ r, then, due to the fact that

G •X =

r∑
i=1

uTi Gui ≤ 0,

there must exist j with 1 ≤ j ≤ r such that uTj Guj < 0.
We may rename the indices if necessary so that we assume i = 1 and j = 2 for

simplicity.
Consider the following quadratic equation in t:

0 = (tu1 + u2)
TG(tu1 + u2) = t2(uT1 Gu1) + 2t(uT1 Gu2) + uT2 Gu2.

This equation must have two distinct real roots with opposite signs since we have
(uT1 Gu1)(u

T
2 Gu2) < 0. Let t̄ be one of the roots. Let

ū1 =
t̄√

t̄2 + 1
u1 +

1√
t̄2 + 1

u2

and

ū2 = − 1√
t̄2 + 1

u1 +
t̄√

t̄2 + 1
u2.

Obviously we have

ū1ū
T
1 + ū2ū

T
2 = u1u

T
1 + u2u

T
2

and ūT1 Gū1 = 0.
Now, recall u1 := ū1 and u2 := ū2. The decomposition

X =

r∑
i=1

uiu
T
i

still holds. Moreover, the total number of nonzeros in the set {uTi Gui | i = 1, . . . , r}
is strictly decreased by 1. Therefore this procedure must terminate in at most r − 1
steps, with uTi Gui ≤ 0 for all i = 1, . . . , r. Then we let xi := ui, i = 1, . . . , r, and the
lemma is proven by this construction.

If G •X = 0, then the procedure terminates with xTi Gxi = 0, i = 1, . . . , r.

2.1. Nonbinding SDP relaxation. In this subsection we consider (Q) with
m = 2, and at least one of the two constraints M(qi(·)) • X ≤ 0, i = 1, 2, is not
binding at the optimality. Without loss of generality, suppose that M(q2(·)) •X < 0.
This implies, by complementarity, that y2 = 0 at optimality. Let X∗ be an optimal
solution of (SP). By applying Lemma 2.2 we get a rank-one decomposition of X∗ such
that

X∗ =

r∑
j=1

x∗
j (x

∗
j )
T and (x∗

j )
TM(q1(·))x∗

j = 0 for all j = 1, . . . , r,(2.1)
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where

0 = x∗
j =

[
t∗j
x̄∗
j

]
, j = 1, . . . , r.

Since M(q2(·)) • X∗ =
∑r
j=1(x

∗
j )
TM(q2(·))x∗

j < 0, there must exist k with 1 ≤
k ≤ r such that

(x∗
k)
TM(q2(·))x∗

k ≤ 0.(2.2)

Since (SD) satisfies the Slater condition, we have t∗k = 0, because otherwise the
primal optimal set will be unbounded, which is impossible due to the dual Slater
condition. (For a detailed account of the duality relations for conic optimization, one
is referred to the Ph.D. thesis of Sturm; see [17].)

It follows from (2.1) and (2.2) that


M(q1(·)) •
([

1
x̄∗
k/t

∗
k

]
· [1, (x̄∗

k/t
∗
k)
T
])

= 0,

M(q2(·)) •
([

1
x̄∗
k/t

∗
k

]
· [1, (x̄∗

k/t
∗
k)
T
]) ≤ 0.

(2.3)

Let (y∗, Z∗) be an optimal solution for (SD). By complementarity we have X∗Z∗ =
0. It follows therefore that

r∑
j=1

(x∗
j )
TZ∗x∗

j = 0,

and consequently,

(x∗
j )
TZ∗x∗

j = 0

for all j = 1, . . . , r. In particular,

(x∗
k)
TZ∗x∗

k = 0,

and so

Z∗ •
([

1
x̄∗
k/t

∗
k

]
· [1, (x̄∗

k/t
∗
k)
T
])

= 0.(2.4)

Combining (2.3) and (2.4) and noting that

M(q1(·)) •
([

1
x̄∗
k/t

∗
k

]
· [1, (x̄∗

k/t
∗
k)
T
])

= 0 and y∗2 = 0,

we conclude that [ 1
x̄∗
k
/t∗

k
] · [1, (x̄∗

k/t
∗
k)
T ] is an optimal solution for (SP) as well. Note

that (SP) is a relaxation of (Q). Therefore, [ 1
x̄∗
k
/t∗

k
] must be an optimal solution for

(Q). All the procedures described above, including solving the SDP relaxation (SP)
and the rank-one decomposition procedure in Sturm and Zhang [18] (see Lemma 2.2),
are polynomial. This leads to the following result.
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Theorem 2.3. Suppose that (SP) and (SD) both satisfy the Slater condition
and m = 2. Furthermore, suppose that the primal problem (SP) has at least one
nonbinding constraint at optimality. Then (Q) can be solved in polynomial time.

One consequence of Theorem 2.3 is the following.
Corollary 2.4. Suppose that (SP) and (SD) both satisfy the Slater condition

and m = 2. Furthermore, suppose that q1(x) ≤ 0 for all x with q2(x) ≥ 0. Moreover,
suppose that q1(x) and q2(x) do not share any common root. Then, (Q) can be solved
in polynomial time.

Proof. If q2(x) ≤ 0 for all x, then the second constraint in (Q), namely, q2(x) ≤ 0
itself, is redundant, in which case the polynomial-time solvability of (Q) is well known,
as (Q) has only one quadratic inequality constraint.

Let us assume that there is an x̂ such that q2(x̂) > 0. Then, by the S-Lemma
(see [2]), since −q1(x) ≥ 0 for all q2(x) ≥ 0, there must exist t ≥ 0 such that

−M(q1(·))− tM(q2(·)) � 0.(2.5)

If−M(q1(·)) � 0, then the constraint q1(x) ≤ 0 is redundant, and the problem (Q)
again has only one quadratic inequality constraint and hence is solvable in polynomial
time. Thus, for the interesting case we may assume t > 0.

Now we wish to show that the SDP relaxation (SP) cannot be binding at any
feasible solution. Suppose by contradiction that there is a feasible X � 0 for (SP)
such that M(q1(·)) •X = 0 and M(q2(·)) •X = 0. Then

(−M(q1(·))− tM(q2(·))) •X = 0.(2.6)

By Lemma 2.2, we can get a rank-one decomposition of X, X =
∑r
i=1 xix

T
i , such

that

xTi M(q1(·))xi = 0

for all i = 1, . . . , r. By (2.5) and (2.6) we also have

xTi (−M(q1(·))− tM(q2(·)))xi = 0

for all i = 1, . . . , r. Because t > 0, it follows that

xTi M(q2(·))xi = 0

for all i = 1, . . . , r.
Since X00 = 1, there must exist xj = [ tjx̄j

] such that its first component tj is

nonzero. Then we have

q1(xj/tj) = xTj M(q1(·))xj/t2j = xTj M(q2(·))xj/t2j = q2(xj/tj) = 0.

This contradicts the assumption that there is no common root for q1(x) and
q2(x).

As an application, we consider the following quadratic program:

minimize q0(x)
subject to l ≤ q1(x) ≤ u,

where l < u. This problem was analyzed thoroughly by Stern and Wolkowicz in [16].
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This problem clearly satisfies the conditions in Corollary 2.4, because the two
constraints are

q1(x)− u ≤ 0 and l − q1(x) ≤ 0.

Therefore,

q1(x)− u ≥ 0 implies l − q1(x) = l − u− (q1(x)− u) ≤ 0.

Moreover,

q1(x)− u = 0 and l − q1(x) = 0

cannot hold at the same time. Therefore, we can apply Corollary 2.4 to conclude that
in this case (Q) is solvable in polynomial time.

We remark that the model investigated in Stern and Wolkowicz [16] assumes that
q1(x) is a pure quadratic form. In this sense, our result is also a little bit more general.

Interestingly, this lends itself to solving the following problem:

minimize |q0(x)|
subject to q1(x) ≤ 0.

The key is to rewrite the problem as

minimize t
subject to q1(x) ≤ 0,

−t ≤ q0(x) ≤ t,

and observe that for any fixed t ≥ 0 the feasibility check of the above problem reduces
to

minimize q1(x)
subject to −t ≤ q0(x) ≤ t.

If the optimal value of this problem is positive, then the original problem is infeasible
for that given t; otherwise, it is feasible.

For t = 0, this problem can be solved by the SDP relaxation method, as it
reduces to one quadratic equality constraint. Otherwise, t > 0, and we may resort to
Theorem 2.3 for its solution.

Since the feasibility check can be done in polynomial time for any given objective
value t, we may solve the optimization problem using bisection on the objective value.

There are other nontrivial domains that are claimed by Corollary 2.4, such as the
whole space with two nonintersecting ellipsoids taken away. Minimizing an indefinite
quadratic function over such a domain, claims Corollary 2.4, is easy.

2.2. Homogeneous quadratic functions. Another polynomially solvable spe-
cial case of (Q) is m = 2, and all the functions involved, q0(x), q1(x), and q2(x), are
homogeneous, i.e., there are no linear terms. Hence, the problem can be simply
written as

minimize xTQ0x
subject to xTQ1x ≤ 1,

xTQ2x ≤ 1.
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Due to its homogeneous form, the corresponding SDP relaxation is

minimize Q0 •X
subject to Q1 •X ≤ 1,

Q2 •X ≤ 1,
X � 0.

Its dual problem is

maximize y1 + y2

subject to Z = Q0 − y1Q1 − y2Q2,
Z � 0, y1 ≤ 0, y2 ≤ 0.

Suppose that the primal-dual problems have a pair of complementary optimal solu-
tions. Again, a sufficient condition to ensure this is that one of the Q1, Q2 matrix is
positive definite.

If one of the two constraints in the primal SDP relaxation is not binding at the
optimality, then the results in subsection 2.1 apply and the problem is solved.

Consider the case in which they are both binding at the optimality. Let the primal
optimal solution be X∗, and the dual optimal solution be (y∗1 , y

∗
2 , Z

∗).
We now apply Lemma 2.2 to generate

X∗ =

r∑
i=1

x∗
i (x

∗
i )
T

such that (x∗
i )
T (Q1 −Q2)x

∗
i = 0 for all i = 1, . . . , r.

Since
∑r
i=1(x

∗
i )
TQ1x

∗
i = 1, we may select x∗

j , 1 ≤ j ≤ r, such that (x∗
j )
TQ1x

∗
j =:

τ > 0. By our construction, (x∗
j )
TQ2x

∗
j = τ .

Let

x∗ =
x∗
j√
τ
.

We see that x∗(x∗)T is a primal feasible solution for the SDP relaxation. Moreover,
it is optimal, because

0 ≤ (x∗)TZ∗x∗ ≤ 1

τ
X∗ • Z∗ = 0

and [1 − (x∗)TQix
∗]y∗i = 0 × y∗i = 0 for i = 1, 2, and hence the primal-dual comple-

mentarity conditions are satisfied.
This shows that the SDP relaxation admits no gap with the true optimal value,

and an optimal solution for the original quadratic optimization problem can be con-
structed in polynomial time.

The above result was first proved by Polyak in [14].1 However, the method used in
Polyak [14] is based on an extension of Hausdorff’s result [6] regarding the convexity
of the image of homogeneous quadratic mapping: (xTA0x, x

TA1x, x
TA2x)T . Hence,

the underlying methodologies are quite different.
One advantage of our approach is that it allows some room for approximation

when m > 2, as we see below.

1We are indebted to a referee for pointing the reference [14] out to us.
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Consider the SDP problem

(SDP) zSDP := minimize Q0 •X
subject to Qi •X ≤ (=) 1, i = 1, . . . ,m,

X � 0,

where 2 ≤ m ≤ n.
We assume that the problem satisfies the Slater condition. Then we have the

following result.
Theorem 2.5. Let X∗ be a minimizer of (SDP). Then we can compute another

minimizer of (SDP) whose rank is no more than m− 1 in polynomial time.2

Proof. Suppose that the rank of an initial minimizer X∗ is r and r > m − 1.
Without losing generality, let Q1 •X∗ = 1 so that

(Q2 −Q1) •X∗ ≤ (=) 0.

From Lemma 2.2, there exist column vectors xj , j = 1, . . . , r, such that

X∗ =

r∑
j=1

xjx
T
j ,

and for every j

(Q2 −Q1) • xjxTj ≤ (=) 0.

Let

aij = Qi • xjxTj = xTj Qixj ,

and consider a linear program

minimize
∑r
j=1 a0jvj

subject to
∑r
j=1 aijvj ≤ (=) 1, i = 1, . . . ,m,

vj ≥ 0, j = 1, . . . , r.

Since, for every j,

a2j = Q2 • xjxTj ≤ (=) Q1 • xjxTj = a1j ,

constraint
∑r
j=1 a1jvj ≤ (=) 1 implies that

∑r
j=1 a2jvj ≤ (=) 1. That is, the second

constraint in the linear programming (LP) problem is redundant. Therefore, the LP
problem is equivalent to

minimize
∑r
j=1 a0jvj

subject to
∑r
j=1 aijvj ≤ (=) 1, i = 1, 3, . . . ,m,

vj ≥ 0, j = 1, . . . , r.

Note that v1 = · · · = vr = 1 is an optimal solution for the LP problem, since for any
vj ≥ 0, j = 1, . . . , r,

X =

r∑
j=1

vj · xjxTj

2This theorem first appeared in an unpublished discussion note by Kim, Kojima, and Ye [8]. It
was also given as a quiz to the students of an optimization course in Tokyo Institute of Technology,
2001. One of the students, Hayato Waki, successfully proved the theorem.
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is a feasible solution for the SDP problem. Thus, the LP minimal value is also
zSDP = Q0 • x∗, which corresponds to v1 = · · · = vr = 1.

Since the LP problem is bounded, it must have a basic optimal feasible solution.
At a basic optimal solution, we should have at least r inequalities active or binding.
Thus, we should have at most m− 1 inequalities inactive, since the total inequalities
of the LP problem is m−1+ r. Thus, among r of vj variables, at most m−1 of them
are positive at the optimal basic solution. Let it be v∗. Then,

X∗∗ =

r∑
j=1

v∗j · xjxTj

is also a minimizer for the SDP, and its rank is no more than m− 1.
Consider the homogeneous quadratic minimization with m ≥ 2 homogeneous

quadratic constraints:

(QP) z∗ := minimize xTQ0x
subject to xTQix ≤ 1, i = 1, . . . ,m.

Its SDP relaxation is the one presented above, and

zSDP ≤ z∗ ≤ 0.

Corollary 2.6. Let X∗ be the low-rank minimizer of (SDP) with rank r ≤
min{m− 1, n}. Then we can quickly (in polynomial time) compute a feasible solution
of (QP) such that

xTQ0x ≤ 1

r
zSDP ≤ 1

r
z∗

if Qi � 0 for i = 1, . . . ,m.
Proof. Let

X∗ =

r∑
j=1

xjx
T
j .

Then, for every i and j,

Qi • xjxTj ≤ Qi •X∗ ≤ 1,

so that xj is a feasible solution to (QP) for every j. Without losing generality, assume
that

Q0 • x1x
T
1 = min

j
{Q0 • xjxTj }.

Then

Q0 • x1x
T
1 ≤

1

r

r∑
j=1

Q0 • xjxTj =
1

r
Q0 •


 r∑
j=1

xjx
T
j


 =

1

r
Q0 •X∗ =

1

r
zSDP .

Note that if m = 2, the approximation ratio is 1.
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2.3. Complementary linear constraints. In this subsection, we consider the
following special case of (Q):

(CL) minimize q0(x)
subject to ‖x‖2 ≤ 1,

āTx ≤ a0,
b̄Tx ≤ b0,
(a0 − āTx)(b0 − b̄Tx) = 0.

The last constraint is a complementarity condition. The problem of this type is known
as the MPEC; see [9]. The MPEC problems have many practical applications and are
very hard to solve in general.

In [18], the above problem with b0 = 0 and b̄ = 0 is solved via a special type of
SDP relaxation. We now extend the method to solve (CL). Let

J =

[
1, 0
0, −I

]
, a =

[
a0

−ā
]
, b =

[
b0
−b̄

]
.

Recall that we denote the standard second order cone in �n+1 by

SOC =

{[
t
x

] ∣∣∣∣ t ≥ ‖x‖
}

.

Consider the following SDP relaxation for the homogenized version of (CL):

(CLSP) minimize M(q0(·)) •X
subject to J •X ≥ 0,

Xa ∈ SOC,
Xb ∈ SOC,
aTXb = 0,
X00 = 1,

X =

[
X00, xT0
x0, X̄

]
� 0.

Clearly, (CLSP) is a relaxation of (CL), since, if X is rank one, then its eigenvector
is simply a solution of (CL). This problem has a dual, given as follows:

(CLSD) maximize y1

subject to Z = M(q0(·))− y0J − y1e1e
T
1

−(ayTa + yaa
T )− (byTb + ybb

T )− y2(ab
T + baT ),

ya ∈ SOC,
yb ∈ SOC,
y0 ≥ 0,
Z � 0.

Let us now assume that the regularity condition is satisfied so that (CLSP) and
(CLSD) have complementary optimal solutions, denoted by X∗ and (y∗0 , y

∗
1 , y

∗
2 , y

∗
a, y

∗
b , Z

∗),
respectively. That is,

X∗Z∗ = 0, y∗0(J •X∗) = 0, (y∗a)
TX∗a = 0, (y∗b )

TX∗b = 0.(2.7)

The main result in this subsection is the following assertion.
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Theorem 2.7. Suppose that the SDP relaxation (CLSP) and it dual problem
(CLSD) have complementary optimal solutions. Then the optimal value of (CLSP),
which equals that of (CLSD) by strong duality, is identical to the optimal value of
(CL). In other words, the relaxation admits no gap. Moreover, an optimal solution
for (CL) can be obtained in polynomial time, provided that the solution for its SDP
relaxation (CLSP) is available.

Proof. The proof below uses the matrix rank-one decomposition procedure pro-
posed by Sturm and Zhang in [18]. The idea is to construct a rank-one feasible
solution for (CLSP), based on X∗, such that the complementarity conditions are still
satisfied, thus ensuring the optimality. We proceed by considering several possible
cases regarding the status of X∗.

Case 1. X∗a = 0 and X∗b = 0. Applying Lemma 2.2, we obtain a decomposition
for X∗:

X∗ =

r∑
i=1

x∗
i (x

∗
i )
T ,

where r is the rank of X∗ such that J • [x∗
i (x

∗
i )
T ] ≥ 0 for all i = 1, . . . , r. Moreover,

J • [x∗
i (x

∗
i )
T ] = 0 for all i = 1, . . . , r if J • X∗ = 0. We may choose the sign of the

first component in x∗
i to ensure that x∗

i ∈ SOC, i = 1, . . . , r.
By linear independence of x∗

i ’s, we get aTx∗
i = 0 and bTx∗

i = 0, i = 1, . . . , r. Let

x∗
i = [ t

∗
i
x̄∗
i
], i = 1, . . . , r. Since x∗

i ∈ SOC and x∗
i = 0, we have t∗i > 0, i = 1, . . . , r.

Take any 1 ≤ j ≤ r; it follows that [ 1
x̄∗
j
/t∗

j
][1, (x̄∗

j/t
∗
j )
T ] is optimal for (CLSP).

Case 2. J •X∗ > 0 and X∗a = 0. (The case J •X∗ > 0 and X∗b = 0 is similar).

In this case, y∗0 = 0 and X∗a = 0. Let x∗
a := X∗a = [ t

∗
a
x̄∗
a
] = 0. Since x∗

a ∈ SOC,

by feasibility, we know that t∗a > 0. Moreover, J • [x∗
a(x

∗
a)
T ] = (t∗a)

2 − ‖x̄∗
a‖2 ≥ 0,

x∗
a(x

∗
a)
T b = 0, and x∗

a(x
∗
a)
Ta = (aTX∗a)X∗a ∈ SOC. Therefore, x∗

a(x
∗
a)
T /(t∗a)

2

is optimal for (CLSP) as well, as it is feasible and satisfies the complementarity
conditions stipulated in (2.7), after replacing X∗ by x∗

a(x
∗
a)
T /(t∗a)

2.
Case 3. J • X∗ = 0, X∗a = 0, and X∗b = 0. Denote x∗

a = X∗a = 0. Let

X̃ := X∗ − X∗aaTX∗
aTX∗a � 0. It is easy to see that X̃a = 0 and X̃b = 0. There are two

possibilities.
Case 3.1. J • [x∗

a(x
∗
a)
T ] = 0. In this subcase, we have that x∗

a(x
∗
a)
T /(t∗a)

2 is
optimal for (CLSP).

Case 3.2. J • [x∗
a(x

∗
a)
T ] > 0. In this subcase,

J • X̃ = J •X∗ − J • [x∗
a(x

∗
a)
T ]/aTX∗a < 0.(2.8)

Now let us decompose X̃ as

X̃ =

s∑
i=1

x̃ix̃
T
i ,

where s = rank (X̃) > 0. Since X̃a = 0 and X̃b = 0, we have

x̃Ti a = 0 and x̃Ti b = 0

for all i = 1, . . . , s. Choose j such that

J • [x̃j(x̃j)
T ] < 0.
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Such j must exist due to (2.8).
Consider the following quadratic equation:

J • [(x∗
a + αx̃j)(x

∗
a + αx̃j)

T ] = 0.

This equation has two distinct real roots with opposite signs. Choose α with an
appropriate sign so that the first component in x∗

a + αx̃j is positive. Denote

x∗
a + αx̃j =:

[
t∗

x̄∗

]
.

In this case, since J • [x∗
a(x

∗
a)
T ] > 0, it follows that x∗

a is in the strict interior of the
cone SOC. Due to the complementarity, we must have y∗a = 0. Let us consider the
solution [ 1

x̄∗/t∗ ][1, (x̄∗/t∗)T ] for (CLSP). It is readily verified that this solution is both

feasible and complementary to the dual optimal solution (y∗0 , y
∗
1 , y

∗
2 , y

∗
a, y

∗
b , Z

∗). Hence
it is optimal for (CLSP).

Case 4. J •X∗ = 0, X∗a = 0, and X∗b = 0. This case is treated in the same way
as for Case 3.

Again, denote x∗
a = X∗a and x∗

b = X∗b. Certainly, in this particular case, x∗
a = 0

and x∗
b = 0.

Observe that

X̃ := X∗ − X∗aaTX∗

aTX∗a
− X∗bbTX∗

bTX∗b
� 0.

We have X̃a = 0 and X̃b = 0.
As before, consider two more possibilities.
Case 4.1. Either J • [x∗

a(x
∗
a)
T ] = 0 or J • [x∗

b(x
∗
b)
T ] = 0. Let us assume J •

[x∗
a(x

∗
a)
T ] = 0. In this particular case, x∗

a = 0. Hence, x∗
a(x

∗
a)
T /(t∗a)

2 is optimal for
(CLSP).

Case 4.2. J • [x∗
a(x

∗
a)
T ] > 0 and J • [x∗

b(x
∗
b)
T ] > 0. In this case,

J • X̃ = J •X∗ − J • [x∗
a(x

∗
a)
T ]

aTX∗a
− J • [x∗

b(x
∗
b)
T ]

bTX∗b
< 0.(2.9)

Now let us decompose X̃ as

X̃ =
s∑
i=1

x̃ix̃
T
i ,

where s = rank (X̃) > 0. Since X̃a = 0 and X̃b = 0, we have

x̃Ti a = 0 and x̃Ti b = 0

for all i = 1, . . . , s. Choose j such that

J • [x̃j(x̃j)
T ] < 0.

Such j must exist due to (2.9).
Consider the following quadratic equation:

J • [(x∗
a + αx̃j)(x

∗
a + αx̃j)

T ] = 0.
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This equation has two distinct real roots with opposite signs. Choose α with an
appropriate sign so that the first component in x∗

a + αx̃j is positive. Define

x∗
a + αx̃j =:

[
t∗

x̄∗

]
.

In this case, since J • [x∗
a(x

∗
a)
T ] > 0 and J • [x∗

b(x
∗
b)
T ] > 0, it follows that x∗

a and
x∗
b are in the strict interior of the cone SOC. Due to the complementarity we must

have y∗a = 0 and y∗b = 0. Let us consider the solution [ 1
x̄∗/t∗ ][1, (x̄∗/t∗)T ] for (CLSP).

As for the case before, we can easily check that this solution is both feasible and
complementary to the dual optimal solution (y∗0 , y

∗
1 , y

∗
2 , y

∗
a, y

∗
b , Z

∗). Hence it is optimal
to (CLSP).

We remark here that the solution methodology readily extends to the following
more general setting:

minimize q0(x)
subject to ‖x‖2 ≤ 1,

āTi x ≤ ai0, i = 1, . . . ,m,
(ai0 − āTi x)(aj0 − āTj x) = 0 for all i = j.

3. Two convex quadratic constraints. Now we move on to consider the
problem of minimizing a nonconvex quadratic function with two convex quadratic
constraints. We assume that one of the constraints is simply ellipsoidal. More specif-
ically, without losing generality, we assume it to be a unit spherical constraint.

Let

q0(x) = 1
2x

TQ0x− bT0 x,

q1(x) = 1
2x

TQ1x− bT1 x + c1
2 ,

where Q0 is indefinite and Q1 � 0. Hence, q1(x) is convex.
The problem that we consider in this section is

(P) minimize q0(x)
subject to ‖x‖2 ≤ 1,

q1(x) ≤ 0.

As we discussed in section 1, this problem arises from the application of the trust
region method for equality constrained nonlinear programming. More discussion on
this subject can be found in section 4.

Throughout our discussion we assume that the above problem satisfies the Slater
condition; i.e., there is x such that q1(x) < 0 and ‖x‖2 < 1. Let us denote the feasible
region of (P) as Ω. Obviously, Ω is a compact convex set with a nonempty interior.
Since at least one of the two constraints will be binding at optimum for the interesting
cases, let us assume for simplicity that ‖x‖2 ≤ 1 is a binding constraint.

Let the optimal value of (P) be v∗.
Consider the following parameterized problem:

(Hλ) minimize q0(x) + λq1(x)
subject to ‖x‖2 ≤ 1,

q1(x) ≤ 0,

with λ ≥ 0. Let the optimal value of (Hλ) be h(λ).
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Lemma 3.1. The value function h(λ) is nonincreasing and is concave. Moreover,
h(λ) ≤ h(0) = v∗ for all λ ≥ 0.

Proof. The concavity of h(λ) follows from the fact that for any fixed x, q0(x) +
λq1(x) is linear, and hence concave, in λ. Moreover, it is nonincreasing since q1(x) ≤ 0
for all x ∈ Ω. The second assertion is obvious.

We may introduce a perturbation if necessary, [ε1, ε2, . . . , εn] > 0, on the diagonal
elements of Q0, so that the matrix Q0 + λQ1 will always have at most two identical
eigenvalues for any λ ≥ 0. In the rest of the paper, we assume that such is the case.

Consider another relaxed problem,

(Fλ) minimize q0(x) + λq1(x)
subject to ‖x‖2 ≤ 1,

with λ ≥ 0. Let the optimal value of (Fλ) be f(λ).
Using a similar argument as that used for Lemma 3.1, the following relation is

readily seen.
Lemma 3.2. The function f(λ) is concave, and furthermore, it holds that

f(λ) ≤ h(λ) ≤ v∗

for all λ ≥ 0.
For any fixed λ, (Fλ) can be easily solved, e.g., by solving its SDP relaxation

followed by a matrix decomposition procedure; see [18]. Among other things, this
implies that f(λ) can be evaluated in polynomial time. In particular, for fixed λ, the
optimality condition for (Fλ) is


(Q0 + λQ1 + µI)x = b0 + λb1,
µ(‖x‖2 − 1) = 0, µ ≥ 0, ‖x‖2 − 1 ≤ 0,
Q0 + λQ1 + µI � 0,

where the first two conditions are simply KKT and the last one follows from the SDP
duality.

Let Xλ be the set of optimal solutions for (Fλ). In our case, |Xλ| ≤ 2. Then

∂f(λ) = conv {q1(x) | x ∈ Xλ},
where ∂f(λ) stands for the set of supergradients (see, e.g., Theorem 4.4.2 in [7]).

Let

λ̂ = argmax {f(λ) | λ ≥ 0}.
We remark here that, due to the Slater condition, we have f(λ) → −∞ as λ → ∞.

Hence λ̂ exists and is finite. Moreover, since f(λ) is concave, using bisection, one can

find λ̂ in polynomial time with any given precision.
By the concavity of f , we conclude that Xλ contains only infeasible solutions

(q1(x) > 0) of (Fλ) for λ < λ̂, and contains only feasible solutions of (Fλ) for λ > λ̂.

Now that λ̂ is a maximum point for f(λ), we have

0 ∈ ∂f(λ̂).

If Xλ̂ is a singleton, then its element is also optimal for (P), and we are done. If Xλ̂
contains two elements, say {x+, x−}, then we must have

q1(x
−) ≤ 0 ≤ q1(x

+).
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If any of the above two inequalities is actually an equality, then again the correspond-
ing solution is optimal to (P), and we are done. Next we are concerned with the
remaining case, i.e.,

q1(x
−) < 0 < q1(x

+).

In that case, x− ∈ int Ω and x+ ∈ Ω.
According to Lemma 3.2 we know that h(λ̂) ≥ f(λ̂). Due to the fact that (Fλ̂)

is a relaxation of (Hλ̂), we conclude that x− is optimal to (Hλ̂), and consequently

0 > q1(x
−) ∈ ∂h(λ̂). It can be shown that ‖x−‖ = 1.

Now consider a set of KKT solutions, denoted by S0
λ, such that the Hessian matrix

of the Lagrangian function is positive semidefinite. In particular, S0
λ contains all x

such that there exists µ ≥ 0 satisfying the following conditions:


(Q0 + λQ1 + µI)x = b0 + λb1,
‖x‖2 − 1 = 0, µ ≥ 0,
Q0 + λQ1 + µI has no negative eigenvalue.

One can easily verify that, if Q0 + λQ1 has distinct eigenvalues, then |S0
λ| ≤ 3.

Furthermore, let

(S0
λ)

∗ := arg min
x ∈ S0

λ

q0(x) + λq1(x).

In the same vein, let us define S1
λ to be the set of such KKT solutions x that have

one negative eigenvalue in the Hessian matrix of the Lagrangian; i.e., there is µ ≥ 0
satisfying 


(Q0 + λQ1 + µI)x = b0 + λb1,
‖x‖2 − 1 = 0, µ ≥ 0,
Q0 + λQ1 + µI has exactly one negative eigenvalue.

Similarly, define

(S1
λ)

∗ := arg min
x ∈ S1

λ

q0(x) + λq1(x).

Our first result is the following.
Theorem 3.3. For any λ with h(λ) < h(0) = v∗, the optimal solution for (Hλ)

is always contained in (S0
λ)

∗ ∪ (S1
λ)

∗.
Proof. Let yλ be an optimal solution of (Hλ). Since h(λ) < h(0), i.e., λ is not a

maximum point for h, it follows that q1(yλ) < 0. By the local optimality of yλ we
have

q0(yλ + d) + λq1(yλ + d) ≥ q0(yλ) + λq1(yλ)(3.1)

for all ‖yλ + d‖ ≤ 1 and ‖d‖ sufficiently small. Moreover, yλ must be a KKT point,
i.e.,

(Q0 + λQ1 + µI)yλ = b0 + λb1(3.2)

for some µ ≥ 0. Equations (3.1) and (3.2) imply that

1

2
dT (Q0 + λQ1)d ≥ µdT yλ
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for all ‖yλ + d‖ ≤ 1 and ‖d‖ sufficiently small. We may rewrite this relation as

1

2
dT (Q0 + λQ1 + µI)d ≥ µdT yλ +

µ

2
dT d

=
µ

2
(yλ + d)T (yλ + d)− µ

2
yTλ yλ

for all ‖yλ + d‖ ≤ 1 and ‖d‖ sufficiently small. In particular,

1

2
dT (Q0 + λQ1 + µI)d ≥ 0(3.3)

for ‖yλ + d‖ = 1 and ‖d‖ sufficiently small.
Consider a fixed d̄ satisfying d̄T yλ = 0. Let ε > 0 be a small number. Let yλ + dε

be the projection of yλ + εd̄ onto the unit sphere {y | ‖y‖ ≤ 1}. Since ‖yλ + εd̄‖ > 1,
we conclude that ‖yλ + dε‖ = 1. Let ∆dε = εd̄− dε. It follows that

‖∆dε‖ = o(ε).(3.4)

Using (3.3), we have

0 ≤ dTε (Q0 + λQ1 + µI)dε

= (εd̄)T (Q0 + λQ1 + µI)(εd̄)− 2(∆dε)
T (Q0 + λQ1 + µI)(εd̄)

+ (∆dε)
T (Q0 + λQ1 + µI)(∆dε).

Dividing ε2 on the both sides of the above inequality and letting ε→ 0, we get

d̄T (Q0 + λQ1 + µI)d̄ ≥ 0.(3.5)

Note that the inequality (3.5) holds for any d̄ with d̄T yλ = 0. Hence

Q0 + λQ1 + µI

can have at most one negative eigenvalue. Taking this together with (3.2), we conclude
yλ ∈ (S0

λ)
∗ ∪ (S1

λ)
∗.

Theorem 3.3 suggests the following scheme to solve (P) by means of tracking the
paths S0

λ and S1
λ.

A KKT Solution Path(s) Tracking Procedure.

Step 1. Find λ̂ = argmax{f(λ) | λ ≥ 0}. If there is x∗ ∈ Xλ̂ such that q1(x
∗) = 0,

then stop with x∗ being optimal to (P). Otherwise, go to Step 2.

Step 2. Track all the paths in S0
λ and S1

λ by reducing λ, starting from λ = λ̂. If
xλ ∈ S1

λ and q1(xλ) = 0, then store such xλ as a candidate for optimal
solution and stop searching along this path. If this does not happen, then
the search along each path stops either when the path ceases to exist or when
λ = 0.

Step 3. Track all the paths in S0
λ and S1

λ by increasing λ, starting from λ = λ̂. If
xλ ∈ S1

λ and q1(xλ) = 0, then store such xλ as a candidate for optimal
solution and stop searching along this path. Otherwise, the search along each
path stops when the path ceases to exist.

Step 4. Among all the candidate solutions (namely the stored xλ’s) and the feasible
solutions in S1

0 , pick up the one with the minimum q0(x) value, which is then
optimal to (P).
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This tracking scheme can be accomplished by using Newton’s method to solve
the parameterized equation

(Eλ)

{
(Q0 + λQ1 + µI)x = b0 + λb1,
‖x‖2 = 1.

The equation (Eλ) may have multiple solutions, and we need to follow all the solutions
of (Eλ) belonging to Siλ, i = 0, 1.

To see that this procedure indeed solves (P), we further quote a result proved by
Yuan in [20].

Theorem 3.4. There is an optimal solution of (P) such that the Hessian matrix
of the Lagrangian function when evaluated with optimal Lagrangian multipliers at the
optimal solution can have at most one negative eigenvalue.

Therefore the optimal solution must be contained in Siλ, i = 0, 1, for λ ≥ 0, and
as a consequence the theorem below follows.

Theorem 3.5. The above-described KKT solution path(s) tracking procedure
solves (P) correctly.

To illustrate how the procedure works, let us consider three examples. The first
is

(EX1) minimize −x2
1 + x1 + 4x2

2

subject to x2
1 + x2

2 ≤ 4,
x2

1 − 4x1 + 1
4x

2
2 ≤ 0.

Its SDP relaxation is

minimize


 0 0.5 0

0.5 −1 0
0 0 4


 •X

subject to


 0 −2 0
−2 1 0
0 0 0.25


 •X ≤ 0,


 −4 0 0

0 1 0
0 0 1


 •X ≤ 0,


 1 0 0

0 0 0
0 0 0


 •X = 1, X � 0.

The optimal solution is

X∗ =


 1 1 0

1 4 0
0 0 0


 ,

with the optimal value v∗ = −3. The functions are

f(λ) =

{
12λ− 6 if 0 ≤ λ ≤ 0.25,
−4λ− 2 if λ ≥ 0.25,

and h(λ) = −4λ−2 for all λ ≥ 0. We see that λ̂ = 0.25 and x− = [ 20 ]. We then follow
the trajectory while reducing λ. In this case, xλ ≡ x−, and this leads us to x∗ = x−
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at λ = 0. The true optimal value of the original problem is −2. At the optimality,
µ = 0.25, and the Hessian matrix of the Lagrangian function is

[ −1 0
0 4

]
+ µ

[
1 0
0 1

]
,

which has a negative eigenvalue.

The second example we study is

(EX2) minimize −x2
1 + x1 + x2

2

subject to x2
1 + x2

2 ≤ 4,
(x1 + x2)

2 + x2
2 − 2x1 ≤ 0.

The corresponding value function f(λ) attains its maximum at λ̂ = 0.5, and f(0.5) =
−2.3851. (The numerical values for the computation of this example are rounded.)

Moreover, x− = [ 1.9639
−0.3782 ] and x+ = [−1.9639

0.3782 ]. At x−, λ = λ̂ = 0.5 and µ = 1.1926. In
our case, Newton’s equation amounts to

[
Q0 + λQ1 + µI, x

xT , 0

] [
∆x
∆µ

]
=

[
(Q0 + λQ1 + µI)x− b0 − λb1

1
2‖x‖2 − 2

]
,

with Q0 = [−2
0

0
2 ] and Q1 = [ 22

4
4 ]. Applying Newton’s method, the trajectory can be

computed as follows:

x0.5 =

[
1.9639
−0.3782

]
, x0.4 =

[
1.9731
−0.3267

]
, x0.3 =

[
1.9823
−0.2656

]
,

x0.2 =

[
1.9907
−0.1925

]
, x0.1 =

[
1.9973
−0.1048

]
, x0 =

[
2
0

]
.

The optimal solution is found by tracing this trajectory until λ = 0, i.e., x∗ = x0 with
v∗ = −2. The q1 values at these points are

q1(x0.5) = −1.2703, q1(x0.4) = −1.1289, q1(x0.3) = −0.9469,

q1(x0.2) = −0.7107, q1(x0.1) = −0.4023, q1(x0) = 0.

The last example3 is

(EX3) minimize −x2
1 + x1

subject to (x1 − 2)2 + (x2 − 1)2 − 16 ≤ 0,
x2

1 + x2
2 − 4 ≤ 0.

The function f(λ) attains its maximum at λ̂ = 0.25, and f(0.25) = −5.8125. The
corresponding solutions are x− = [ 1.98430.2500 ] and x+ = [−1.9843

0.2500 ]. The global minimum

solution x∗ = [−1.9568
0.4134 ] is found by increasing λ from λ̂ and tracking the path starting

at x+ until λ = 0.3649.

3We thank Dr. Ai Wenbao for suggesting this example to us.
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4. An extended trust region subproblem and conclusions. In [3], a trust
region method was proposed for solving the nonlinear program

minimize f(x)
subject to c(x) = 0,

where c(x) : �n �→ �m, i.e., there are m equality constraints.
The subproblem to be solved at each iterative point xk amounts to

minimize dT∇f(xk) + 1
2d
TBkd

subject to ‖c(xk) +∇c(xk)T d‖ ≤ ξk,
‖d‖ ≤ ∆k,

where ∇c(xk) stands for the Jacobian matrix of c evaluated at xk.
In case m = 1, the above problem can be formally written as

(TR) minimize q0(x)
subject to ‖x‖2 ≤ 1,

−1 ≤ āTx− a0 ≤ 1.

The last constraint is equivalent to q1(x) = (āTx− a0)
2 − 1 ≤ 0.

The optimal solution for (TR) may be binding at the constraint q1(x) ≤ 0, or
it may not be. However, these two possibilities can be treated separately using the
techniques developed in section 3 and subsection 2.3.

The binding case can be immediately dealt with by solving the following quadratic
optimization with complementary linear constraints:

minimize q0(x)
subject to ‖x‖2 ≤ 1,

−1 ≤ āTx− a0 ≤ 1,
(āTx− a0 − 1)(āTx− a0 + 1) = 0.

As we discussed in subsection 2.3, this can be solved by an SOC-based SDP relaxation
in polynomial time.

The remaining task now is to consider the possibility that the constraint q1(x) ≤ 0
may not be binding at optimality. If that happens, then the value function h(λ) as
defined in section 3 attains its maximum value only at λ = 0. Using Theorem 3.5, we
need only to consider solutions generated by the following equation:

(E0)

{
(Q0 + µI)x = b0,
‖x‖2 = 1

for given µ so that Q0 + µI has at most one negative eigenvalue, where we assume
q0(x) = 1

2x
TQ0x− bT0 x.

The key to note here is that any solution of (E0) yields the same objective value
under q0, as shown below.

Lemma 4.1. Suppose that x and x′ both satisfy (E0). Then q0(x) = q0(x
′).

Proof. Multiplying xT on both sides of the first equation and rearranging yields

q0(x) = −µ

2
− 1

2
bT0 x.

On the other hand, we have

bT0 x = bT0 x′ = xT (Q0 + µI)x′.
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Hence q0(x) = q0(x
′), as desired.

The procedure for finding the solution works as follows. We first compute the µ
values such that (E0) has a solution and Q0 +µI has at most one negative eigenvalue.
This will result in at most three different µ values. Then, for each of these µ’s, solve
the following quadratic optimization problem:

minimize q1(x)
subject to (Q0 + µI)x = b0,

‖x‖2 = 1.

This problem, after variable reduction if necessary, can be solved easily using the
SDP relaxation plus decomposition approach; see [18]. If the optimal value of q1 is
positive for every computed µ, then we simply take the solution generated under the
binding assumption. Otherwise, we take the solution with the lowest q0 value among
the selected µ’s. Summarizing, we have shown the following result.

Theorem 4.2. The trust region subproblem arising from a single equality con-
straint nonlinear program can be solved in polynomial time.

The computational complexity for minimizing an indefinite quadratic function
subject to two convex quadratic constraints remains unsettled. However, as shown
in section 3, there exist effective solution procedures for solving the problem. As we
saw in section 2.1, there are interesting cases of quadratic optimization with indefinite
objective function that can be solved in polynomial time using the SDP relaxation
approach. There are several other related unsolved problems. For instance, how
to minimize a nonhomogeneous indefinite quadratic function with two homogeneous
quadratic constraints? Is there an exact SDP relaxation (cf. section 2.2)? Another
problem one may attempt to solve is: Can one formulate an exact SDP relaxation for
(TR) (cf. section 4)?

Acknowledgment. We would like to thank Dr. Ai Wenbao for reading this
paper carefully and pointing out several errors in an earlier version.
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Abstract. We study approximation bounds for the semidefinite programming (SDP) relaxation
of quadratically constrained quadratic optimization: min f0(x) subject to fk(x) ≤ 0, k = 1, . . . ,m,
where fk(x) = xTAkx+(bk)T x+ ck. In the special case of ellipsoid constraints with interior feasible
solution at 0, we show that the SDP relaxation, coupled with a rank-1 decomposition result of
Sturm and Zhang [Math. Oper. Res., to appear], yields a feasible solution of the original problem
with objective value at most (1 − γ)2/(

√
m + γ)2 times the optimal objective value, where γ =√

maxk f
k(0) + 1. For the single trust-region problem corresponding to m = 1, this yields an exact

optimal solution. In the general case, we extend some bounds derived by Nesterov [Optim. Methods
Softw., 9 (1998), pp. 141–160; working paper, CORE, Université Catholique de Louvain, Louvain-la-
Neuve, Belgium, 1998], Ye [Math. Program., 84 (1999), pp. 219–226], and Nesterov, Wolkowicz, and
Ye [in Handbook of Semidefinite Programming, H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds.,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000, pp. 360–419] for the special case
where Ak is diagonal and bk = 0 for k = 1, . . . ,m. We also discuss the generation of approximate
solutions with high probability.
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1. Introduction. Consider the quadratically constrained quadratic program
(QP):

υQP := min f0(x)
s.t. fk(x) ≤ 0, k = 1, . . . ,m,

(1)

where fk(x) = xTAkx + (bk)Tx + ck, with Ak ∈ �n×n symmetric, bk ∈ �n, ck ∈ �
for k = 0, 1, . . . ,m. We assume c0 = 0. If c0 �= 0, our results still hold by suitably
replacing f0(x) with f0(x)− f0(0). This problem is NP-hard.

It was known through the work of Lovász and Schrijver [9], Shor [20], and others
that certain NP-hard combinatorial optimization problems can be approximated by
semidefinite programming (SDP) problems, for which efficient solution methods exist
[1, 14, 15]. This motivated an important work of Goemans and Williamson [8] showing
that, for special cases of (1) corresponding to certain NP-hard problems like maximum
cut, SDP relaxation yields very good (randomized) approximation algorithms. This
work was subsequently extended by Nesterov and colleagues [11, 15], Ye [23, 24],
Nemirovski, Roos, and Terlaky [10], and Zhang [26] to other cases of (1), as well as
to other combinatorial optimization problems—see [2, 22] and references therein.
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Motivated by the aforementioned work, in this paper we make further study of
the SDP relaxation of (1). In particular, by defining

Bk :=

[
Ak bk/2

(bk)T /2 ck

]
, k = 0, 1, . . . ,m,

and introducing xn+1 = 1, we rewrite (1) equivalently as

min
∑n+1
i,j=1 B

0
ijxixj

s.t.
∑n+1
i,j=1 B

k
ijxixj ≤ 0, k = 1, . . . ,m,

xn+1 = 1.

By further making the transformation X = xxT = [xixj ]
n+1
i,j=1 for x ∈ �n+1 with

xn+1 = 1, we write the above problem equivalently as

min 〈B0, X〉
s.t. 〈Bk, X〉 ≤ 0, k = 1, . . . ,m,

Xn+1n+1 = 1, X � 0, RankX = 1.

Relaxing the rank-1 constraint yields the SDP relaxation of (1):

υSDP := min 〈B0, X〉
s.t. 〈Bk, X〉 ≤ 0, k = 1, . . . ,m,

Xn+1n+1 = 1, X � 0.
(2)

Clearly υSDP
≤ υQP . Let ρSDP denote the optimal objective value of (2) but with

minimization replaced by maximization. Below we discuss known upper bounds on
υ

QP
in terms of υ

SDP
and ρSDP

.
Goemans and Williamson [8] showed that if m = n, Ak = ek(ek)T , bk = 0,

ck = −1 for k = 1, . . . ,m, b0 = 0, and −A0 is positive semidefinite with nonpositive
off-diagonals and zero row sums, then

υQP ≤ (0.87856 . . . ) υSDP .(3)

Nesterov [11] showed that if −A0 is allowed to be any positive semidefinite matrix,
then

υ
QP ≤

2

π
υ

SDP .(4)

Ye [23] and Nesterov [12] showed that this still holds if A1, . . . , Am are further al-
lowed to be diagonal (or mutually commute). Zhang [26] showed that the Goemans–
Williamson bound (3) still holds if A1, . . . , Am are similarly allowed to be diagonal
(or mutually commute) and −A0 is allowed to have nonzero row sums. Zhang also
showed that if instead −A0 has nonnegative off-diagonals, then υQP = υSDP and an
optimal solution of (1) can be easily found from an optimal solution of (2).

Of special interest is the case of ellipsoid constraints:

Ak = (F k)TF k, bk = 2(F k)T gk, ck = ‖gk‖2 − hk, k = 1, . . . ,m,(5)

where F k ∈ �n×n, gk ∈ �n, hk ∈ {0, 1}, and ‖ · ‖ denotes the Euclidean norm. Then
fk(x) = ‖F kx+ gk‖2 − hk, k = 1, . . . ,m. Nemirovski, Roos, and Terlaky [10] showed
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that if, in addition, the ellipsoids have a common center and nonempty interior (i.e.,
gk = 0, hk = 1 for all k) and

∑m
k=1 A

k  0, then a feasible solution x satisfying

f0(x) ≤ 1

2 ln(2(m + 1)µ)
υSDP

,

with µ := min{m + 1,maxk=1,...,m RankAk}, can be found from the SDP relaxation
using a randomization scheme and then derandomizing. Moreover, they constructed
for each m ≥ 3 a problem instance for which υ

QP
≥ 1

O(lnm)υSDP . Notice that∑m
k=1 A

k  0 implies maxk RankAk ≥ n/m. Also, if (1) has a ball constraint, then
µ = min{m+ 1, n}. This result was extended by Ye [24] to allow the ellipsoids not to
have a common center but assuming A0 � 0, b0 = 0, and that the origin is an interior
feasible solution. Ye showed that a feasible solution x̃ can be randomly generated
such that

E
[
f0(x̃)

] ≤ (1−maxk ‖gk‖)2
4 ln (4mn ·maxk=1,...,m RankAk)

υSDP .

Ye remarked that, for general A0 and b0, an additional term depending on υSDP and
ρ

SDP appears on both sides. We will show that if, in addition to (5), the origin is
a relatively interior feasible solution and (2) has an optimal solution, then a feasible
solution x satisfying

f0(x) ≤ (1− γ)2

(
√
κ + γ)2

υ
SDP

,(6)

where κ := Card{k ∈ {1, . . . ,m} : hk = 1} and γ := maxk:hk=1 ‖gk‖, can be found
using a rank-1 decomposition procedure of Sturm and Zhang [21, Procedure 1]. Thus,
in contrast to the bound of Ye, no assumption is made on A0 or b0, and (6) does
not involve expectation or n. Also, unlike previous work on SDP relaxation, rank
reduction does not involve randomization, and the feasible set need not be bounded.
In the case of ellipsoids with a common center (i.e., gk = 0 and hk = 1 for all k), (6)
reduces to

f0(x) ≤ 1

m
υ

SDP
.

For m ≤ 11, this improves on the above bound of Nemirovski, Roos, and Terlaky. For
m = 1, (1) and (5) correspond to the single trust-region problem (see [2, 6]), and (6)
implies that an exact optimal solution can be found by solving the SDP relaxation (2).
A similar result was obtained in [21] in a more general context. For m = 2, (1) and (5)
correspond to the two-ellipsoid trust-region problem, which is also of importance—see
[2, 16, 25], [6, section 15.4.3], and references therein. Our result provides a practical
way to compute an approximate solution to this problem by solving a single SDP.
Such an approximate solution is sufficient for achieving convergence of the associated
trust-region method. In the special case of homogeneous objective and two ellipsoids
with a common center (i.e., b0 = 0, m = 2, gk = 0, and hk = 1 for k = 1, 2), it was
shown by Polyak [17, section 6.1] and rediscovered by Ye and Zhang [25, Theorem 2]
that an exact optimal solution can be found by solving an SDP.

The work of Nesterov, Ye, and colleagues [11, 12, 15, 23] showed a more general
result than (4); namely, if

I := {k ∈ {1, . . . ,m} : Ak is diagonal and bk = 0}(7)
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equals {1, . . . ,m}, then

υ
QP ≤

2

π
υSDP +

(
1− 2

π

)
ρ

SDP .

Our second result is an extension of the above bound to the general case where
I �= {1, . . . ,m}. In particular, we show that an x̃ can be randomly generated to
satisfy fk(x̃) ≤ 0, k ∈ I, with probability 1 and

E
[
f0(x̃)

] ≤ 2

π
υ

SDP +

(
1− 2

π

)
ρ0

SDP
,(8)

E
[
f �(x̃)

] ≤ (1− 2

π

)
ρ�

SDP
, � ∈ {1, . . . ,m} \ I,(9)

where ρ�
SDP

, � �∈ I, are defined similarly as ρ
SDP

, but with B0 replaced by B� and with
the inequality constraints not indexed by I dropped—see (19). An alternative bound
that seems generally sharper is also considered. By using a large deviation result, the
above bounds holding in expectation can be replaced by bounds holding with high
probability—see section 4. In the case where the constraints not indexed by I are
ellipsoid constraints, we discuss ways to randomly generate feasible solutions that,
with high probability, satisfy related bounds on the objective value—see Theorem 4
and the subsequent discussions.

Other approximation results for special cases of (1), not based on SDP, are dis-
cussed in [7, 12, 13, 15, 23]. In particular, for ellipsoid constraints with feasible set
having nonempty bounded interior, Fu, Luo, and Ye [7] showed that, for a fixed ε > 0
near 0, a feasible solution x with

f0(x) ≤ 1− ε

m2(1 + ε)2
υ

QP

can be found by using a column generation method to find an inexact analytic cen-
ter of the feasible set and then minimizing f0 over a Dikin ellipsoid centered there.
The computational effort depends on ln(1/ε) and ln(1/δ), where δ is the radius of a
Euclidean ball contained in the feasible set. The bound (6) improves on the above
bound by a factor of O(m), provided that γ is uniformly bounded away from zero.
Some results of Nesterov [13], [15, pp. 376, 377] suggest that, for simplex-type con-
straints, approximation techniques not based on SDP relaxation might be preferable.
However, very recently Bomze and de Klerk [5] presented an SDP-based polynomial-
time approximation scheme (PTAS) for QP with a simplex constraint. It would be
very interesting if their scheme could be extended to more general constraints. Also,
Barvinok [3] showed that, for a bounded number of homogeneous quadratic equations,
existence of a nontrivial solution is decidable in a polynomial number of arithmetic
operations, using results from real algebraic geometry. It was pointed out by a referee
that Barvinok’s result can be used to decide in a polynomial number of arithmetic
operations whether the system of quadratic inequalities

xTA0x ≤ υ, xTAkx ≤ 1, k = 1, . . . ,m,

has a solution (υ ∈ �), assuming m = O(1) and a mild constraint qualification,
namely, that the cone generated by A0, . . . , Am contains a positive definite matrix.
This in turn can be used to develop, under the same constraint qualification, a PTAS
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for QP with a bounded number of common-center-ellipsoid constraints. While SDP
relaxation does not provide as sharp an approximation bound in this case, it can
be efficiently solved (approximately) and yields a practical algorithm as opposed to
(exact) algorithms based on real algebraic geometry.

Throughout, �n denotes the space of n-dimensional column vectors, Sn denotes
the space of n× n real symmetric matrices, and T denotes transpose. For x ∈ �n, xj
denotes jth component of x and ‖x‖ =

√
xTx. Also, ek denotes the kth coordinate

vector. For A ∈ �m×n, Aij denotes the (i, j)th entry of A. For A ∈ Sn with |Aij | ≤ 1
for all i, j, arcsin(A) denotes the matrix in Sn with (i, j)th entry arcsin(Aij). For
A,B ∈ Sn, we denote 〈A,B〉 =

∑
i,j AijBij , and A � B (respectively, A  B) means

that A−B is positive semidefinite (respectively, positive definite). Also, “:=” means
“define.”

2. SDP relaxation bounds: The ellipsoid constraints case. In this section,
we make in addition to (5) the following assumption.

Assumption 1. The origin 0 ∈ �n is a feasible solution of (1) and fk(0) < 0
whenever hk = 1.

Assumption 1 is equivalent to gk = 0 whenever hk = 0, and ‖gk‖ =
√
fk(0) + 1 <

1 whenever hk = 1. It implies that 0 is in the relative interior of the feasible set of (1),
but the converse does not hold. To satisfy Assumption 1, it suffices to find a feasible
solution of (1) satisfying strictly those constraints with hk = 1 and then to translate
the origin there. Such a feasible solution can be found efficiently by solving

min max
k:hk=1

fk(x)

s.t. fk(x) ≤ 0 ∀k with hk = 0

as a second-order cone programming problem [14, p. 221]. Notice that those con-
straints with hk = 0 are in effect linear constraints. We also make the following
assumption.

Assumption 2. (2) has an optimal solution X∗.
It can be seen by using (5) that if the feasible set of (1) is bounded, then so is the

feasible set of (2), so that Assumption 2 holds. In the footnote below, we show that
if {u ∈ �n : uTA0u ≤ 0, F 1u = 0, . . . , Fmu = 0} = {0}, then (feasible set of (2)) ∩
{X : 〈B0, X〉 ≤ 0} is nonempty and bounded, so that Assumption 2 again holds.

We show below that a feasible solution x satisfying (6) can be found efficiently
from X∗. Our analysis is based on the following rank-1 decomposition result of Sturm
and Zhang [21, Proposition 3].

Lemma 1. Let X ∈ Sn+1 be a positive semidefinite matrix of rank r. Let B ∈
Sn+1. Then, 〈B,X〉 ≤ 0 if and only if there exist wj ∈ �n+1, j = 1, . . . , r, such that

X =

r∑
j=1

wjw
T
j and wTj Bwj ≤ 0, j = 1, . . . , r.

The proof of Lemma 1 is constructive (see [21, Procedure 1]): Given X and B
with 〈B,X〉 ≤ 0, choose any w1, . . . , wr satisfying X =

∑r
j=1 wjw

T
j . If wTj Bwj > 0

for some j, then there is some � with wT� Bw� < 0, and we swap wj and w� with
the linear combinations (wj+αw�)/

√
1 + α2 and (w�−αwj)/

√
1 + α2, where α solves

(wj+αw�)
TB(wj+αw�) = 0. Each swap increases the number of wj with wTj Bwj = 0

by at least 1, so the desired w1, . . . , wr are found after at most r − 1 replacements.
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For

B :=

[
A0 b0/2

(b0)T /2 −υ
SDP

]
,

we have from X∗
n+1n+1 = 1 and c0 = 0 that 〈B,X∗〉 = 〈B0, X∗〉−υ

SDP
= 0. Applying

Lemma 1 to X∗ and B, we can find wj = (uj , tj) ∈ �n × �, j = 1, . . . , n + 1, such
that

X∗ =

n+1∑
j=1

wjw
T
j and wTj Bwj ≤ 0, j = 1, . . . , n + 1.

Since X∗ is a feasible solution of (2), this and (5) yield

uTj A
0uj + tj(b

0)Tuj ≤ υSDPt
2
j , j = 1, . . . , n + 1,(10)

n+1∑
j=1

(
uTj A

kuj + tj(b
k)Tuj + t2jc

k
)

= 〈Bk, X∗〉 ≤ 0, k = 1, . . . ,m,(11)

n+1∑
j=1

t2j = X∗
n+1n+1 = 1.(12)

Using (5), we obtain from (11) and (12) that

n+1∑
j=1

‖F kuj + tjg
k‖2 ≤ hk, k = 1, . . . ,m.(13)

Notice that the above results can be generalized to any feasible solution of (2).1 If
hk = 0, then gk = 0, and thus (13) yields ‖F kuj‖2 = 0 for all j. Also, summing (13)
over all k with hk = 1 yields

n+1∑
j=1

∑
k:hk=1

‖F kuj + tjg
k‖2 ≤ κ,(14)

where κ := Card{k : hk = 1}. We need the following fact.
Lemma 2. For any scalars κ ≥ 0, αj ≥ 0 and βj ≥ 0, j = 1, . . . , � (� ≥ 1), such

that
∑�
j=1 αj ≤ κ and

∑�
j=1 βj = 1, there exists j̄ ∈ {1, . . . , �} such that βj̄ > 0 and

αj̄/βj̄ ≤ κ.
Proof. If the assertion is false, then for every j ∈ {1, . . . , �} such that βj > 0 we

would have αj/βj > κ or, equivalently, αj > κβj . Then we would have

κ ≥
�∑
j=1

αj ≥
∑
j:βj>0

αj >
∑
j:βj>0

κβj = κ,

1In particular, Assumption 1 implies that X = en+1(en+1)T is a feasible solution of (2) with
〈B0, X〉 = 0. Thus, X 0 := (feasible set of (2)) ∩ {X : 〈B0, X〉 ≤ 0} is nonempty. Then for any X ∈
X 0, repeating the above argument with X and 0 in place of X∗ and υSDP yields X =

∑n+1
j=1 wjw

T
j

for some wj = (uj , tj) ∈ �n × � satisfying uTj A
0uj + tj(b

0)Tuj ≤ 0, (12), and (13). For each j,

(12) implies that tj is bounded, while (13) implies ‖Fkuj + tjg
k‖2 ≤ hk. If uj is unbounded for

some j, then dividing by ‖uj‖2 and taking the limit yields a cluster point u of uj/‖uj‖ satisfying
‖u‖ = 1, uTA0u ≤ 0 and ‖Fku‖2 ≤ 0, k = 1, . . . ,m. Thus, if {u ∈ �n : uTA0u ≤ 0, F 1u = 0, . . . ,
Fmu = 0} = {0}, then X 0 is bounded.
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a clear contradiction.
By (12) and (14), we can apply Lemma 2 to αj =

∑
k:hk=1 ‖F kuj + tjg

k‖2 and
βj = t2j to conclude the existence of j̄ ∈ {1, . . . , n + 1} such that

t2j̄ > 0 and
∑

k:hk=1

‖F kuj̄ + tj̄g
k‖2/t2j̄ ≤ κ.

In particular, we can choose j̄ to minimize the ratio αj/βj over all j with βj > 0.
Thus

‖F kuj̄/tj̄ + gk‖ ≤ √κ whenever hk = 1.(15)

Let

x̄ :=

{
uj̄/tj̄ if (b0)Tuj̄/tj̄ ≤ 0,

−uj̄/tj̄ otherwise,

τ̄ := max{τ ∈ [0, 1] : fk(τ x̄) ≤ 0, k = 1, . . . ,m}.
Using (10) and (15), we prove below the following result.

Theorem 1. Under Assumptions 1, 2 and (5), the above construction yields
a feasible solution x = τ̄ x̄ of (1) satisfying (6), where κ := Card{k ∈ {1, . . . ,m} :
hk = 1} and γ := maxk:hk=1 ‖gk‖.

Proof. We estimate τ̄ . Fix any k ∈ {1, . . . ,m}. Suppose hk = 0. Then we have
from ‖F kuj̄‖2 = 0 that fk(τ x̄) = 0 for all τ ∈ [0, 1]. Suppose hk = 1. Then we see

from (15) that if (b0)Tuj̄/tj̄ ≤ 0, then ‖F kx̄ + gk‖ ≤ √κ, and otherwise

‖F kx̄ + gk‖ =

∥∥∥∥∥−
(
F kuj̄
tj̄

+ gk

)
+ 2gk

∥∥∥∥∥ ≤
∥∥∥∥∥F

kuj̄
tj̄

+ gk

∥∥∥∥∥+ 2‖gk‖ ≤ √κ + 2‖gk‖.

Thus for any τ ∈ [0, 1] we have

‖F k(τ x̄) + gk‖ = ‖τ(F kx̄ + gk) + (1− τ)gk‖ ≤ τ(
√
κ + 2‖gk‖) + (1− τ)‖gk‖.

Using ‖gk‖ < 1, the right-hand side is below 1 (i.e., fk(τ x̄) ≤ 0) whenever τ ≤
(1− ‖gk‖)/(√κ + ‖gk‖). Thus,

τ̄ ≥ min
k:hk=1

1− ‖gk‖√
κ + ‖gk‖ =

1−maxk:hk=1 ‖gk‖√
κ + maxk:hk=1 ‖gk‖ ,(16)

where the equality follows from (1 − γ)/(
√
κ + γ) being a decreasing function of

γ ∈ [0, 1). Notice that τ̄ can be easily computed by solving the quadratic equation
‖τF kx̄ + gk‖2 = 1 in τ for each k such that ‖F kx̄ + gk‖2 > 1 and then taking the
minimum of all the positive roots found.

Finally, our choice of x̄ implies (b0)T x̄ ≤ 0 and (b0)T x̄ ≤ (b0)Tuj̄/tj̄ . Then for
any τ ∈ [0, 1] we have τ ≥ τ2 and hence

f0(τ x̄) = τ2x̄TA0x̄ + τ(b0)T x̄

≤ τ2x̄TA0x̄ + τ2(b0)T x̄

≤ τ2x̄TA0x̄ + τ2(b0)Tuj̄/tj̄

= τ2(uTj̄ A
0uj̄ + tj̄(b

0)Tuj̄)/t
2
j̄

≤ τ2υSDP ,
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where the last inequality uses (10). Since 0 is a feasible solution of (1) so that υSDP ≤
υ

QP ≤ f0(0) = 0, setting τ = τ̄ in the above inequality and using (16) completes the
proof.

In the above construction, the main effort lies in solving the SDP relaxation (2),
for which many efficient methods exist. Given that an exact optimal solution of
(1) is constructed when m = 1, we may speculate that when m = 2, which is also
of considerable interest for trust-region methods (see [2, 16, 25], [6, section 15.4.3],
and references therein), a good approximate solution will generally be found. It is
worthwhile to test this numerically. In particular, if the rank-1 decomposition given
by Lemma 1 is not unique, can we choose one so that the corresponding x̄ minimizes
minτ∈[0,τ̄ ] f

0(τ x̄)?

3. SDP relaxation bounds: The general case. In this section, following
Goemans and Williamson, Nesterov, and Ye, we derive approximation bounds for (1)
based on the SDP relaxation (2) under Assumption 2. Notice that Assumption 2
does not guarantee the feasibility of (1), which is NP-hard to check in general. Since
X∗ � 0, we can express

X∗ = V TV = [vTi vj ]
n+1
i,j=1

for some V ∈ �n+1×n+1. Here vi denotes the ith column of V . Choose randomly
(according to uniform distribution) v on the unit sphere in �n+1. Since ‖vn+1‖2 =
X∗
n+1n+1 = 1, vn+1 also lies on this unit sphere. If vT vn+1 ≤ 0, then set for i =

1, . . . , n + 1

x̃i =

{√
X∗
ii if vT vi ≤ 0,

−√X∗
ii otherwise.

If vT vn+1 > 0, then set for i = 1, . . . , n + 1

x̃i =

{
−√X∗

ii if vT vi ≤ 0,√
X∗
ii otherwise.

The above choice and X∗
n+1n+1 = 1 ensure that x̃n+1 = 1 always.

For each i, j we have that |x̃ix̃j | =
√
X∗
iiX

∗
jj . If X∗

iiX
∗
jj �= 0, then x̃ix̃j =

√
X∗
iiX

∗
jj

if and only if vT vi ≤ 0, vT vj ≤ 0 or vT vi > 0, vT vj > 0. As was shown by Goemans
and Williamson [8], the probability that this event occurs is

p = 1− 1

π
arccos

(
vTi vj
‖vi‖‖vj‖

)
= 1− 1

π
arccos

(
X∗
ij√

X∗
iiX

∗
jj

)
.

Thus, the expectation of x̃ix̃j is

E[x̃ix̃j ] =
√
X∗
iiX

∗
jjp +

(
−
√
X∗
iiX

∗
jj

)
(1− p)

=
2

π

√
X∗
iiX

∗
jj

(
π

2
− arccos

(
X∗
ij√

X∗
iiX

∗
jj

))

=
2

π

√
X∗
iiX

∗
jj arcsin

(
X∗
ij√

X∗
iiX

∗
jj

)
.(17)
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If X∗
iiX

∗
jj = 0, then X∗

ij = 0 since X∗ � 0, and so (17) still holds with the convention
that 0/0 = 0.

Thus, for k = 0, 1, . . . ,m, since x̃n+1 = 1 always, (17) yields

E
[
fk(x̃)

]
=

n+1∑
i,j=1

Bk
ijE[x̃ix̃j ]

=
n+1∑
i,j=1

Bk
ij

2

π

√
X∗
iiX

∗
jj arcsin

(
X∗
ij√

X∗
iiX

∗
jj

)

=
2

π
〈Bk, D arcsin(D−1X∗D−1)D〉,(18)

where D = diag[
√
X∗
ii]
n+1
i=1 . Notice that |(D−1X∗D−1)ij | ≤ 1 for all i, j, and thus

arcsin(D−1X∗D−1) is defined. Since x̃2
i = X∗

ii always for all i, we have fk(x̃) =
〈Bk, X∗〉 ≤ 0 always for k ∈ I (see (7)).

We now derive bounds on E[fk(x̃)], k �∈ I, by using (18) and extending an
analysis of Nesterov and Ye. We will make, in addition to Assumption 2, the following
assumption.

Assumption 3. {x ∈ �n : fk(x) ≤ 0, k ∈ I} is bounded.
Consider for each � �∈ I the following SDP problem:

ρ�
SDP

:= max 〈B�, X〉
s.t. 〈Bk, X〉 = ck∗, k ∈ I,

〈Bm+1, X〉 = 1, X � 0,

(19)

where Bm+1 := en+1(en+1)T and ck∗ := 〈Bk, X∗〉 ≤ 0. For � �= 0, ρ�
SDP

measures how
much the �th inequality in (2) is violated by the feasible solutions of the inequalities
indexed by I. Here we use the tighter constraints 〈Bk, X〉 = ck∗ instead of 〈Bk, X〉 ≤ 0
used by Nesterov, Wolkowicz, and Ye [15]. This yields a tighter upper bound.

Let X denote the feasible set of (19). Since X∗ ∈ X , X is nonempty. By As-
sumption 3, the diagonal entries of X ∈ X are bounded, which, together with X � 0,
implies that X is bounded. By a result of Rockafellar [19, Theorem 30.4(i)], strong
duality holds between (19) and its dual:

ρ�
SDP

= inf
∑
k∈I c

k
∗y
k + ym+1

s.t. −B� +
∑
k∈I∪{m+1}B

kyk � 0.
(20)

In general, the infimum in (20) need not be attained. As in [11, 15, 23], we make use
of the following result of Nesterov [11].

Lemma 3. For any Y � 0 with Yii ≤ 1 for all i, we have arcsin(Y ) � Y .

Fix any � �∈ I. For each ε > 0, let (yk)k∈I∪{m+1} be any feasible solution of the

dual problem (20) such that
∑
k∈I c

k
∗y
k + ym+1 ≤ ρ�

SDP
+ ε. Let D := diag[

√
X∗
ii]
n+1
i=1

and Y := D−1X∗D−1, with the convention that Yii = 1 if X∗
ii = 0, and Yij = 0 if

X∗
iiX

∗
jj = 0 and i �= j. Since X∗ � 0, then Y � 0 and Yii = 1, i = 1, . . . , n + 1. Thus
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〈B�, D arcsin(Y )D〉

=

〈
B� −

∑
k∈I∪{m+1}

Bkyk, D arcsin(Y )D

〉
+

∑
k∈I∪{m+1}

yk〈Bk, D arcsin(Y )D〉

≤
〈
B� −

∑
k∈I∪{m+1}

Bkyk, DY D

〉
+

∑
k∈I∪{m+1}

yk〈Bk, D arcsin(Y )D〉

= 〈B�, X∗〉+
(π

2
− 1
) ∑
k∈I∪{m+1}

yk〈Bk, X∗〉

= 〈B�, X∗〉+
(π

2
− 1
)(∑

k∈I
ykck∗ + ym+1

)

≤ 〈B�, X∗〉+
(π

2
− 1
)

(ρ�
SDP

+ ε),(21)

where the first inequality uses dual feasibility, Lemma 3, and the fact that 〈W,Z〉 ≥ 0
whenever W � 0, Z � 0; the second equality uses DYD = X∗ and the observations
that Bk is diagonal for k ∈ I ∪ {m + 1} and that D arcsin(Y )D has diagonal entries
π
2X

∗
ii for all i. Since (21) holds for every ε > 0, taking the limit as ε → 0 and using

(18) yields

E
[
f �(x̃)

]
=

2

π
〈B�, D arcsin(D−1X∗D−1)D〉

=
2

π
〈B�, D arcsin(Y )D〉

≤ 2

π
〈B�, X∗〉+

(
1− 2

π

)
ρ�

SDP
.

Since X∗ is an optimal solution of (2), this establishes the following result.
Theorem 2. Under Assumptions 2 and 3, the bounds (8) and (9) hold.
In the case where I = {1, . . . ,m}, the above bounds slightly refine analogous

bounds obtained by Nesterov and colleagues [11, Theorem 3.3], [15, Theorem 13.2.1]
and Ye [23, Theorem 2], [15, Theorem 13.3.2, part 2]. As was considered by Nesterov,
Wolkowicz, and Ye [15] (also see [26]), the quadratic inequalities fk(x) ≤ 0, k ∈ I, can
be generalized to constraints of the form [x2

i ]
n
i=1 ∈ F , where F is a compact convex

set intersecting the positive orthant. In this general case, however, the corresponding
relaxation may no longer be an SDP problem.

We can also obtain lower bounds analogous to those obtained in the above refer-
ences. Consider for each � �∈ I the following QP:

υ�
QP

:= min f �(x)

s.t. fk(x) ≤ 0, k ∈ I.(22)

Since X is nonempty and bounded, then so is the feasible set of this QP. Thus υ�
QP

is
finite. By the definition of I, we can apply [15, Theorem 13.3.1] or [26, Theorem 1] to
reformulate this QP as an equivalent nonlinear program for which X∗ and Y,D defined
above form a feasible solution with objective function value 2

π 〈B�, D arcsin(Y )D〉.
Thus,

υ�
QP
≤ 2

π
〈B�, D arcsin(Y )D〉 = E

[
f �(x̃)

]
.(23)
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Notice that υ0
QP
≤ υQP , with equality holding when I = {1, . . . ,m}. If constraints

not indexed by I are ellipsoid constraints, an upper bound on υQP in terms of υ0
QP

will be derived in section 4.
We can more generally replace I in (20) by any I ′ ⊂ {1, . . . ,m} containing I.

This would yield a lower ρ�
SDP

, but then the right-hand side of (21) would have an
additional term of the form

∑
k∈I′\I y

k〈Bk, D arcsin(D−1X∗D−1)D − π
2X

∗〉. By
Lemma 4 below, this term is at most(π

2
− 1
) ∑
k∈I′\I

yk
∑
i �=j
|BijX∗

ij |.

Thus, the resulting bound would involve a dual solution yk, k ∈ I \ I, as well as X∗.
Below we consider alternative bounds that complement the bounds from Theorem

2. Since arcsin(t) is convex for t ∈ (0, 1] and has derivative 1 at t = 0, we have that
1 ≤ arcsin(t)/t ≤ arcsin(1)/1 = π

2 . By symmetry, this holds for t ∈ [−1, 0) as well, so
that

1 ≤ arcsin(t)

t
≤ π

2
∀t ∈ [−1, 0) ∪ (0, 1].(24)

Using (24), the following lemma readily follows.
Lemma 4. For any X � 0 and B ∈ Sn+1, we have∣∣∣∣ 2π 〈B,D arcsin(D−1XD−1)D〉 − 〈B,X〉

∣∣∣∣ ≤
(

1− 2

π

)∑
i �=j
|BijXij |,

where D = diag[
√
Xii]

n+1
i=1 .

By using (18) and Lemma 4, we obtain

E
[
f �(x̃)

] ≤ 〈B�, X∗〉+
(

1− 2

π

)∑
i �=j
|B�
ijX

∗
ij |, � = 0, 1, . . . ,m.

Since X∗ is an optimal solution of (2), the above inequalities yield the following
bounds.

Theorem 3. Under Assumption 2,

E
[
f0(x̃)

] ≤ υSDP +

(
1− 2

π

)
δ0,

E
[
f �(x̃)

] ≤ (1− 2

π

)
δ�, � ∈ {1, . . . ,m} \ I,

where δ� :=
∑
i �=j |B�

ijX
∗
ij |.

The bounds in Theorem 3 depend on X∗ as well as the off-diagonal quadratic
coefficients Akij , i �= j, and the linear coefficients bki . While these bounds might look
less attractive than the bounds in Theorem 2, they were found to be sharper in all
the examples this author tried. For example, if

m = n = 2, f0(x) = x1x2 + x1 + x2, f1(x) = x2
1 − 1, f2(x) = x2

2 − 1,

then I = {1, 2} and it is straightforward to verify that

υ
QP = −1, X∗ =


 1 − 1

2 − 1
2

− 1
2 1 − 1

2

− 1
2 − 1

2 1


 , υ

SDP = −3

2
, ρ0

SDP
= 3, δ0 =

3

2
.

Here δ0 is smaller than ρ0
SDP
− υSDP by a factor of 3!
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4. Generating approximate solutions: The general case. The results of
section 3 show that x̃ is an approximate solution of (1) in expectation only. In this
section we refine this result to generate approximate solutions with high probability.

The following lemma, attributed to Bernstein, refines the Chebychev inequality
for bounded random variables. Its proof can be inferred from the argument in [18,
pp. 385–386]; a similar result was used in [10]. We note that the probabilistic analysis
of Nesterov [11, p. 159] is not applicable here since υSDP

need not be below υ0
QP

in
Theorem 2, except in the case of I = {1, . . . ,m}.

Lemma 5. Let ξ be a random variable with standard deviation σ. Suppose σ ≤ C
and |ξ −E[ξ]| ≤ K always for some constants C and K. Then, for any t ∈ (0, C/K],

Prob

[
ξ − E[ξ] ≥ 3

2
tC

]
≤ e−t

2/2.

For each k �∈ I, let σk denote the standard deviation of fk(x̃). Since |x̃ix̃j | =√
X∗
iiX

∗
jj for all i and j, then |f0(x̃) − E[f0(x̃)]| = |∑i �=j B

0
ij (x̃ix̃j − E[x̃ix̃j ]) | ≤ K

for some K > 0 depending on B0 and X∗. Applying Lemma 5 with ξ = f0(x̃) and
t = 2

3ε
0, we obtain that

Prob
[
f0(x̃)− E[f0(x̃)] ≥ ε0σ0

] ≤ e−
2
9 (ε0)2 ,

provided that 0 < ε0 ≤ 3
2σ

0/K. For each k ∈ {1, . . . ,m} \ I, we have from the
Chebychev inequality that

Prob
[|fk(x̃)− E[fk(x̃)]| ≥ εkσk

] ≤ (εk)−2,

provided that εk > 1. Then

Prob

[
max
k �∈I
{fk(x̃)− E[fk(x̃)]− εkσk} > 0

]
≤ π,

where

π := e−
2
9 (ε0)2 +

∑
k∈{1,...,m}\I

(εk)−2.(25)

For each k ∈ I, we have fk(x̃) ≤ 0 with probability 1. Thus, if we generate x̃ randomly
and independently L times, the probability that one of these L samples satisfies

fk(x̃) ≤ E[fk(x̃)] + εkσk, k = 0, 1, . . . ,m,(26)

is at least 1−πL. To maintain π < 1, we must trade off between optimality (small ε0)
and feasibility (small εk for k ∈ {1, . . . ,m} \ I). As an example, suppose {1, . . . ,m} \
I = {1} and 3

2σ
0/K0 ≥ 0.5. If we choose ε0 = 0.5, ε1 = 5, L = 200, then this

probability is at least 0.940. Notice that 200 is an overestimate. In practice, fewer
samples would be needed. Also, x̃ need not be a feasible solution of (1).

To construct feasible solutions with probability 1, we consider the special case
where the constraints not indexed by I are ellipsoid constraints, i.e.,

fk(x) = ‖F kx + gk‖2 − 1 ∀k ∈ {1, . . . ,m} \ I,(27)
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where F k ∈ �n×n, gk ∈ �n. We also assume that the origin is a feasible solution of
(1) satisfying strictly those constraints not indexed by I. This is equivalent to

ck ≤ 0 ∀k ∈ I and ‖gk‖ < 1 ∀k �∈ I.(28)

Then, by moving x̃ sufficiently close toward the origin, as was done in section 2, we
will construct feasible solutions with certainty. We give more details below.

For each randomly generated x̃, let

x̄ :=

{
x̃ if (b0)T x̃ ≤ 0,

−x̃ otherwise,

τ̄ := max{τ ∈ [0, 1] : fk(τ x̄) ≤ 0, k = 1, . . . ,m},
τ̌ := arg min{f0(τ x̄) : τ ∈ [0, τ̄ ]}.

Notice that τ̄ and τ̌ are well defined and can be easily computed. By using (26)–(28),
we obtain the following main result.

Theorem 4. Under Assumption 2 and (27), (28), for any 0 < ε0 ≤ 3
2σ

0/K0

and integer L ≥ 1 and any εk > 1 and ηk ≥ E[fk(x̃)] for k ∈ {1, . . . ,m} \ I, if we
generate x̃ randomly and independently L times as described in section 3 and construct
x = τ̌ x̄ as above, then each x is a feasible solution of (1) with probability 1 and, with
probability of at least 1− πL, one of these L samples satisfies

f0(x) ≤ min
k �∈I

(
1− ‖gk‖√

1 + ηk + εkσk + ‖gk‖

)2

(E[f0(x̃)] + ε0σ0),(29)

where π is given by (25), σk denotes the standard deviation of fk(x̃), and K is any
constant for which |f0(x̃)− E[f0(x̃)]| ≤ K always.

Proof. The probability that one of the samples satisfies (26) is at least 1 − πL.
Consider one such sample x̃ and the corresponding x̄, τ̄ , τ̌ . For each k ∈ I, since Ak

is diagonal and bk = 0, we see that

fk(τ x̄) = fk(τ x̃) = τ2fk(x̃) + (1− τ2)ck ≤ 0

for all τ ∈ [0, 1]. For each k ∈ {1, . . . ,m} \ I, we see from (26) and (27) that if

(b0)T x̃ ≤ 0, then ‖F kx̄ + gk‖ ≤
√
κk; otherwise

‖F kx̄ + gk‖ = ‖ − (F kx̃ + gk) + 2gk‖ ≤ ‖F kx̃ + gk‖+ 2‖gk‖ ≤
√
κk + 2‖gk‖,

where κk := 1+E[fk(x̃)]+εkσk. Thus, arguing identically as in the proof of Theorem
1, we obtain that

τ̄ ≥ min
k �∈I

1− ‖gk‖√
κk + ‖gk‖ .(30)

Moreover, for all τ ∈ [0, τ̄ ], τ x̄ is a feasible solution of (1) with probability 1. Since
τ̌ ∈ [0, τ̄ ], then x = τ̌ x̄ is a feasible solution of (1) with probability 1.

For each k ∈ {1, . . . ,m} \ I, since E[fk(x̃)] ≤ ηk, then κk ≤ 1 + ηk + εkσk, and it
follows from (30) that

τ̄ ≥ τ̂ := min
k �∈I

1− ‖gk‖√
1 + ηk + εkσk + ‖gk‖ > 0,
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implying τ̌ ∈ (0, τ̄ ]. Finally, our choice of x̄ implies (b0)T x̄ ≤ 0 and (b0)T x̄ ≤ (b0)T x̃.
Then, arguing similarly as in the proof of Theorem 1, we obtain for any τ ∈ [0, τ̄ ] that

f0(τ̌ x̄) ≤ f0(τ x̄)

≤ τ2(x̃TA0x̃ + (b0)T x̃)

≤ τ2(E[f0(x̃)] + ε0σ0),

where the last inequality uses (26). Setting τ = τ̂ completes the proof.
By Theorem 3, we can choose ηk =

(
1− 2

π

)
δk in Theorem 4. Then (29) becomes

f0(x) ≤ min
k �∈I


 1− ‖gk‖√

1 +
(
1− 2

π

)
δk + εkσk + ‖gk‖




2(
υ

SDP +

(
1− 2

π

)
δ0 + ε0σ0

)
.

If Assumption 3 also holds, then, by Theorem 2, we can choose ηk =
(
1− 2

π

)
ρk

SDP
in

Theorem 4. Then (29) becomes

f0(x) ≤ min
k �∈K


 1− ‖gk‖√

1 +
(
1− 2

π

)
ρk

SDP
+ ε + ‖gk‖




2(
2

π
υSDP +

(
1− 2

π

)
ρ0

SDP
+ ε

)
.

If Assumption 3 also holds, then (22) with � = 0 has an optimal solution, say
x0. Since −x0 is also a feasible solution of (22), then (b0)Tx0 ≤ 0. By an argument
similar to the proof of Theorem 4, it can be shown that tx0 is a feasible solution of
(1) whenever

0 ≤ t ≤ min
k:‖Fkx0+gk‖>1

1− ‖gk‖
‖F kx0 + gk‖ − ‖gk‖ .

Moreover, f0(tx0) ≤ t2f0(x0) = t2υ0
QP

. Since tx0 is a feasible solution of (1), this

implies υ
QP
≤ f0(tx0) ≤ t2υ0

QP
. Thus, we obtain the following upper bound on υQP

in terms of υ0
QP

:

υQP
≤ min
k:‖Fkx0+gk‖>1

(
1− ‖gk‖

‖F kx0 + gk‖ − ‖gk‖
)2

υ0
QP
.

This can be combined with the lower bound (23) and the upper bound (8) to yield
bounds involving mainly υ

QP , υSDP , ρ
0
SDP

and quantities depending on x0.
The bound (29) works best when σk is small for all k �∈ I and when σ0/K

is not too small. Then we can set ε0 = 3
2σ

0/K and choose moderately large εk,
k ∈ {1, . . . ,m} \ I, to satisfy π < 1. Both σk and K can be estimated as follows.
Since x̃2

i = E[x̃2
i ] and |x̃ix̃j | =

√
X∗
iiX

∗
jj for all i and j, we have

(σk)2 = E




∑
i �=j

Bk
ij x̃ix̃j −Bk

ijE[x̃ix̃j ]




2



= E




∑
i �=j

Bk
ij x̃ix̃j




2

−


∑
i �=j

Bk
ijE[x̃ix̃j ]




2

≤ E




∑
i �=j
|Bk
ij ||x̃ix̃j |




2

 = (∆k)2,
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where ∆k :=
∑
i �=j |Bk

ij |
√
X∗
iiX

∗
jj . In fact, it can be shown by using (17), [8, Lemma

7.3.1], and [4, Corollary 18.6.10] that

(σk)2 =
∑
i �=j

∑
p�=q

Bk
ijB

k
pq (E[x̃ix̃j x̃px̃q]− E[x̃ix̃j ]E[x̃px̃q])

≤ 4
∑
i �=j

∑
p�=q
|Bk
ij ||Bk

pq|
√
X∗
iiX

∗
jjX

∗
ppX

∗
qq (1−max{|νij |, |νpq|}) ,

where νij := 2
π arcsin(X∗

ij/
√
X∗
iiX

∗
jj). Thus, σk is small if either Bk has small off-

diagonal entries or if |νij | is near 1 (i.e., |X∗
ij | is near

√
X∗
iiX

∗
jj) for many index pairs

i �= j. Also, since |x̃ix̃j | =
√
X∗
iiX

∗
jj and, by (17) and |t| ≤ | arcsin(t)| ≤ π

2 |t| (see

(24)), we have |E[x̃ix̃j ]| ≤
√
X∗
iiX

∗
jj for all i, j, implying

|fk(x̃)− E[fk(x̃)]| =
∣∣∣∣∣∣
∑
i �=j

Bk
ij(x̃ix̃j − E[x̃ix̃j ])

∣∣∣∣∣∣ ≤ 2∆k

and hence K ≤ 2∆0. Notice that since X∗ � 0 so that |X∗
ij | ≤

√
X∗
iiX

∗
jj = |x̃ix̃j | and

X∗
n+1n+1 = x̃n+1 = 1, we have ∆k =

∑
i �=j |A�ij x̃ix̃j |+

∑
i |b�i x̃i| ≥ δk.

If the ellipsoid constraint functions (27) have some special structure, then the
bound (29) can be sharpened. For example, suppose these ellipsoid constraints come
in pairs of the form

1

α
(xi − xj)

2 ≤ 1,
1

β
(xi + xj)

2 ≤ 1,(31)

for some i �= j and some α > 0, β > 0. Then X∗
ii + X∗

jj − 2X∗
ij ≤ α and X∗

ii + X∗
jj +

2X∗
ij ≤ β, implying 2X∗

ii + 2X∗
jj ≤ α + β. Since x̃2

i = X∗
ii and x̃2

j = X∗
jj , this yields

(x̃i − x̃j)
2 = x̃2

i + x̃2
j − 2x̃ix̃j ≤ X∗

ii + X∗
jj + 2

√
X∗
iiX

∗
jj ≤ 2X∗

ii + 2X∗
jj ≤ α + β

always. Similarly, (x̃i + x̃j)
2 ≤ α + β always. It follows that x = τ x̄ satisfies (31) for

all τ ∈ [0,
√

min{α, β}/(α + β)]. Then it is readily seen from the proof of Theorem 4
that

E[f0(τ̌ x̄)] ≤ min

{
min{α, β}
α + β

}
E[f0(x̃)],

where the first minimum is taken over all pairs. If only a subset of the ellipsoid con-
straints come in pairs of the form (31), the bound (29) can be sharpened analogously.
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Abstract. The notions of lower and upper radial epiderivatives (a radial notion different from
that generally discussed) for nonconvex vector-valued functions are introduced, many of their prop-
erties are established, and some of the optimality conditions for a point to be an ideal, Pareto, or
weak-Pareto minimum involving these epiderivatives are also presented. In particular, a characteri-
zation for the ideal minima in terms of the lower radial epiderivative is proved. Such a result appears
to be new in the literature. Under some mild assumptions on the given function, it is proved that the
asymptotic cone of its epigraph is the epigraph of its upper radial epiderivative. Moreover, given a
vector minimization problem, we describe the asymptotic behavior of its solution set by introducing
some cones of asymptotic directions of the function involved. Finally, we define the lower and up-
per radial subdifferentials and express the optimality conditions by means of these subdifferentials.
Certainly these optimality conditions subsume various necessary or sufficient conditions found in the
literature for convex or nonconvex functions.

Key words. nonconvex vector-valued optimization, strong minima, Pareto minima, weak-
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1. Introduction. Although the study of vector-valued functions, motivated
mainly by optimization problems, started around 1970, there is not a unified the-
ory on this subject. However, a common approach to carrying out the study of such
problems, as well as set-valued problems, seems to be the use of a notion of derivatives
for vector (set)-valued functions. In this regard, the contingent cone (historically the
tangent cone of Bouligand, or the set of adherent displacements) has been widely
applied in developing a nonsmooth analysis or in deriving optimality conditions; see
[A, AF, C, CJ, GJ, JR, HU1, HU2, L1, L2, P1, P2, P3] among others. After the
introduction of Clarke’s tangent cone [Cl], many people used this generalized tangent
cone (see [Th1, Th2, Th3] and references therein) to develop a similar theory suitable
for (nonconvex) locally Lipschitz continuous vector-valued functions.

In [P1] several notions of (what are now called) epiderivatives (according to the
cone involved: contingent, Clarke’s, . . .) for real-valued functions were considered.
Later, a more complete treatment for vector-valued functions was presented in [P2],
where some necessary optimality conditions were derived in terms of these kinds of
derivatives. Independently, the notion of a contingent epiderivative for functions
taking values in the real line appears in [A], under the name of “upper contingent
derivative”; see also [AF, section 6.1] for further developments.

Very recently, perhaps motivated by the real case, the notion of the (single-valued)
contingent epiderivative for set-valued maps was introduced in [JR]. More precisely,
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if F : X → 2Y , then its contingent epiderivative at (x̄, ȳ), ȳ ∈ F (x̄), is defined by
Jahn and Rauh in [JR] as the single-valued function DeF (x̄, ȳ) : X → Y such that

epi(DeF (x̄, ȳ)) = T (epi F ; (x̄, ȳ)).(1.1)

Here, T (A; a) stands for the contingent cone of A at a ∈ A. By using this notion, one
can formulate optimality conditions that are necessary and sufficient under the con-
vexity assumption, as shown in [JR, CJ], and a Lagrange multiplier rule, as established
in [GJ]. The convexity is imposed to guarantee the global character of the contingent
cone. However, a drawback of considering such a notion of epiderivative is the nonex-
istence of a formula for it, except for the special cases when DeF (x̄, ȳ)(u) ∈ Y for all
u ∈ X [JR, CJ] and when Y = R [JR], [AF, section 6.1]. In both cases, one obtains

DeF (x̄, ȳ) = inf
{
v ∈ Y : (u, v) ∈ T (epi F ; (x̄, ȳ))

}
,(1.2)

where the infimum is taken with respect to the ordering cone in Y .
In order to deal with nonconvex set-valued optimization problems, the author

proposes in [F3] an alternative definition of epiderivative based on the closed radial
cone, which differs from the radial notion discussed in [P1, P2]: the closed radial cone
of A at a ∈ A, denoted by R(A; a), is the smallest closed cone containing A − a,
which, in the case in which A is convex, coincides with the contingent cone. Thus,
a necessary and sufficient optimality condition in nonconvex set-valued optimization
is established in [F3], without assuming the existence of the alternative epiderivative
as a function taking values in Y , but under a restrictive assumption on the ordering
cone (but including the scalar case). In both cases, we also have a formula for the
radial epiderivative like (1.2). We point out that the closed radial cone was also used
in [T] in a different framework.

In the present paper, we restrict ourselves to vector-valued functions, since one
cannot expect, even in the single-valued case (Y �= R), that a condition like (1.1) will
be satisfied for any kind of epiderivative, as Propositions 3.1 and 3.8 show; see also
Proposition 3.2 in [P2]. Thus, the purpose of this paper is to contribute to a better
understanding of the phenomena arising in the study of nonconvex vector optimization
problems. Our approach is based on some derivative notions defined in terms of the
closed radial cone.

In the next section we recall some basic definitions and facts related to vector-
valued functions. In section 3, after defining the lower and upper radial epiderivatives
for vector-valued functions, we study some of their main properties to be used in what
follows. In particular, we characterize the ideal (strong) minimizers in terms of the
lower radial epiderivative, as well as some sufficient or necessary conditions for the
Pareto or weak-Pareto minima in terms of these radial epiderivatives (see Corollary
3.5). We establish, under some mild assumptions, that the epigraph of the upper
radial epiderivative is the asymptotic cone of the epigraph of the function involved
(Theorem 3.10). Thus, it gives rise to a notion of asymptotic function for vector-
valued functions. We close section 3 by establishing a formula for the upper radial
epiderivative in the finite dimensional case and under convexity assumptions.

Section 4 is devoted to describing the asymptotic behavior of the solution set for
a vector minimization problem by applying the previous results. Indeed, two cones
of asymptotic directions for the function involved are introduced. Such cones are
estimates for the asymptotic cone of the solution set to the minimization problem
(Theorem 4.2). In particular, we find an expression for the asymptotic cone of the set
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of ideal (strong) minimizers in terms of the upper radial epiderivative (Theorems 4.3
and 4.4). Finally, some kinds of subdifferentials involving the lower or upper radial
epiderivatives are introduced, and some optimality conditions are written by means
of these subdifferentials. Certainly such optimality conditions give more information
than those appearing in the literature.

2. Some preliminary facts. As we said in the introduction, our main concern
is dealing with nonconvex vector-valued functions. Thus, we need an object taking
into account the global behavior of the function involved. Although the so-called
contingent cone has proved to be very useful in the study of nonsmooth problems in
scalar and set-valued optimization [A, AF, C, CJ, GJ, JR, L1, L2], it captures only
the local nature of the function. Therefore, we shall use the closed radial cone to
define some kinds of epiderivatives for vector-valued functions. This will be carried
out in the next section.

In all this paper X stands for any real normed vector space, and, given any set
C in X, C will denote its closure. We first recall some basic notions.

Definition 2.1. Given any nonempty set C ⊂ X, x̄ ∈ C, we define the following
cones:

(i) the contingent cone of C (or tangent cone of Bouligand) at x̄, denoted by
T (C; x̄), is the set of all v ∈ X such that there exist sequences tn ↓ 0 and
vn → v with x̄+ tnvn ∈ C for all n ∈ N;

(ii) the closed radial cone of C at x̄, denoted by R(C; x̄), is the set of all v ∈ X
such that there exist sequences tn > 0, vn → v, and x̄ + tnvn ∈ C for all
n ∈ N;

(iii) the interiorly radial cone of C at x̄, denoted by Ri(C; x̄), is the set of all
v ∈ X such that there exists ε > 0 satisfying x̄ + tv′ ∈ C for all t > 0,
||v′ − v|| < ε.

By a cone we mean a set K satisfying λK ⊂ K for all λ ≥ 0, so 0 ∈ K.
Remark 2.2. (a) Some of the equivalent definitions for T (C; x̄) are the following:
• v ∈ T (C; x̄) if and only if there exist sequences tn > 0 and vn → v such that
tnvn → 0 and x̄+ tnvn ∈ C for all n ∈ N;

• v ∈ T (C; x̄) if and only if there exist sequences tn > 0 and xn ∈ C such that
xn → x̄ and tn(xn − x̄)→ v.

(b) T (C; x̄) and R(C; x̄) are nonempty closed cones.
(c) T (C; x̄) = R(C; x̄) for all x̄ ∈ C whenever C is a convex set.
(d) Ri(C; x̄) is an open set whenever x̄ is a boundary point of C. Furthermore,

λRi(C; x̄) ⊂ Ri(C; x̄) for all λ > 0. Indeed Ri(C; x̄) = X \R(X \ C; x̄). Moreover,
v ∈ Ri(C; x̄)⇐⇒ ∃ ε > 0 such that v′ ∈

⋂
t>0

t(C − x̄), ||v′ − v|| < ε,

⇐⇒ v ∈ int
(⋂
t>0

t(C − x̄)
)
.

(2.1)

Given any closed set K ⊂ X, we define the asymptotic cone of K as the closed
cone

K∞ =
{
v ∈ X : ∃ tn ↓ 0,∃ xn ∈ K, tnxn → v

}
.

We set ∅∞ = ∅. The term “recession cone” is used when the set is also convex.
A closed set K it said to be radiant at x̄ ∈ K if there exists some δ ∈ ]0, 1] such

that x̄+ t(x− x̄) ∈ K for all x ∈ K, for all t ∈ ]0, δ].



RADIAL EPIDERIVATIVES IN VECTOR OPTIMIZATION 287

We recall that a subset K is star-shaped with respect to some point x̄ ∈ K if
x̄ + t(x − x̄) ∈ K for all t ∈ [0, 1] and all x ∈ K. Thus, one immediately sees that
every set that is star-shaped with respect to a point in the set is radiant at the same
point. In particular, closed convex sets are radiant at any point belonging to the set.
Let K be radiant at x̄ ∈ K; it is proved in [D1, D2] that

K∞ =
⋂
t>0

t(K − x̄).(2.2)

Consequently, in the case in which K is convex, given any x̄ ∈ K,

K∞ =
{
v ∈ X : x̄+ tv ∈ K ∀ t > 0

}
=
⋂
t>0

t(K − x̄).

Here K∞ is independent of x̄. For general closed sets, we have⋂
t>0

t(K − x̄) ⊂ K∞.

Hence Ri(K; x̄) ⊂ int(K∞) for all x̄ ∈ K. The following proposition summarizes the
previous results.

Proposition 2.3. Let C ⊂ X be a closed set, x̄ ∈ C. If C is radiant at x̄, then

Ri(C; x̄) = int

(⋂
t>0

t(C − x̄)
)
= int(C∞).(2.3)

When C is convex, Ri(C; x̄) is independent of x̄.
By cone A we denote the smallest closed cone containing A, which is the closure

of the smallest cone containing A. More precisely,

cone A = cone (A) and cone A =
⋃
t≥0

tA.

The next proposition justifies the term “closed radial” for the set R(C; x̄).
Proposition 2.4. Given any nonempty set C and x̄ ∈ C, we have
(a) R(C; x̄) = cone(C − x̄);
(b) R(C; x̄) = T (C; x̄), provided that C is star-shaped with respect to x̄.
Proof. Part (a) follows directly from the very definition of R(C; x̄) and by noticing

that cone(C − x̄) = cone(C − x̄). Part (b) is Corollary 4.11 in [J].
In addition to the normed space X, let Y be another real normed vector space.

We shall require that Y be an ordered space, with ordering cone P being closed convex
and pointed (P ∩ (−P ) = {0}); eventually we will require int P �= ∅. The cone P
will determine the “preference relation.” We recall that P introduces on Y a partial
ordering by defining y1 ≥ y2 (equivalently, y2 ≤ y1) if and only if y1 − y2 ∈ P . This
ordering is reflexive, transitive, and antisymmetric; i.e., (y ≥ 0 and y ≤ 0) implies
y = 0.

For B ⊂ Y nonempty, y0 ∈ Y is a lower bound of B if and only if y0 ≤ b for all
b ∈ B. An infimum of B is a greatest lower bound, i.e., a lower bound y0 of B such
that y0 ≥ y1 for every other lower bound y1 of B. From antisymmetry of the ordering,
the infimum is unique; we denote it by inf B, provided that it exists (inf B ∈ Y ). An
element y0 ∈ Y is a minimum of B, denoted y0 = minB, if and only if y0 = inf B and
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y0 ∈ B. This is equivalent to y0 ∈ B and y0 ≤ b for all b ∈ B. Analogous definitions
hold for the upper bound and supB, maxB.

The crucial order theoretic assumption we have to make is that (Y, P ) is order-
complete. This means that every nonempty subset of Y , which has an upper bound,
also has a supremum. If int P �= ∅, any two-element subset {a, b} ⊂ Y has an upper
bound. In fact, choose t ∈ int P and λ ∈ ]0,∞[ so small that t+ λ(a− b) ∈ P . Then
a+ t/λ is an upper bound for both a and b. Hence sup{a, b} exists for any a, b ∈ Y ,
due to order-completeness. Similarly one can show that inf{a, b} also exists. Finally,
we adjoin to Y two artificial elements, −∞ and +∞, say, and denote the extended
space by Y = Y ∪ {±∞}. We suppose that −∞ ≤ y ≤ +∞ for every y ∈ Y ∪ {±∞}.
Furthermore, the following conventions are assumed:

(±∞) + y = y + (±∞) = ±∞ ∀ y ∈ Y, (±∞) + (±∞) = ±∞,

λ(±∞) = ±∞ ∀ λ > 0, and λ(±∞) = ∓∞ ∀ λ < 0.

Thus, every nonempty subset of Y has a infimum in Y ∪{−∞} (resp., a supremum in
Y ∪ {+∞}), and the infima (resp., suprema) occurring in the next section are always
to be understood in this sense.

We shall also need the notion of the epigraph of a single-valued map f : X → Y .
It is, as usual, the set

epi f =
{
(x, y) ∈ X×Y : f(x) ∈ Y, y ∈ f(x)+P

}
∪
{
(x, y) ∈ X×Y : f(x) = −∞

}
,

and the hypograph of f is the set

hyp f =
{
(x, y) ∈ X×Y : f(x) ∈ Y, y ∈ f(x)−P

}
∪
{
(x, y) ∈ X×Y : f(x) = +∞

}
,

while the effective domain of f is, as usual,

dom f =
{
x ∈ X : f(x) �= +∞

}
.

Finally, we set inf A = −∞ (resp., supA = +∞) if A has no lower (resp., upper)
bound, and inf ∅ = +∞ (resp., sup ∅ = −∞).

Definition 2.5. The vector-valued function f : X → Y is said to be
(i) P -convex if for all x, y ∈ dom f ,

αf(x) + (1− α)f(y) ∈ f(αx+ (1− α)y) + P ∀ α ∈ ]0, 1[.

(ii) (see [PT]) P -lower semicontinuous (P-lsc) at x0 ∈ X if f(x0) = −∞ or if
for any open set V ⊂ Y such that f(x0) ∈ V ∪ {+∞} there exists an open
neighborhood U ⊂ X of x0 such that f(U) ⊂ V + (P ∪ {+∞}). We shall say
that f is P -lsc if it is P -lsc at every point x0 ∈ X.

(iii) P -upper semicontinuous (P-usc) at x0 ∈ X if −f is P -lsc at x0. We shall
say that f is P -usc if it is P -usc at every point x0 ∈ X.

The following proposition will be used in what follows and in the next sections.
Proposition 2.6. Let W ⊂ Y be any nonempty set, W �= Y , and P be a convex

cone. Then,
(a) λW ⊂W for all λ > 0 =⇒ λ(Y \W ) ⊂ Rm \W for all λ > 0 and 0 ∈ Y \W .

Thus also 0 ∈W ∩ (−W ) ∩ Y \ −W .
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(b) W + P ⊆W ⇐⇒ (Y \ −W ) + P ⊂ Y \ −W ⇐⇒ (Y \W )− P ⊂ Y \W .
Proof. Part (a) is obvious since for any fixed a ∈ Y \W , ta ∈ Y \W for all t > 0.

Then let t → 0. Part (b): let u �∈ −W , p ∈ P and suppose that u + p ∈ −W . Then
u ∈ −W − P ⊂ −W by assumption on W . Hence (Y \ −W ) + P ⊆ Y \ −W . The
reverse implication follows by symmetry. The other equivalence follows directly since,
for any sets A and B, A ⊂ B if and only if −A ⊂ −B.

Regarding the notions in Definition 2.5 we have the following lemma. Part (c)
can be found in [BHS], and part (d) in [L1] for nonextended vector-valued functions.
We present the proof for sake of completeness in the general case.

Lemma 2.7. Let P be a closed convex cone; let W ⊂ Y be a closed set such
that W + P ⊂ W , W �= Y ; and let f : X → Y be any function. Then we have the
following:

(a) epi f is convex if and only if f is P -convex.
(b) If f is a P -lsc function, then the set A = {x ∈ X : f(x)−λ ∈ −(W ∪{+∞})}

is closed for all λ ∈ Y .
(c) Assume int P �= ∅; f is P -lsc if and only if {x ∈ X : f(x) − λ �∈ (int P ) ∪
{+∞}} is closed for all λ ∈ Y .

(d) Assume int P �= ∅; epi f is closed if and only if {x ∈ X : f(x) − λ ∈
−(P ∪ {+∞})} is closed for all λ ∈ Y .

(e) If f is P -convex, then the set {x′ ∈ X : f(x′) ∈ f(x)− P} is convex for all
x ∈ X, f(x) ∈ Y .

Proof. The first assertion follows by definition. Let (xn), n ∈ N, be any sequence
in A such that xn → x. We will prove that x ∈ A. If, on the contrary, x �∈ A, we could
have f(x) = +∞ or f(x) �∈ λ −W . Thus f(x) ∈ (λ + Y \ (−W )) ∪ {+∞}. Thus by
the P -lower semicontinuity of f at x, there is an open neighborhood U of x satisfying
f(U) ⊂ λ+Y \(−W )+(P ∪{+∞}). Since xn ∈ U for n sufficiently large, the previous
inclusion implies that (see Proposition 2.6) f(xn) ∈ λ + (Y \ (−W )) ∪ {+∞} for n
large enough, which contradicts the choice of xn ∈ A, proving the second assertion.
The “only if” part of (c) follows from (b) by taking W = P \ (−int P ). Let us prove
the “if” part. If f(x̄) = −∞, there is nothing to prove. Take any open set V such
that f(x̄) ∈ V ∪ {+∞}. In case f(x̄) ∈ V , since V is open, we can choose y0 ∈ int P
such that f(x̄) − y0 ∈ V . Set λ = f(x̄) − y0. Thus f(x̄) − λ ∈ (int P ) ∪ {+∞}. By
assumption, there exists an open set U , x̄ ∈ U , such that f(x) ∈ (λ+int P )∪{+∞} ⊂
V + (P ∪ {+∞}) for all x ∈ U , which means that f is P -lsc at x̄. Part (d) is similar
to that in [L1], and part (e) is straightforward.

When the function f does not take the value −∞, more precise formulations can
be stated. We single out these results in the next proposition.

Proposition 2.8. Let f : X → Y ∪ {+∞}, and let W be as in the previous
lemma. Then,

(a) if f is a P -lsc function, then {x ∈ X : f(x) ∈ λ−W} is closed for all λ ∈ Y ;
(b) assuming int P �= ∅, f is P -lsc if and only if {x ∈ X : f(x)− λ �∈ int P} is

closed for all λ ∈ Y ;
(c) assuming int P �= ∅, epi f is closed if and only if {x ∈ X : f(x)− λ ∈ −P}

is closed for all λ ∈ Y ;
(d) if f is P -lsc, then epi f is closed.

3. Radial epiderivatives and main results. Throughout this paper (Y, P )
will denote an ordered real normed vector space, Y �= {0}, with P satisfying the
following hypothesis.

Hypothesis (H0). P ⊂ Y is a closed convex pointed cone such that (Y, P ) is
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order-complete. Notice that if P is pointed and Y �= {0}, then P �= Y .
Sometimes we shall require int P �= ∅.
Let us consider any vector-valued function f : X → Y ∪ {+∞}. For a given

x̄ ∈ dom f , the lower radial epiderivative of f at x̄, DRe f(x̄; ·) : X → Y , is defined by

DRe f(x̄;u) = lim inf
u′→u

inf
t>0

f(x̄+ tu′)− f(x̄)
t

.
= sup

ε>0
inf

||u′−u||<ε
inf
t>0

f(x̄+ tu′)− f(x̄)
t

.

The upper radial epiderivative of f at x̄, D
R

e f(x̄; ·) : X → Y , is defined by

D
R

e f(x̄;u) = lim sup
u′→u

sup
t>0

f(x̄+ tu′)− f(x̄)
t

.
= inf
ε>0

sup
||u′−u||<ε

sup
t>0

f(x̄+ tu′)− f(x̄)
t

.

As a simple example take f(x) = Ax+ b, x ∈ Rn, with P = Rm+ , where A is an m×n-
matrix with real entries, and b ∈ Rm. Then one obtains DRe f(x̄;u) = D

R

e f(x̄;u) = Au
for all u ∈ Rn and all x̄ ∈ Rn. For other less trivial examples, we refer to Remark 3.6
(iii) and Example 3.19.

The following sets play important roles throughout the paper. Such sets are
well defined since (x̄, ȳ), ȳ = f(x̄), is a boundary point of epi f , hyp f and of their
complements as well, provided P �= {0}.

H+(u) =
{
v ∈ Y : (u, v) ∈ R(epi f ; (x̄, ȳ))

}
,

H−(u) =
{
v ∈ Y : (u, v) ∈ R(hyp f ; (x̄, ȳ))

}
,

Hi(u) =
{
v ∈ Y : (u, v) ∈ Ri(hyp f ; (x̄, ȳ))

}
,

Hi(u) =
{
v ∈ Y : (u, v) ∈ Ri(epi f ; (x̄, ȳ))

}
.

Proposition 3.1. Assume that P satisfies Hypothesis (H0). Let f : X →
Y ∪ {+∞}, x̄ ∈ dom f , ȳ = f(x̄). Then we have the following:

(a) • DRe f(x̄;u) ≤ inf{v ∈ Y : (u, v) ∈ R(epi f ; (x̄, ȳ))}. Thus,
R(epi f ; (x̄, ȳ)) ⊂ epi(DRe f(x̄; ·)).
• DRe f(x̄;u) ≥ sup{v ∈ Y : (u, v) ∈ Ri(hyp f ; (x̄, ȳ))}. Thus,
Ri(hyp f ; (x̄, ȳ)) ⊂ hyp(DRe (x̄; ·)).

(b) • DRe f(x̄;u) ≥ sup{v ∈ Y : (u, v) ∈ R(hyp f ; (x̄, ȳ))}. Thus,

R(hyp f ; (x̄, ȳ)) ⊂ hyp(DRe f(x̄; ·)).
• DRe f(x̄;u) ≤ inf{v ∈ Y : (u, v) ∈ Ri(epi f ; (x̄, ȳ))}. Thus,

Ri(epi f ; (x̄, ȳ)) ⊂ epi(DRe (x̄; ·)).
Proof. We prove only part (a), the other part being entirely similar. Obviously the

first inequality is trivially satisfied if H+(u) is empty. Otherwise, take any v ∈ H+(u).
Then, there exist sequences tn > 0, un → u, and vn → v such that

vn ≥ f(x̄+ tnun)− f(x̄)
tn

≥ inf
t>0

f(x̄+ tun)− f(x̄)
t

∀ n ∈ N.

Given ε > 0, there exists n0 ∈ N such that ||un − u|| < ε for all n ≥ n0. Therefore,
for all n ≥ n0

vn ≥ inf
t>0

f(x̄+ tun)− f(x̄)
t

≥ inf
||u′−u||<ε

inf
t>0

f(x̄+ tu′)− f(x̄)
t

.
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Letting n→ +∞, we obtain

v ≥ inf
||u′−u||<ε

inf
t>0

f(x̄+ tu′)− f(x̄)
t

.

Since the latter holds for arbitrary ε > 0, we conclude v ≥ DRe f(x̄;u).
For the second part of (a), if Hi(u) is empty, the inequality is trivially satisfied.

Take any v ∈ Hi(u); then, by definition, there exists ε̄ > 0 such that

v′ ≤ f(x̄+ tu
′)− f(x̄)
t

∀ t > 0, ||u′ − u|| < ε̄, ||v′ − v|| < ε̄.

In particular, for v′ = v, the previous inequality reduces to

v ≤ f(x̄+ tu
′)− f(x̄)
t

∀ t > 0, ||u′ − u|| < ε̄.

Thus

v ≤ inf
||u′−u||<ε̄

inf
t>0

f(x̄+ tu′)− f(x̄)
t

≤ sup
ε>0

inf
||u′−u||<ε

inf
t>0

f(x̄+ tu′)− f(x̄)
t

= DRe f(x̄;u).

From the preceding proof one can see that, if

DRe f(x̄;u)
.
= inf

{
v ∈ Y : (u, v) ∈ R(epi f ; (x̄, ȳ))

}
∈ Y ∀ u ∈ X,

then

epi(DRe f(x̄; ·)) = R(epi f ; (x̄, ȳ)).
Thus, DRe f(x̄; ·) could be a good candidate for a notion of epiderivative (it might be
with respect to a different cone like the contingent, or Clarke’s), but as we said in the
introduction, to give conditions guaranteeing the existence of such an epiderivative
is not an easy task. Hence, we consider the lower and upper radial epiderivatives as
defined above, which may take the values ±∞.

If, in the definition of DRe f(x̄; ·) above, we consider the Clarke tangent cone
instead of the closed radial one, we get the directional subderivative of f at x̄, f↑(x̄; ·),
considered and developed in [Th3].

Theorem 3.2. Let P satisfy Hypothesis (H0). Let f : X → Y ∪ {+∞}, x̄ ∈
dom f . Then

(a) f(x̄+ tu)−f(x̄) ∈ tDRe f(x̄;u)+(P ∪{+∞}) for all t > 0 and all u ∈ X such
that DRe f(x̄;u) �= −∞. Hence, DRe f(x̄;u) = +∞ implies f(x̄ + tu) = +∞
for all t > 0. Consequently

f(x)−f(x̄) ∈ DRe f(x̄;x− x̄)+(P ∪{+∞}) ∀ x ∈ X, DRe f(x̄;x− x̄) �= −∞.

(b) D
R

e f(x̄;u) �= −∞ for all u ∈ X. Moreover, if D
R

e f(x̄;u) �= +∞, then f(x̄+

tu) ∈ Y for all t > 0 and D
R

e f(x̄;u) ∈ Y . Hence, for such u, f(x̄+tu)−f(x̄) ∈
tD

R

e f(x̄;u)− P for all t > 0. Consequently

f(x)− f(x̄) ∈ DRe f(x̄;x− x̄)− P ∀ x ∈ X, DRe f(x̄;x− x̄) �= +∞.
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Proof. First, we recall that (x̄, ȳ) is a boundary point of hyp f (if P �= {0}) and
thus also of its complement.

(a) Let us fix u ∈ X such that DRe f(x̄;u) �= −∞. Thus

A =

{
inf

||u′−u||<ε
inf
t>0

f(x̄+ tu′)− f(x̄)
t

∈ Y ∪ {+∞} : ε > 0
}
�= ∅.

For such ε > 0 we have for all t > 0

inf
||u′−u||<ε

inf
t′>0

f(x̄+ t′u′)− f(x̄)
t′

≤ f(x̄+ tu)− f(x̄)
t

.

Hence

f(x̄+ tu)− f(x̄) ∈ tDRe f(x̄;u) + P ∪ {+∞} ∀ t > 0.

(b) If, on the contrary D
R

e f(x̄;u) = −∞, we have, by Proposition 3.1,
(u, v) �∈ R(hyp f ; (x̄, ȳ)) ∀ v ∈ Y.

By Remark 2.2, (u, v) ∈ Ri(X × Y \ hyp f ; (x̄, ȳ)) for all v ∈ Y . In particular,
(x̄ + tu, ȳ + tv) �∈ hyp f for all v ∈ Y and all t > 0. In case f(x̄ + tu) = +∞,
then obviously (x̄ + tu, ȳ + tv) ∈ hyp f , a contradiction; if f(x̄ + tu) ∈ Y , then
f(x̄ + tu) − f(x̄) ∈ tv + (Y \ P ) for all v ∈ Y , which cannot happen if we take
v = (f(x̄+ tu)− f(x̄))/t. This completes the proof of the first part.

Assume that D
R

e f(x̄;u) �= +∞. Therefore, since f(x) �= −∞ for all x ∈ X,

B =

{
sup

||u′−u||<ε
sup
t>0

f(x̄+ tu′)− f(x̄)
t

∈ Y : ε > 0
}
�= ∅.

For such ε > 0 we have for all t > 0

sup
||u′−u||<ε

sup
t′>0

f(x̄+ t′u′)− f(x̄)
t′

≥ f(x̄+ tu)− f(x̄)
t

.

Hence f(x̄+ tu) ∈ Y for all t > 0, and thus DRe f(x̄;u) �= −∞. In addition,

f(x̄+ tu)− f(x̄) ∈ tDRe f(x̄;u)− P ∀ t > 0.
Theorem 3.3. In addition to Hypothesis (H0), assume that int P �= ∅. Let

f : X → Y ∪ {+∞}, x̄ ∈ dom f . Then for every u ∈ X we have

DRe f(x̄;u) = sup
{
v ∈ Y : (u, v) ∈ Ri(hyp f ; (x̄, ȳ))

}
,(3.1)

D
R

e f(x̄;u) = inf
{
v ∈ Y : (u, v) ∈ Ri(epi f ; (x̄, ȳ))

}
.(3.2)

Proof. As before, we shall prove only the first equality. From Proposition 3.1 such
an equality is true if supHi(u) = +∞. We shall prove now that DRe f(x̄;u) = +∞
implies supHi(u) = +∞. If DRe f(x̄;u) = supA = +∞, then A has no upper bound,
where

A =

{
a(ε)

.
= inf

||u′−u||<ε
inf
t>0

f(x̄+ tu′)− f(x̄)
t

: ε > 0

}
.
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In the case in which there exists ε̄ > 0 such that a(ε̄) = +∞, we obtain f(x̄ +
tu′) = +∞ for all t > 0 and all u′ such that ||u′ − u|| < ε̄. This implies that
(u, v) ∈ Ri(hyp f ; (x̄, ȳ)) for all v ∈ Y , that is, v ∈ Hi(u) for all v ∈ Y . Thus
supHi(u) = +∞. Therefore, we may assume that A ⊂ Y . Suppose that Hi(u) has
upper bounds. Take any of these, say v ∈ Y . Since A has no upper bound, there
exists v0 ∈ A such that v − v0 �∈ P ; this v0 is of the form

v0 = inf
||u′−u||<ε

inf
t>0

f(x̄+ tu′)− f(x̄)
t

for some ε > 0.

The closedness of P implies the existence of p ∈ int P such that −v + v0 − p �∈ −P .
For ||u′ − u|| < ε, t > 0, we have

f(x̄+ tu′)− f(x̄)
t

≥ v0 ≥ v0 − ξ ∀ ξ ∈ P.(3.3)

Since p ∈ int P , it follows that (possibly for a smaller ε)

(x̄+ tu′, ȳ + t(v0 − ξ)) = (x̄, ȳ) + t(u′, v′) ∈ hyp f

∀ t > 0, ||u′ − u|| < ε, ||v′ − (v0 − p)|| < ε.

Thus (u, v0 − p) ∈ Ri(hyp f ; (x̄, ȳ)); that is, v0 − p ∈ Hi(u). As v is chosen as an
upper bound of Hi(u), we obtain v ≥ v0−p, i.e., v−v0+p ∈ P , which contradicts the
choice of p, proving that Hi(u) has no upper bound and therefore supHi(u) = +∞.
This ends the proof of (3.1) in case any of the sides is equal to +∞. Otherwise,
take any upper bound v ∈ Y of Hi(u)(�= ∅); we shall prove that v ≥ DRe f(x̄;u).
From Proposition 3.1, DRe f(x̄;u) �= −∞, and because of the previous reasoning,
DRe f(x̄;u) �= +∞; thus DRe f(x̄;u) ∈ Y . We assume that DRe f(x̄;u) �≤ v. Then,
there is v0 ∈ A, v0 ∈ Y , such that v − v0 �∈ P . Thus we can proceed as in the
previous case to get a contradiction, proving that v ≥ DRe f(x̄;u). It follows that
sup{v ∈ Y : v ∈ Hi(u)} ≥ DRe f(x̄;u), which together with Proposition 3.1 gives the
equality in (3.1). It remains only to check the equality when any of the sides takes the
value −∞. Clearly if DRe f(x̄;u) = −∞, then supHi(u) = −∞ because of Proposition
3.1 again. If Hi(u) = ∅, then DRe f(x̄;u) ∈ Y ∪ {−∞}. The case DRe f(x̄;u) = +∞
cannot happen because of the previous reasoning. In case DRe f(x̄;u) ∈ Y , the set

Ã =

{
ε > 0 : inf

||u′−u||<ε
inf
t>0

f(x̄+ tu′)− f(x̄)
t

∈ Y
}
�= ∅.

Take any ε ∈ Ã and set

v0
.
= inf

||u′−u||<ε
inf
t>0

f(x̄+ tu′)− f(x̄)
t

∈ Y.

Then, we proceed as before (see (3.3)) to conclude that Hi(u) �= ∅, a contradiction.
This completes the proof of the theorem.

Corollary 3.4. Assume Y = R, P = [0,+∞[. Then epi(DRe f(x̄; ·)) =
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R(epi f ; (x̄, ȳ)), hyp(D
R

e f(x̄; ·)) = R(hyp f ; (x̄, ȳ)), and for every u ∈ X,

DRe f(x̄;u) = inf
{
v ∈ R : (u, v) ∈ R(epi f ; (x̄, ȳ))

}
= sup

{
v ∈ R : (u, v) ∈ Ri(hyp f ; (x̄, ȳ))

}
,

D
R

e f(x̄;u) = sup
{
v ∈ R : (u, v) ∈ R(hyp f ; (x̄, ȳ))

}
= inf

{
v ∈ R : (u, v) ∈ Ri(epi f ; (x̄, ȳ))

}
.

Proof. By part (a) of the previous proposition, it remains only to prove that
epi(DRe f(x̄; ·)) ⊂ R(epi f(x̄, ȳ)). Let (u, v) ∈ epi(DRe f(x̄; ·)); then DRe f(x̄;u) = −∞,
v ∈ R or DRe f(x̄;u) ∈ R and v = DRe f(x̄;u) + p, p ≥ 0. We consider only the second
case, the other being similar. By definition, there is un → u such that

lim
n→+∞ inft>0

f(x̄+ tun)− f(x̄)
t

= DRe f(x̄;u).

Thus (up to a subsequence), there is also tn > 0 satisfying

lim
n→+∞

f(x̄+ tnun)− f(x̄)
tn

= DRe f(x̄;u).

By setting

vn =
f(x̄+ tnun)− f(x̄)

tn
,

we have vn → DRe f(x̄;u), f(x̄) + tnvn = f(x̄+ tnun). Then
f(x̄) + tn(vn + p) = f(x̄+ tnun) + tnp ∈ f(x̄+ tnun) + P.

Hence (u, v) ∈ R(epi f ; (x̄, ȳ)).
The next corollary is a direct consequence of Proposition 3.1 and Theorem 3.2.

Notice that the assumption int P �= ∅ is not needed. The case Y = R is discussed in
Remark 3.6.

Corollary 3.5. Let P satisfy Hypothesis (H0); let W ⊂ Y be any nonempty
set such that W + P ⊂ W and λW ⊂ W for all λ > 0 (for example, W = P ,
W = Y \ (−P \ {0}), W = Y \ (−int P )); and let f : X → Y ∪ {+∞}, x̄ ∈ dom f .
Then

(a) f(x)− f(x̄) ∈W ∪ {+∞} for all x ∈ X =⇒ DRe f(x̄;x− x̄) ∈W ∪ {+∞} for
all x ∈ X;

(b) DRe f(x̄;x− x̄) ∈W ∪ {+∞} for all x ∈ X =⇒ f(x)− f(x̄) ∈W ∪ {+∞} for
all x ∈ X;

(c) f(x)− f(x̄) ∈ P ∪ {+∞} for all x ∈ X ⇐⇒ DRe f(x̄;x− x̄) ∈ P ∪ {+∞} for
all x ∈ X.

Proof. (a) If, on the contrary, D
R

e f(x̄;x− x̄) ∈ (Y \W ) ∪ {−∞}, we easily get a
contradiction by virtue of Theorem 3.2, and Proposition 2.6 in case D

R

e f(x̄;x− x̄) ∈
Y \W . The case DRe f(x̄;x− x̄) = −∞ never happens. Part (b) follows from Theorem
3.2, and part (c) is easily obtained.

Remark 3.6. (i) We provide an example showing that the reverse implication of
part (a) of the previous corollary does not hold. Take f(x) =

√|x|, x ∈ R, x̄ = 1.

Then we have D
R

e f(1;x− 1) ≥ 0 for all x ∈ R, and x̄ = 1 is not a minimum for f .
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(ii) Those x̄ satisfying (c) are called ideal or strong minimizers for f . This equiv-
alence, which expresses an optimality condition for x̄ to be a strong minimizer for f ,
seems to be new in this general framework. Such a condition could be termed the
Fermat rule for the problem

f(x)− f(x̄) ∈ P ∪ {+∞} ∀ x ∈ X.(3.4)

Notice that no convexity assumption is required in order that such a condition be also
sufficient, as occurs in [AE, Proposition 4, Chapter 4, section 1] or in [AF, section
6.1.3] when Y = R. A similar equivalence when f is a set-valued map is established
in [F3] under additional assumptions, which reduces to (c) in the real case and when
f is single-valued. In such a case the equivalence can be written as

f(x)− f(x̄) ≥ 0 ∀ x ∈ X ⇐⇒ DRe f(x̄;x− x̄) ≥ 0 ∀ x ∈ X.(3.5)

Indeed, the notion of a radial epiderivative for set-valued maps is introduced in [F3].
This corresponds to our lower radial epiderivative DRe f(x̄; ·) in the single-valued case.
In that paper, (3.5) is proved, among other results (see Theorem 3.9 in [F3] partic-
ularized to Y = R), by using the equality epi(DRe f(x̄; ·)) = R(epi f ; (x̄, ȳ)), which is
true by Corollary 3.4.

To the best of our knowledge, condition (3.5) appears for the first time in [F3],
although similar necessary optimality conditions (with different cones) may be found
in [P2]; see also [HU1, HU2]. In order to get an idea of the applicability of (3.5), simply
take f(x) =

√|x|, x ∈ R, considered in [L2]. Clearly the theory of Clarke’s derivatives
is not applicable in this case; see also Theorem 3.1 in [BZ]. Neither Theorem 6 in
[CJ] nor Corollary 2 in [JR] can be used, since the function involved is not convex
(see also [Y2]). Moreover, Theorem 2.1 in [L2] asserts only that 0 is a local minimum
of f . However, an easy computation shows that DRe f(0;x) = 0 for all x ∈ R. Thus,
(3.5) says that 0 is a global minimum.

Additional sufficient and necessary optimality conditions for the problem (3.4),
in a different setting, may be found in [FO].

(iii) Contrary to the real-valued case (Y = R), or when W = P , as discussed in
(ii), it could happen that the reverse implication in part (b) is not valid in the vector
case when W �= P . To see this, let us consider the example in [P2]: X = R, Y = R2,
P = R2

+, W = R2 \ (−int R2
+), f(0) = 0,

f(x) =

{
(x,−x) if |x| ∈ ]1/2n, 1/(2n− 1)[,
(−x, x) if |x| ∈ [1/(2n− 1), 1/(2n− 2)].

It is not hard to check that DRe f(0; 1) ∈ −int R2
+ and f(x) − f(0) ∈ R2 \ (−int R2

+)
for all x ∈ R.

Proposition 3.7. Assume that P satisfies Hypothesis (H0) and int P �= ∅. For
a vector-valued function f : X → Y ∪ {+∞}, x̄ ∈ dom f , we have

(a) DRe f(x̄;λu) = λD
R
e f(x̄;u) for all λ > 0, for all u ∈ X;

(b) DRe f(x̄; 0) = 0 if and only if DRe f(x̄;u) �= −∞ for all u ∈ X;

(c) D
R

e f(x̄;λu) = λD
R

e f(x̄;u) for all λ > 0, for all u ∈ X;

(d) D
R

e f(x̄; 0) = 0 if and only if D
R

e f(x̄;u) ∈ Y for all u ∈ X.
Proof. (a) follows from Theorem 3.3. (b) One implication is as follows. If there

exists u ∈ X such that DRe f(x̄;u) = −∞, by part (a), DRe f(x̄;λu) = −∞ for all
λ > 0. This means that (λu, v) �∈ Ri(hyp f ; (x̄, ȳ)) for all v ∈ Y for all λ > 0. Since
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the interiorly radial cone is open, (0, v) �∈ Ri(hyp f ; (x̄, ȳ)) for all v ∈ Y . Hence
DRe f(x̄; 0) = −∞, which cannot happen. The other implication is proved by noticing
that (0, 0) ∈ R(epi f ; (x̄, ȳ)) and then applying Proposition 3.1 together with the
previous part. The other parts are similar.

Before establishing the next proposition, we recall that (x̄, ȳ), ȳ = f(x̄), is a
boundary point of epi f (if P �= {0}) and of hyp f , and therefore of their complements
as well.

Proposition 3.8. Assume that P satisfies hypothesis (H0). Given any vector-
valued function f : X → Y ∪ {+∞}, x̄ ∈ dom f , u ∈ X, we have

(a)

Ri(hyp f ; (x̄, ȳ)) ⊂ hyp (DRe f(x̄; ·)) ⊂ Ri(X×Y \epi f ; (x̄, ȳ))∪
⋂
t>0

t(hyp f−(x̄, ȳ)),

(b)

int

(⋂
t>0

t(epi f−(x̄, ȳ))
)
= Ri(epi f ; (x̄, ȳ)) ⊂ epi (DRe f(x̄; ·)) ⊂

⋂
t>0

t(epi f−(x̄, ȳ)),

(c) if int P �= ∅, then R(epi f ; (x̄, ȳ)) ⊂ epi (DRe f(x̄; ·)) ⊂ R(X×Y \hyp f ; (x̄, ȳ)),
(d) if int P �= ∅, then R(hyp f ; (x̄, ȳ)) ⊂ hyp (DRe f(x̄; ·)) ⊂ R(X×Y \epi f ; (x̄, ȳ)).
Proof. The first inclusion of (a) has been proved in Proposition 3.1. For the second

inclusion, we reason as follows. Let (u, v) ∈ hyp(DRe f(x̄; ·)). IfDRe f(x̄;u) = +∞, then
(u, v) �∈ R(epi f ; (x̄, ȳ)) by Proposition 3.1. Hence (u, v) ∈ Ri(X × Y \ epi f ; (x̄, ȳ)).
We consider the case DRe f(x̄;u) ∈ Y . Thus v ∈ DRe f(x̄;u) − P . Therefore, from (a)
of Theorem 3.2, we obtain

f(x̄+ tu)− f(x̄) ∈ tv + (P ∪ {+∞}) ∀ t > 0.
For those t > 0 such that f(x̄+ tv) = +∞, we clearly have (x̄, ȳ)+ t(u, v) ∈ hyp f . If,
on the contrary, f(x̄+ tv) ∈ Y , we also obtain (x̄, ȳ) + t(u, v) ∈ hyp f . Consequently,

(u, v) ∈
⋂
t>0

t(hyp f − (x̄, ȳ)),

which completes the proof of part (a). The first inclusion of (b) was already obtained
in Proposition 3.1. The other inclusion follows in a similar way as in part (a) by using
(b) of Theorem 3.2. Let us prove (c). The first inclusion also follows from Proposition
3.1. Take any (u, v) ∈ epi(DRe f(x̄; ·)). If, on the contrary, (u, v) �∈ R(X × Y \
hyp f ; (x̄, ȳ)), then (u, v) ∈ Ri(hyp f ; (x̄, ȳ)) by Remark 2.2. This immediately leads
us to a contradiction if DRe f(x̄;u) ∈ Y , since the interiorly radial cone is open and
int P �= ∅. In caseDRe f(x̄;u) = −∞, Proposition 3.1 implies (u, v) �∈ Ri(hyp f ; (x̄, ȳ)),
which is also a contradiction. It turns out that (u, v) ∈ R(X×Y \hyp f ; (x̄, ȳ)), proving
part (c). The proof of part (d) is similar to that of (c).

The next two propositions establish some relationship between the upper/lower
radial epiderivatives and the radial derivative of f at x̄ ∈ dom f , DRf(x̄; ·) : X → 2Y ,
defined by

graph(DRf(x̄; ·)) = R(graph f ; (x̄, ȳ)),
with ȳ = f(x̄), where graph f = {(x, y) ∈ X × Y : y = f(x)}; a similar definition for
the graph of set-valued maps is given, for instance, in [F3].
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Proposition 3.9. Let P satisfy Hypothesis (H0), and let f : X → Y ∪ {+∞},
x̄ ∈ dom f . Given u ∈ dom(DRe f(x̄; ·)) ∩ dom(D

R

e f(x̄; ·)), we have

(a) DRf(x̄;u) ⊂ (DRe f(x̄;u) + P ) ∩ (D
R

e f(x̄;u)− P );
(b) if Y = R and f : X → R is continuous, the previous inclusion becomes the

equality

DRf(x̄;u) =
[
DRe f(x̄;u), D

R

e f(x̄;u)
]
.

Proof. (a) This result follows from the inclusions (see Proposition 3.1)

R(graph f ; (x̄, ȳ)) ⊂ R(epi f ; (x̄, ȳ))∩R(hyp f ; (x̄, ȳ)) ⊂ epi(DRe f(x̄; ·))∩hyp(D
R

e f(x̄; ·)).
Part (b) requires some noninvolved computations.

We point out that the inclusion in the previous proposition may be strict, as
the following function shows: take f(x) = 0 if x ∈ ]−∞, 0] ∪ [1,+∞[, f(x) = 1 if

x ∈ ]0, 1[. Then DRe f(0;u) = 0 for all u ∈ R, D
R

e f(0;u) = 0 if u < 0, and D
R

e (0;u) =
+∞ if u ≥ 0. However, DRf(0;u) = {0} if u < 0, and DRf(0;u) = {0} ∪ [u,+∞[ if
u ≥ 0.

Theorem 3.10. Let P satisfy Hypothesis (H0); let f : X → Y ∪ {+∞} be any
function such that epi f is closed, and let x̄ ∈ dom f with Ri(epi f ; (x̄, ȳ)) �= ∅,
ȳ = f(x̄). If epi f is radiant at (x̄, ȳ) and (epi f)∞ is convex, then

epi(D
R

e f(x̄; ·)) = (epi f)∞.(3.6)

Therefore, if in addition to the previous assumptions epi(D
R

e f(x̄; ·)) is also closed,
then

epi(D
R

e f(x̄; ·)) = (epi f)∞ .(3.7)

Consequently, if epi f is convex besides the closedness of epi(D
R

e f(x̄; ·)), then

D
R

e f(x̄; ·) = D
R

e f(x; ·) ∀ x ∈ dom f.
Proof. Since (epi f)∞ is convex with nonempty interior by assumption, we obtain

int((epi f)∞) = (epi f)∞,

since the asymptotic cone of any set is always closed. Thus (3.6) follows from Propo-
sition 3.8(b) and (2.2). Taking into account the additional assumption, (3.7) is a
consequence of (3.6). In the case in which epi f is convex as well, the previous
equality holds independently of x̄.

Conditions guaranteeing the assumptions of the preceding theorem are exhibited
in Lemma 2.7 or Proposition 2.8.

Remark 3.11. One can recognize that (3.7) is the condition to be satisfied for the

asymptotic function in the case of Y = R; here D
R

e f(x̄; ·) = f∞, where f∞ denotes
the asymptotic function of f . This satisfies epi f∞ = (epi f)∞; see, for instance,
[BHU] for some formulae of f∞. Thus, we have found an expression for a candidate
recession function for a class of vector-valued functions.

Notice that (epi f)∞ may be convex without being epi f . In fact, let us consider
f(x) =

√|x|, x ∈ R. Then f∞(u) = 0 for all u ∈ R and⋂
t>0

t(epi f) = {0} × R+;
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thus (2.1) gives Ri(epi f ; (0, 0)) = ∅, and therefore DRe f(0;u) = +∞ for all u ∈ R,
while DRe f(0;u) = 0 for all u ∈ R. Notice that 0 is a minimum for f in R. Moreover,
Ri(epi f ; (1, 1)) is a nonempty convex set.

Proposition 3.12. Assume that P satisfies Hypothesis (H0). Let W ⊂ Y be
any nonempty set satisfying W + P ⊂ W and λW ⊂ W for all λ > 0; let f : X →
Y ∪ {+∞}, x ∈ dom f . Then{
u ∈ X : D

R

e f(x;u) ∈ −W
}
⊂
{
u ∈ X : f(x+ tu)− f(x) ∈ −W ∀ t > 0

}
⊂
{
x′ ∈ X : f(x′) ∈ f(x)−W

}∞
∩
{
u ∈ X : DRe f(x;u) ∈ −(W ∪ {+∞})

}
.

As a consequence, if {x′ ∈ X : f(x′) ∈ f(x)− P} is convex and closed, then{
u ∈ X : f(x+ tu)− f(x) ∈ −P ∀ t > 0

}
=
{
x′ ∈ X : f(x′) ∈ f(x)− P

}∞
.

Proof. Let u be such that D
R

e f(x̄;u) ∈ −W ; then the first inclusion follows from
Theorem 3.2. Set

K(x)
.
=
{
x′ ∈ X : f(x′) ∈ f(x)−W

}
.

If u ∈ X is such that f(x + tu) − f(x) ∈ −W for all t > 0, then x + tu ∈ K(x) for
all t > 0. It turns out that u ∈ (K(x))∞, proving part of the second inclusion. On
the other hand, let u ∈ X be such that DRe f(x;u) ∈ (Y \ (−W )) ∪ {+∞}. Then, by
Theorem 3.2 and Proposition 2.6,

f(x+ tu)− f(x) ∈ (Y \ (−W )) ∪ {+∞} ∀ t > 0.
This completes the proof of the second inclusion. In case K(x) is convex and closed
for W = P , we have u ∈ (K(x))∞ if and only if x + tu ∈ K(x) for all t > 0, which
proves the reverse inclusion.

Conditions under which K(x) is closed and convex are given in Lemma 2.7.
For f : X → Y ∪ {+∞}, given x̄ ∈ dom f , we set

f ′−(x̄;u)
.
= inf
t>0

f(x̄+ tu)− f(x̄)
t

, f ′+(x̄;u)
.
= sup

t>0

f(x̄+ tu)− f(x̄)
t

.

We immediately obtain

f ′−(x̄; 0) = f
′
+(x̄; 0) = 0, f ′+(x̄;u) �= −∞ ∀ u ∈ X,(3.8)

DRe f(x̄;u) ≤ f ′−(x̄;u), D
R

e f(x̄;u) ≥ f ′+(x̄;u) ∀ u ∈ X.(3.9)

When f is P -convex, the directional derivative f ′−(x̄; ·) is considered in [V]. We
return to this point in the next section.

Theorem 3.13. Assume that P satisfies Hypothesis (H0) and int P �= ∅. Let
f : X → Y ∪ {+∞}, x̄ ∈ dom f . Then,

(a) if f ′−(x̄; ·) is P -lsc at u, then f ′−(x̄;u) = D
R
e f(x̄;u);

(b) if f ′+(x̄; ·) is P -usc at u, then f ′+(x̄;u) = D
R

e f(x̄;u).
Proof. Let us prove only part (a), the other one being similar. Clearly if

f ′−(x̄;u) = −∞, then DRe f(x̄;u) = −∞ by (3.9). We consider the case f ′−(x̄;u) =
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+∞. For every y0 ∈ Y , the P -lower semicontinuity at u (see Definition 2.5) implies
the existence of ε0 > 0 such that for ||u′ − u|| < ε0 we have

f ′−(x̄;u
′) ∈ y0 + int P + (P ∪ {+∞}) ⊂ y0 + (P ∪ {+∞}).

Then

f ′−(x̄;u
′) ≥ y0 whenever ||u′ − u|| < ε0.

Thus by definition of DRe f(x̄; ·) one obtains
DRe f(x̄;u) ≥ inf

||u′−u||<ε0
f ′−(x̄;u

′) ≥ y0.

Since the latter holds for every y0 ∈ Y , we obtain DRe f(x̄;u) = +∞. The case
f ′−(x̄;u) ∈ Y is treated by taking y0 = f ′−(x̄;u)−λx0 in the previous reasoning, where
x0 ∈ int P is fixed and λ > 0 is arbitrary, since in this case f ′−(x̄;u)− λx0 + int P is
an open set containing f ′−(x̄;u). Then, we let λ go to 0 and use the closedness of P
to conclude with DRe f(x̄;u) ≥ f ′−(x̄;u); the other inclusion follows from (3.9).

Remark 3.14. When Y = R, D
R

e f(x̄; ·) is already usc in the usual sense (see
Corollary 3.4), but it could happen that f ′+(x̄; ·) is lsc, as the function f(x) = x3,
x ∈ R, shows. Here f ′+(0;u) = 0 if u ≤ 0, f ′+(0;u) = +∞ if u > 0, whereas

D
R

e f(0;u) = 0 if u < 0, D
R

e f(0;u) = +∞ if u ≥ 0.
As a consequence of Proposition 3.12 and Theorem 3.13, we have the following

result.
Corollary 3.15. Assume that P satisfies Hypothesis (H0) and int P �= ∅. Let

f : X → Y ∪ {+∞}, x̄ ∈ dom f , such that f ′+(x̄; ·) : X → Y ∪ {+∞} is P -usc on X
and {x′ ∈ X : f(x′) ∈ f(x̄)− P} is convex and closed. Then{

u ∈ X : D
R

e f(x̄;u) ∈ −P
}
=
{
u ∈ X : f(x̄+ tu)− f(x̄) ∈ −P ∀ t > 0

}
=
{
x′ ∈ X : f(x′) ∈ f(x̄)− P

}∞
.

Proof. One inclusion of the first equality follows from Proposition 3.12 as well as
the second equality. The other inclusion is implied by Theorem 3.13.

Remark 3.16. One cannot drop the assumption that f ′+(x̄; ·) is P -usc onX, as the
function f(x) =

√|x|, x ∈ R, with x̄ = 0 shows, since in this case DRe f(0;u) = +∞,
u ∈ R, whereas f ′+(0; 0) = 0, f ′+(0;u) = +∞ if u �= 0. Notice that this function is
not convex. However, the result expressed in the previous corollary is the analogue to

that satisfied in the scalar case when f is convex and lsc, by substituting D
R

e f(x̄; ·)
by the asymptotic function f∞ and P = [0,+∞[.

Given f : Rn → R ∪ {+∞}, x ∈ dom f , set

Sf (x) =
{
y ∈ Rn : f(y) ≤ f(x)

}
.

By specializing Y = R in the previous corollary, we obtain the following.
Corollary 3.17. Let f : Rn → R ∪ {+∞} be lsc and quasi-convex. Let x̄ ∈

dom f . Assume that f ′+(x̄; ·) : Rn → R ∪ {+∞} is usc. Then

Sf (x̄) is bounded ⇐⇒ D
R

e f(x̄;u) > 0 ∀ u ∈ Rn, u �= 0.
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Example 3.18. Take the function f(x) = x2

1+x2 , x ∈ R. For 0 ≤ x < 1√
3
, easy

computations show that

f ′+(x;u) =




√
1 + x2 + x

2(1 + x2)
u if u > 0,

−
√
1 + x2 − x
2(1 + x2)

u if u ≤ 0.

Thus, because of Theorem 3.13, D
R

e f(x;u) = f
′
+(x;u) for u ∈ R, 0 ≤ x < 1√

3
.

Example 3.19 (The classical convex case). Let us consider X = Rn, Y = Rm,
P = R

m
+ , and f = (f1, . . . , fm) : R

n → R
m an Rm+ -convex function; that is, each

fi : R
n → R is a convex (hence continuous) function for i = 1, . . . ,m. For a fixed

x̄ ∈ Rn, it is assumed that

f ′+(x̄;u) = sup
t>0

f(x̄+ tu)− f(x̄)
t

is continuous as a function of u ∈ Rn. Theorems 3.10 and 3.13 imply

D
R

e f(x̄;u) = f
′
+(x̄;u) ∀ u ∈ Rn.

The latter is independent of x̄ due to the convexity of fi (see Theorem 3.10).
We identify any element in Rm having at least one component equal to +∞, the

extended element in R, with +∞ (the artificial element added to Rm), to obtain

D
R

e f(x̄;u) = (f
∞
1 (u), . . . , f

∞
m (u)), u ∈ Rn.

Here, as before, f∞i stands for the asymptotic function of fi, defined as usual.
The following proposition, whose proof is straightforward, arises in the case in

which we have a constrained minimization problem.
Proposition 3.20. Let f : X → Y ∪ {+∞}; K ⊂ X, x̄ ∈ X such that x̄ ∈

dom f ∩K. If f(x)− f(x̄) ∈ P ∪ {+∞} for all x ∈ K, then
(a) DRe f(x̄;u) ∈ P ∪ {+∞} for all u ∈ Ri(K; x̄);
(b) D

R

e f(x̄;u) ∈ P ∪ {+∞} for all u ∈ R(K; x̄).
Example 3.21. Let f : X → R be a real-valued locally Lipschitz function.

By [HU1] and as can be verified, the condition f0(x̄;u) ≥ 0 for all u ∈ X gives a
necessary condition for x̄ to be a local minimizer for f . Here f0(x̄; ·) denotes the
Clarke directional derivative of f at x̄ (see [Cl]). As f0(x̄;u) ≥ DRe f(x̄;u), our
optimality condition given by (c) of Corollary 3.5 yields more information. On the
other hand, the sufficient condition imposed in Theorem 3.3 of [BZ] certainly implies
our condition (see also section 4 in [F3]).

4. The vector minimization problem. In order to define the vector mini-
mization problem, we are given two cones P,W in Y , where P defines the underlying
preference relation on Y . The basic assumptions on P,W are listed in the following
hypothesis.

Hypothesis (H1). P ⊂ Y is a convex closed pointed cone, and W ⊂ Y is a closed
cone such that W �= Y and W + P ⊂W .

In some results the pointedness of P is not needed. Examples for W are W = P ,
W = Y \ (−int P ).
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We now consider the problem of finding

x̄ ∈ X : f(x)− f(x̄) ∈W ∪ {+∞} ∀ x ∈ X.(4.1)

The solution set to problem (4.1), that is, the set of x̄ ∈ X satisfying (4.1), is denoted
by EW . The problem of the existence of solutions to (4.1) was discussed in [F2]
and for more general problems in [FF] in the finite dimensional setting; see also [O].
Thus, our main concern in this section is the asymptotic description of the solution
set, together with some optimality conditions. Some of them were already given in
Corollary 3.5.

We introduce the following cones:

RP
.
=

⋂
x∈dom f

{
u ∈ X : f(x+ tu)− f(x) ∈ −P ∀ t > 0

}
,

RW
.
=

⋂
x∈dom f

{
u ∈ X : f(x+ tu)− f(x) ∈ −W ∀ t > 0

}
,

which are nonempty (since 0 ∈W ) closed cones (under the P -lsc on f) not necessarily
convex. Clearly RP ⊂ RW . These sets were introduced in [F1] when Y = R, and in
the case of finite dimensional spaces in [F2, FF].

The importance of such cones lies in the next theorem, but before proceeding we
introduce the following notion, which captures the usual P -convexity and the properly
P -quasiconvexity, as introduced in [Fe].

Definition 4.1. Let P be a convex closed cone, W a closed cone. We say
f : X → Y ∪ {+∞} is (P,W )-convex if, for every λ ∈ Y , every x, y ∈ dom f ,
f(x) ∈ λ− P , f(y) ∈ λ−W , we have

f(αx+ (1− α)y) ∈ λ−W ∀ α ∈ ]0, 1[.

One can see that every P -convex function is (P,W )-convex for all W satisfying
W + P ⊂W . The same is true if f is properly P -quasi-convex (see [Fe]), that is, for
every x, y ∈ dom f , for all α ∈ ]0, 1[,

f(αx+ (1− α)y) ∈ f(x)− P or f(αx+ (1− α)y) ∈ f(y)− P.

Theorem 4.2. Let P,W satisfy Hypothesis (H1). Assume that the vector-valued
function f : X → Y ∪ {+∞} is (P,W )-convex, and also assume that for every x ∈
dom f the set {y ∈ X : f(y)− f(x) ∈ −W} is closed. If EW �= ∅, then

RP ⊂ (EW )∞ ⊂ RW =
⋂

y∈dom f

{
x ∈ dom f : f(x)− f(y) ∈ −W

}∞
,(4.2)

where EW is as before. If, in addition, the set of ideal solutions EP (some people
call them strong solutions), i.e., solutions to (4.1) with W = P , is nonempty, then
(EW )

∞ = RW .
Proof. We prove the first inclusion. Let x̄ ∈ EW and u ∈ R. In particular,

f(x̄) − f(x̄ + tu) ∈ P for all t > 0. On the other hand, f(x) − f(x̄) ∈ W for all
x ∈ dom f . Hence f(x) − f(x̄ + tu) ∈ W + P ⊂ W for all x ∈ dom f , proving
that x̄ + tu ∈ EW for all t > 0, i.e., u ∈ (EW )∞. The second inclusion is as follows.
Let u ∈ (EW )∞. Then there exist tn ↓ 0, un ∈ EW such that tnun → u. For
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x ∈ dom f arbitrary we have f(un)− f(x) ∈ −W for all n ∈ N. Fixing any t > 0, the
(P,W )-convexity of f yields for all n sufficiently large

f((1− ttn)x+ ttnun)− f(x) ∈ −W.
By assumption, it follows that f(x+ tu)− f(x) ∈ −W . This proves u ∈ RW .

We now prove the inclusion “⊆” for the equality in (4.2); the other is left as
an exercise. Let u ∈ X such that f(x) − f(x + tu) ∈ W for all t > 0 and all
x ∈ dom f . Given any y ∈ dom f , set xn .= y + nu ∈ dom f , n ∈ N. Then
f(y) − f(xn) ∈ W for all n ∈ N. By choosing tn = 1

n , we have tnxn =
y
n + u → u,

i.e., u ∈ {x ∈ dom f : f(y) − f(x) ∈ W}∞. Since y ∈ dom f was arbitrary, the
proof of the last inclusion is complete. To prove the last part of the theorem, we need
to show RW ⊂ (EW )∞. Take any u ∈ RW and z ∈ EP . Then f(y) − f(z + tu) =
f(y) − f(z) + f(z) − f(z + tu) ∈ P +W ⊂ W for all t > 0 and all y ∈ dom f . This
implies z + tu ∈ EW for all t > 0. Hence u ∈ (EW )∞.

The inclusions in (4.2) may be strict, as Examples 5.3 and 5.6 in [F2] show. Such
inclusions are used in the same paper to obtain the existence of solutions to problem
(4.1) under the P -convexity condition. In fact, if X,Y are finite dimensional spaces,
any condition implying RW = {0} will guarantee the nonemptiness and compactness
of the solution set as established in [F2]. Thus one recovers some of the results in
[D, CC2]. In infinite dimensional spaces we need additional assumptions. For other
results concerning the finite dimensional setting, we refer to [F2] (see also [FF]), as well
as [F4], where a unified approach for convex/nonconvex vector minimization problems
is proposed.

A vector function f : X → Y ∪ {+∞} is said to be P -quasi-convex [Fe, L1] if it
is (P, P )-convex in the sense of Definition 4.1.

We single out the result of Theorem 4.2 in the case when W = P .
Theorem 4.3. Let P be a closed convex pointed cone; let f : X → Y ∪ {+∞} be

P -quasi-convex such that, for every x ∈ dom f , the set {y ∈ X : f(y)−f(x) ∈ −P} is
closed. If the set of ideal solutions, i.e., solutions to (4.1) with W = P , is nonempty,
then

(EP )
∞ =

⋂
y∈dom f

{
u ∈ X : f(y + tu)− f(y) ∈ −P ∀ t > 0

}

=
⋂

y∈dom f

{
x ∈ X : f(x)− f(y) ∈ −P

}∞
.

Proof. The first equality is a direct consequence of (4.2), setting W = P . The
second equality follows from Proposition 3.1.

We have immediately the following theorem, whose proof is a consequence of
Corollary 3.15 together with Theorems 3.10, 3.13, 4.3 and Proposition 2.8.

Theorem 4.4. Assume that P satisfies Hypothesis (H0) with int P �= ∅; let
f : X → Y ∪ {+∞} be a function such that epi f is a closed and convex set; and

let x̄ ∈ dom f with epi(D
R

e f(x̄; ·)) being a closed set. Furthermore, assume that
int((epi f)∞) �= ∅ and u �→ f ′+(x̄;u) ∈ Y ∪ {+∞} is P -usc on X. If EP �= ∅, then

(EP )
∞ =

{
u ∈ X : D

R

e f(x̄;u) ∈ −P
}
=
{
u ∈ X : f(x̄+ tu)− f(x̄) ∈ −P ∀ t > 0

}
=
{
y ∈ X : f(y)− f(x̄) ∈ −P

}∞
.

The preceding theorem is a vector version of the similar result found in scalar
minimization problems for convex lsc functions.
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Having defined some kinds of derivatives, we can now introduce some notions of
subdifferentials. To that purpose, L(X,Y ) will denote the set of continuous linear
mappings from X into Y .

Definition 4.5. For a function f : X → Y ∪ {+∞}, x̄ ∈ dom f ,
(i) the strong subdifferential of f at x̄ is defined by

∂P f(x̄) =
{
A ∈ L(X,Y ) : f(x)− f(x̄) ∈ A(x− x̄) + (P ∪ {+∞}) ∀ x ∈ X

}
;

(ii) the radial lower strong subdifferential of f at x̄ is defined by

∂RP f(x̄) =
{
A ∈ L(X,Y ) : DRe f(x̄;u) ∈ A(u) + (P ∪ {+∞}) ∀ u ∈ X

}
;

(iii) the radial upper strong subdifferential of f at x̄ is defined by

∂
R

P f(x̄) =
{
A ∈ L(X,Y ) : DRe f(x̄;u) ∈ A(u) + (P ∪ {+∞}) ∀ u ∈ X

}
.

Similarly, by replacing P by W (both satisfying Hypothesis (H1)) in the defini-
tions above, we introduce, respectively, the weak subdifferential, radial lower weak
subdifferential, and the radial upper weak subdifferential of f at x̄ ∈ dom f , ∂W f(x̄),
∂RW f(x̄), ∂

R

W f(x̄).
Conditions ensuring the nonemptiness of ∂P f may be found in [V, Bo, Z], and

for ∂W f in [CC1, CJ, Y1] under convexity assumptions.
By using Proposition 3.1, Theorem 3.3, and the definitions above, one can easily

obtain the following result, whose second part is analogous to that in [P2].
Proposition 4.6. Assume that (Y, P ) is order-complete, with P satisfying Hy-

pothesis (H1). Let f : X → Y ∪ {+∞} be any function, x̄ ∈ dom f . Then

(a) ∂RP f(x̄) ⊂ ∂P f(x̄) ⊂ ∂
R

P f(x̄), ∂
R
W f(x̄) ⊂ ∂W f(x̄) ⊂ ∂

R

W f(x̄);

(b) ∂RP f(x̄) ⊂ {A ∈ L(X,Y ) : A(u) ≤ v ∀ (u, v) ∈ R(epi f ; (x̄, ȳ))};
(c) if, in addition, int P �= ∅, we have

∂
R

P f(x̄) =
{
A ∈ L(X,Y ) : A(u) ≤ v ∀ (u, v) ∈ Ri(epi f ; (x̄, ȳ))

}
.

In [V], when f is P -convex, the subdifferential is defined

∂cf(x̄) =
{
A ∈ L(X,Y ) : f ′−(x̄;u) ∈ A(u) + (P ∪ {+∞}) ∀ u ∈ X

}
.

It follows from [Th3] that

f ′−(x̄;u) = sup
{
A(u) : A ∈ ∂cf(x̄)

}
whenever f ′−(x̄; ·) is continuous. Moreover, under this assumption, Theorem 3.13

implies f ′−(x̄;u) = D
R
e f(x̄;u), and therefore

∂cf(x̄) = ∂
R
P f(x̄).

We close this section by writing the optimality conditions expressed in Corollary
3.5 in terms of the subdifferentials just defined.

Proposition 4.7. Assume that (Y, P ) is order-complete, with P satisfying Hy-
pothesis (H1). Given any f : X → Y ∪ {+∞}, x̄ ∈ dom f , we have

(a) 0 ∈ ∂P f(x̄) ⇐⇒ f(x)−f(x̄) ∈ P ∪{+∞} for all x ∈ X ⇐⇒ 0 ∈ ∂RP f(x̄);
(b) 0 ∈ ∂RW f(x̄) =⇒ f(x)−f(x̄) ∈W ∪{+∞} for all x ∈ X ⇐⇒ 0 ∈ ∂W f(x̄) =⇒

0 ∈ ∂RW f(x̄).
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5. Conclusions. In this paper the concepts of lower/upper radial epiderivatives
for vector-valued functions are introduced, and they are shown to be useful in the
study of nonconvex vector optimization problems. In particular, the strong (ideal)
solutions are completely characterized in terms of the lower radial epiderivative. Such
a characterization appears new in the literature even in the real-valued case, except
in [F3], where it is derived in a different way.

On the other hand, some optimality conditions required for a point to be a weakly
efficient (weak-Pareto) solution are also derived by means of these radial epideriva-
tives.

Moreover, the upper radial epiderivative is used to propose a notion of asymptotic
function for a class of vector-valued functions. In order to describe the asymptotic be-
havior of the solution set for a vector optimization problem, some cones of asymptotic
directions are introduced.

We believe that the approach developed in this paper, when applied to real-valued
quasi-convex functions, yields new results.

A unified approach to dealing with the existence of solutions to nonconvex vector
minimization problems in finite dimensional spaces is presented in [F4].

Acknowledgments. The author wishes to express his gratitude to two anony-
mous referees for their valuable remarks, which led to the present improved version
of this article.
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[D1] J.-P. Dedieu, Cône asymptote d’un ensemble non convexe, application à l’optimization, C.
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Abstract. The modern theory of condition measures for convex optimization problems was
initially developed for convex problems in the conic format

(CPd) z∗ := min
x

{ctx | Ax− b ∈ CY , x ∈ CX},
and several aspects of the theory have now been extended to handle nonconic formats as well. In this
theory, the (Renegar) condition measure C(d) for (CPd) has been shown to be connected to bounds
on a wide variety of behavioral and computational characteristics of (CPd), from sizes of optimal
solutions to the complexity of algorithms for solving (CPd). Herein we test the practical relevance
of the condition measure theory, as applied to linear optimization problems that one might typically
encounter in practice. Using the NETLIB suite of linear optimization problems as a test bed, we
found that 71% of the NETLIB suite problem instances have infinite condition measure. In order to
examine condition measures of the problems that are the actual input to a modern interior-point-
method (IPM) solver, we also computed condition measures for the NETLIB suite problems after
preprocessing by CPLEX 7.1. Here we found that 19% of the postprocessed problem instances in the
NETLIB suite have infinite condition measure, and that logC(d) of the postprocessed problems is
fairly nicely distributed. Furthermore, among those problem instances with finite condition measure
after preprocessing, there is a positive linear relationship between IPM iterations and logC(d) of the
postprocessed problem instances (significant at the 95% confidence level), and 42% of the variation
in IPM iterations among these NETLIB suite problem instances is accounted for by logC(d) of the
postprocessed problem instances.

Key words. condition measure, interior-point method, linear programming, computation, pre-
processing
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1. Introduction. The modern theory of condition measures for convex opti-
mization problems was initially developed in [24] for problems in the following conic
format:

(CPd)
z∗ := min ctx
s.t. Ax− b ∈ CY ,

x ∈ CX ,
(1.1)

where, for concreteness, we consider A to be an m × n real matrix; b ∈ Rm, c ∈ Rn;
CX ⊆ Rn, CY ⊆ Rm are closed convex cones; and the data of the problem is the
array d = (A, b, c). We assume that we are given norms ‖x‖ and ‖y‖ on Rn and Rm,
respectively, and let ‖A‖ denote the usual operator norm; let ‖v‖∗ denote the dual
norm associated with the norm ‖w‖ on Rn or Rm. We define the norm of the data
instance d = (A, b, c) by ‖d‖ := max{‖A‖, ‖b‖, ‖c‖∗}.

The theory of condition measures for (CPd) focuses on three measures, ρP (d),
ρD(d), and C(d), to bound various behavioral and computational quantities pertaining
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to (CPd). The quantity ρP (d) is called the “distance to primal infeasibility” and is
defined as

ρP (d) := inf{‖∆d‖ | Xd+∆d = ∅},
where Xd denotes the feasible region of (CPd):

Xd := {x ∈ Rn | Ax− b ∈ CY , x ∈ CX}.
The quantity ρD(d) is called the “distance to dual infeasibility” for the conic dual
(CDd) of (CPd),

(CDd)
z∗ := max bty

s.t. c−Aty ∈ C∗
X ,

y ∈ C∗
Y ,

(1.2)

and is defined similarly to ρP (d) but using the dual problem instead. The quantity
C(d) is called the “condition measure” or the “condition number” of the problem
instance d and is a (positively) scale-invariant reciprocal of the smallest data pertur-
bation ∆d that will render the perturbed data instance either primal or dual infeasible:

C(d) :=
‖d‖

min{ρP (d), ρD(d)} ;(1.3)

a problem is called “ill-posed” if min{ρP (d), ρD(d)} = 0, equivalently, C(d) = ∞.
These three condition measure quantities have been shown in theory to be connected
to a wide variety of bounds on behavioral characteristics of (CPd) and its dual, includ-
ing bounds on sizes of feasible solutions, bounds on sizes of optimal solutions, bounds
on optimal objective values, bounds on the sizes and aspect ratios of inscribed balls
in the feasible region, bounds on the rate of deformation of the feasible region under
perturbation, bounds on changes in optimal objective values under perturbation, and
numerical bounds related to the linear algebra computations of certain algorithms; see
[24], [5], [4], [8], [9], [10], [29], [27], [30], [28], [20], [22]. In the context of interior-point
methods for linear and semidefinite optimization, these same three condition mea-
sures have also been shown to be connected to various quantities of interest regarding
the central trajectory; see [16] and [17]. The connection of these condition measures
to the complexity of algorithms has been shown in [8], [9], [25], [2], [3], and some of
the references contained therein. While this literature has focused almost exclusively
on the conic format of (1.1), there have been some attempts to extend the theory
to convex problems in structured nonconic formats; see Filipowski [4], Peña [21] and
[19], and [18].

Given the theoretical importance of these many results, it is natural to ask what
typical values of these condition measures might arise in practice. Are such problems
typically well-posed or ill-posed? How are the condition measures of such problems
distributed? We begin to answer these questions in this paper, where we compute
and analyze these three condition measures for the NETLIB suite of industrial and
academic linear programming (LP) problems. We present computational results that
indicate that 71% of the NETLIB suite of linear optimization problem instances are
ill-posed, i.e., have infinite condition measure; see section 4.1.

In the case of modern interior-point-method (IPM) algorithms for linear optimiza-
tion, the number of IPM iterations needed to solve a linear optimization instance has
been observed to vary from 10 to 100, over a huge range of problem sizes; see [13], for
example. Using the condition-measure model for complexity analysis, one can bound
the IPM iterations by O(

√
n log(C(d)+ · · ·)) for linear optimization in standard form,

where the other terms in the bound are of a more technical nature; see [25] for details.
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(Of course, the IPM algorithms that are used in practice are different from the IPM
algorithms that are used in the development of the complexity theory.) A natural
question to ask then is to what extent the observed variation in the number of IPM
iterations (already small) can be accounted for by the condition measures of the LP
problems that are solved. In order to answer this question, first note that typical IPM
solvers perform routine preprocessing to modify the LP problem prior to solving. In
order to examine condition measures of the problems that are the actual input to a
modern IPM solver, we computed condition measures for the NETLIB suite prob-
lems after prepreprocessing by CPLEX 7.1. We found that 19% of the postprocessed
problem instances in the NETLIB suite have infinite condition measure, and that
logC(d) of the postprocessed problems is fairly nicely distributed; see section 4.2.
In section 4.3, we show that, among the 72 postprocessed problem instances in the
NETLIB suite with finite condition measure, the number of IPM iterations needed to
solve these problems varies roughly linearly (and monotonically) with logC(d) of the
postprocessed problem instances. A simple linear regression model of IPM iterations
as the dependent variable and logC(d) as the independent variable yields a positive
linear relationship between IPM iterations and logC(d) for the postprocessed problem
instances, significant at the 95% confidence level, with R2 = 0.4160. Therefore, in the
sample of 72 NETLIB suite problem instances whose postprocessed condition mea-
sure is finite, about 42% of the variation in IPM iterations among these problems is
accounted for by logC(d) of the problem instances after preprocessing. Additionally,
logC(d) correlates with IPM iterations better than any other problem measure; see
section 4.3.

The organization of this paper is as follows. In section 2, we lay the ground-
work for the computation of condition measures for the NETLIB suite. Section 3
describes our methodology for computing condition measures, and section 4 contains
the computational results. Section 5 contains some discussion and open questions.

2. Linear programming, conic format, and ground-set format. In or-
der to attempt to address the issues raised in the previous section about practical
computational experience and the relevance of condition measures, one can start by
computing the condition measures for a suitably representative set of linear opti-
mization instances that arise in practice, such as the NETLIB suite of industrial and
academic linear optimization problems; see [15]. Practical methods for computing
(or approximately computing) condition measures for convex optimization problems
in conic format (CPd) have been developed in [9] and [20], and such methods are
relatively easy to implement. It would then seem to be a simple task to compute con-
dition measures for the NETLIB suite. However, it turns out that there is a subtle
catch that gets in the way of this simple strategy and in fact necessitates using an
extension of the condition measure theory just a bit, as we now explain.

Linear optimization problems arising in practice are typically conveyed in the
following format:

min
x

ctx

s.t. Aix ≤ bi, i ∈ L,
Aix = bi, i ∈ E,
Aix ≥ bi, i ∈ G,
xj ≥ lj , j ∈ LB ,
xj ≤ uj , j ∈ UB ,

(2.1)

where the first three sets of inequalities/equalities are the “constraints” and the last
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two sets of inequalities are the lower and upper bound conditions, and where LB , UB ⊂
{1, . . . , n}. (LP problems in practice might also contain range constraints of the form
“bi,l ≤ Aix ≤ bi,u.” We ignore this for now.) By defining CY to be an appropriate
Cartesian product of nonnegative halflines R+, nonpositive halflines −R+, and the
origin {0}, we can naturally consider the constraints to be in the conic format “Ax−b ∈
CY ,” where CY ⊂ Rm and m = |L| + |E| + |G|. However, for the lower and upper
bounds on the variables, there are different ways to convert the problem into the
required conic format for computation and analysis of condition measures. One way
is to convert the lower and upper bound constraints into ordinary constraints, whose
conversion of (2.1) to conic format is

P1 : min
x

ctx

s.t. Ax− b ∈ CY ,
Ix− l ≥ 0,
Ix− u ≤ 0,

whose data for this now-conic format is

Ā :=


AI
I


 , b̄ :=


 bl
u


 , c̄ := c,

with cones

C̄Y := CY × Rn+ ×−Rn+ and C̄X := Rn.

Another way to convert the problem to conic format is to replace the variables x
with nonnegative variables s := x− l and t := u− x, yielding

P2 : min
s,t

cts+ ctl

s.t. As− (b−Al) ∈ CY ,
Is+ It− (u− l) = 0,
s, t ≥ 0,

whose data for this now-conic format is

Ã :=

(
A 0
I I

)
, b̃ :=

(
b−Al
u− l

)
, c̃ := c,

with cones

C̃Y := CY × {0}n and C̃X := Rn+ × Rn+.
These two different conic versions of the same original problem have different data

and different cones, and so will generically have different condition measures. This is
illustrated on the following elementary example:

P : min
x1,x2

x1

s.t. x1 + x2 ≥ 1,
400x1 + x2 ≤ 420,
1 ≤ x1 ≤ 5,
−1 ≤ x2.
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Table 2.1
Condition measures for two different conic conversions of the same problem, using the L∞-

norm in the space of the variables and the L1-norm in the space of the right-hand-side vector.

P1 P2

‖d‖ 428 405
ρP (d) 0.24450 0.90909
ρD(d) 0.00250 1.00000
C(d) 171,200 445

Table 2.1 shows condition measures for problem P under the two different con-
version strategies of P1 and P2, using the L∞-norm in the space of the variables and
the L1-norm in the space of the right-hand-side vector. (The method for computing
these condition measures is described in Remark 6 of [10].) As Table 2.1 shows, the
choice of conversion strategy can have a very large impact on the resulting condition
measures, thereby calling into question the practical significance of performing such
conversions to conic format.

2.1. Structured formats for optimization. The analysis presented above
indicates a need for extending condition-measure concepts to problems with structured
nonconic formats, and indeed there has been some research along this line. Filipowski
[4] examines the efficiency of solving symmetric-form linear programs whose sparsity
pattern is not subject to modification, and Peña [21] develops condition measures for
conic problems where certain rows and columns of data are not subject to modification;
the latter can be used directly or indirectly to construct condition measures for many
types of structured nonconic problems. More recently, in [18], the theory of condition
measures and their properties has been extended from the conic format to handle
more general structured convex optimization in the following “ground-set” format:

(GPd)
z∗(d) = min ctx

s.t. Ax− b ∈ CY ,
x ∈ P,

(2.2)

where P is called the ground set; P is no longer required to be a cone, but instead
can be any closed convex set. In practical applications, P could be chosen to be the
solution of lower and upper bound constraints l ≤ x ≤ u, or P could be a convex
cone CX , or P could perhaps be the solution to network flow constraints of the form
Nx = b, x ≥ 0, etc. The set P (and the cone CY ) remains fixed as part of the definition
of the problem, and the description of P is not part of the data d = (A, b, c). Many
aspects of the theory of condition measures for conic convex optimization have been
extended to the more general ground-set model format (2.2); see [18]. We will use
this ground-set format in our computation and evaluation of condition measures for
linear programs that arise in practice.

In treating linear programs (2.1) as instances in the format (2.2), there is some
leeway as to what structure to place in the ground set P . One strategy is to define P
simply by the lower and upper bounds,

P := {x | xj ≥ lj for j ∈ LB , xj ≤ uj for j ∈ UB},(2.3)

and then rewrite the other constraints in conic format as described earlier. In this
approach the lower and upper bounds are handled conveniently, although the data
d does not then include the lower and upper bound data lj , j ∈ LB and uj , j ∈ UB .
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This is somewhat advantageous since in many settings of linear optimization the
lower and/or upper bounds on most variables are 0 or 1 or other scalars that are
not generally thought of as subject to data modification. Of course, there are other
settings where keeping the lower and upper bounds fixed independent of the other
constraints is not as natural.

Another strategy would be to try to examine the individual constraints of the
LP instance in order to identify specific structures to include in P . For example,
in addition to lower and upper bound constraints, a particular LP instance might
also have some network constraints, or might have generalized upper bound (GUB)
constraints of the form

∑
j∈J xj ≤M , variable upper bound constraints xj ≤ xk, etc.

Constraints of this type have no inherent data that one would think of as subject to
possible modification; therefore they could be included in the set P .

In order to develop some computational experience with condition measures for
the NETLIB suite, we chose the more straightforward strategy of defining P only by
the upper and lower bounds of the LP instance (2.3). We chose this approach because
(2.3) best reflects the types of LP structures that are explicitly treated algorithmically
in modern simplex and IPM software, and because we had minimal foreknowledge of
any explicit structures of individual linear prgrams in the NETLIB suite.

(In the related area of robust optimization, Ben-Tal and Nemirovski test robust
optimization methodologies on the NETLIB suite by attempting to identify individual
data entries of linear inequalities (but not equalities) in constraints of NETLIB suite
linear programs that might be subject to data modification or data error; see [1].)

2.2. Definition of C(d) for ground-set format. The general set-up for the
development of condition-measure theory for the ground-set model format is developed
in [18]. We review this material briefly here for completeness.

Let Xd denote the feasible region of (GPd),

Xd := {x ∈ Rn | Ax− b ∈ CY , x ∈ P},

and define the primal distance to infeasibility ρP (d) as

ρP (d) := inf{‖∆d‖ | Xd+∆d = ∅},

similar to the conic case. In order to state the Lagrange dual of (GPd) we use the
following definitions, which depend on the ground set P .

Let R denote the recession cone of P , namely,

R := {v | there exists x ∈ P for which x+ θv ∈ P for all θ ≥ 0}.(2.4)

Since P is a closed convex set, the recession cone R is a closed convex cone.
Define

CP := {(x, t) | x ∈ tP, t > 0},

and let C denote the closed convex cone

C := clCP ,

where “clS” denotes the closure of a set S. Then it is straightforward to show that

C = CP ∪ {(r, 0) | r ∈ R}
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and that

C∗ := {(s, v) | stx+ v ≥ 0 for any x ∈ P}
=

{
(s, v) | inf

x∈P
stx ≥ −v

}
.

The Lagrange dual of (GPd) is

(GDd)

z∗(d) = max
y,v

bty − v
s.t. (c−Aty, v) ∈ C∗,

y ∈ C∗
Y .

(2.5)

Let Yd denote the feasible region of the dual problem (GDd),

Yd := {(y, v) ∈ Rm × R | (c−Aty, v) ∈ C∗, y ∈ C∗
Y },

and define the dual distance to infeasibility ρD(d):

ρD(d) := inf{‖∆d‖ | Yd+∆d = ∅}.

The condition measures ρP (d), ρD(d) are shown in [18] to be connected to a variety of
behavioral characteristics of (GPd) and its dual, including sizes of feasible solutions,
sizes of optimal solutions, optimal objective values, aspect ratios of inscribed balls,
deformation of the feasible region under perturbation, and the complexity of interior-
point algorithms.

Let F denote the set of data instances d for which both (GPd) and (GDd) are
feasible:

F = {d | Xd �= ∅ and Yd �= ∅}.

For d ∈ F , the definition of the condition measure in the ground set model is identical
to the definition in the conic case,

C(d) :=
‖d‖

min{ρP (d), ρD(d)} ;

it is the (positive) scale invariant reciprocal of the distance to the set of data instances
that are either primal or dual infeasible, and ρ(d) := min{ρP (d), ρD(d)} is the distance
to ill-posedness.

3. Computation of ρP (d), ρD(d), and C(d) via convex optimization. In
this section we show how to compute ρP (d) and ρD(d) for linear optimization data
instances d = (A, b, c) of the ground-set model format, as well as how to estimate ‖d‖
and C(d). The methodology presented herein is an extension of the methodology for
computing ρP (d) and ρD(d) developed in [9]. We will make the following choice of
norms throughout this section and the rest of this paper.

Assumption 1. The norm on the space of the x variables in Rn is the L∞-norm,
and the norm on the space of the right-hand-side vector in Rm is the L1-norm.

Using this choice of norms, we will show in this section how to compute ρ(d) for
linear optimization problems by solving 2n+2m linear programs of size roughly that
of the original problem. As is discussed in [9], the complexity of computing ρ(d) very
much depends on the chosen norms, with the norms given in Assumption 1 being
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particularly appropriate for efficient computation of ρP (d) and ρD(d). We begin our
analysis with a seemingly innocuous proposition which will prove to be very useful.

Proposition 3.1. Consider the problem

z1 = min
v,w

f(v, w)

s.t. ‖v‖∞ = 1,
(v, w) ∈ K,

(3.1)

where v ∈ Rk, w ∈ Rl, K is a closed convex cone in Rk+l, and f(·) : Rk+l �→ R+

is positively homogeneous of degree one (f(α(v, w)) = |α|f(v, w) for any α ∈ R and
(v, w) ∈ Rk+l). Then problems (3.1) and (3.2) have the same optimal values, i.e.,
z1 = z2, where

z2 = min
i∈{1,...,n},j∈{−1,1}

min
v,w
f(v, w)

vi = j,
(v, w) ∈ K.

(3.2)

Proof. Let (v∗, w∗) be an optimal solution of (3.1). Since ‖v∗‖∞ = 1, there exist
i∗ ∈ {1, . . . , n} and j∗ ∈ {−1, 1} such that v∗i∗ = j∗. Therefore (v∗, w∗) is feasible for
the inner problem in (3.2) for i = i∗ and j = j∗, and so z2 ≤ z1.

If (v∗, w∗) is an optimal solution of (3.2) with i = i∗ and j = j∗, then ‖v∗‖∞ ≥ 1.
If ‖v∗‖∞ = 1, the point (v∗, w∗) is feasible for (3.1), which means that z1 ≤ z2,
completing the proof. Therefore, assume that ‖v∗‖∞ > 1, and consider the new
point (ṽ, w̃) := 1

‖v∗‖∞
(v∗, w∗) ∈ K. Then (ṽ, w̃) is feasible for an inner problem in

(3.2) for some i = î �= i∗ and j = ĵ, and so z2 ≤ f(ṽ, w̃) = f( 1
‖v∗‖∞

(v∗, w∗)) =
1

‖v∗‖∞
f(v∗, w∗) ≤ z2, which now implies that (ṽ, w̃) is also an optimal solution of

(3.2). Since ‖ṽ‖∞ = 1, the previous argument implies that z1 ≤ z2, completing the
proof.

3.1. Computing ρP (d) and ρD(d). The following theorem, which is proved
in [18], characterizes ρP (d) and ρD(d) as the optimal solution values of certain opti-
mization problems. In this theorem, recall from (2.4) that R denotes the recession
cone of the ground set P .

Theorem 3.2 (Theorems 5 and 6 of [18]). Suppose d ∈ F , and that the norms
are chosen as in Assumption 1. Then ρP (d) = jP (d) and ρD(d) = jD(d), where

jP (d) = min
y,s,v

max{‖Aty + s‖1, |bty − v|}
s.t. ‖y‖∞ = 1,

y ∈ C∗
Y ,

(s, v) ∈ C∗,

(3.3)

and

jD(d) = min
x,p,g

max{‖Ax− p‖1, |ctx+ g|}
s.t. ‖x‖∞ = 1,

x ∈ R,
p ∈ CY ,
g ≥ 0.

(3.4)

Neither (3.3) nor (3.4) are convex problems. However, both (3.3) and (3.4) are of
the form (3.1), and so we can invoke Proposition 3.1 and solve (3.3) and (3.4) using
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problem (3.2). From Proposition 3.1, we have

ρP (d) = min
i∈{1,...,m},j∈{−1,1}

min
y,s,v

max{‖Aty + s‖1, |bty − v|}
s.t. yi = j,

y ∈ C∗
Y ,

(s, v) ∈ C∗,

(3.5)

and

ρD(d) = min
i∈{1,...,n},j∈{−1,1}

min
x,p,g

max{‖Ax− p‖1, |ctx+ g|}
s.t. xi = j,

x ∈ R,
p ∈ CY ,
g ≥ 0.

(3.6)

Taken together, (3.5) and (3.6) show that we can compute ρP (d) by solving 2m
convex optimization problems, and we can compute ρD(d) by solving 2n convex op-
timization problems. In conclusion, we can compute ρ(d) by solving 2n+ 2m convex
optimization problems, where all of the optimization problems involved are of roughly
the same size as the original problem (GPd).

Of course, each of the 2n+2m convex problems in (3.5) and (3.6) will be compu-
tationally tractable only if we can conveniently work with the cones involved; we now
show that for the special case of linear optimization models (2.1) there are convenient
linear inequality characterizations of all of the cones involved in (3.5) and (3.6). The
cone CY is easily seen to be

CY = {p ∈ Rm | pi ≤ 0 for i ∈ L, pi = 0 for i ∈ E, pi ≥ 0 for i ∈ G},(3.7)

and so

C∗
Y = {y ∈ Rm | yi ≤ 0 for i ∈ L, yi ∈ R for i ∈ E, yi ≥ 0 for i ∈ G}.(3.8)

With the ground set P defined in (2.3), we have

R = {x ∈ Rn | xj ≥ 0 for j ∈ LB , xj ≤ 0 for j ∈ UB}(3.9)

and also

C = {(x, t) ∈ Rn × R | t ≥ 0, xj ≥ ljt for j ∈ LB , xj ≤ ujt for j ∈ UB}.(3.10)

The only cone whose characterization is less than obvious is C∗, which we now
characterize. Consider the following system of linear inequalities in the variables
(s, v, s+, s−) ∈ Rn × R× Rn × Rn:

s− s+ + s− = 0,
s+ ≥ 0,
s− ≥ 0,
s−j = 0 for j ∈ N \ UB ,
s+j = 0 for j ∈ N \ LB ,

v +
∑
j∈LB

ljs
+
j −

∑
j∈UB

ujs
−
j ≥ 0,

(3.11)
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where we use the notation N := {1, . . . , n} and S \ T is the set difference {k | k ∈ S,
k �∈ T}.

Proposition 3.3. For the ground set P defined in (2.3), the cone C∗ is charac-
terized by

C∗ = {(s, v) ∈ Rn × R | (s, v, s+, s−) satisfies (3.11) for some s+, s− ∈ Rn}.
Proof. Suppose first that (s, v) together with some s+, s− satisfies (3.11). Then

for all (x, t) ∈ C we have
(x, t)t(s, v) =

∑
j∈LB

s+j xj −
∑
j∈UB

s−j xj + tv

≥
∑
j∈LB

s+j ljt−
∑
j∈UB

s−j ujt+ tv

≥ 0,

(3.12)

and so (s, v) ∈ C∗. Conversely, suppose that (s, v) ∈ C∗. Then

−∞ < −v ≤ min
x∈P
stx = min

n∑
j=1

sjxj

s.t. xj ≥ lj for j ∈ LB ,
xj ≤ uj for j ∈ UB ,

(3.13)

and define s+ and s− to be the positive and negative parts of s, respectively. Then
s = s+ − s−, s+ ≥ 0, and s− ≥ 0, and (3.13) implies s+j = 0 for j ∈ N \ LB , s−j = 0
for j ∈ N \ UB , as well as the last inequality of (3.11), whereby (s, v, s+, s−) satisfies
all inequalities of (3.11).

Taken together, we can use (3.7), (3.8), (3.9), (3.10), and Proposition 3.3 to
rewrite the right-most minimization problems of (3.5) and (3.6) and obtain

ρP (d) = min
i∈{1,...,m}
j∈{−1,1}

min
y,s+,s−,v

max{‖Aty + s+ − s−‖1, |bty − v|}

s.t. yi = j,
yl ≤ 0 for l ∈ L,
yl ≥ 0 for l ∈ G,
s−k = 0 for k ∈ N \ UB ,
s+k = 0 for k ∈ N \ LB ,
v +

∑
k∈LB

lks
+
k −

∑
k∈UB

uks
−
k ≥ 0,

s+, s− ≥ 0,

(3.14)

and

ρD(d) = min
i∈{1,...,n}
j∈{−1,1}

min
x,p,g

max{‖Ax− p‖1, |ctx+ g|}

s.t. xi = j,
xk ≥ 0 if k ∈ LB ,
xk ≤ 0 for k ∈ UB ,
pl ≤ 0 for l ∈ L,
pl = 0 for l ∈ E,
pl ≥ 0 for l ∈ G,
g ≥ 0,

(3.15)
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whose right-most objective functions can then easily be converted to linear optimiza-
tion problems by standard techniques. This then shows that we can indeed compute
ρP (d), ρD(d), and ρ(d) by solving 2n+2m linear programs, under the choice of norms
given in Assumption 1.

3.2. Computing ‖d‖. In order to compute the condition measure C(d) :=
‖d‖/ρ(d), we must also compute ‖d‖ = max{‖A‖, ‖b‖, ‖c‖∗}. Under Assumption 1
we have ‖b‖ = ‖b‖1 and ‖c‖∗ = ‖c‖1, which are both easy to compute. However,
‖A‖ is the operator norm, and so ‖A‖ := ‖A‖∞,1 := max{‖Ax‖1 | ‖x‖∞ = 1},
whose computation is NP-hard (one can easily pose MAXCUT as a special case). We
therefore will bound ‖A‖∞,1 and hence ‖d‖ from below and above, using the following
elementary norm inequalities:

max{‖A‖1,1, ‖A‖2,2, ‖A‖F , ‖Ae‖1, ‖Ax̂‖1} ≤ ‖A‖∞,1 ≤ min{‖A‖L1 ,
√
nm‖A‖2,2},

where

‖A‖1,1 = maxj=1,...,n ‖A•j‖1,
‖A‖2,2 =

√
λmax(AtA),

‖A‖F =
√∑m

i=1

∑n
j=1(Ai,j)

2,

‖A‖L1 =
∑m
i=1

∑n
j=1 |Ai,j |,

e := (1, . . . , 1)t, and x̂ is defined using x̂j = sign(Ai∗,j), where i
∗ = argmaxi=1,...,m‖Ai•‖1.

4. Computational results on the NETLIB suite of linear optimization
problems.

4.1. Condition measures for the NETLIB suite prior to preprocessing.
We chose the NETLIB suite of linear optimization problem instances as a represen-
tative suite of LP problems encountered in practice, and we computed the condition
measures ρP (d), ρD(d), and C(d) for problem instances in this suite using the method-
ology developed in section 3. The NETLIB suite is comprised of 98 linear optimization
problems from diverse application areas, collected over a period of many years. While
this suite does not contain any truly large problems by today’s standards, it is arguably
the best publicly available collection of practical LP problems, and the sizes and diver-
sity of the problems contained therein seem to be representative of general practice.
The sizes of the problem instances in the NETLIB suite range from 32 variables and
28 constraints to problems with roughly 9,000 variables and 3,000 constraints. 44
of the 98 problems in the suite have nonzero lower bound constraints and/or upper
bound constraints on the variables, and five problems have range constraints. We
omitted the five problems with range constraints (boeing1, boeing2, forplan, nesm,
seba) for the purposes of our analysis (range constraints do not naturally fit into either
the conic model or the ground-set model format). On four of the remaining problems
(dfl001, qap12, qap15, stocfor3) our methodology has not yet exhibited convergence
to a solution, and these four problems were omitted as well, yielding a final sample
set of 89 linear optimization problems. The burden of computing the distances to
ill-posedness for the NETLIB suite via the solution of 2n+ 2m linear programs obvi-
ously grows with the dimensions of the problem instances. On afiro, which is a small
problem instance (n = 28, m = 32), the total computation time amounted to only
0.28 seconds of machine time, whereas for maros-r7 (n = 9, 408 and m = 3, 136), the
total computation time was 240, 627.59 seconds of machine time (66.84 hours).
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Table 4.1 shows the distances to ill-posedness and the condition measure estimates
for the 89 problems, using the methodology for computing ρP (d) and ρD(d) and for
estimating ‖d‖ presented in section 3. All LP computation was performed using
CPLEX 7.1 (function primopt).

Table 4.2 presents some summary statistics of the condition measure computations
from Table 4.1. As the table shows, 71% (63/89) of the problems in the NETLIB suite
are ill-posed due to either ρP (d) = 0 or ρD(d) = 0 or both. Furthermore, notice that,
among these 63 ill-posed problems, almost all (61 out of 63) have ρP (d) = 0. This
means that for 69% (61/89) of the problems in the NETLIB suite, arbitrarily small
changes in the data will render the primal problem infeasible.

Notice from Table 4.1 that there are three problems for which ρD(d) =∞, namely,
fit1d, fit2d, and sierra. This can happen only when the ground set P is bounded,
which for linear optimization means that all variables have finite lower and upper
bounds.

The computational results in Tables 4.1 and 4.2 have shown that 61 of the 89
linear programs in the NETLIB suite are primal ill-posed, i.e., ρP (d) = 0, and so
arbitrarily small changes in the data will render the primal problem infeasible. For
feasible linear programs, ρP (d) = 0 can happen only if (i) there are linear dependencies
among the equations of the problem instance (2.1), or (ii) there is an implied reverse
inequality among the inequalities and lower and upper bounds of the problem instance.
Furthermore, it is easy to show that if s = 0 in an optimal solution of (3.3), then there
are linear dependencies in the equations (and possibly implied reverse inequalities as
well), whereas if s �= 0 in an optimal solution of (3.3), then there is an implied
reverse inequality (and possibly linear dependencies as well). This then can be used
to evaluate the causes of the ill-posedness of the 61 primal ill-posed instances. We
examined the optimal solutions of (3.3) for the 61 primal ill-posed linear programs in
the NETLIB suite in order to evaluate the causes of the ill-posedness among these
problems. Table 4.3 summarizes our findings, which show that for at least 34% of the
primal ill-posed problem instances there are linear dependencies among the equations
of (2.1).

4.2. Condition measures for the NETLIB suite after preprocessing.
Most commercial software packages for solving linear optimization problems perform
preprocessing heuristics prior to solving a problem instance. These heuristics typically
include checks for eliminating linearly dependent equations, heuristics for identifying
and eliminating redundant variable lower and upper bounds, and rules for row and/or
column rescaling, etc. The purposes of the preprocessing are to reduce the size of the
problem instance by eliminating dependent equations and redundant inequalities, and
to improve numerical computation and enhance iteration performance by rescaling of
rows and/or columns. The original problem instance is converted to a postprocessed
instance by the processing heuristics, and it is this postprocessed instance that is
used as input to solution software. In CPLEX 7.1, the postprocessed problem can be
accessed using function prslvwrite. This function writes the postprocessed problem to
disk, whence it can be read.

In order to examine condition measures of the problems that are the actual in-
put to a modern IPM solver, we computed condition measures for the NETLIB suite
problems after preprocessing by CPLEX 7.1. The processing used was the default
CPLEX preprocessing with the linear dependency check option activated. Table 4.4
shows the condition measures in detail for the postprocessed versions of the problems,
and Table 4.5 presents some summary statistics of these condition measures. Notice
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Table 4.1
Condition measures for the NETLIB suite LP problem instances (prior to preprocessing by

CPLEX 7.1).

‖d‖ logC(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) bound bound bound bound

25fv47 0.000000 0.000000 30,778 55,056 ∞ ∞
80bau3b 0.000000 0.000000 142,228 142,228 ∞ ∞
adlittle 0.000000 0.051651 68,721 68,721 ∞ ∞
afiro 0.397390 1.000000 1,814 1,814 3.7 3.7
agg 0.000000 0.771400 5.51E+07 5.51E+07 ∞ ∞
agg2 0.000000 0.771400 1.73E+07 1.73E+07 ∞ ∞
agg3 0.000000 0.771400 1.72E+07 1.72E+07 ∞ ∞
bandm 0.000000 0.000418 10,200 17,367 ∞ ∞
beaconfd 0.000000 0.000000 15,322 19,330 ∞ ∞
blend 0.003541 0.040726 1,020 1,255 5.5 5.5
bnl1 0.000000 0.106400 8,386 9,887 ∞ ∞
bnl2 0.000000 0.000000 36,729 36,729 ∞ ∞
bore3d 0.000000 0.003539 11,912 12,284 ∞ ∞
brandy 0.000000 0.000000 7,254 10,936 ∞ ∞
capri 0.000252 0.095510 33,326 33,326 8.1 8.1
cycle 0.000000 0.000000 365,572 391,214 ∞ ∞
czprob 0.000000 0.008807 328,374 328,374 ∞ ∞
d2q06c 0.000000 0.000000 171,033 381,438 ∞ ∞
d6cube 0.000000 2.000000 47,258 65,574 ∞ ∞
degen2 0.000000 1.000000 3,737 3,978 ∞ ∞
degen3 0.000000 1.000000 4,016 24,646 ∞ ∞
e226 0.000000 0.000000 22,743 37,344 ∞ ∞
etamacro 0.000000 0.200000 31,249 63,473 ∞ ∞
fffff800 0.000000 0.033046 1.55E+06 1.55E+06 ∞ ∞
finnis 0.000000 0.000000 31,978 31,978 ∞ ∞
fit1d 3.500000 ∞ 493,023 618,065 5.1 5.2
fit1p 1.271887 0.437500 218,080 384,121 5.7 5.9
fit2d 317.000000 ∞ 1.90E+06 2.25E+06 3.8 3.9
fit2p 1.057333 1.000000 621,470 658,700 5.8 5.8
ganges 0.000000 1.000000 1.29E+06 1.29E+06 ∞ ∞
gfrd-pnc 0.000000 0.347032 1.63E+07 1.63E+07 ∞ ∞
greenbea 0.000000 0.000000 21,295 26,452 ∞ ∞
greenbeb 0.000000 0.000000 21,295 26,452 ∞ ∞
grow15 0.572842 0.968073 209 977 2.6 3.2
grow22 0.572842 0.968073 303 1,443 2.7 3.4
grow7 0.572842 0.968073 102 445 2.3 2.9
israel 0.027248 0.166850 2.22E+06 2.22E+06 7.9 7.9
kb2 0.000201 0.018802 10,999 11,544 7.7 7.8
lotfi 0.000306 0.000000 166,757 166,757 ∞ ∞
maros 0.000000 0.000000 2.51E+06 2.55E+06 ∞ ∞
maros-r7 1.000000 0.628096 1.02E+07 1.02E+07 7.2 7.2
modszk1 0.000000 0.108469 1.03E+06 1.03E+06 ∞ ∞
perold 0.000000 0.000943 703,824 2.64E+06 ∞ ∞
pilot 0.000000 0.000290 26,633 30,427 ∞ ∞
pilot.ja 0.000000 0.000750 2.67E+07 1.40E+08 ∞ ∞
pilot.we 0.000000 0.044874 5.71E+06 5.71E+06 ∞ ∞
pilot4 0.000000 0.000075 763,677 1.09E+06 ∞ ∞
pilot87 0.000000 0.000000 111,163 138,736 ∞ ∞
pilotnov 0.000000 0.000750 2.36E+07 1.35E+08 ∞ ∞
qap8 0.000000 4.000000 17,248 17,248 ∞ ∞
recipe 0.000000 0.000000 14,881 19,445 ∞ ∞
sc105 0.000000 0.133484 3,000 3,000 ∞ ∞
sc205 0.000000 0.010023 5,700 5,700 ∞ ∞
sc50a 0.000000 0.562500 1,500 1,500 ∞ ∞
sc50b 0.000000 0.421875 1,500 1,500 ∞ ∞
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Table 4.1 (cont.)

‖d‖ logC(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) bound bound bound bound

scagr25 0.021077 0.034646 430,977 430,977 7.3 7.3
scagr7 0.022644 0.034646 120,177 120,177 6.7 6.7
scfxm1 0.000000 0.000000 21,425 22,816 ∞ ∞
scfxm2 0.000000 0.000000 44,153 45,638 ∞ ∞
scfxm3 0.000000 0.000000 66,882 68,459 ∞ ∞
scorpion 0.000000 0.949393 5,622 5,622 ∞ ∞
scrs8 0.000000 0.000000 68,630 69,449 ∞ ∞
scsd1 5.037757 1.000000 1,752 1,752 3.2 3.2
scsd6 1.603351 1.000000 2,973 2,973 3.5 3.5
scsd8 0.268363 1.000000 5,549 5,549 4.3 4.3
sctap1 0.032258 1.000000 8,240 17,042 5.4 5.7
sctap2 0.586563 1.000000 32,982 72,870 4.7 5.1
sctap3 0.381250 1.000000 38,637 87,615 5.0 5.4
share1b 0.000015 0.000751 60,851 87,988 9.6 9.8
share2b 0.001747 0.287893 19,413 23,885 7.0 7.1
shell 0.000000 1.777778 253,434 253,434 ∞ ∞
ship04l 0.000000 13.146000 811,956 811,956 ∞ ∞
ship04s 0.000000 13.146000 515,186 515,186 ∞ ∞
ship08l 0.000000 21.210000 1.91E+06 1.91E+06 ∞ ∞
ship08s 0.000000 21.210000 1.05E+06 1.05E+06 ∞ ∞
ship12l 0.000000 7.434000 794,932 794,932 ∞ ∞
ship12s 0.000000 7.434000 381,506 381,506 ∞ ∞
sierra 0.000000 ∞ 6.60E+06 6.61E+06 ∞ ∞
stair 0.000580 0.000000 976 1,679 ∞ ∞
standata 0.000000 1.000000 21,428 23,176 ∞ ∞
standgub 0.000000 0.000000 21,487 23,235 ∞ ∞
standmps 0.000000 1.000000 22,074 23,824 ∞ ∞
stocfor1 0.001203 0.011936 23,212 23,441 7.3 7.3
stocfor2 0.000437 0.000064 462,821 467,413 9.9 9.9
truss 0.518928 10.000000 154,676 154,676 5.5 5.5
tuff 0.000000 0.017485 136,770 145,448 ∞ ∞
vtp.base 0.000000 0.500000 530,416 534,652 ∞ ∞
wood1p 0.000000 1.000000 3.66E+06 5.04E+06 ∞ ∞
woodw 0.000000 1.000000 9.86E+06 1.35E+07 ∞ ∞

Table 4.2
Summary statistics of distances to ill-posedness for the NETLIB suite (prior to preprocessing

by CPLEX 7.1).

ρD(d)
0 Finite ∞ Totals

0 19 41 1 61
ρP (d) Finite 2 24 2 28

∞ 0 0 0 0

Totals 21 65 3 89

Table 4.3
Evaluation of ill-posedness of the 61 primal ill-posed instances in the NETLIB suite (prior to

preprocessing by CPLEX 7.1).

Indication Number of instances

Dependent equations 21
Implied reverse inequalities 40

Total 61
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Table 4.4
Condition measures for the NETLIB suite after preprocessing by CPLEX 7.1.

‖d‖ logC(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) bound bound bound bound

25fv47 0.000707 0.000111 35,101 54,700 8.5 8.7
80bau3b 0.000000 0.000058 126,355 126,355 ∞ ∞
adlittle 0.004202 1.000488 68,627 68,627 7.2 7.2
afiro 0.397390 1.000000 424 424 3.0 3.0
agg 0.000000 0.031728 3.04E+07 3.04E+07 ∞ ∞
agg2 0.000643 1.005710 1.57E+07 1.57E+07 10.4 10.4
agg3 0.000687 1.005734 1.56E+07 1.56E+07 10.4 10.4
bandm 0.001716 0.000418 7,283 12,364 7.2 7.5
beaconfd 0.004222 1.000000 6,632 6,632 6.2 6.2
blend 0.011327 0.041390 872 1,052 4.9 5.0
bnl1 0.000016 0.159015 8,140 9,544 8.7 8.8
bnl2 0.000021 0.000088 18,421 20,843 8.9 9.0
bore3d 0.000180 0.012354 8,306 8,306 7.7 7.7
brandy 0.000342 0.364322 4,342 7,553 7.1 7.3
capri 0.000375 0.314398 30,323 30,323 7.9 7.9
cycle 0.000021 0.009666 309,894 336,316 10.2 10.2
czprob 0.000000 0.001570 206,138 206,138 ∞ ∞
d2q06c 0.000000 0.003925 172,131 378,209 ∞ ∞
d6cube 0.945491 2.000000 43,629 60,623 4.7 4.8
degen2 0.000000 1.000000 2,613 3,839 ∞ ∞
degen3 0.000000 1.000000 4,526 24,090 ∞ ∞
e226 0.000737 0.021294 21,673 35,518 7.5 7.7
etamacro 0.001292 0.200000 55,527 87,767 7.6 7.8
fffff800 0.000000 0.033046 696,788 696,788 ∞ ∞
finnis 0.000000 0.000000 74,386 74,386 ∞ ∞
fit1d 3.500000 ∞ 493,023 617,867 5.1 5.2
fit1p 1.389864 1.000000 218,242 383,871 5.3 5.6
fit2d 317.000000 ∞ 1.90E+06 2.24E+06 3.8 3.8
fit2p 1.057333 1.000000 621,470 658,700 5.8 5.8
ganges 0.000310 1.000000 143,913 143,913 8.7 8.7
gfrd-pnc 0.015645 0.347032 1.22E+07 1.22E+07 8.9 8.9
greenbea 0.000033 0.000004 65,526 65,526 10.2 10.2
greenbeb 0.000034 0.000007 43,820 43,820 9.8 9.8
grow15 0.572842 0.968073 209 977 2.6 3.2
grow22 0.572842 0.968073 303 1,443 2.7 3.4
grow7 0.572842 0.968073 102 445 2.3 2.9
israel 0.135433 0.166846 2.22E+06 2.22E+06 7.2 7.2
kb2 0.000201 0.026835 10,914 11,054 7.7 7.7
lotfi 0.000849 0.001590 170,422 170,422 8.3 8.3
maros 0.000000 0.006534 1.76E+06 1.80E+06 ∞ ∞
maros-r7 1.000131 0.846743 9.39E+06 9.39E+06 7.0 7.0
modszk1 0.016030 0.114866 1.03E+06 1.03E+06 7.8 7.8
perold 0.000000 0.002212 1.56E+06 2.35E+06 ∞ ∞
pilot 0.000002 0.000290 35,379 35,379 10.2 10.2
pilot.ja 0.000000 0.001100 2.36E+07 1.36E+08 ∞ ∞
pilot.we 0.000000 0.044874 5.71E+06 5.71E+06 ∞ ∞
pilot4 0.000399 0.002600 696,761 1.03E+06 9.2 9.4
pilot87 0.000000 0.000199 100,187 125,426 ∞ ∞
pilotnov 0.000000 0.001146 2.36E+07 1.32E+08 ∞ ∞
qap8 0.022222 2.000000 17,248 17,248 5.9 5.9
recipe 0.063414 0.000000 13,356 15,815 ∞ ∞
sc105 0.778739 0.400452 3,000 3,000 3.9 3.9
sc205 0.778739 0.030068 5,700 5,700 5.3 5.3
sc50a 0.780744 1.000000 1,500 1,500 3.3 3.3
sc50b 0.695364 1.000000 1,500 1,500 3.3 3.3
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Table 4.4 (cont.)

‖d‖ logC(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) bound bound bound bound

scagr25 0.021191 0.049075 199,859 199,859 7.0 7.0
scagr7 0.022786 0.049075 61,259 61,259 6.4 6.4
scfxm1 0.000010 0.002439 20,426 21,811 9.3 9.3
scfxm2 0.000010 0.002439 38,863 43,630 9.6 9.6
scfxm3 0.000010 0.002439 57,300 65,449 9.8 9.8
scorpion 0.059731 0.995879 123,769 123,769 6.3 6.3
scrs8 0.009005 0.004389 66,362 68,659 7.2 7.2
scsd1 5.037757 1.000000 1,752 1,752 3.2 3.2
scsd6 1.603351 1.000000 2,973 2,973 3.5 3.5
scsd8 0.268363 1.000000 5,549 5,549 4.3 4.3
sctap1 0.032258 1.000000 7,204 15,186 5.3 5.7
sctap2 0.669540 1.000000 27,738 64,662 4.6 5.0
sctap3 0.500000 1.000000 32,697 78,415 4.8 5.2
share1b 0.000015 0.000751 1.67E+06 1.67E+06 11.0 11.0
share2b 0.001747 0.287893 19,410 23,882 7.0 7.1
shell 0.000263 0.253968 874,800 874,800 9.5 9.5
ship04l 0.000386 25.746000 881,005 881,005 9.4 9.4
ship04s 0.000557 25.746000 545,306 545,306 9.0 9.0
ship08l 0.000000 22.890000 1.57E+06 1.57E+06 ∞ ∞
ship08s 0.000000 22.890000 816,531 816,531 ∞ ∞
ship12l 0.000124 7.434000 748,238 748,238 9.8 9.8
ship12s 0.000149 7.434000 340,238 340,238 9.4 9.4
sierra 0.001039 47.190000 6.60E+06 6.61E+06 9.8 9.8
stair 0.003800 0.163162 7,071 7,071 6.3 6.3
standata 0.090909 1.000000 4,931 5,368 4.7 4.8
standgub 0.090909 1.000000 4,931 5,368 4.7 4.8
standmps 0.020000 1.000000 12,831 12,831 5.8 5.8
stocfor1 0.002130 0.109062 10,833 29,388 6.7 7.1
stocfor2 0.000811 0.000141 45,458 616,980 8.5 9.6
truss 0.518928 10.000000 154,676 154,676 5.5 5.5
tuff 0.000025 0.047081 131,554 138,783 9.7 9.7
vtp.base 0.005287 3.698630 17,606 17,606 6.5 6.5
wood1p 0.059008 1.442564 2.11E+06 3.25E+06 7.6 7.7
woodw 0.009357 1.000000 5.68E+06 7.26E+06 8.8 8.9

Table 4.5
Summary statistics of distances to ill-posedness for the NETLIB suite after preprocessing by

CPLEX 7.1.

ρD(d)
0 Finite ∞ Totals

0 1 15 0 16
ρP (d) Finite 1 70 2 73

∞ 0 0 0 0

Totals 2 85 2 89

from Table 4.5 that 19% (17/89) of the postprocessed problems in the NETLIB suite
are ill-posed. In contrast to the original problems, the vast majority of postprocessed
problems have finite condition measures, as the preprocessing heuristics are very ef-
fective at identifying and correcting many instances of implied reverse inequalities in
addition to finding and eliminating linearly dependent equations. We also examined
the optimal solutions of (3.3) for the 16 primal ill-posed postprocessed problems in
the NETLIB suite in order to evaluate the causes of the ill-posedness among these
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Table 4.6
Evaluation of ill-posedness of the 16 primal ill-posed instances in the NETLIB suite after

preprocessing by CPLEX 7.1.

Indication Number of instances

Dependent equations 0
Implied reverse inequalities 16

Total 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

14

16

18

log C(d)

F
re

qu
en

cy

Fig. 4.1. Histogram of condition measures for the NETLIB suite after preprocessing by CPLEX
7.1 (using the geometric mean of the lower and upper bound estimates of C(d)).

postprocessed problem instances. Table 4.6 summarizes our findings, which show that
all of the ill-posed postprocessed LP instances have implied reverse inequalities among
the inequalities and/or lower/upper bounds.

Figure 4.1 presents a histogram of the condition measures of the postprocessed
problems taken from Table 4.4. The condition measure of each problem is represented
by the geometric mean of the upper and lower bound estimates in this histogram.
The right-most column in the figure is used to tally the number of problems for which
C(d) =∞, and is shown to give a more complete picture of the data. This histogram
shows that of the problems with finite condition measure, logC(d) is fairly nicely
distributed between 2.6 and 11.0. Of course, when C(d) = 1011, it is increasingly
difficult to distinguish between a finite and nonfinite condition measure.

4.3. Condition measures and the observed performance of interior-
point methods on the NETLIB suite. In the case of modern IPM algorithms for
linear optimization, the number of IPM iterations needed to solve a linear optimiza-
tion instance has been observed to be fairly constant over a huge range of problem
sizes; for the NETLIB suite the number of iterations varies between 8 and 48 using
CPLEX 7.1 baropt ; for other codes the numbers are a bit different. Extensive compu-
tational experience over the past 15 years has shown that the IPM iterations needed
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to solve a linear optimization problem instance vary in the range between 10–100
iterations. There is some evidence that the number of IPM iterations grows roughly
as log n on a particular class of structured problem instances; see, for example, [12].

The observed performance of modern IPM algorithms is fortunately superior to
the worst-case bounds on IPM iterations that arise via theoretical complexity analysis.
Depending on the complexity model used, one can bound the number of IPM iterations
from above by

√
ϑL̃, where ϑ is the number of inequalities plus the number of variables

with at least one bound in the problem instance,

ϑ := |L|+ |G|+ |LB |+ |UB | − |LB ∩ UB |,(4.1)

and L̃ is the bit-size of a binary encoding of the problem instance data; see [23].
(Subtraction of the final term of (4.1) is shown in [7].) The bit-size model was a
motivating force for modern polynomial-time LP algorithms, but is viewed today
as somewhat outdated in the context of linear and nonlinear optimization. Using
instead the condition-measure model for complexity analysis, one can bound the IPM
iterations by O(

√
ϑ log(C(d)+ · · ·)), where the other terms in the bound are of a more

technical nature; see [25] for details. Of course, even here one must bear in mind that
the IPM algorithms that are used in practice are different from the IPM algorithms
that are used in the development of the complexity theory.

A natural question to ask is whether the observed variation in the number of
IPM iterations (already small) can be accounted for by the condition measures of
the problem instances that are the input to the IPM algorithm. The finite condition
measures of the 72 postprocessed problems from the NETLIB suite shown in Table
4.4 provide a rich set of data that can be used to address this question. Here the
goal is to assess whether or not condition measures are relevant for understanding the
practical performance of IPM algorithms (we do not aim at validating the complexity
theory).

In order to assess any relationship between condition measures and IPM iterations
for the NETLIB suite, we first solved and recorded the IPM iterations for the 89
problems from the NETLIB suite. The problems were preprocessed with the linear
dependency check option and solved with CPLEX 7.1 function baropt with default
parameters. The default settings use the standard barrier algorithm, include a starting
heuristic that sets the initial dual solution to zero, and a convergence criteria of a
relative complementarity smaller than 10−8. The iteration counts are shown in Table
4.7. Notice that these iteration counts vary between 8 and 48.

Figure 4.2 shows a scatter plot of the number of IPM iterations taken by CPLEX
7.1 to solve the 89 problems in the NETLIB suite after preprocessing (from Table
4.7) and logC(d) of the postprocessed problems (using the logC(d) estimates from
columns 6 and 7 of Table 4.4). In the figure, the horizontal lines represent the range
for logC(d) due to the lower and upper estimates of C(d) from the last two columns
of Table 4.4. Also, similarly to Figure 4.1, problems with infinite condition measure
are shown in the figure on the far right as a visual aid.

Figure 4.2 shows that as logC(d) increases, so does the number of IPM iterations
needed to solve the problem (with exceptions, of course). Perhaps a more accurate
summary of the figure is that if the number of IPM iterations is large, then the
problem will tend to have a large value of logC(d). The converse of this statement
is not supported by the scatter plot: if a problem has a large value of logC(d), one
cannot state in general that the problem will take a large number of IPM iterations
to solve.
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Table 4.7
IPM iterations for the NETLIB suite using CPLEX 7.1 function baropt.

Problem IPM iterations Problem IPM iterations Problem IPM iterations

25fv47 22 gfrd-pnc 18 scorpion 13
80bau3b 30 greenbea 38 scrs8 20
adlittle 12 greenbeb 33 scsd1 10
afiro 9 grow15 12 scsd6 11
agg 22 grow22 12 scsd8 9
agg2 18 grow7 10 sctap1 13
agg3 21 israel 23 sctap2 15
bandm 16 kb2 17 sctap3 15
beaconfd 8 lotfi 14 share1b 22
blend 11 maros 27 share2b 14
bnl1 25 maros-r7 9 shell 16
bnl2 28 modszk1 23 ship04l 13
bore3d 16 perold 42 ship04s 17
brandy 19 pilot 22 ship08l 14
capri 19 pilot.ja 46 ship08s 14
cycle 25 pilot.we 48 ship12l 19
czprob 32 pilot4 35 ship12s 17
d2q06c 28 pilot87 26 sierra 16
d6cube 22 pilotnov 19 stair 16
degen2 13 qap8 9 standata 9
degen3 19 recipe 9 standgub 9
e226 18 sc105 10 standmps 13
etamacro 24 sc205 11 stocfor1 10
fffff800 30 sc50a 10 stocfor2 16
finnis 19 sc50b 9 truss 17
fit1d 14 scagr25 14 tuff 21
fit1p 13 scagr7 13 vtp.base 10
fit2d 18 scfxm1 18 wood1p 13
fit2p 18 scfxm2 20 woodw 21
ganges 13 scfxm3 20

In order to be a bit more definitive, we ran a simple linear regression with the
IPM iterations of the postprocessed problem as the dependent variable and logC(d) as
the independent variable, for the 72 NETLIB problems which have a finite condition
measure after preprocessing. For the purposes of the regression computation we used
the geometric mean of the lower and upper estimates of the condition measure from
the last two columns of Table 4.4. The resulting linear regression equation is

IPM Iterations = 4.1223 + 1.7490 logC(d),

with R2 = 0.4160. This indicates that in the sample of 72 NETLIB suite problem
instances whose postprocessed condition measure is finite, about 42% of the variation
in IPM iterations among these problems is accounted for by logC(d) of the postpro-
cessed problem instance. A plot of this regression line is shown in Figure 4.3, where
once again the 17 problems that are ill-posed are shown in the figure on the far right
as a visual aid. Both coefficients of this simple linear regression are significant at the
95% confidence level; see the regression statistics shown in Table 4.8.

The above regression analysis indicates that logC(d) accounts for 42% of the
variation in IPM iteration counts among those NETLIB suite problem instances with
finite postprocessed condition measure. However, recall that the complexity theory of
interior-point methods bounds the number of IPM iterations by O(

√
ϑ log(C(d)+· · ·)).

The factor
√
ϑ in the complexity bound seems to be a fixture of the theory of self-

concordant barrier functions (see [14]), despite the belief that such dependence is not
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Fig. 4.2. Scatter plot of IPM iterations and logC(d) for 89 NETLIB problems after prepro-
cessing, using CPLEX 7.1.
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Fig. 4.3. Linear regression of IPM iterations and logC(d) for 72 NETLIB problems with finite
condition measure after preprocessing, using CPLEX 7.1 (using the geometric mean of the lower
and upper bound estimates of C(d)).
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Table 4.8
Statistics for the linear regression of IPM iterations and logC(d).

Coefficient Value t-statistic 95% Confidence interval

β0 4.1223 2.2480 [ 0.4650 , 7.7796 ]
β1 1.7490 7.0620 [ 1.2551 , 2.2430 ]
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Fig. 4.4. Scatter plot of IPM iterations and
√
ϑ logC(d) for 89 NETLIB problems after pre-

processing, using CPLEX 7.1.

borne out in practice. Nevertheless, one can also ask whether
√
ϑ logC(d) as opposed

to logC(d) might better account for the variation in IPM iteration counts among the
NETLIB suite problems. We now address this question. Figure 4.4 shows a scatter
plot of the number of IPM iterations taken by CPLEX 7.1 to solve the 89 problems in
the NETLIB suite after preprocessing and

√
ϑ logC(d) of the postprocessed problems.

(The horizontal lines refer to the range of the lower and upper estimates of C(d) from
the last two columns of Table 4.4; also, problems with infinite condition measure are
shown in the figure on the far right as a visual aid.) We also ran a simple linear
regression of IPM iterations of the postprocessed problem as the dependent variable
and
√
ϑ logC(d) as the independent variable, again for the 72 NETLIB problems which

have a finite condition measure after preprocessing. The resulting linear regression
equation is

IPM Iterations = 11.7903 + 0.0195
√
ϑ logC(d),

with R2 = 0.3021. A plot of this regression is shown in Figure 4.5, and Table 4.9
shows the regression statistics. Notice that R2 = 0.3021 for the

√
ϑ logC(d) regression

model, which is inferior to R2 = 0.4160 for the logC(d) regression model. These
results indicate that among the 72 NETLIB suite postprocessed problem instances
with finite condition measure, logC(d) is better than

√
ϑ logC(d) at accounting for

the variation in IPM iterations for these NETLIB suite problems.
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Fig. 4.5. Linear regression of IPM iterations and
√
ϑ logC(d) for 72 NETLIB problems with

finite condition measure after preprocessing, using CPLEX 7.1 (using the geometric mean of the
lower and upper bound estimates of C(d)).

Table 4.9
Statistics for the linear regression of IPM iterations and

√
ϑ logC(d).

Coefficient Value t-statistic 95% Confidence interval

β0 11.7903 11.2667 [ 9.7031 , 13.8774 ]
β1 0.0195 5.5046 [ 0.0124 , 0.0266 ]

Table 4.10
Sample correlations for 72 NETLIB suite problems after preprocessing by CPLEX 7.1 (using

the geometric mean of the lower and upper bound estimates of C(d)).

IPM iterations logC(d) logn logm log ϑ
√
ϑ

IPM iterations 1.000
logC(d) 0.645 1.000

logn 0.383 0.217 1.000
logm 0.432 0.371 0.777 1.000
log ϑ 0.398 0.224 0.991 0.808 1.000√

ϑ 0.311 0.093 0.909 0.669 0.918 1.000

We also computed the sample correlation coefficients of the IPM iterations from
Table 4.7 with the following dimensional measures for the 72 problems in the NETLIB
suite with finite condition measure of the postprocessed problem instance: logm,
log n, log ϑ, and

√
ϑ. The resulting sample correlations are shown in Table 4.10.

Observe from Table 4.10 that IPM iterations are better correlated with logC(d) than
with any of the other measures. The closest other measure is logm, for which R =
0.432, and so a linear regression of IPM iterations as a function of logm would yield
R2 = (0.432)2 = 0.187, which is decidedly less than R2 = 0.4160 for logC(d). Also,
note from Table 4.10 that both log ϑ and

√
ϑ by themselves are significantly less

correlated with the IPM iterations than logC(d).
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4.4. Controlled perturbations of problems in the NETLIB suite. One
potential drawback of the analysis in subsection 4.3 is that in making comparisons of
problem instances with different condition measures one necessarily fails to keep the
problem size or structure invariant. Herein, we attempt to circumvent this drawback
by performing controlled perturbations of linear optimization problems, which allows
one to keep the problem size and structure intact.

Consider a problem instance d = (A, b, c) and the computation of the primal and
dual distances to ill-posedness ρP (d) and ρD(d). It is fairly straightforward to show
that if (i∗, j∗, y∗, (s+)∗, (s−)∗, v∗) is an optimal solution of (3.14), then the rank-1
data perturbation

∆d = (∆A,∆b,∆c) :=
(−j∗ei∗(Aty∗ + (s+)∗ − (s−)∗)t,−j∗ei∗(bty∗ − v∗), 0)(4.2)

is a minimum-norm perturbation for which ρP (d + ∆d) = 0 (where ei
∗
denotes the

(i∗)th unit vector in Rm). That is, ‖∆d‖ = ρP (d), and the data instance d̃ := d+∆d
is primal ill-posed.

The simple construction shown in (4.2) allows one to construct a controlled per-
turbation of the data instance d. Consider the family of data instances dα := d+α∆d
for α ∈ [0, 1]. Then if ρD(d) ≥ ρP (d) > 0, it follows that ρ(dα) = (1 − α)ρ(d) for
α ∈ [0, 1], and we can bound the condition measure of dα as follows:

C(dα) =
‖d+ α∆d‖
(1− α)ρ(d) ≥

‖d‖ − αρ(d)
(1− α)ρ(d) ,

where the numerator satisfies ‖d‖ − αρ(d) ≥ 0 for α ∈ [0, 1]. In the case when
‖d‖ > ρ(d) (satisfied by all problem instances in the NETLIB suite) we can create a
family of data instances for which C(dα) → ∞ as α → 1 by varying α in the range
[0, 1], all the while keeping the problem dimensions, the structure of the cone CY , and
the ground set P invariant.

To illustrate, consider the problem scagr25 from the NETLIB suite, and let d̄
denote the data for this problem instance after preprocessing. According to Table
4.4, ρD(d̄) = 0.049075 ≥ 0.021191 = ρP (d̄) > 0. Now let ∆d̄ be the perturbation
of this data instance according to (4.2). If we solve the resulting perturbed problem
instances d̄α for select values of α ∈ [0, 1] and record the number of IPM iterations,
we obtain the results portrayed in Figure 4.6. As the figure shows, the number of
IPM iterations grows as the perturbed problem instance becomes more ill-posed.

The pattern of growth in IPM iterations as the perturbed problem becomes more
ill-posed is not shared by all problem instances in the NETLIB suite. Figure 4.7
shows the plot of IPM iterations for problem e226 as the perturbed problem instance
becomes more ill-posed. For this problem instance the growth in IPM iterations is
not monotone.

Of the 72 postprocessed problems in the NETLIB suite with finite condition
measure, 59 of these problems satisfy ρD(d) ≥ ρP (d) > 0 and ‖d‖ > ρ(d), and so
are amenable to analysis via the construction described above. For a given problem
instance in the NETLIB suite, let kα denote the number of IPM iterations needed to
solve the perturbed postprocessed problem instance d̄α. Then

∆k := k1 − k0
is the difference between the IPM iterations needed to solve the unperturbed and
fully perturbed problem instances. Table 4.11 shows some summary statistics of the
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Fig. 4.6. The number of IPM iterations needed to solve the perturbed postprocessed problem
instance scagr25, as a function of the perturbation scalar α.
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Fig. 4.7. The number of IPM iterations needed to solve the perturbed postprocessed problem
instance e226, as a function of the perturbation scalar α.

distribution of ∆k for the 59 problems in the NETLIB suite that are readily amenable
to this analysis. As the table shows, the fully perturbed problem instance has a larger
IPM iteration count in 68% (40 out of 59) of the problem instances. Curiously, the
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Table 4.11
The distribution of the change in IPM iterations needed to solve the unperturbed problem in-

stance and the fully perturbed problem instance for 59 postprocessed problems in the NETLIB suite.

Change in IPM iterations Number of
(∆k) problem instances

−1 or less 11
0 8

1 to 5 13
6 to 10 9

11 or more 18

Total 59

number of IPM iterations is actually less for the fully perturbed problem instance in
19% (11 out of 59) problem instances amenable to this analysis. A rough summary of
the results in Table 4.11 is that the number of IPM iterations for the fully perturbed
problem increases dramatically (more than 10 iterations) on 31% of the problem
instances, increases modestly (1–10 iterations) on 37% of the problem instances, and
remains the same or decreases slightly on 32% of problem instances.

5. Discussion and open questions. The purpose of this paper has been to
study condition measures for linear optimization on problem instances that one might
encounter in practice. We used the NETLIB suite of linear optimization problems
as a test bed for condition measure computation and analysis, and we computed
condition measures for 89 original NETLIB suite problem instances, as well as for
the corresponding problem instances after preprocessing by CPLEX 7.1. We then
investigated the extent to which the condition measure provides some explanatory
value for the (already small) variance in the observed IPM iterations among problem
instances in the NETLIB suite.

Except for certain classes of structured LP problems (see [12]), there is not yet a
clear practical understanding (nor a theory) to explain the variation in the iteration
counts of IPM algorithms (either theoretical or practical) on different LP instances.
Herein we have explored the extent to which condition measures provide explanatory
value for this variation. The scatter-plot in Figure 4.2 indicates that problem instances
with large IPM iteration counts must have large condition measures. However, the
converse of this assertion is not supported by the data; there are problem instances
that have a high condition measure and low IPM iteration counts, for example, agg2,
recipe, and some of the controlled-perturbation instances of section 4.4 with large
condition measure.

It is easy to construct families of LP instances with ever-larger condition measures,
whose IPM iteration counts do not grow excessively (see section 4.4). However, despite
much effort, we have been unable to construct a family of problem instances with ever-
larger practical IPM iteration counts but whose condition measures remains bounded.
The existence of such a family is an open question.

The scatter-plot in Figure 4.2 indicates visually that there is a linear relationship
between logC(d) and IPM iterations, and such a relationship is borne out by simple
linear regression, with a resulting R2 = 0.4160. However, in performing the regression
analysis, there was no satisfactory way to include the 17 data instances with nonfinite
(postprocessed) condition measures, and so these were removed, arguably biasing
the results in favor of the explanatory value of the condition measure. A similar
criticism can be made for the sample correlation coefficients computed in Table 4.10.
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However, we feel that, at least on a relative basis, the results in Table 4.10 point to the
conclusion that the condition measure does a better job of explaining the variation in
IPM iteration counts than do any of the obvious reasonable alternative measures of
problem size: log n, logm, log ϑ, or

√
ϑ.

This work is a first attempt at explaining the observed performance of modern
IPM solvers using condition measures that arise in the worst-case complexity analysis
of interior-point methods. There are a variety of other instance-specific measures
that have been used to bound the theoretical complexity of interior-point methods
for linear optimization, including the bit-size L (see Karmarkar [11]), χ̄A (see Vavasis
and Ye [26]), σ (see Ye [31]), and g and Dε [6]. One natural question to ask is whether
these or perhaps other measures might further explain the observed performance of
IPM solvers.

Finally, the theory of condition measures referenced herein pertains to the very
general class of conic convex optimization problems (and some formats for nonconic
convex optimization problems as well), including semidefinite programming (SDP).
Given the importance of SDP and the continuing development of IPM software for
SDP, it is natural to ask to what extent condition measures (or other measures) might
explain the observed performance of IPM solvers for SDP.
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Abstract. In this paper a general optimal control problem with pure state and mixed control-
state constraints is considered. These constraints are of the form of set-inclusions. Second-order
necessary optimality conditions for weak local minimum are derived for this problem in terms of the
original data. In particular the nonemptiness of the set of critical directions and the evaluation of its
support function are expressed in terms of the given functions and set-valued maps. In order that
the Lagrange multiplier corresponding to the mixed control-state inclusion constraint be represented
via an integrable function, a strong normality condition involving the notion of the critical tangent
cone is introduced.

Key words. first- and second-order optimality conditions, critical cone, critical tangent cone,
set-valued constraints
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1. Introduction. Consider the following optimization problem:

Minimize F (z) subject to G(z) ∈ Q, H(z) = 0,(P)

where F : D→ R, G : D→ X, H : D→ Y , and X, Y , Z are Banach spaces, D ⊂ Z
is nonempty and open, and Q ⊂ X is a closed convex set with nonempty interior.

The prototype of such problems arises, for instance, in optimal control theory
with control and/or state constraints in the inclusion form x(t) ∈ Q(t).

Better understanding of optimality conditions is an ongoing topic of research for
several researchers. This question is of great value in theory and in applications.
Usually, such conditions must be given in terms of the original data of the problem
and, in the context of necessity, are expected to be as strong as they can be.

In 1988, Kawasaki [Kaw88a], [Kaw91] discovered, for the problem (P), where Q
is a cone, second-order necessary conditions that contain an extra term manifest-
ing the presence of infinitely many inequalities in the constraint G(z) ∈ Q. This
phenomenon is known as the “envelope-like effect” and extends the results found in
[BT80] and [BTZ82]. Such a result was generalized by Cominetti in [Com90]. Both
results assumed a Mangasarian–Fromovitz-type condition.

In [PZ94a] the authors generalized the results of [Kaw88a], [Kaw91], [Kaw92], and
[Com90] to the nondifferentiable case without assuming a Mangasarian–Fromovitz
condition. The second-order admissible variation set used therein (defined first by
Dubovitskii and Milyutin in [DM63] and [DM65]) is described in the following defini-
tion.
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Definition. Let X be a normed space, Q ⊂ X, x ∈ Q, and d ∈ X. A vector
v ∈ X is called a second-order admissible variation of Q at x in the direction d if
there exists ε > 0 such that

x+ εd+ ε2(v + u) ∈ Q for all 0 < ε < ε, ‖u‖ < ε, u ∈ X.

The set of all such variations is denoted by V (x, d|Q). It follows directly from the
definition that V (x, d|Q) is an open set. If Q is also convex, then V (x, d|Q) is convex
as well.

In order to derive meaningful second-order optimality conditions, it is necessary
to select directions d that guarantee the nonemptiness of V (x, d|Q). Such directions
d ∈ X are labeled as the critical directions of Q at x and form a set called the critical
direction cone to Q at x. Throughout this paper, this cone will be denoted by C(x|Q).
It can be easily seen that C(x|Q) is a convex cone if Q is convex.

Define

S(x|Q) := cone(Q− x) := {λ(q − x) | q ∈ Q, λ > 0}
and its closure

T (x|Q) := cone(Q− x) = clS(x|Q).

If Q is convex, then for the nonemptiness of V it is necessary, but not sufficient,
that the interior of Q be nonempty and that d belong to T (x|Q). However, the
nonemptiness of V is assured if intrQ 	= ∅ and d ∈ S(x|Q). Therefore, for convex Q,
we have

S(x|Q) ⊂ C(x|Q) ⊂ T (x|Q).

In the applications, when the inequality-type constraint is expressed in terms of
several inclusions and inequalities, it is useful to know the following easy-to-establish
product rules:

C(x|Q) =
k∏
i=1

C(xi|Qi) and V (x, d|Q) =

k∏
i=1

V (xi, di|Qi),

where Q1, . . . ,Qk are subsets of vector spaces, Q := Q1×· · ·×Qk, x = (x1, . . . , xk) ∈
Q, d = (d1, . . . , dk) ∈ C(x|Q).

In order to recall the first- and second-order necessary conditions for (P) obtained
in [PZ94a, Corollary 2] and in [PZ96], we need to introduce the following notation
and notions.

• A point ẑ ∈ D is called an admissible point for (P) if G(ẑ) ∈ Q and H(ẑ) = 0
hold. A point ẑ ∈ D is a solution (local minimum) of the problem if it is
admissible and there exists a neighborhood U of ẑ such that F (z) ≥ F (ẑ) for
all admissible points z ∈ U .

• A point ẑ ∈ D is called a regular point for (P) if F , G, and H are strictly
Fréchet differentiable at ẑ and the range of the linear operator H ′(ẑ) is a
closed subspace of Y .

Let ẑ be an admissible regular point for (P) and d ∈ Z.
• A vector δz ∈ Z is called a critical direction at ẑ for (P) if

F ′(ẑ)δz ≤ 0, G′(ẑ)δz ∈ C(G(ẑ)|Q), H ′(ẑ)δz = 0.
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• A vector δz ∈ Z is called a regular direction at ẑ for (P) if the second-order
directional derivative of L := (F,G,H),

L′′(ẑ, δz) := lim
ε→0+

2
L(ẑ + εδz)− L(ẑ)− εL′(ẑ)δz

ε2
,

exists.
Clearly, the zero vector is always a regular critical direction at ẑ for (P).

Now we are ready to state a particular case of the result of [PZ94a, Corollary 2].
Theorem 1.1. Let ẑ be a regular local solution of the above problem (P). Then,

for all regular critical directions δz, there correspond Lagrange multipliers λ ≥ 0,
x∗ ∈ X∗, and y∗ ∈ Y ∗ (which depend on δz) such that at least one of them is
different from zero and the following relations hold:

x∗ ∈ N(G(ẑ)|Q),(1.1)

λF ′(ẑ)z + 〈x∗, G′(ẑ)z〉+ 〈y∗, H ′(ẑ)z〉 = 0 for z ∈ Z,(1.2)

and

λF ′′(ẑ, δz) + 〈x∗, G′′(ẑ, δz)〉+ 〈y∗, H ′′(ẑ, δz)〉 ≥ 2δ∗
(
x∗∣∣V (G(ẑ), G′(ẑ)δz|Q)

)
.(1.3)

(Here δ∗ denotes the support functional defined by δ∗(x∗|V ) := supv∈V 〈x∗, v〉
for (x∗ ∈ X∗), and N(x|Q) denotes the adjoint cone of T (x|Q), that is, the cone of
outward normals to the set Q at the point x.)

As we have seen, the criticality of δz requires that d ∈ C(x|Q), where x := G(ẑ)
and d := G′(ẑ)δz. However, in order that d be in C(x|Q), it is only necessary
that Q have a nonempty interior and that d belong to T (x|Q). If d ∈ S(x|Q),
then V (x, d|Q) is nonempty and V (x, d|Q) = cone(cone(intrQ− x)− d) (cf. [PZ94a,
Theorem 4]). In this case the right-hand side in the second-order condition (1.3)
vanishes. However, examples are provided by Kawasaki [Kaw88a] which show that
the necessary conditions with extra term, that is, when d ∈ T (x|Q), handle situations
that cannot be handled with previous results where d is taken from S(x|Q). Thus,
one has to also consider directions d ∈ T (x|Q) \ cone(Q− x). In this important case
two questions naturally arise from Theorem 1.1:

(i) How can we check the nonemptiness of V (x, d|Q); that is, how can the critical
cone C(x|Q) be characterized in terms of Q?

(ii) How can we evaluate the support function of V (x, d|Q)?
A significant setting is the case when Q is a subset of C(T,Rκ) defined by

Q = selC(Q) := { x ∈ C(T,Rκ) | x(t) ∈ Q(t) for all t ∈ T },(1.4)

where Q is a lower semicontinuous set-valued map whose images are closed, convex
sets with nonempty interior, and T is a compact Hausdorff space. The importance of
this type of constraint stems from control problems with state constraints.

Another case of interest is when Q is a subset of L∞(Ω,Rγ) defined by

Q = sel∞(Q) := { x ∈ L∞(Ω,Rγ) | x(t) ∈ Q(t) for a.e. t ∈ Ω },(1.5)

where Q is a measurable set-valued map whose images are closed and have nonempty
interior, and (Ω,A, ν) is a complete finite measure space. This type of constraint is
typical for control constraints in control problems.
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The main goal of this paper is to investigate these two types of constraints so
that the application of Theorem 1.1 to optimal control problems leads to weak-local
optimality necessary conditions that are phrased in terms of the original data; part of
these results is announced in [PZ01]. However, given the fact that the state variable
x and the control variable u belong to different spaces, it has been known for a long
time (see, e.g., [PZ94b, Theorem 3]) that to obtain a result for an optimal control
problem by applying an abstract result like Theorem 1.1, one should first derive a
specialized version of that abstract result that takes into account the distinct features
of each of these variables. Such a result has been developed in [PZ94b] and will be
recalled in the next section.

Since, for control problems, the constraint set Q could be a product of different
types of constraints, that is, endpoint set-inclusion, control and state set-inclusion,
therefore, we shall need the following sum rule for the extra term in (1.3):

δ∗(x∗|V (x, d|Q)) =

k∑
i=1

δ∗(x∗
i |V (xi, di|Qi)),

where Q1, . . . ,Qk are subsets of vector spaces, Q := Q1×· · ·×Qk, x = (x1, . . . , xk) ∈
Q, d = (d1, . . . , dk) ∈ C(x|Q), and x∗ = (x∗

1, . . . , x
∗
k).

The paper is divided as follows. In section 2, auxiliary results needed for the
main result are presented. In particular, when Q is given by (1.4) or (1.5), we recall
the characterizations of both normal and critical cones (N(x|Q) and C(x|Q)), and
the evaluation of the support function of V (x, d|Q) in terms of the images of the set-
valued map Q. Also, we state a special version of Theorem 1.1 which is tailored for
the abstract control setting and which will be used later in proving the main result.
However, when Q is given by (1.5), the multiplier x∗ in Theorem 1.1 corresponding to
the set inclusion constraint is in general in (L∞(Ω,Rγ))∗. Therefore, it is important
in this case to obtain a reasonable sufficiency criterion for x∗ to be represented by an
integrable function. This is accomplished in section 3 by using a uniform solvability
criterion. In section 4, the results of the preceding sections are used to obtain second-
order necessary conditions for optimality in a general optimal control problem with
control and state set-valued constraints. These conditions are phrased in terms of
the critical tangent cone. A specialization of Theorem 4.1 to the case of inequality
constraints is presented in Corollary 4.1. Therein, only the extra term corresponding
to the pure-state constraints remains present. This term is phrased in terms of the
function σ defined in (2.14). Finally, a numerical example is provided at the end of
section 4 in order to illustrate the utility of these results.

2. Auxiliary results. When dealing with control problems, there are two spe-
cial cases for X and Q where the characterization of the critical cone C(x|Q) and the
evaluation of the support function of V (x, d|Q) are imperative.

The first setting considers X = C(T,Rκ), where T = (T, ρ) is a compact metric
space, and Q : T → 2R

κ

is a lower semicontinuous set-valued function whose images
are closed and convex with nonempty interior. Define the Q ⊂ C(T,Rκ) as the set of
continuous selections of Q by

Q = selC(Q) := {x ∈ C(T,Rκ) | x(t) ∈ Q(t) for t ∈ T}.(2.1)

Then selC(Q) is a closed convex set of C(T,Rκ).
Regarding Q = selC(Q), a thorough study of convex analysis concepts (normal

and tangent cones, support function, etc.) was developed in [PZ99a]. For instance, if
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we denote by dµ
d|µ| the Radon–Nikodým derivative of µ with respect to |µ|, it is shown

that

µ ∈ N(x| selC(Q)) if and only if
dµ

d|µ| (t) ∈ N(x(t)|Q(t)) for µ-a.e. t ∈ T .

(2.2)

Results concerning the second-order admissible variations, critical cone, and ap-
plication to abstract optimization were derived in [PZ98]. The nonemptiness of the
interior of the images of the set-valued function Q implies, by [PZ99a, Theorem 4.2],
that selC(Q) has a nonempty interior, too. A characterization of the set of critical
directions is offered by the following results from [PZ98, Theorem 3.5, Lemmas 3.6
and 3.8]. Note that condition (2.3) below needs to be verified for ξ ∈ Rκ, i.e., over a
finite-dimensional space.

Theorem 2.1. Let x ∈ selC(Q). Then d ∈ C(T,Rκ) is in the critical cone
C(x| selC(Q)) if and only if there exists a constant M > 0 such that, for all t ∈ T ,

〈ξ, d(t)〉2 ≤M |ξ|(δ∗(ξ|Q(t))− 〈ξ, x(t)〉) whenever ξ ∈ Rκ and 〈ξ, d(t)〉 > 0.

(2.3)

A consequence of Theorem 2.1 concerns the connection between C(x| selC(Q)) and
the set-valued mapping t �→ C(x(t)|Q(t)). From Theorem 2.1 applied to Q := Q(t),
T = {t}, and d = d(t) (where t is kept fixed), it results that d(t) ∈ C(x(t)|Q(t))
is equivalent to the fact that (2.3) holds for some constant Mt > 0. Therefore,
Theorem 2.1 can be reformulated as follows:

A continuous function d belongs to C(x| selC(Q)) if and only if

d(t) ∈ C(x(t)|Q(t)) (t ∈ T ),(2.4)

and the corresponding constants Mt from (2.3) can be chosen to be uniformly bounded.

When (2.3) is valid for some constant M and for all t ∈ T , then we say that (2.4)
holds uniformly in t ∈ T .

The second special setting is when X = L∞(Ω,Rγ), where (Ω,A, ν) is a complete
finite measure space, and Q : Ω → 2R

γ

is a measurable set-valued function whose
images are closed sets with nonempty interior and sel∞(Q) is defined by

Q = sel∞(Q) := {x ∈ L∞(Ω,Rγ) | x(t) ∈ Q(t) for a.e. t ∈ Ω}.

For this case, the concept of convex analysis was studied in [PZ99b], [PZ99c]. In
particular, for x ∈ sel∞(Q) and for ϕ ∈ L1(Ω,Rγ),

ϕ ∈ N(x| sel∞(Q)) if and only if ϕ(t) ∈ N(x(t)|Q(t)) for a.e. t ∈ Ω.
(2.5)

For the second-order admissible variations, critical cone, and the application to second-
order optimality conditions in an abstract setting, results were obtained in [PZ00].

In order that the interior of sel∞(Q) be nonempty it is necessary and sufficient
(by [PZ99c, Theorem 3]; see also [PZ99b]) to assume that Q satisfies

∃r ≥ ρ > 0 and, for a.e. t ∈ Ω, ∃xt ∈ Rγ such that Bρ(xt) ⊂ Q(t) ∩Br,(2.6)
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where Bρ(x) stands for the ball centered at x of radius ρ, and Br stands for the ball
centered at 0 of radius r.

The following consists of a characterization of C(x| sel∞(Q)). It provides a veri-
fiable condition over a finite-dimensional space. As was the case in Theorem 2.1 for
the space of continuous functions, (2.7) below is to be checked for elements ξ ∈ Rγ
even though the underlying space is L∞(Ω,Rγ).

Theorem 2.2. Let Q : Ω → 2R
γ

be a measurable set-valued map whose images
are closed convex sets and satisfy (2.6). Let x ∈ sel∞(Q) and d ∈ L∞(Ω,Rγ). Then
d ∈ C(x| sel∞(Q)) if and only if there exists a constant M > 0 such that, for a.e.
t ∈ Ω, the following condition is valid:

〈ξ, d(t)〉2 ≤M |ξ|(δ∗(ξ|Q(t))− 〈ξ, x(t)〉) whenever ξ ∈ Rγ and 〈ξ, d(t)〉 > 0.

(2.7)

From Theorem 2.2 it readily follows that, for a.e. t ∈ Ω, d(t) ∈ C(x(t)|Q(t)) if and
only if (2.7) holds for some Mt > 0 on the domain indicated. Therefore, Theorem 2.2
can be rephrased as

A bounded measurable function d belongs to C(x| sel∞(Q)) if and only if

d(t) ∈ C(x(t)|Q(t)) for a.e. (t ∈ Ω),(2.8)

and the corresponding constants Mt from (2.7) can be chosen to be uniformly bounded
on a set of full measure.

When (2.7) is valid for some constant M and for a.e. t ∈ Ω, then we say that
(2.8) holds almost uniformly on Ω.

The rest of this section is devoted to recalling the results on the calculation of
the support functional to the second-order admissible variation set of selC(Q) and
sel∞(Q), respectively.

We introduce the following notation. Let Q be a subset of Rγ , x ∈ Q, and d ∈ Rγ .
Denote

E(x, d|Q)(ξ) :=
〈ξ, d〉2

4[〈ξ, x〉 − δ∗(ξ|Q)]
for ξ ∈ Rγ such that ξ 	∈ N(x|Q).

Note that E(x, d|Q)(ξ) is well defined, because 〈ξ, x〉 − δ∗(ξ|Q) 	= 0 if and only if
ξ 	∈ N(x|Q). If d ∈ T (x|Q) and 〈ξ, d〉 > 0, then ξ 	∈ N(x|Q); hence, in this case,
E(x, d|Q)(ξ) is defined for 〈ξ, d〉 > 0.

Set

d⊥ := {ξ ∈ Rγ | 〈ξ, d〉 = 0}, d> := {ξ ∈ Rγ | 〈ξ, d〉 > 0},
and define from R

γ to the extended reals the function

EEE(x, d|Q)(ξ) :=




lim inf
ζ → ξ
ζ ∈ d>

E(x, d|Q)(ζ) if ξ ∈ N(x|Q) ∩ d⊥,
+∞, otherwise.

(2.9)

One can see that EEE(x, d|Q)(·) is a positively homogeneous and also lower semicontin-
uous function on Rγ \ {0}.

Define the convex regularization coEEE(x, d|Q)(·) to be the largest lower semicon-
tinuous convex function below EEE(x, d|Q)(·); that is,

coEEE(x, d|Q)(ξ) = sup{ ϕ(ξ) | ϕ : Rγ → [−∞,∞] is convex and lsc,

ϕ(ζ) ≤ EEE(x, d|Q)(ζ)∀ζ ∈ Rγ \ {0} }.
It results that coEEE(x, d|Q)(·) is also sublinear.
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The following result offers an evaluation of the support function of the set
V (x, d| sel∞(Q)) at linear functionals that can be represented in terms of integrable
functions (cf. [PZ00, Corollary 2.7]).

Theorem 2.3. Let Q be a closed convex set–valued measurable set-valued map
on Ω, x ∈ sel∞(Q), and d ∈ C(x| sel∞(Q)), and let ϕ ∈ L1(Ω,Rγ). Then

δ∗
(
ϕ
∣∣V (x, d| sel∞(Q))

)
=

∫
Ω

coEEE
(
x(t), d(t)|Q(t)

)
(ϕ(t)) dν(t).(2.10)

A common type of constraint is when Q comes from inequality constraints, that
is, when Q(t) = Rγ− for all t ∈ Ω. In this case the description of the critical cone and
the evaluation of the support function simplify drastically.

Corollary 2.1. Let x ∈ sel∞(Rγ−). Then a bounded measurable function d =
(d1, . . . , dγ) : Ω→ R

γ is in C(x| sel∞(Rγ−)) if and only if
(i) there exists a constant M ≥ 0 such that, for all i = 1, . . . , γ and for a.e.

t ∈ Ω, d2
i (t) ≤ −Mxi(t) whenever xi(t) ≤ 0 and di(t) > 0 hold;

(ii) for a.e. t ∈ Ω with xi(t) = 0, we have di(t) ≤ 0.
Furthermore, let x ∈ sel∞(Rγ−), d ∈ C(x| sel∞(Rγ−)), and let ϕ : Ω → R

γ
+ be an

integrable function such that ϕT (t)x(t) = 0 and ϕT (t)d(t) = 0 for a.e. t ∈ Ω. Then

δ∗
(
ϕ|V (x, d| sel∞(Rγ−))

)
= 0.(2.11)

Proof. Using the product rule for the critical cone and the first part of [PZ94b,
Lemma 7], we get that the inclusion d ∈ C(x| sel∞(Rγ−)) is characterized by conditions
(i) and (ii).

Observe that the nonnegativity of ϕ and the conditions ϕTx = 0 and ϕT d = 0
yield that ϕTi xi = 0 and ϕTi di = 0 for all i = 1, . . . , γ almost everywhere in Ω.
Thus, applying the sum rule for the evaluation of the support function of second-
order variation sets and the second part of [PZ94b, Lemma 7], the second statement
of the corollary will follow.

The analogous result for the case of Q = selC(Q) requires more involved notions
(see [PZ98]). Let T be a compact metric space, and let Q : T → 2R

κ

be a set-
valued function whose images are closed and convex sets with nonempty interior. Let
x ∈ selC(Q) and d ∈ C(x| selC(Q)). Denote by d# : T → 2R

κ

the following set-valued
function:

d#(t) = { ξ ∈ Rκ | ∃tn → t, ∃ξn → ξ with ξn ∈ d(tn)
> ∀n }.

Define

E(x, d|Q)(t, ξ):=




lim inf
(s, ζ) → (t, ξ)

ζ ∈ d(s)>

E(x(s), d(s)|Q(s))(ζ) if ξ ∈ N(x(t)|Q(t)) ∩ d(t)⊥ ∩ d#(t),

0 if ξ ∈ N(x(t)|Q(t)) ∩ d(t)⊥ \ d#(t),
+∞, otherwise.

(2.12)

Define the convex regularization coE(x, d|Q)(·, ·) to be the largest lower semicontin-
uous function ϕ : T × Rκ → [−∞,∞] below E(x, d|Q)(·, ·) such that, for each t ∈ T ,
the function ξ �→ ϕ(t, ξ) is convex on Rκ.

In the following result (cf. [PZ98, Theorem 3.10]), we describe how the support
functional of V (x, d| selC(Q)) can be evaluated in terms of coE.
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Theorem 2.4. Let T be a compact metric space, and let Q : T → 2R
κ

be a
lower semicontinuous set-valued function whose images are closed and convex with
nonempty interior. Let x ∈ selC(Q), d ∈ C(x| selC(Q)), and let µ be a bounded
vector-valued Borel measure on T . Then

δ∗
(
µ
∣∣V (x, d| selC(Q))

)
=

∫
T

coE(x, d|Q)

(
t,

dµ

d|µ| (t)
)
d|µ|(t),(2.13)

where dµ
d|µ| (·) is the Radon–Nikodým derivative of µ with respect to its total variation

|µ|.
For given continuous functions a, b : T → R, define σa,b : T → [−∞,∞] by

σa,b(t) :=




lim inf
τ → t

a(τ) < 0, b(τ) > 0

b2(τ)

4a(τ)
if t ∈ Ta=0, b=0 ∩ ∂(Ta<0, b>0),

0 if t ∈ Ta=0, b=0 \ ∂(Ta<0, b>0),
+∞, otherwise,

(2.14)

where

Ta=0, b=0 := {t ∈ T | a(t) = 0, b(t) = 0}, Ta<0, b>0 := {t ∈ T | a(t) < 0, b(t) > 0}.

Corollary 2.2. Let x = (x1, . . . , xκ) ∈ selC(R
κ
−). Then a continuous function

d = (d1, . . . , dκ) : T → R
κ is in C(x| selC(Rκ−)) if and only if

(i) there exists a constant M ≥ 0 such that, for all i = 1, . . . , κ and for all t ∈ T ,
d2
i (t) ≤ −Mxi(t) whenever xi(t) ≤ 0 and di(t) > 0 hold;

(ii) for all t ∈ T with xi(t) = 0, we have di(t) ≤ 0.
Furthermore, let x ∈ selC(R

κ
−), d ∈ C(x| selC(Rκ−)), and let µ = (µ1, . . . , µκ) be a

bounded vector-valued Borel measure on T with nonnegative components such that
suppµi ⊂ {t ∈ T |xi(t) = 0, di(t) = 0} for all i = 1, . . . , κ. Then

δ∗
(
µ
∣∣V (x, d| selC(Rκ−))

)
=

κ∑
i=1

∫
T

σxi,di(t) dµi(t).(2.15)

Proof. Using the product rule for the critical cone and [PZ98, Corollary 4.2(i)],
we get that the inclusion d ∈ C(x| selC(Rκ−)) is characterized by conditions (i) and
(ii).

Applying the sum rule for the evaluation of the support function of second-order
variation sets and [PZ98, Corollary 4.2(iv)], the second statement of the corollary will
also follow.

In the rest of this section we present second-order optimality conditions for the
following abstract control problems, which are a special form of the problem (P). This
problem allows the distinction between the control and the state variables:

Assume that X, U , Y , V , and W are Banach spaces (over R), and D ⊂ X × U
is nonempty and open. Let F : D → R, G : D → V , H : D → W , K : D → Y , and,
further, that Q ⊂ V is a closed convex set with nonempty interior. The problem (P)(P)(P)
is to minimize F (x, u) in (x, u) ∈ D subject to

(i) G(x, u) ∈ Q (Banach space–valued mixed state-control inequality and con-
trol set constraint),

(ii) H(x, u) = 0 (Banach space–valued mixed state-control equality),
(iii) K(x, u) = 0 (control system).
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The admissibility and optimality of a pair (x, u) ∈ D is defined similarly to that
of problem (P).

The second constraintG(x, u) ∈ Q is able to handle Banach space–valued inequal-
ities and control set constraint as well. For instance, if Q is a closed convex cone with
nonempty interior, then introducing the ordering ≤Q in V by x ≤Q y ⇐⇒ x− y ∈ Q,
one can see that our first constraint can be rewritten as G(x, u) ≤Q 0. On the other
hand the constraints u ∈ Q or x ∈ Q, where Q is a convex set with nonempty inte-
rior, are obviously a particular case of (i). In this case problem (P)(P)(P) specializes to the
mixed problem dealt with in [IT79, section 1.1.3, p. 70]. However, both the regularity
assumptions and the results are of a different nature from those in our case.

At this stage one cannot make any difference between the mixed state-control
equality and control system constraints. However, the difference becomes clear when
evoking the regularity conditions stated below.

A pair (x̂, û) ∈ D is called regular for problem (P)(P)(P) if the following conditions are
satisfied:
(R1) G is strictly Fréchet differentiable at (x̂, û);
(R2) H is strictly Fréchet differentiable at (x̂, û) and the partial Fréchet derivative

Hu(x̂, û) : U → W has the full rank property; that is, it has a bounded right
inverse;

(R3) K is strictly Fréchet differentiable at (x̂, û) and the equation is an abstract
control system at (x̂, û); i.e., the partial derivative Kx(x̂, û) is a Fredholm
operator and Ku(x̂, û) is compact.

We note that when K fulfills the above assumption at each point of D, then the
equation K = 0 will be called a (global) control system. It is worth noting that if K
is continuously Fréchet differentiable on D, Kx is a Fredholm operator, and D is a
connected set, then indKx is constant on D and hence the index of a control system
could be defined.

We indicate by Φ̂ the evaluation of the function Φ at (x̂, û).
Let (x̂, û) be a regular admissible pair for problem (P)(P)(P). A direction (δx, δu) ∈

X × U is called regular for our problem (P)(P)(P) at (x̂, û) if

(R4) the second-order directional derivatives Ĝ′′(δx,δu), Ĥ′′(δx,δu), and K̂′′(δx,δu)
of G,H, and K, respectively, exist at (x̂, û) in the direction (δx, δu).

A direction (δx, δu) ∈ X × U is called critical for (P)(P)(P) at (x̂, û) if

(C1) F̂xδx+ F̂uδu ≤ 0;

(C2) Ĝxδx+ Ĝuδu ∈ C(Ĝ|Q), Ĥxδx+ Ĥuδu = 0, K̂xδx+ K̂uδu = 0.
One can check that (δx, δu) = (0, 0) is always a regular and critical direction at

(x̂, û) for (P)(P)(P).
The next result is the multiplier rule for problem (P)(P)(P) obtained in [PZ94b, Theorem

3].
Theorem 2.5. Let (x̂, û) be a regular solution for problem (P)(P)(P). Then, for every

regular critical direction (δx, δu) ∈ X × U , there exist Lagrange multipliers v∗ ∈ V ∗,
w∗ ∈ W ∗, and y∗ ∈ Y ∗ such that at least one of them is different from zero and the
following relations hold:

〈v∗, v〉 ≤ 0 for v ∈ Q− Ĝ, 〈v∗, Ĝxδx+ Ĝuδu〉 = 0,(2.16)

λF̂x + v∗ ◦ Ĝx + w∗ ◦ Ĥx + y∗ ◦ K̂x = 0,(2.17)

λF̂u + v∗ ◦ Ĝu + w∗ ◦ Ĥu + y∗ ◦ K̂u = 0,(2.18)
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and

λF̂′′(δx, δu) +
〈
v∗, Ĝ′′(δx, δu)

〉
+
〈
w∗, Ĥ′′(δx, δu)

〉
+
〈
y∗, K̂′′(δx, δu)

〉
≥ 2δ∗

(
v∗
∣∣V (Ĝ, Ĝxδx+ Ĝuδu|Q)

)
.

(2.19)

3. Uniform solvability criteria. In the next result, we characterize the solv-
ability of a system of linear equations over cones in different ways.

Theorem 3.1. Let G ∈ Rγ×m, H ∈ Rδ×m, and D ∈ Rγ×q be matrices and let
C ⊂ Rq be a closed convex cone. Then the following four statements are equivalent to
each other:

(i) For all vectors v ∈ Rγ and w ∈ Rδ, there exist a ∈ Rm and c ∈ C such that

v = Ga−Dc and w = Ha.(3.1)

(ii) If ξ ∈ Rγ , η ∈ Rδ, then

ξTG+ ηTH = 0 and ξTD ∈ C◦(3.2)

are valid if and only if (ξ, η) = (0, 0). (Here C◦ denotes the polar cone of
C.)

(iii) There exists a constant τ > 0 such that

|ξTG+ ηTH|2 + [dist(ξTD,C◦)]2 ≥ τ |(ξ, η)|2 ((ξ, η) ∈ Rγ × Rδ).(3.3)

(iv) The matrix H is of full rank and there exist two maps a : Rγ × Rδ → R
m,

c : Rγ × Rδ → R
q and a constant ρ > 0 such that

Ga(v, w)−Dc(v, w) = v, Ha(v, w) = w, c(v, w) ∈ C ((v, w)∈Rγ × Rδ),
(3.4)

and ‖(HHT )−1‖ ≤ ρ,

|a(v, w)| ≤ ρ
[‖G‖+ ‖H‖]|(v, w)|,

|c(v, w)| ≤ ρ‖D‖|(v, w)| ((v, w) ∈ Rγ × Rδ).(3.5)

Moreover, if (iii) holds, then ρ can be chosen such that ρ ≤ 1/τ .
Remark 3.1. As we shall soon see in the proof below, the equivalence (i) ⇐⇒

(ii) ⇐⇒ (iii) and the implication (iv) =⇒ (i) are straightforward. Note that the
equivalence between (i) and (iv) could be obtained via an open-mapping theorem for
convex processes (i.e., the Robinson–Ursescu theorem). However, the main contribu-
tion of Theorem 3.1 lies in the implication (iii) =⇒ (iv), and more specifically in the
fact that the constant ρ turns out to be less than or equal to 1/τ , where τ is the
constant in (3.3). This fact becomes crucial when applying the result of Theorem 3.1
to data that consist of essentially bounded matrix-valued functions.

Proof. (i) ⇐⇒ (ii). Assume that (i) is true and let ξ ∈ Rγ and η ∈ Rδ such that
(3.2) holds. Let v ∈ Rγ and w ∈ Rδ be arbitrary. By (i), there exist a ∈ Rm and
c ∈ C such that (3.1) holds. Multiplying these equations by ξ and η, respectively, we
get

ξT v + ηTw = ξTGa− ξTDc+ ηTHa = −ξTDc ≥ 0.

Hence ξT v + ηTw ≥ 0 for all v and w. This implies that ξ = 0 and η = 0.
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Conversely, assume that (ii) holds but (i) is not true. Then the set

K := {(Ga−Dc,Ha) | a ∈ Rm, c ∈ C}
is a proper subcone of Rγ × Rδ. Thus, there exists (ξ, η) 	= (0, 0) such that (ξ, η) ∈
−K◦, that is,

ξT (Ga−Dc) + ηTHa ≥ 0

for all a ∈ Rm, c ∈ C. This yields the fact that (3.2) is valid. Hence, by (ii), ξ = 0
and η = 0. The contradiction shows that (ii) implies (i).

(ii)⇐⇒ (iii). If (ii) holds, then

ϕ(ξ, η) := |ξTG+ ηTH|2 + [dist(ξTD,C◦)]2 > 0

for all (ξ, η) 	= (0, 0). Hence, the infimum of ϕ on the unit sphere of Rγ×Rδ, which we
denote by τ , is positive. Using quadratic homogeneity, the statement of (iii) follows.
The reverse implication holds trivially.

Thus, we have obtained that conditions (i), (ii), and (iii) are equivalent.
(iii) =⇒ (iv). Putting ξ = 0 into (3.3), we get

|ηTH|2 ≥ τ |η|2, i.e., ηTHHT η ≥ τ |η|2 (η ∈ Rδ).
Hence, HHT is positive definite, invertible, and ‖(HHT )−1‖ ≤ ρ, where ρ := 1/τ .

Let v ∈ Rγ and w ∈ Rδ be fixed arbitrarily. Using the equivalence of (i) and (iii),
we can see that there exist x ∈ Rm and y ∈ C such that Gx−Dy = v and Hx = w.
Thus, the following optimization problem has a unique solution (x, y):

1

2

(‖x‖2 + ‖y‖2) −→ min w.r.t. Gx−Dy = v, Hx = w, y ∈ C.(3.6)

(The uniqueness follows from the strict convexity of the objective function.) Hence,
there are multipliers λ ≥ 0, ξ ∈ Rγ , η ∈ Rδ, and ζ ∈ C◦, not all zero, such that

λxT + ξTG+ ηTH = 0, λyT − ξTD + ζT = 0, ζT y = 0.(3.7)

If λ were zero, then ξTG+ ηTH = 0 and ξTD ∈ C◦, which, due to (3.3), yields ξ = 0,
η = 0. Thus also ζ = 0, which is a contradiction. Thus, we may assume that λ = 1.
Then

−(ξ, η)T (v, w) = −ξT (Gx−Dy)− ηTHx = −(ξTG+ ηTH)x+ (yT + ζT )y

= |ξTG+ ηTH|2 + |y|2 = |ξTG+ ηTH|2 + |DT ξ − ζ|2
≥ |ξTG+ ηTH|2 + [dist(ξTD,C◦)]2 ≥ τ |(ξ, η)|2.

Using the Cauchy–Schwarz inequality, this yields

|(ξ, η)||(v, w)| ≥ τ |(ξ, η)|2, i.e., |(ξ, η)| ≤ ρ|(v, w)|.
Hence

|x| = |GT ξ +HT η| ≤ ρ
[‖G‖+ ‖H‖]|(v, w)|(3.8)

and

|y|2 = yT (DT ξ − ζ) = |yTDT ξ| ≤ |y|‖D‖|ξ| =⇒ |y| ≤ ‖D‖|ξ| ≤ ρ‖D‖|(v, w)|.
(3.9)
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Define a(v, w) and c(v, w) (for fixed v ∈ Rγ and w ∈ Rδ) to be, respectively, the
solutions x and y of the optimization problem (3.6). Then the feasibility of (x, y)
yields (3.4); furthermore, the estimates (3.8) and (3.9) imply (3.5).

Finally, we note that the implication (iv) =⇒ (i) is obvious. Thus the proof of
the theorem is complete.

Now we apply the implication (iii) =⇒ (iv) of the above result to essentially
bounded matrix functions G, H, and D, where C is the nonnegative orthant in
R
q. Below, B denotes the σ-algebra of Borel sets. The notation x+ stands for the

nonnegative part of a real number x, that is, x+ := max(0, x).
Theorem 3.2. Let (Ω,A, ν) be a finite measure space, G : Ω→ R

γ×m, H : Ω→
R
δ×m, and let d1, . . . , dq : Ω → R

γ be bounded measurable functions. Assume that
there exists a constant τ > 0 such that, for a.e. t ∈ Ω,

|ξTG(t) + ηTH(t)|2 +
q∑
i=1

[
(ξT di(t))

+
]2
≥ τ |(ξ, η)|2 ((ξ, η) ∈ Rγ × Rδ).(3.10)

Then HHT : Ω→ R
δ×δ has a bounded measurable inverse, and there exist A×B×B-

measurable maps a : Ω×Rγ ×Rδ → R
m and c1, . . . , cq : Ω×Rγ ×Rδ → [0,∞) and a

constant R > 0 such that, for a.e. t ∈ Ω,

G(t)a(t, v, w) = v +

q∑
i=1

ci(t, v, w)di(t), H(t)a(t, v, w) = w ((v, w) ∈ Rγ × Rδ),
(3.11)

and

|a(t, v, w)| ≤ R|(v, w)|, ci(t, v, w) ≤ R|(v, w)| ((v, w) ∈ Rγ × Rδ, i = 1, . . . , q).
(3.12)

Proof. Set ρ := 1/τ ,

C := Rq+ = {c = (c1, . . . , cq) | c1, . . . , cq ≥ 0},
and D(t) := (d1(t), . . . , dq(t)) (t ∈ Ω).

Define the set-valued map Φ on Ω× Rγ × Rδ by
Φ(t, v, w) :=

{
(a, c)∈ Rm × C : H(t)a = w, G(t)a−D(t)c = v,

|a| ≤ ρ
[‖G‖∞ + ‖H‖∞

]|(v, w)|, |c| ≤ ρ‖D‖∞|(v, w)|
}
.

We show that, for a.e. t ∈ Ω, for all v ∈ Rγ , and for all w ∈ Rδ, the set Φ(t, v, w) is
nonempty.

Without loss of generality, we may assume that

‖G(t)‖ ≤ ‖G‖∞, ‖H(t)‖ ≤ ‖H‖∞, ‖D(t)‖ ≤ ‖D‖∞,

and (3.10) is valid for all t ∈ Ω. (In fact, (3.10) is valid on a subset of Ω, which is of
full measure and which we do not relabel.)

Since C◦ = {(c1, . . . , cq) | c1, . . . , cq ≤ 0}, then

dist(x,C◦) =
q∑
i=1

(x+
i )

2.
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Thus (3.10) yields, for all t ∈ Ω,

|ξTG(t) + ηTH(t)|2 + [dist(ξTD(t), C◦)]2 ≥ τ |(ξ, η)|2 ((ξ, η) ∈ Rγ × Rδ).
Whence, by Theorem 3.1 and Remark 3.1, for each t ∈ Ω, H(t) is of full rank, and
there exist two mappings at : R

γ × Rδ → R
m and ct : R

γ × Rδ → R
q such that

G(t)at(v, w)−D(t)ct(v, w)=v, H(t)at(v, w)=0, ct(v, w)∈C ((v, w)∈Rγ×Rδ),

‖(H(t)H(t)T )−1‖ ≤ ρ,(3.13)

and

|at(v, w)| ≤ ρ
[‖G‖∞ + ‖H‖∞

]|(v, w)|,
|ct(v, w)| ≤ ρ‖D‖∞|(v, w)| ((v, w) ∈ Rγ × Rδ).(3.14)

Thus, with a := at(v, w) and c := ct(v, w), we have that (a, c) ∈ Φ(t, v, w), whence
the nonemptiness of Φ(t, v, w) follows.

Furthermore, Φ is A × B × B-measurable with closed images. Hence, by the
measurable selection theorem, there exists an A×B×B-measurable function (a, c) :
Ω× Rγ × Rδ → R

m × Rq such that

(a(t, v, w), c(t, v, w)) ∈ Φ(t, v, w) ((t, v, w) ∈ Ω× Rγ × Rδ).
Therefore, c has nonnegative components and together with a satisfies the relations
(3.11) and (3.12), where R := ρmax(‖G‖∞ + ‖H‖∞, ‖D‖∞).

Using (3.13), it follows that the function matrix–valued B defined by B(t) =
HT (t)(H(t)HT (t))−1 is an essentially bounded right inverse of H.

4. Main results. We consider the optimal control problem

Minimize :(x(0), x(1))

subject to




(i) a(x(0), x(1)) ∈ R,
(ii) b(x(0), x(1)) = 0,
(iii) ẋ(t) = f(t, x(t), u(t)) for a.e. t ∈ [0, 1],
(iv) g(t, x(t), u(t)) ∈ Q(t) for a.e. t ∈ [0, 1],
(v) h(t, x(t), u(t)) = 0 for a.e. t ∈ [0, 1],
(vi) k(t, x(t)) ∈ S(t) for t ∈ [0, 1],

(CP)

where x : [0, 1]→ R
n is absolutely continuous, u : [0, 1]→ R

m is essentially bounded
measurable, and the ranges of the functions :, a, b, f , g, h, and k are, respectively, in
R, Rr, Rs, Rn, Rγ , Rδ, and Rκ. Furthermore, R is a subset of Rr, and Q and S are
set-valued maps with images in Rγ and Rκ.

The set-valued maps Q and S will be assumed in (R5) to take convex values,
while no convexity is imposed on the functions g and k. Hence, the forms of the
constraints (iv) and (vi) considered here are more general than the traditional forms:
u(t) ∈ Q(t) and x(t) ∈ S(t). Indeed, the present constraints permit us to consider,
for instance, inequality constraints g(t, x(t), u(t)) ≤ 0 and k(t, x(t)) ≤ 0 without any
convexity assumptions on the functions g and k.

The Hamiltonian function associated to (CP) is

H(t, x, u, p, ϕ, ψ) := pT f(t, x, u) + ϕT g(t, x, u) + ψTh(t, x, u).
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If (x, u) satisfy (i)–(vi), then it is said to be admissible for (CP). Given an

admissible arc (x̂, û), we denote by F̂ the evaluation of a given function F along
(x̂, û). For instance, â := a(x̂(0), x̂(1)) and ĝ is defined by ĝ(t) := g(t, x̂(t), û(t)).

To formulate the optimality concept and the regularity assumptions for problem
(CP), introduce the following notion: If T is a subset of [0, 1] and ŵ : [0, 1] → R

ω is
an arbitrary function, then the ε-tube on T around ŵ is the set

Tε(ŵ;T ) := {(t, w) ∈ T × Rω | |w − ŵ(t)| < ε for t ∈ T}.
When T = {t} is a singleton, then {w | (t, w) ∈ Tε(ŵ; {t})} will be denoted by
Tε(ŵ(t)).

A pair (x̂, û) provides a weak-local minimum for (CP) if there exists an ε > 0
such that for all admissible pairs (x, u) ∈ Tε(x̂, û; [0, 1]), we have :(x(0), x(1)) ≥
:(x̂(0), x̂(1)).

In [OS95] and [MOS98] optimality conditions for the Pontryagin minimum were
obtained in the absence of pure-state constraints and when the mixed state-control
constraints take the form of equality and inequality.

Denote by L the class of Lebesgue-measurable subsets in [0, 1], and by B the class
of Borel-measurable subsets in a metric space.

A pair (x̂, û) is called regular for (CP) if there exists an ε > 0 such that the
following conditions are satisfied:

(R1) The functions :, a, b are defined on Tε(x̂; {0, 1}) and are strictly Fréchet dif-
ferentiable at the point (x̂(0), x̂(1)).

(R2) The functions f , g, h are defined on Tε(x̂, û; [0, 1]), are L×B×B-measurable,
and the maps

(x, u) �→ f(t, x, u)

and (x, u) �→ (g(t, x, u), h(t, x, u))
(
(x, u) ∈ Tε(x̂(t), û(t))

)(4.1)

are strictly Fréchet differentiable at the point (x̂(t), û(t)), L1-uniformly and
L∞-uniformly, respectively, for a.e. t ∈ [0, 1]. Furthermore, it is also assumed

that f̂ , f̂x, and f̂u are integrable functions, and ĝ, ĥ, ĝx, ĥx, ĝu, and ĥu are
essentially bounded measurable functions.

(R3) The functions g and h satisfy the following strong normality condition: There
exist a constant τ > 0 and bounded measurable functions d1, . . . , dq ∈
T (ĝ| sel∞(Q)) such that, for a.e. t ∈ [0, 1],

|ξT ĝu(t) + ηT ĥu(t)|2 +
q∑
i=1

[
(ξT di(t))

+
]2
≥ τ |(ξ, η)|2 ((ξ, η) ∈ Rγ × Rδ).

(4.2)

(R4) The function k defined on Tε(x̂; [0, 1]) is Borel-measurable, and the map

x �→ k(t, x)
(
x ∈ Tε(x̂(t))

)
(4.3)

is strictly Fréchet differentiable at the point x̂(t) uniformly in t ∈ [0, 1]. Fur-

thermore, it is also assumed that k̂ and k̂x are continuous functions.
(R5) The set R ⊂ Rr is closed convex and has nonempty interior; the set-valued

maps Q : [0, 1] → 2R
γ

and S : [0, 1] → 2R
κ

take closed convex values with
nonempty interior and are measurable and lower semicontinuous, respectively.
Moreover, Q also satisfies condition (2.6).
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We note that, in (R3), a sufficient condition in order that d1, . . . , dq∈T (ĝ| sel∞(Q))
be valid is that d1, . . . , dq ∈ C(ĝ| sel∞(Q)) be satisfied. This latter condition holds
if and only if d1(t), . . . , dq(t) ∈ C(ĝ(t)|Q(t)) almost uniformly in t, that is, if there
exists a constant M > 0 such that, for all i = 1, . . . , q and for a.e. t,[

ξT di(t)
]2 ≤M |ξ|(δ∗(ξ|Q(t))− ξT ĝ(t)

)
(4.4)

whenever ξ ∈ Rγ satisfies ξT di(t) > 0.
A pair (δx, δu) is said to be critical for (CP) at (x̂, û) if δx : [0, 1] → R

n is
absolutely continuous, δu : [0, 1]→ R

m is essentially bounded measurable, and

(C1) :̂x0δx(0) + :̂x1δx(1) ≤ 0;
(C2) âx0

δx(0) + âx1
δx(1) ∈ C(â|R);

(C3) b̂x0
δx(0) + b̂x1δx(1) = 0;

(C4) ˙δx(t) = f̂x(t)δx(t) + f̂u(t)δu(t) holds for a.e. t ∈ [0, 1];
(C5) ĝx(t)δx(t) + ĝu(t)δu(t) ∈ C(ĝ(t)|Q(t)) almost uniformly in t ∈ [0, 1]; that is,

there exists a constant M > 0 such that, for a.e. t ∈ [0, 1],[
ξT ĝx(t)δx(t) + ξT ĝu(t)δu(t)

]2 ≤M |ξ|(δ∗(ξ|Q(t))− ξT ĝ(t)
)

(4.5)

whenever ξ ∈ Rγ satisfies ξT ĝx(t)δx(t) + ξT ĝu(t)δu(t) > 0;

(C6) ĥx(t)δx(t) + ĥu(t)δu(t) = 0 holds for a.e. t ∈ [0, 1];

(C7) k̂x(t)δx(t) ∈ C(k̂(t)|S(t)) uniformly in t ∈ [0, 1]; that is, there exists a con-
stant M > 0 such that, for all t ∈ [0, 1],[

ζT k̂x(t)δx(t)
]2 ≤M |ζ|(δ∗(ζ|S(t))− ζT k̂(t)

)
(4.6)

whenever ζ ∈ Rκ satisfies ζT k̂x(t)δx(t) > 0.
A critical arc (δx, δu) is called regular for (CP) at (x̂, û) if

(R6) :̂, â, and b̂ are twice directionally differentiable at (x̂(0), x̂(1)) in direction
(δx(0), δx(1));

(R7) for a.e. t ∈ [0, 1], the maps in (4.1) are twice directionally differentiable at
(x̂(t), û(t)) in direction (δx(t), δu(t)) L1- and L∞-uniformly in t, respectively;

(R8) for all t ∈ [0, 1], the map (4.3) is twice directionally differentiable at x̂(t) in
direction δx(t) uniformly in t.

The following result consists of necessary conditions for optimality in (CP). Its
proof makes use of all the results of sections 2 and 3 and applies the argument followed
in [PZ94b].

Theorem 4.1. Let (x̂, û) be a regular weak local minimum for the problem
(CP). Then, for every regular critical arc (δx, δu), there exist constants λ ∈ R,
α = (α1, . . . , αr) ∈ Rr, β = (β1, . . . , βs) ∈ Rs, an absolutely continuous function
p : [0, 1] → R

n, two integrable functions ϕ : [0, 1] → R
γ and ψ : [0, 1] → R

δ, and a
Borel regular vector-valued measure µ = (µ1, . . . , µκ), not all zero, such that λ ≥ 0,

α ∈ N(â|R), αT (âx0
δx(0) + âx1

δx(1)) = 0,(4.7)

ϕ(t) ∈ N(ĝ(t)|Q(t)), ϕT (t)(ĝx(t)δx(t) + ĝuδu(t)) = 0 for a.e. t ∈ [0, 1],
(4.8)

dµ

d|µ| (t) ∈ N(k̂(t)|S(t)),
( dµ

d|µ|
)T
(t) k̂x(t)δx(t) = 0 for µ-a.e. t ∈ [0, 1],(4.9)
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ṗT (t) = −Ĥx

(
t, p(t) +

∫
]t,1]

k̂Tx (s)dµ(s), ϕ(t), ψ(t)
)

for a.e. t ∈ [0, 1],(4.10)

−pT (0) = λ:̂x0
+ αT âx0

+ βT b̂x0
+
(∫

[0,1]

k̂Tx (t)dµ(t)
)T

,(4.11)

pT (1) = λ:̂x1 + αT âx1 + βT b̂x1 ,(4.12)

Ĥu

(
t, p(t) +

∫
]t,1]

k̂Tx (s)dµ(s), ϕ(t), ψ(t)
)
= 0 for a.e. t ∈ [0, 1],(4.13)

and

(
λ:̂′′ + αT â′′ + βT b̂′′

)
(δx(0), δx(1)) +

∫ 1

0

k̂′′(t; δx(t))dµ(t)

(4.14)

+

∫ 1

0

Ĥ′′
(
t, p(t) +

∫
]t,1]

k̂Tx (s)dµ(s), ϕ(t), ψ(t); δx(t), δu(t)
)
dt

≥ 2 coEEE
(
â, â′(δx(0), δx(1))|R)(α) + 2

∫ 1

0

coE(k̂, k̂xδx|S)
(
t,

dµ

d|µ| (t)
)
d|µ|(t)

+ 2

∫ 1

0

coEEE
(
ĝ(t), ĝx(t)δx(t) + ĝu(t)δu(t)

∣∣Q(t))(ϕ(t)
)
dt,

where H′′ denotes the second-order strong directional derivative of H with respect to
the variable (x, u).

Proof. First we are going to apply the result of Theorem 2.5, which is a special
case of [PZ94b, Theorem 3]. Introduce the following spaces

X := C(Rn), U := L∞
m := L∞(Rm), Y := Rs × {y ∈ C(Rn) | y(0) = 0},

V := Rr × C(Rκ)× L∞
γ , W := L∞

δ

(where we suppress [0, 1] in this notation) and denote, for (x, u) ∈ X × U ,

F(x, u) := :(x(0), x(1)),

G(x, u)(t) :=




a(x(0), x(1))

k(t, x(t))

g(t, x(t), u(t))


,

H(x, u)(t) := h(t, x(t), u(t)),

K(x, u)(t) :=

(
b(x(0), x(1))∫ t
0
(f(τ, x(τ), u(τ))dτ − x(t) + x(0),

)
,

Q := R× selC(S)× sel∞(Q).
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Then, with this notation, our control problem (CP) is equivalent to the abstract
control problem (P)(P)(P) in section 2.

The regularity condition (R5) yields that the setQ defined above is closed, convex,
with nonempty interior.

Let ε > 0 be the constant for which the regularity assumptions of the arc (x̂, û)
are satisfied and define

D := {(x, u) ∈ X × U | ‖x− x̂‖ < ε, ‖u− û‖∞ < ε}.
Then D is an open subset of X ×U , and the functions F, G, H, K are defined on D.
Since the arc (x̂, û) satisfies the regularity conditions (R1), (R2), and (R4) for (CP),
the functions F, G, H, and K are strictly Fréchet differentiable at (x̂, û), whence we
have the following relations:

Ĥ′(x, u)(t) = Ĥx(t)x(t) + Ĥu(t)u(t)

and

K̂u(x, u)(t) :=

(
0∫ t
0
(f̂u(τ)u(τ)dτ

)
,

K̂x(x, u)(t) :=

(
b̂(x(0), x(1))∫ t
0
(f̂x(τ)x(τ)dτ − x(t) + x(0)

)
.

We need to show that the partial Fréchet derivatives K̂x and K̂u of the mapping
K are Fredholm and compact operators, respectively. Since Ku is a Volterra integral
operator, it is compact. On the other hand, the operator Kx is the sum of a compact
(Volterra integral) operator and the operator F : X → Y defined by Fx(t) := −x(t)+
x(a), which is clearly a Fredholm operator. Therefore, by [PZ94b, Lemmas 3 and 5],

Kx is also Fredholm. Thus, for (R1)–(R3) to hold, it remains to show that Ĥu has a
bounded right inverse. The strong normality condition, i.e., (R3), and Theorem 3.2

yield that the function ĥuĥ
T
u : [0, 1] → R

δ has a bounded measurable inverse, and
hence the linear operator B : W → U defined by

(Bw)(t) := ĥTu (t)
(
ĥu(t)ĥ

T
u (t)

)−1
w(t) (t ∈ [0, 1])

is a bounded linear right inverse for Hu(x̂, û).
Hence, the arc (x̂, û) is a regular arc with respect to the problem (P)(P)(P).
Now we prove that the pair (δx, δu) is a regular and critical arc for (P)(P)(P) at the

point (x̂, û) where F, G, H, and K are defined above. The regularity assumptions
(R6)–(R8) imposed on (δx, δu) yield that the functions F, G, H, and K are twice
directionally differentiable at (x̂, û) in the direction (δx, δu); that is, (R4) holds. Note
that (C1) implies (C1). Using (C7) together with Theorem 2.1, (C5) together with
Theorem 2.2, and (C2), then applying the product rule, we can see that

Ĝxδx+ Ĝuδu ∈ C(Ĝ|Q);

that is, the second-order variation set V (Ĝ, Ĝxδx+ Ĝuδu|Q) is nonempty. Further-
more, (C3), (C4), and (C6) yield that

Ĥxδx+ Ĥuδu = 0, K̂xδx+ K̂uδu = 0.
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Then (C2) is satisfied, and hence (δx, δu) is a regular and critical arc for (P)(P)(P) at the
point (x̂, û).

Therefore, the statement of Theorem 2.5 can also be applied to produce multipliers
λ ≥ 0, v∗ = (v∗1 , v

∗
2 , v

∗
3) ∈ V ∗, w∗ ∈ W ∗, and y∗ = (y∗1 , y

∗
2) ∈ Y ∗, not all zero,

satisfying (2.16)–(2.19). The first and second components v∗1 and v∗2 of v∗ can be
identified, respectively, by a vector α ∈ Rr and (due to the Riesz representation
theorem) by a bounded signed Rκ-valued Borel measure µ. For the third component,
we have v∗3 ∈

(
L∞
γ

)∗
. Then (2.16) yields that

(α, µ, v∗3) ∈ N(Ĝ|Q) = N(â|R)×N(k̂| selC(S))×N(ĝ| sel∞(Q))

and

αT (âx0
δx(0) + âx1

δx(1)) +

∫
[0,1]

(
k̂x(t)δx(t)

)T
dµ(t)+

〈
v∗3 , ĝxδx+ ĝuδu

〉
= 0.(4.15)

Therefore, we get that the first equation of (4.7) is valid and that µ ∈ N(k̂| selC(S)),
which, via (2.2), yields the first equation of (4.9); furthermore,

v∗3 ∈ N(ĝ| sel∞(Q)).(4.16)

The first component y∗1 of y∗ can be identified by an element β ∈ Rs, and, by the
Riesz representation theorem, there exists a bounded signed Rn–valued measure ν
with ν({0}) = 0 such that y∗2 is represented via ν; that is, for y ∈ C(Rn) with
y(0) = 0, we have

〈y∗2 , y〉 =
∫

[0,1]

yT (t)dν(t).

Define p̄ : [0, 1]→ R
n by

p̄(t) = ν(]t, 1]).

Clearly, p̄(1) = 0, and p̄ is of bounded variation (and hence it is also bounded). Then,
by standard argument (see, e.g., [PZ94b, p. 441]), we get that, for x ∈ C(Rn) and
u ∈ L∞

m ,

〈y∗, K̂xx〉 = βT
(
b̂x0x(0) + b̂x1x(1)

)
+

∫ 1

0

p̄T (t)f̂x(t)x(t)dt−
∫ 1

0

xT (t)dν(t) + p̄T (0)x(0),

(4.17)

〈y∗, K̂uu〉 =
∫ 1

0

p̄T (t)f̂u(t)u(t)dt,(4.18)

and

〈y∗, K̂′′(δx, δu)〉 = βT b̂′′
(
δx(0) + δx(1)

)
+

∫ 1

0

p̄T (t)f̂ ′′(t; δx(t), δu(t))dt.(4.19)

Using (4.18), equation (2.18) reduces to

〈v∗3 , ĝuu〉+ 〈w∗, ĥuu〉+
∫ 1

0

p̄T (t)f̂u(t)u(t)dt = 0 (u ∈ L∞
m ).(4.20)
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We are going to show that v∗3 and w are represented via integrable functions.
To achieve this goal, we shall apply Theorem 3.2. Observe that condition (4.2) is

equivalent to (3.10), where G and H are replaced by ĝu and ĥu, respectively, and
d1, . . . , dq are the functions of hypothesis (R3) of the theorem. Thus, by Theorem 3.2,

ĥuĥ
T
u has a bounded measurable inverse and there exist L×B×B-measurable functions

a : [0, 1]×Rγ ×Rδ → R
m, c1, . . . , cq : [0, 1]×Rγ ×Rδ → [0,∞[ and a constant R > 0

such that, for a.e. t ∈ [0, 1],

ĝu(t)a(t, v, w) = v +

q∑
i=1

ci(t, v, w)di(t), ĥu(t)a(t, v, w) = w ((v, w) ∈ Rγ × Rδ),
(4.21)

and

|a(t, v, w)| ≤ R|(v, w)|, ci(t, v, w) ≤ R|(v, w)| ((v, w) ∈ Rγ × Rδ, i = 1, . . . , q).
(4.22)

Let (v, w) ∈ L∞
γ × L∞

δ be fixed. Set

A(v, w)(t) := aaa(t) := a(t, v(t), w(t)),

ccci(t) := ci(t, v(t), w(t)) (t ∈ [0, 1], i = 1, . . . , q).

Then, due to the second inequality in (4.22), aaa and ccci are bounded measurable func-
tions. Thus A is defined on L∞

γ × L∞
δ with a range in L∞

m . Since sel∞(Q) is decom-
posable, T (ĝ| sel∞(Q)) is an L-cone, and we have that

q∑
i=1

cccidi ∈ T (ĝ| sel∞(Q)).

Hence, by (4.21),

ĝuA(v, w)− v ∈ T (ĝ| sel∞(Q)), ĥuA(v, w) = w ((v, w) ∈ L∞
γ × L∞

δ ).(4.23)

Using (4.16), the first inclusion in (4.23) yields that

〈v∗3 , ĝuA(v, w)〉 ≤ 〈v∗3 , v〉 ((v, w) ∈ L∞
γ × L∞

δ ).

Now, substituting u = A(v, w) into (4.20) and using also the second relation in (4.23),
we get that

〈v∗3 , v〉+ 〈w∗, w〉+
∫ 1

0

p̄T (t)f̂u(t)a(t, v(t), w(t))dt ≥ 0 ((v, w) ∈ L∞
γ × L∞

δ ).

(4.24)

Putting w = 0, we deduce that

∣∣〈v∗3 , v〉∣∣ ≤ ∣∣∣
∫ 1

0

p̄(t)f̂u(t)a(t, v(t), 0)dt
∣∣∣ ≤ ∫ 1

0

|p̄(t)||f̂u(t)|R|v(t)|dt (v ∈ L∞
γ ).

Hence, v∗3 is L1-continuous; i.e., for any bounded (in L∞
γ ) sequence (vi) that converges

almost everywhere to zero, we have that 〈v∗3 , vi〉 tends to zero. Therefore, by the
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Yosida–Hewitt representation theorem, there exists an integrable function ϕ : [0, 1]→
R
γ such that

〈v∗3 , v〉 =
∫ 1

0

ϕT (t)v(t)dt (v ∈ L∞
γ ).(4.25)

Arguing analogously for w∗, (4.24) also yields the existence of an integrable function
ψ : [0, 1]→ R

δ such that

〈w∗, w〉 =
∫ 1

0

ψT (t)w(t)dt (w ∈ L∞
δ ).(4.26)

By (2.5), we have that (4.16) is equivalent to the first equation of (4.8). Furthermore,
(4.15) and conditions (C2), (C5), and (C7) combined with the first equations of (4.7)–
(4.9) yield the second equations of (4.7)–(4.9).

Using the representations of v∗3 and w∗ and (4.17), equation (2.17) can be rewrit-
ten in the following way:

For all x ∈ C(Rn),

(4.27)(
λl̂x0

+ αT âx0
+ βT b̂x0

+ p̄T (0)
)
x(0) +

(
λl̂x1

+ αT âx1
+ βT b̂x1

)
x(1)−

∫ 1

0

xT (t)dν(t)

+

∫ 1

0

xT (t)k̂Tx (t)dµ(t) +

∫ 1

0

[
ϕT (t)ĝx(t) + ψT (t)ĥx(t) + p̄T (t)f̂x(t)

]
x(t)dt = 0.

Set

p(t) :=




p̄(t)−
∫

]t,1]

k̂Tx (t)dµ(t) for t ∈ [0, 1[,

lim
t→1−

p(t) = ν({1})− k̂Tx (1)µ({1}) for t = 1.

Observe that (4.27) is also true for all functions x of the form x(t) = x̄χΩ(t), where
Ω is a subinterval of [0, 1] and x̄ ∈ Rn is arbitrary.

First taking Ω := {1}, it follows from (4.27) that(
λl̂x1 + αT âx1 + βT b̂x1

)T
− ν({1}) + k̂Tx (1)µ({1}) = 0;

hence

p(1) = ν({1})− k̂Tx (1)µ({1}) =
(
λl̂x1 + αT âx1 + βT b̂x1

)T
,

which is exactly (4.12).
With the substitution x(t) := x̄χ{0}(t) (x̄ ∈ Rn), we deduce from (4.27) that

λl̂x0 + αT âx0 + βT b̂x0
+ pT (0) +

(∫
]0,1]

k̂Tx (t)dµ(t) + k̂Tx (0)µ({0})
)T

= 0

since ν({0}) = 0. This yields (4.11).
Finally, we put x(t) := x̄χ]τ,1](t) into (4.27), where x̄ ∈ Rn and τ ∈ [0, 1[ are fixed

arbitrarily. Then we obtain, for all τ ∈ [0, 1[, that

λl̂x1 + αT âx1 + βT b̂x1 +
(∫

]τ,1]

k̂Tx (t)dµ(t)− ν(]τ, 1])
)T

+

∫ 1

τ

[
ϕT (t)ĝx(t) + ψT (t)ĥx(t) + p̄T (t)f̂x(t)

]
dt = 0.
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Using (4.12) and the definitions of p, p̄, and the Hamiltonian H, the above equation
can be rewritten as

pT (τ) = pT (1) +

∫ 1

τ

Hx

(
t, p(t) +

∫
]t,1]

k̂Tx (s)dµ(s), ϕ(t), ψ(t)
)
dt (τ ∈ [0, 1[).

It follows from the above equation that p is absolutely continuous, and after differen-
tiation, we obtain (4.10).

Now we consider (2.18). Using (4.18), (4.25), and (4.26), equation (2.18) can be
rewritten as∫ 1

0

[
ϕT (t)ĝu(t) + ψT (t)ĥu(t) + p̄T (t)f̂u(t)

]
u(t)dt = 0 (u ∈ L∞

m ).

This is equivalent to∫ 1

0

Hu

(
t, p(t) +

∫
]t,1]

k̂Tx (s)dµ(s), ϕ(t), ψ(t)
)
u(t)dt = 0 (u ∈ L∞

m ).

By a standard argument, the above equation yields (4.13).
Now, (2.19) becomes

(
λl̂′′ + λT â′′ + βT b̂′′

)
(δx(0), δx(1)) +

∫ 1

0

k̂′′(t; δx(t))dµ(t)

+

∫ 1

0

H′′
(
t, p(t) +

∫
]t,1]

k̂Tx (s)dµ(s), ϕ(t), ψ(t); δx(t), δu(t)
)
dt

≥ 2δ∗
(
v∗
∣∣V (Ĝ, Ĝxδx+ Ĝuδu|Q)

)
= 2δ∗

(
α
∣∣V (â, âx0

δx(0) + âx1
δx(1)|R))+ 2δ∗

(
µ
∣∣V (k̂, k̂xδx| selC(S))

)
+2δ∗

(
v∗3
∣∣V (ĝ, ĝxδx+ ĝuδu| sel∞(Q))

)
sinceQ is the Cartesian product of three sets and therefore the sum rule applies. Now,
the second and third terms on the right-hand side can be computed via Theorems 2.4
and 2.3, respectively. The first term can also be calculated via Theorem 2.5, where
the measure space Ω is chosen to be the singleton {0} with A = {{0}}, ν({0}) = 1.
Thus the above inequality yields (4.14).

Now we consider a special case (C̃P) of problem (CP), where

R = Rr−, and Q(t) = Rγ−, S(t) = Rκ− for all t ∈ [0, 1].(4.28)

In this case, we intend to simplify the results given by Theorem 4.1. Then (R5) is
automatically satisfied. The focus is on reformulating conditions (R3), (C2), (C5),
and (C7), and, in Theorem 4.1, conditions (4.7), (4.8), (4.9), and (4.14).

Condition (R3) is replaced by the following:

(R̃3) There exist bounded measurable functions d1, . . . , dq ∈ L∞
γ and a constant

M such that, for almost all t ∈ [0, 1] and for all i = 1, . . . , q, j = 1, . . . , γ,

d2
ij(t)

ĝj(t)
> −M whenever ĝj(t) < 0 and dij(t) > 0,(4.29)

dij(t) ≤ 0 whenever ĝj(t) = 0.(4.30)

Furthermore, there exists a constant τ > 0 such that, for a.e. t ∈ [0, 1], (4.2)
is satisfied.
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Remark 4.1. It follows from Corollary 2.1 that if d1, . . . , dq satisfy (4.29) and
(4.30), then d1, . . . , dq ∈ C(ĝ| sel∞(Q)); therefore, they also belong to T (ĝ| sel∞(Q)).

Taking the choice q = 2γ, di = (di,1, . . . , di,γ), where di,j is defined by

di,j =

{ √
−ĝi, i = j,

0, i 	= j,
dγ+i,j =

{ −√−ĝi, i = j,
0, i 	= j

(i, j = 1, . . . , γ),

we can see that d1, . . . , d2γ satisfy (4.29) and (4.30). In this case, (4.2) is equivalent
to the following quadratic inequality: for a.e. t ∈ [0, 1],

|ξT ĝu(t) + ηT ĥu(t)|2 −
γ∑
i=1

ξ2
i ĝi(t) ≥ τ |(ξ, η)|2 ((ξ, η) ∈ Rγ × Rδ).(4.31)

Introducing the notation

J(t) :=




ĝ1u(t)
√−ĝ1(t) . . . 0

...
...

. . .
...

ĝγu(t) 0 . . .
√−ĝγ(t)

ĥ1u(t) 0 . . . 0
...

...
. . .

...

ĥδu(t) 0 . . . 0




,

we can rewrite (4.31) as

(ξT , ηT )J(t)JT (t)
( ξ

η

)
≥ τ |(ξ, η)|2 ((ξ, η) ∈ Rγ × Rδ).

Therefore, it is necessary and sufficient that

det(J(t)JT (t)) ≥ τ for a.e. t ∈ [0, 1].

This latter condition appeared among the assumptions of Theorem 5 in [PZ94b].
The conditions (C2), (C5), and (C7) are replaced by the following:

(C̃2) âi,x0δx(0) + âi,x1
δx(1) ≤ 0 whenever âi = 0 (i = 1, . . . , r).

(C̃5) For all i = 1, . . . , γ,

ĝi,x(t)δx(t) + ĝi,u(t)δu(t) ≤ 0 whenever ĝi(t) = 0,(4.32)

and there exists a constant M > 0 such that, for a.e. t ∈ [0, 1],

[ĝi,x(t)δx(t) + ĝi,u(t)δu(t)]
2

−ĝi(t) ≤M

whenever ĝi(t) < 0, ĝi,x(t)δx(t) + ĝi,u(t)δu(t) > 0.

(4.33)

(C̃7) For all i = 1, . . . , κ,

k̂i,x(t)δx(t) ≤ 0 whenever k̂i(t) = 0,(4.34)

and there exists a constant M > 0 such that, for all t ∈ [0, 1],

[k̂i,x(t)δx(t)]
2

−k̂i(t)
≤M whenever k̂i(t) < 0, k̂i,x(t)δx(t) > 0.(4.35)



356 ZSOLT PÁLES AND VERA ZEIDAN

Using these new conditions, the statement of Theorem 4.1 simplifies to the fol-
lowing result (cf. [PZ94b, Theorem 5]).

Corollary 4.1. Let (x̂, û) be a regular weak local minimum for problem (C̃P).
Then, for every regular critical arc (δx, δu), there exist constants λ ∈ R, α =
(α1, . . . , αr) ∈ Rr, and β = (β1, . . . , βs) ∈ Rs, an absolutely continuous function
p : [0, 1] → R

n, two integrable functions ϕ : [0, 1] → R
γ and ψ : [0, 1] → R

δ, and a
Borel regular vector-valued measure µ = (µ1, . . . , µκ), not all zero, such that λ ≥ 0,

α ≥ 0, αT â = 0,(4.36)

ϕ(t) ≥ 0, ϕT (t)ĝ(t) = 0 for a.e. t ∈ [0, 1],(4.37)

µ ≥ 0,

∫ 1

0

k̂(t)dµ(t) = 0,(4.38)

(4.10), (4.11), (4.12), (4.13) hold, and

(
λ:̂′′ + αT â′′ + βT b̂′′

)
(δx(0), δx(1)) +

∫ 1

0

k̂′′(t; δx(t))dµ(t)

(4.39)

+

∫ 1

0

Ĥ′′
(
t, p(t)+

∫
]t,1]̂

kTx (t)dµ(t), ϕ(t), ψ(t); δx(t), δu(t)
)
dt ≥

κ∑
i=1

2

∫ 1

0

σ
k̂i ,̂kixδx

(t) dµi(t),

where σa,b is defined by (2.14).
Remark 4.2. In the very special case when g(t, x, u) = u, the first-order necessary

conditions in the above corollary form a special case of [Cla83, Theorem 5.2.1] and
[Gir72]. On the other hand, when no state constraints are present, the first-order part
of this corollary generalizes the results in [MOS98] and [OS95]. When only equality
control constraints are present, the statement of Corollary 4.1 has its exact parallel
in [ZZ88] for the case where the state is piecewise smooth and the control is piecewise
continuous.

Proof. Define R, Q, and S by (4.28). Using the product rule and Theorem 2.2, it

follows that (R̃3) implies (R3). Similarly, due to the product rule and Theorems 2.2

and 2.1, it follows that conditions (C̃2), (C̃5), and (C̃7) are equivalent to (C2), (C5),
and (C7), respectively. Thus, all the assumptions of Theorem 4.1 are satisfied, and
hence we also have its conclusions.

We can see that (4.7), (4.8), and (4.9) are equivalent to (4.36), (4.37), and (4.38),
respectively. By the second part of Corollary 2.1, the first and third terms on the
right-hand side of (4.14) vanish. By Corollary 2.2 the second term of (4.14) reduces
to the right-hand side of (2.15). Therefore, (4.14) reduces to (4.39).

5. Example. Consider the problem

Minimize x3(1)

subject to




ẋ1(t) = u1(t) for a.e. t ∈ [−1, 1],
ẋ2(t) = u2(t) for a.e. t ∈ [−1, 1],
ẋ3(t) = x3

1(t) + ζ(t)u2(t) for a.e. t ∈ [−1, 1],
x1(−1) = x2(−1) = x3(−1) = 0,
x1(1) = x2(1) = 0,
−x2(t)− (x1(t)− t)2 − x2

1(t) ≤ 0 for t ∈ [−1, 1],

(C)
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where

ζ(t) :=

{
0 if t ∈ [−1, 0),
−1 if t ∈ [0, 1].

The Hamiltonian of this problem is

H(t, x, u, p) := p1u1 + p2u2 + p3(x
3
1 + ζ(t)u2).

This problem is a special case of (C̃P), where (i), (iv), and (v) are absent and, for
xT = (x1, x2, x3) and uT = (u1, u2), we have

bT (x(−1), x(1)) = (xT (−1), x1(1), x2(1)), fT (t, x, u) = (u1, u2, x
3
1 + ζ(t)u2),

k(t, x) = −x2 − (x1 − t)2 − x2
1.

One would like to find out whether the admissible pair (x̂; û)T = (0, 0, 0; 0, 0) is
a good candidate for weak local minimality in (C). For this reason, we shall check
whether the first- and second-order necessary conditions presented by Corollary 4.1
hold true for this candidate.

We have k̂(t) = −t2 and k̂x(t) = (2t,−1, 0). Now set

λ := 1, pT (t) :≡ (0, 1, 1), µ := δ0 (the Dirac measure concentrated at 0).

Then, by replacing the left endpoint 0 of the base interval in Theorem 4.1 and Corol-
lary 4.1 by −1, one can check that these multipliers (that are not all zero) uniquely
(up to a nonzero constant multiple) satisfy (4.10), (4.13), and (4.38). By choosing the
multipliers (β1, . . . , β5) (that correspond to the endpoint conditions) properly, (4.11)
and (4.12) can also be satisfied.

Define, for t ∈ [−1, 1],

δxT (t) = (δx1(t), δx2(t), δx3(t)) := (1− |t|, 0, 0)
and δuT (t) = (δu1(t), δu2(t)) := (− sign(t), 0).

It follows that this choice of δx satisfies (4.34) and, for M = 4, (4.35). One can also
check that all the remaining criticality conditions (and regularity conditions) are also
satisfied. Therefore, (δx, δu) is a regular critical direction for problem (C).

It remains to check the inequality (4.39). Note that the first and the third terms
there vanish. Using the definition of σ

k̂,̂kxδx
in (2.14), inequality (4.39) simplifies to

−4[δx1(0)]
2 ≥ −2[δx1(0)]

2,

which fails to hold, since δx1(0) = 1. Therefore, given that the conclusion of Corol-
lary 4.1 is not valid, the pair (x̂; û)T = (0, 0, 0; 0, 0) is not a weak local minimum for
(C).
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[PZ99a] Zs. Páles and V. Zeidan, Characterization of closed and open C-convex sets in
C(T,Rr), Acta Sci. Math. (Szeged), 65 (1999), pp. 339–357.
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AN EXTENDED EXTREMAL PRINCIPLE WITH APPLICATIONS
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Abstract. We develop an extended version of the extremal principle in variational analysis that
can be treated as a variational counterpart to the classical separation results in the case of nonconvex
sets and which plays an important role in the generalized differentiation theory and its applications
to optimization-related problems. The main difference between the conventional extremal principle
and the extended version developed below is that, instead of the translation of sets involved in the
extremal systems, we allow deformations. The new version seems to be more flexible in various
applications and covers, in particular, multiobjective optimization problems with general preference
relations. In this way we obtain new necessary optimality conditions for constrained problems of
multiobjective optimization with nonsmooth data and also for multiplayer multiobjective games.
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1. Introduction. It is well known that separation theorems for convex sets play
a fundamental role in many aspects of nonlinear analysis and optimization. The whole
of convex analysis and its applications to constrained optimization and economics
revolves around using separation theorems. The convex separation principle is very
useful in the study of problems with nonconvex and nonsmooth initial data, being
applied to their convex approximations built by means of convex tangent cones and
directional derivatives. However, there is a large class of optimization-related and
economic problems where the use of convex approximations either is impossible or
does not lead to satisfactory results. An adequate approach to such problems is
offered by the basic tools of modern variational analysis, in particular, by the so-
called extremal principle, which can be viewed as a variational counterpart to the
convex separation principle in nonconvex settings. We refer the reader to [13] and
the bibliography therein for the history, motivations, and applications of the extremal
principle in variational analysis.

The conventional extremal principle applies to locally extremal points of set sys-
tems, which naturally appear not only in optimization-related problems but also
in nonvariational settings as well, e.g., in generalized differential calculus; see [13].
Roughly speaking, a common point of sets is locally extremal if these sets can be
locally pushed apart by a (linear) small translation in such a way that the result-
ing sets have empty intersection. The extended extremal principle developed in this
paper applies to a system of sets and set-valued mappings that allow a (nonlinear)
local deformation, rather than translation, to end with empty intersection. Such ex-
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tended extremal systems naturally appear in problems of multiobjective optimization
with general preference relations. These provide a major motivation for our study;
see [26].

We derive two versions of the extended extremal principle: approximate (fuzzy)
and exact. Then we apply the extremal principle to necessary optimality conditions
for general problems of multiobjective optimization with equality, inequality, and
geometric constraints in infinite-dimensional spaces. The forms of the results obtained
depend on the assumptions imposed on the initial data. In particular, there are
essential differences between problems with Lipschitzian and non-Lipschitzian data.
Note that some of our results are new even for multiobjective problems with smooth
initial data. We also give applications of the extremal principle to game-theoretical
problems involving multiplayer multiobjective game situations.

The rest of this paper is organized as follows. Section 2 contains basic definitions
and preliminary material from nonsmooth variational analysis. In section 3 we discuss
extended extremal systems and their relations to multiobjective optimization, game
problems, and optimal control. Section 4 is devoted to the approximate and exact
versions of the extended extremal principle. In section 5 we derive various forms of
necessary optimality conditions for nonsmooth problems of multiobjective optimiza-
tion with equality, inequality, and geometric constraints. The concluding section 6
contains applications of the extended extremal principle to multiobjective games with
many players.

Note that another extension of the conventional extremal principle has been re-
cently developed in [10]. It applies to systems of sets that may not be extremal in the
sense of the original definition and corresponds to the setting when the relations of
the conventional extremal principle are necessary and sufficient for such an extended
extremality.

Throughout the paper we use standard notation. Given a Banach space X, we
denote by X∗ its topological dual with the canonical dual pairing 〈·, ·〉; the same
symbol ‖ · ‖ is used for denoting the norm on X and for the corresponding dual norm
on X∗; BX and BX∗ stand for the closed unit balls in the space and dual space in
question; and w∗ denotes the weak∗ topology on the dual space. For a set-valued
mapping (multifunction) F :X →→ X∗, the expressions

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗ ∣∣ there exist sequences xk → x̄ and x∗

k
w∗
→ x∗

with x∗
k ∈ F (xk) for all k ∈ N},

Lim inf
x→x̄

F (x) :=
{
x∗ ∈ X∗ ∣∣ for all sequence xk → x̄, ∃ x∗

k
w∗
→ x∗

with x∗
k ∈ F (xk) for all k ∈ N}

signify, respectively, the sequential Painlevé–Kuratowski upper/outer and lower/inner
limits in the norm topology in X and the weak∗ topology in X∗; N := {1, 2, . . .}.

2. Generalized differential constructions and preliminaries. In this sec-
tion we review generalized differential constructions of nonsmooth variational analysis
and their basic properties, which are widely used in what follows. Although most defi-
nitions in this and subsequent sections hold in any Banach space (even in more general
settings in some cases), the basic properties of normals and subgradients employed
below require the Asplund structure on the spaces in question, which we assume
unless otherwise stated. Recall that a Banach space X is Asplund if every convex
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continuous function on it is generically Fréchet differentiable. This is a broad class
of Banach spaces including all spaces with Fréchet differentiable renorms and bump
functions and hence any reflexive space. There are many geometric characterizations
of Asplund spaces, one of which is that X is Asplund if and only if every separable
subspace of it has a separable dual. Although the Asplund property is closely related
to Fréchet-like differentiability, there are Asplund spaces that fail to admit even a
Gâteaux differentiable renorm. The reader can find more information on Asplund
spaces in [20] and the references therein.

Given an extended-real-valued function ϕ:X → R := (∞,∞] finite at x̄ and a
nonempty set Ω ⊂ X, let us define the basic subdifferential and normal cone con-
structions of our study and applications in this paper. We refer the reader to [12],
[22] and to [4], [15] for more details on these constructions in, respectively, finite and
infinite dimensions.

Let ϕ:X → R be lower semicontinuous around x̄. The Fréchet subdifferential of
ϕ at x̄ is

∂̂ϕ(x̄) :=
{
x∗ ∈ X∗

∣∣∣ lim inf
x→x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖ ≥ 0

}
.(2.1)

The limiting subdifferential and the singular subdifferential of ϕ at x̄ are defined,
respectively, by

∂ϕ(x̄) := Lim sup
x

ϕ→x̄

∂̂ϕ(x),(2.2)

∂∞ϕ(x̄) := Lim sup
x

ϕ→x̄
λ↓0

λ∂̂ϕ(x),(2.3)

where x
ϕ→ x̄ means that x → x̄ with ϕ(x) → ϕ(x̄). Note that ∂̂ϕ(x̄) (resp., ∂ϕ(x̄))

reduces to the classical Fréchet derivative (resp., strict derivative) of ϕ at x̄ if ϕ is
Fréchet differentiable (resp., strictly differentiable) at this point. On the other hand,
∂∞ϕ(x̄) = {0} if ϕ is locally Lipschitzian around x̄.

Let Ω ⊂ X be locally closed around x̄ ∈ Ω; i.e., Ω is closed at x whenever x is
near x̄. Then the Fréchet normal cone N̂(x̄; Ω) and the limiting normal cone N(x̄; Ω)
to Ω at x̄ are defined by

N̂(x̄; Ω) :=

{
x∗ ∈ X∗

∣∣∣ lim sup

x
Ω→x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ 0

}
,(2.4)

N(x̄; Ω) := Lim sup

x
Ω→x̄

N̂(x; Ω),(2.5)

where x
Ω→ x̄ stands for x→ x̄ with x ∈ Ω. One clearly has

N̂(x̄; Ω) = ∂̂δ(x̄; Ω), N(x̄; Ω) = ∂δ(x̄; Ω),

where δ(·; Ω) is the indicator function of Ω. It is known also that

∂ϕ(x̄) =
{
x∗ ∈ X∗ ∣∣ (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)

}
,

∂∞ϕ(x̄) =
{
x∗ ∈ X∗ ∣∣ (x∗, 0) ∈ N((x̄, ϕ(x̄)); epiϕ)

}(2.6)
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if ϕ is lower semicontinuous around x̄, and that

∂ϕ(x̄) =
{
x∗ ∈ X∗ ∣∣ (x∗,−1) ∈ N((x̄, ϕ(x̄)); gphϕ)

}
,

∂∞ϕ(x̄) ∪ ∂∞(−ϕ)(x̄) = {x∗ ∈ X∗ ∣∣ (x∗, 0) ∈ N((x̄, ϕ(x̄)); gphϕ)
}(2.7)

if ϕ is continuous around this point; see [15], [18], and the references therein.
Next we present an important fuzzy sum rule for Fréchet subgradients, obtained

in [6] in the framework of Asplund spaces. A prototype of this result first appeared
in [8]; see also [4] and its references for more discussions and generalizations.

Proposition 2.1. Let ϕi:X → R, i = 1, . . . , n ≥ 2, be lower semicontinuous
around x̄ such that all but one of them are Lipschitz continuous around this point.
Assume that the sum

∑n
i=1 ϕi attains a local minimum at x̄. Then for any ε > 0

there are xi ∈ x̄+ εBX with |ϕi(xi)− ϕi(x̄)| ≤ ε, i = 1, . . . , n, such that

0 ∈
n∑
i=1

∂̂ϕi(xi) + εBX∗ .

Another calculus result we use in this paper is the following fuzzy chain rule for
Fréchet subgradients of compositions (ϕ◦ f)(x) = ϕ(f(x)) in Asplund spaces given in
[16]. Recall that 〈y∗, f〉(x) := 〈y∗, f(x)〉 for a single-valued mapping f :X → Y .

Proposition 2.2. Let f :X → Y and ϕ:Y → R be locally Lipschitzian around
the points under consideration. Then for any x∗ ∈ ∂̂(ϕ ◦ f)(x̄) and any ε > 0 there

are x ∈ x̄+ εBX , y ∈ f(x) + εBY , and y∗ ∈ ∂̂ϕ(y) such that ‖f(x)− f(x̄)‖ ≤ ε and

x∗ ∈ ∂̂〈y∗, f〉(x) + εBX∗ .

Finally in this section, let us consider the problem of mathematical programming
with equality, inequality, and set (geometric) constraints:

P Minimize ϕ0(x)

subject to ϕi(x) ≤ 0, i = 1, . . . ,m,

ϕi(x) = 0, i = m+ 1, . . . , n,

x ∈ C,

where ϕi:X → R, i = 1, . . . , n, and C ⊂ X. To simplify notation, we define the
quantities τi, i = 1, . . . , n, as in [3]; namely, τi := 1 for i = 1, . . . ,m and τi ∈ {−1, 1}
for i = m + 1, . . . , n. The following necessary optimality conditions for P in a weak
fuzzy form of Lagrange multipliers are obtained in [19] for non-Lipschitzian problems
in Asplund spaces; cf. also [3] and [17].

Proposition 2.3. Let x̄ be a local solution to problem P, where ϕi are lower
semicontinuous around x̄ for i = 0, 1, . . . ,m and continuous around this point for
i = m+ 1, . . . , n, and where C is locally closed. Assume that

lim inf
x→x̄

dist(0; ∂̂ϕi(x)) > 0, i = 1, . . . ,m, and(2.8)

lim inf
x→x̄

dist(0; ∂̂ϕi(x) ∪ ∂̂(−ϕi)(x)) > 0, i = m+ 1, . . . , n.(2.9)

Then for any ε > 0 and any weak∗ neighborhood V of the origin in X∗ there are
multipliers λi ≥ 0, i = 1, . . . , n, not all zero, and points xi ∈ x̄+εBX , i = 0, 1, . . . , n+
1, such that

|ϕi(xi)− ϕi(x̄)| ≤ ε, i = 0, 1, . . . , n, and
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0 ∈ ∂̂ϕ0(x0) +

n∑
i=1

λi∂̂(τiϕi)(xi) + N̂(xn+1;C) + V

with some τi described above.

3. Extended extremal systems. In this section we define and illustrate the
notion of extremal systems of multifunctions, which extend the one for systems of sets.
First let us recall that x̄ ∈ Ω1 ∩Ω2 is a (locally) extremal point of sets Ω1 and Ω2 in a
normed space X if there exists a neighborhood U of x̄ such that for every ε > 0 there
is a vector a ∈ εBX with

(Ω1 + a) ∩ Ω2 ∩ U = ∅;(3.1)

see [13] for extremal systems of finitely many sets and more discussions.
The concept of extremal points captures the essential geometry in various opti-

mization problems and has many applications as mentioned above. The following is
a typical situation in optimization that leads to extremal points.

Example 3.1. Let ϕi:X → R, i = 1, 2, be lower semicontinuous functions. If
ϕ1 + ϕ2 attains a local minimum at x̄, then the sets

Ω1 := epi (ϕ1 − ϕ1(x̄)) and Ω2 := hypo (ϕ2(x̄)− ϕ2)

have an extremal point at (x̄, 0). Indeed, (Ω1 + (0, α)) ∩ Ω2 ∩ (U × R) = ∅ for all
α > 0, where U is a neighborhood of x̄.

Note that the condition Ω1 ∩ Ω2 = {x̄} does not necessarily imply that x̄ is an
extremal point of the set system (Ω1,Ω2) even when it is a boundary point for each
of the sets. This is illustrated by the following example.

Example 3.2. Let

Ω1 :=

∞⋃
k=1

(
(1/k, 0) +

1

4k2
BR2

)
∪ {(0, 0)}, Ω2 := R

2 \
∞⋃
k=1

(
(1/k, 0) +

1

4k2 − 1
BR2

)
.

Then Ω1 ∩ Ω2 = (0, 0), while x̄ = (0, 0) is not an extremal point of (Ω1,Ω2), since
(Ω1 + (α, β)) ∩ Ω2 �= ∅ for any (α, β) �= (0, 0).

Recently, to prove necessary conditions for a multiobjective optimal control prob-
lem in [26], a construction similar to the extremal system of sets was used, where the
set Ω1 is deformed rather than translated as in (3.1). This motivates us to extend the
concept of extremal points for sets to the one for multifunctions. In this extension
the translation of sets is replaced by the deformation of sets, which is more flexible
for applications.

Let us define extended extremal systems and their local extremal points. In
what follows we omit for simplicity the adjectives “extended” and “local” relative to
extremal systems and points, since we are not going to consider any other extremal
concepts in the rest of the paper.

Definition 3.3. Let Si:Mi →→ X, i = 1, . . . , p, be multifunctions from metric
spaces Mi with metrics di into a Banach space X. We say that x̄ is an extremal point
of the system (S1, . . . , Sp) at (s̄1, s̄2, . . . , s̄p), provided that

x̄ ∈ S1(s̄1) ∩ S2(s̄2) ∩ · · · ∩ Sp(s̄p),

and there exists a neighborhood U of x̄ such that for every ε>0 there is (s1, s2, . . . , sp)∈
M1 × · · · ×Mp with

d(si, s̄i) ≤ ε, dist(x̄;Si(si)) ≤ ε for i = 1, . . . , p, and
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S1(s1) ∩ S2(s2) ∩ · · · ∩ Sp(sp) ∩ U = ∅.
In this case (S1, . . . , Sp) is called the extremal system.

It is easy to see that extremal systems of multifunctions from Definition 3.3 con-
tain as a special case extremal systems of sets Ω1,Ω2 ⊂ X defined in the beginning
of this section. To capture it, we put M1 := X, M2 := {0}, S1(s1) := Ω1 + s1, and
S2(0) := Ω2 in Definition 3.3.

The next example shows that extremal systems involving deformations of sets as
in Definition 3.3 cannot be reduced to those obtained by their translations.

Example 3.4. Consider the moving sets

S1(s1) :=
{
(x, y) ∈ R2

∣∣∣ |x| − 2|y| ≥ s1

}
,

S2(s2) :=
{
(x, y) ∈ R2

∣∣∣ |y| − 2|x| ≥ s2

}
,

which can be viewed as deformations of the initial sets Ω1 := S1(0) and Ω2 := S2(0).
One can check that (0, 0) is an extremal point of (S1, S2) in the sense of Definition 3.3,
while (0, 0) is not an extremal point of {Ω1,Ω2} in the sense of translation (3.1).

Next we consider an example of extended extremal systems, which demonstrates
a prime motivation for our study. Let ≺ be an arbitrary preference for elements of a
Banach space X. For any x ∈ X we define the level (or sublevel) set with respect to
≺ by

L(x) := {y ∈ X| y ≺ x}
and call this preference to be locally satiated around x̄ if x ∈ clL(x) for all x in some
neighborhood of x̄. We say that ≺ is almost transitive provided that for each y ≺ x
and z ∈ clL(y) one has z ≺ x. Such an extended preference concept covers many
conventional and nonconventional preference relations in multiobjective optimization
and economics and cannot be generally described in terms of utility functions; see [26]
for more discussions and references.

Example 3.5. Let X be a Banach space with a locally satiated and almost tran-
sitive preference ≺. Take a continuous mapping f :Z → X on another Banach space
Z and consider the following multiobjective optimization problem:

Minimize f(z)

subject to z ∈ C,

where “minimization” is understood with respect to the preference ≺. Namely, we
say that z̄ is a (local) solution to the above problem if there is no z ∈ C near z̄ such
that f(z) ≺ f(z̄). Now let us relate this solution to an extremal point in the sense of
Definition 3.3. Put

M1 := L(f(z̄)) ∪ {f(z̄)}, M2 := {0}, S1(s1) := C × clL(s1), S2 :=
{
(z, f(z))

∣∣ z ∈ Z
}
.

Then (z̄, f(z̄)) is an extremal point of the system (S1, S2) at (f(z̄), 0). Indeed, suppose
that it is not the case, i.e., for any neighborhood U of (z̄, f(z̄)) there is s1 ∈M1\{f(z̄)}
close to f(z̄) satisfying

S1(s1) ∩ S2 ∩ U �= ∅.
Then there exists z close to z̄ with (z, f(z)) ∈ S1(s1) = C × clL(s1). Hence z ∈ C
and f(z) ≺ f(z̄), which is a contradiction.
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Our next example of extremal systems concerns game theory ; see also section 6
for more in this direction.

Example 3.6. Consider a two-player game, where players A and B have strategy
sets C ⊂ X and D ⊂ Y as closed subsets of Banach spaces. Given a payoff function
ϕ:X × Y → R, we examine a standard game situation, where the objective of player
A is to maximize the payoff while that of B is to minimize it. In other words, we
consider the game problem

max
x∈C

ϕ(x, y) and min
y∈D

ϕ(x, y)

and define its solution as a saddle point (x̄, ȳ) ∈ C ×D satisfying

ϕ(x, ȳ) ≤ ϕ(x̄, ȳ) ≤ ϕ(x̄, y) whenever (x, y) ∈ C ×D.

To reduce the saddle point (x̄, ȳ) to an extremal point of some system from Defini-
tion 3.3, we form a set-valued mapping

S1(α, β) := C × [α,∞)×D × (−∞, β]

on [ϕ(x̄, ȳ),∞)× (−∞, ϕ(x̄, ȳ)] and a set

S2 := hypoϕ(·, ȳ)× epiϕ(x̄, ·).
Then one has (x̄, ϕ(x̄, ȳ), ȳ, ϕ(x̄, ȳ)) ∈ S1(ϕ(x̄, ȳ), ϕ(x̄, ȳ)) ∩ S2 and

S1(α, β) ∩ S2 = ∅ for any (α, β) ∈ [ϕ(x̄, ȳ),∞)× (−∞, ϕ(x̄, ȳ)]\{(ϕ(x̄, ȳ), ϕ(x̄, ȳ))}.
Thus (x̄, ϕ(x̄, ȳ), ȳ, ϕ(x̄, ȳ)) is an extremal point for the system (S1, S2) at (ϕ(x̄, ȳ),
ϕ(x̄,ȳ)). Actually we have the more precise decoupling conclusion: the point (x̄,ϕ(x̄, ȳ))
is an extremal point for the system (S1(α,ϕ(x̄,ȳ)),hypoϕ(·,ȳ)), and the point (ȳ,ϕ(x̄,ȳ))
is an extremal point for the system (S1(ϕ(x̄, ȳ), β), epiϕ(x̄, ·)).

Our final example in this section concerns optimal control of systems governed by
ordinary differential equations with endpoint constraints.

Example 3.7. Consider the following time optimal control problem: minimize
the transient time T subject to the endpoint constraint x(T ) = 0 over absolutely
continuous trajectories x: [0, T ]→ R

n satisfying

ẋ(t) = f(x(t), u(t)), x(0) = x0, u(t) ∈ U a.e. t ∈ [0, T ].(3.2)

Let T be the optimal time in the above problem. DefineM1 := (0,∞),M2 := {0} ⊂ R,
and S2 := {0} ⊂ Rn, and S1:M1 →→ R

n is a reachable set multifunction with

S1(s1) :=
{
x(s1) ∈ Rn

∣∣∣ x(·) is feasible in (3.2) on [0, s1]
}
.

Then one can check that 0 ∈ Rn is an extremal point of the system (S1, S2) at (T , 0)
in the sense of Definition 3.3.

4. Extended extremal principle. This section is mostly devoted to the for-
mulation and proof of the extended extremal principle in both fuzzy/approximate
and limiting/exact forms. We also consider some auxiliary material needed for these
purposes. Let us start with the following approximate version.

Theorem 4.1. Let Si:Mi →→ X be multifunctions from metric spaces Mi with
metric di into an Asplund space X for i = 1, . . . , p. Assume that x̄ is an extremal



366 B. S. MORDUKHOVICH, J. S. TREIMAN, AND Q. J. ZHU

point of the system (S1, . . . , Sp) at (s̄1, . . . , s̄p), where each Si is closed-valued around
s̄i. Then for every ε > 0 there are si ∈ Mi, xi ∈ Si(si), and x∗

i ∈ X∗, i = 1, . . . , p,
such that

d(si, s̄i) ≤ ε, ‖xi − x̄‖ ≤ ε, x∗
i ∈ N̂(xi;Si(si)) + εBX∗ ,(4.1)

‖x∗
1‖+ · · ·+ ‖x∗

p‖ = 1, and x∗
1 + · · ·+ x∗

p = 0.(4.2)

Proof. Let U be a neighborhood of x̄ from the definition of the extremal point;
for simplicity take U := x̄+ rBX . Picking an arbitrary ε, we choose

ε′ < min
{
ε2/(5ε+ 12p2 + ε2), r2/4

}
and take s1, . . . , sp from Definition 3.3 corresponding to ε′. Denote Ω := S1(s1) ×
· · · × Sp(sp) and form the function

ϕ(y1, . . . , yp) :=

p∑
i,j=1

‖yi − yj‖+ δ((y1, . . . , yp); Ω), (y1, . . . , yp) ∈ Up.(4.3)

From the construction of (4.3) one has that ϕ is lower semicontinuous and positive
on the complete metric space Up. On the other hand, we may choose y′i ∈ Si(si)
satisfying

‖y′i − y′j‖ ≤ dist(x̄;Si(si)) + dist(x̄;Sj(sj)) + ε′ ≤ 3ε′.

This gives ϕ(y′1, . . . , y
′
p) ≤ 3p2ε′ < ε2/4. By the Ekeland variational principle [5]

applied to (4.3) one has x′
i ∈ y′i + ε/2BX ⊂ x̄ + εBX , i = 1, . . . , p, such that the

perturbed function

p∑
i,j=1

‖yi − yj‖+ ε

2

p∑
i=1

‖yi − x′
i‖+ δ((y1, . . . , yp); Ω)(4.4)

attains its global minimum at (x′
1, . . . , x

′
p) on Up. Assume that Up = Xp without loss

of generality and denote

ψ(y1, . . . , yp) :=

p∑
i,j

‖yi − yj‖, (y1, . . . , yp) ∈ Xp.

One clearly has ψ(x′
1, . . . , x

′
p) > 0. Now applying the fuzzy sum rule from Proposi-

tion 2.1 to (4.4) and taking into account that

∂̂δ((y1, . . . , yp); Ω) = N̂(y1;S1(y1))× · · · × N̂(yp;Sp(sp)) for any yi ∈ S(si),

we find xi ∈ Si(si) ∩ (x′
i + ε′BX) ⊂ (x̄ + εBX), zi ∈ x′

i + ε′BX , i = 1, . . . , p, and

(x∗
1, . . . , x

∗
p) ∈ ∂̂ψ(z1, . . . , zp) such that

0 ∈ (x∗
1, . . . , x

∗
p) + N̂(x1;S1(s1))× · · · × N̂(xp;Sp(sp)) + ε′(p+ 1)B(Xp)∗ .

The latter relations clearly imply that

−x∗
i ∈ N̂(xi;Si(si)) + εBX∗ whenever i = 1, . . . , p
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for the chosen ε; so we get the inclusion in (4.1) just by changing the sign of x∗
i ,

i = 1, . . . , p.
Shrinking ε′ further if necessary, we can make ψ(z1, . . . , zp) > 0. Observe that

(x∗
1, . . . , x

∗
p) ∈ ∂̂ψ(z1, . . . , zp) yields

〈x∗
1 + · · ·+ x∗

p, h〉 ≤ lim inf
t→0

ψ(z1 + th, . . . , zp + th)− ψ(z1, . . . , zp)

t

= lim inf
t→0

∑p
i,j=1 ‖(zi + th)− (zj + th)‖ −∑p

i,j=1 ‖zi − zj‖
t

= 0

for any unit vector h ∈ X. This gives the second relation (Euler equation) in (4.2).
Since we have already proved (4.1), it remains to show that

‖x∗
1‖+ · · ·+ ‖x∗

p‖ ≥ 1,(4.5)

which implies the first relations in (4.2) by normalization. To prove (4.5), we first

observe that ψ is positive homogeneous. Then using (x∗
1, . . . , x

∗
p) ∈ ∂̂ψ(z1, . . . , zp),

one has

p∑
i=1

〈x∗
i ,−zi〉 ≤ lim inf

t→0

ψ(z1 − tz1, . . . , zp − tzp)− ψ(z1, . . . , zp)

t
= −ψ(z1, . . . , zp).

Since x∗
1 = −∑p

i=2 x
∗
i , one has

ψ(z1, . . . , zp) ≤
p∑
i=1

〈x∗
i , zi〉 =

p∑
i=2

〈x∗
i , zi − z1〉

≤ max
{
‖x∗

i ‖
∣∣∣ i = 2, . . . , p

} p∑
i=2

‖zi − z1‖ ≤ max
{
‖x∗

i ‖
∣∣∣ i = 1, . . . , p

}
ψ(z1, . . . , zp).

Since ψ(z1, . . . , zp) > 0, we get from here that max{‖x∗
i ‖ | i = 1, . . . , p} ≥ 1, which

implies (4.5) and ends the proof of the theorem.
Remark 4.2. In fact, the Asplund property of the space X in Theorem 4.1 is not

only sufficient but also necessary for the fulfillment of the extended extremal principle
formulated here. Indeed, the extended extremal principle implies the conventional
extremal principle for fixed sets, which is known to be a characterization of Asplund
spaces; see [14] and also [25], where the reader can find other equivalencies between
basic results in variational analysis.

Next we are going to derive the exact/limiting form of the extended extremal
principle. This requires some additional assumptions on the set-valued mappings in-
volved in extremal systems. First we need to define one more construction concerning
generalized normals to moving sets.

Definition 4.3. Let S:Z →→ X be a set-valued mapping from a metric space Z
into a Banach space X, and let (z̄, x̄) ∈ gphS. Then

Ñ(x̄;S(z̄)) := Lim sup

(z,x)
gphS→ (z̄,x̄)

N̂(x;S(z))(4.6)

is the extended normal cone to S(z̄) at x̄. The mapping S is normally semicontinuous

at (z̄, x̄) if Ñ(x̄;S(z̄)) = N(x̄;S(z̄)).
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Observe that one always has the inclusion

N(x̄;S(z̄)) := Lim sup

x
S(z̄)→ x̄

N̂(x;S(z̄)) ⊂ Ñ(x̄;S(z̄));(4.7)

thus the normal semicontinuity of S at (z̄, x̄) corresponds to the opposite inclusion
in (4.7). This property was studied and used in [12] under the name of “normal
semicontinuity” and then in [26] under the name of “regularity.” It is easy to see that
the inclusion in (4.7) may be strict in very simple situations (e.g., when S(z) is a
singleton around z̄ while N(x̄;S(z̄)) �= X∗). An interesting example of violating the
normal semicontinuity is given in [1] for a mapping S(z) = clL(z) generated by level
sets of the preference determined by a Lipschitz continuous utility function on R2.

Let us present some sufficient conditions for the normal semicontinuity of set-
valued mappings. The next proposition corresponds to [12, Proposition 5.1], estab-
lished in finite dimensions.

Proposition 4.4. Let S:Z →→ X be a multifunction from a metric space Z
into a Banach space X. Then S is normally semicontinuous at (z̄, x̄) ∈ gphS in the
following two cases:

(i) S(z) = g(z) + Ω, where Ω ⊂ X is an arbitrary nonempty set and g:Z → X is
a continuous mapping.

(ii) S is convex-valued near z̄ and inner semicontinuous at this point, i.e.,

S(z̄) ⊂ Lim inf
z→z̄

S(z).

Proof. In case (i) the normal semicontinuity property follows from the definition
of the limiting normal cone (2.5). Note that this case is sufficient for applications to
the limiting extremal principle involving the translation of fixed sets.

Let us consider case (ii). Taking x∗ ∈ Ñ(x̄;S(z̄)), we find sequences xk → x̄, zk →
z̄, and x∗

k
w∗
→ x∗ such that x∗

k ∈ N̂(xk;S(zk)) for all k ∈ N. It is well known that for
convex sets the Fréchet normal cone agrees with the normal cone of convex analysis.
Thus the latter inclusion is equivalent to

〈x∗
k, u− xk〉 ≤ 0 for all u ∈ S(zk).(4.8)

Let us show that the inner semicontinuity assumption in (ii) implies that

〈x∗, u− x̄〉 ≤ 0 for all u ∈ S(z̄),(4.9)

which means that x∗ ∈ N(x̄;S(z̄)), since the limiting normal cone also agrees with
the normal cone of convex analysis for convex sets.

Indeed, assume on the contrary that (4.9) is violated at some ū ∈ S(z̄), i.e.,
〈x∗, ū − x̄〉 > 0. Using the inner semicontinuity of S at z̄, for the given ū and the
sequence zk → z̄ we find a sequence uk → ū such that uk ∈ S(zk) for all k ∈ N. We
have the representation

〈x∗
k, uk − xk〉 = 〈x∗, ū− x̄〉+

[
〈x∗
k − x∗, ū− x̄〉+ 〈x∗

k, uk − ū〉 − 〈x∗
k, xk − x̄〉

]
.

One can see that all the terms in the square brackets tend to zero as k → ∞ due
to the corresponding convergence of xk, uk, x

∗
k and the boundedness of {x∗

k}. So we
arrive at

〈x∗
k, uk − xk〉 > 0 for large k ∈ N,

which contradicts (4.8) and completes the proof of the proposition.
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Remark 4.5. Recently Lionel Thibault [23] obtained other sufficient conditions
ensuring the normal semicontinuous property of set-valued mappings. In particular, he
proved this property for inner semicontinuous mappings whose images (near reference
points) are uniformly prox-regular in the sense of [21] in Hilbert spaces.

To proceed toward the limiting extremal principle, we need one more property of
set-valued mappings, which is needed in the case of infinite-dimensional image spaces.

Definition 4.6. We say that S:Z →→ X is imagely sequentially normally com-
pact (ISNC) at (z̄, x̄) ∈ gphS if for any sequences (zk, xk, x

∗
k) satisfying

x∗
k ∈ N̂(xk;S(zk)), (xk, zk)

gph S→ (x̄, z̄), x∗
k
w∗
→ 0

one has ‖x∗
k‖ → 0.

This property obviously holds when X is finite-dimensional. For constant map-
pings it reduces to the sequential normal compactness (SNC) property of sets; see [13]
and the references therein. The latter property is closely related to the compactly
epi-Lipschitzian (CEL) property of [2]; see [9] and [7] for more details and recent
developments. The same kinds of relationships hold in the case of set-valued map-
pings from Definition 4.6 under some inner semicontinuity (uniformity) conditions on
S around (z̄, x̄). Note that S is surely ISNC at (z̄, x̄) if the following condition holds
(cf. [11] in the case of fixed sets): there exist γ, σ > 0 and a compact set C ⊂ X such
that, for any (z, x) ∈ gphS ∩ ((z̄, x̄) + γBZ×X

)
, one has

N̂(x;S(z)) ⊂
{
x∗ ∈ X∗

∣∣∣ σ‖x∗‖ ≤ max
c∈C
|〈x∗, c〉|

}
.

Note also that the ISNC property of S is generally different from the SNC property
of multifunctions, which means that the graph of S is SNC at the reference point; see
[13].

Now we are ready to formulate and prove the limiting extremal principle for
extremal systems of multifunctions.

Theorem 4.7. Let Si:Mi →→ X, i = 1, . . . , p, be multifunctions from metric
spaces Mi into an Asplund space X. Assume that x̄ is an extremal point of the
system (S1, . . . , Sp) at (s̄1, . . . , s̄p), where each Si is closed-valued around s̄i and all
but one of them are ISNC at the corresponding points (s̄i, x̄) of their graphs. Then
there are

x∗
i ∈ Ñ(x̄;Si(s̄i)), i = 1, . . . , p,(4.10)

not all zero, satisfying the generalized Euler equation

x∗
1 + · · ·+ x∗

p = 0.(4.11)

Proof. It easily follows from Theorem 4.1 that for any k ∈ N there are sik with
d(sik, s̄i) ≤ 1

k , xik ∈ x̄+ 1
kBX , and x∗

ik ∈ N̂(xik;Si(sik)), i = 1, . . . p, such that

‖x∗
1k‖+ · · ·+ ‖x∗

pk‖ ≥ 1− 1/k and ‖x∗
1k + · · ·+ x∗

pk‖ ≤ 1/k.(4.12)

By normalization if necessary we can always select bounded sequences {x∗
ik}, i =

1, . . . , p, satisfying (4.12). It is well known that bounded sets are sequentially weak∗

compact in X∗ when X is Asplund; see, e.g., [20]. Thus, without loss of generality, we

may assume that there are x∗
i ∈ X∗ such that x∗

ik
w∗
→ x∗

i as k →∞ for all i = 1, . . . , p.
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Now passing to the limit as k →∞ and using definition (4.6), we arrive at the desired
relationships (4.10) and (4.11). It remains to show that x∗

1, . . . , x
∗
p are not equal to

zero simultaneously.
Suppose on the contrary that all x∗

i are zero and assume for definiteness that the
first p−1 mappings Si are ISNC at (s̄i, x̄), i = 1, . . . , p−1. Then ‖x∗

ik‖ → 0 as k →∞
for i = 1, . . . , p− 1. Passing to the limit at the second relation in (4.12), we conclude
that ‖x∗

pk‖ → 0 as well. But this clearly contradicts the first relation in (4.12) for
large k ∈ N, which ends the proof of the theorem.

It is known [4] that the SNC property is essential for the fulfillment of the limiting
extremal principle even in the case of fixed convex sets in infinite dimensions when
both cones (2.5) and (4.6) reduce to the normal cone of convex analysis. Note also
that the extended normal cone (4.6) cannot be generally replaced in (4.10) by the
limiting one (2.5) unless the corresponding mapping Si is assumed to be normally
semicontinuous. Indeed, consider the extremal system of mappings (S1, S2) from
Example 3.4. One can easily check that S1 and S2 are not normally semicontinuous
at the origin and that

N(0;S1(0)) ∩
[−N(0;S2(0))

]
= {0}.

Hence an analogue of Theorem 4.7 with Ñ replaced by N does not hold for this
extremal system.

5. Necessary conditions in multiobjective optimization. This section is
completely devoted to applications of the extended extremal principle to problems of
multiobjective optimization. We start with the multiobjective problem formulated in
Example 3.5, which contains only set/geometric constraints. Necessary conditions for
this problem can be derived directly from the extremal principle. Then we consider
a more general multiobjective problem with additional functional (equality and in-
equality) constraints and obtain various forms of necessary optimality conditions for
this problem depending on the assumptions made on its data. To do this, we use
the reduction to problems with no functional constraints and the advanced tools of
generalized differentiation discussed in section 2. Recall that all the spaces considered
below are assumed to be Asplund.

The initial multiobjective problem of our study is

M0 Minimize f(x)

subject to x ∈ C,

where f :X → Y is a vector-valued objective function that is “minimized” with respect
to the general preference ≺ from Example 3.5. That is, x̄ is a (local) solution to
M0, provided that x̄ ∈ C and there is no any other element x ∈ C close to x̄ with
f(x) ≺ f(x̄). For simplicity we consider global solutions toM0, although the following
proposition and subsequent results hold for local solutions as well.

Proposition 5.1. Let x̄ be a solution to M0, where f is assumed to be locally
Lipschitzian around x̄. Then for any ε > 0 there are (x0, x1, y0, y1, x

∗, y∗) ∈ X2 ×
Y 2 ×X∗ × Y ∗ satisfying

x0, x1 ∈ x̄+ εBX , y0, y1 ∈ f(x̄) + εBY , x∗ ∈ N̂(x1;C), y∗ ∈ N̂(y1; clL(y0))

with ‖y∗‖ = 1, and

0 ∈ x∗ + ∂̂〈y∗, f〉(x0) + εBX∗ .(5.1)
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Proof. As in Example 3.5, we define

M1 := L(f(x̄)) ∪ {f(x̄))}, M2 := {0}, S1(y) := C× clL(y), S2 :=
{
(x′, f(x′))

∣∣ x′∈X}
and observe that (x̄, f(x̄)) is an extremal point of the system (S1, S2) at (f(x̄), 0).
Given ε > 0 and a Lipschitz constant L > 0 of f around x̄, we choose

ε′ := min
{
2εL/(1 + L), ε/2, 1/8(2 + L), 1/2

}
and employ the extremal principle from Theorem 4.1. This gives y0 ∈ f(x̄) + ε′BY ,
(xi, yi) ∈ (x̄, f(x̄)) + ε′BX×Y for i = 1, 2, and

(x∗
1, y

∗
1) ∈ N̂((x1, y1);S1(y0)), (x∗

2, y
∗
2) ∈ N̂((x2, y2);S2)

satisfying the relations

‖(x∗
1, y

∗
1)‖+ ‖(x∗

2, y
∗
2)‖ ≥ 1− ε′ ≥ 1/2, ‖(x∗

1, y
∗
1) + (x∗

2, y
∗
2)‖ ≤ ε′.(5.2)

By the definition of Fréchet normals (2.4) we have

0 ≥ 〈x∗
2, x− x2〉+ 〈y∗2 , y − y2〉 − ε′‖(x− x2, y − y2)‖

for (x, y) ∈ S2 sufficiently close to (x2, y2). Observing that y2 = f(x2) and y = f(x),
we conclude that the function

ϕ(x) := −〈x∗
2, x− x2〉 − 〈y∗2 , f(x)− f(x2)〉+ ε′‖(x− x2, f(x)− f(x2))‖

attains its local minimum at x = x2. Now it follows from Proposition 2.1 that there
is x0 ∈ x2 + ε′BX ⊂ x̄+ 2ε′BX satisfying

0 ∈ x∗
2 + ∂̂〈y∗2 , f〉(x0) + (2 + L)ε′BX∗ .(5.3)

Using (5.3) and the second relation in (5.2), we get

0 ∈ x∗
1 + ∂̂〈y∗1 , f〉(x0) + 2(12 + L)ε′BX∗ ,(5.4)

which implies ‖y∗1‖ ≥ 1/4(1+L) due to (5.2), (5.4), and the choice of ε′ ≤ 1/8(2+L).

Indeed, for any x̃∗ ∈ ∂̂〈y∗1 , f〉(x0) we have ‖x̃∗‖ ≤ L‖y∗1‖ and then

1/2 ≤ ‖(x∗
1, y

∗
1)‖ = ‖x∗

1‖+ ‖y∗1‖ = ‖x̃∗ + 2(2 + L)ε′e∗‖+ ‖y∗1‖
≤ L‖y∗1‖+ 2(2 + L)ε′ + ‖y∗1‖

with some e∗ ∈ BX∗ . Solving the latter for ‖y∗1‖, we get

‖y∗1‖ ≥
1/2− 2(2 + L)ε′

(1 + L)
≥ 1

4(1 + L)
,

which gives the required estimate. Now dividing (5.4) by ‖y∗1‖ and then putting

x∗ := x∗
1/‖y∗1‖ ∈ N̂(x1;C) and y∗ := y∗1/‖y∗1‖ ∈ N̂(y1; clL(y0)), we finally arrive at

(5.1) and finish the proof of this proposition.
Remark 5.2. Let the preference ≺ be defined by a cone K, i.e., x ≺ y if and only

if y − x ∈ K. Then L(y) = y − K, and changing y reduces to translating the level
sets. This implies that the sets S1(f(x̄)) and S2 from the proof of Proposition 5.1
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form the extremal system in the sense of (3.1), and thus one can use the conventional
extremal principle [13]. However, this is not the case for the general preferences under
consideration, which require the full strength of the extended extremal principle.

Next let us consider the main multiobjective optimization problem studied in this
paper:

M Minimize f(x)

ϕi(x) ≤ 0, i = 1, . . . ,m,

ϕi(x) = 0, i = m+ 1, . . . , n,

x ∈ C,

where f :X → Y is minimized with respect to the given preference ≺ on Y as
in M0. For convenience we first present the following simple lemma concerning
Fréchet normals to epigraphs that is used in the proof of the subsequent theorem.

Lemma 5.3. Let ϕ:X → R be a lower semicontinuous function finite at x̄, and
let ν̄ ≥ ϕ(x̄). Then one has

N̂((x̄, ν̄); epiϕ) ⊂ N̂((x̄, ϕ(x̄)); epiϕ).

If in addition ϕ is strictly differentiable at x̄, then

N̂((x̄, ϕ(x̄)); epiϕ) = N((x̄, ϕ(x̄)); epiϕ) =
{
λ(∇ϕ(x̄),−1)

∣∣∣ λ ≥ 0
}
.(5.5)

Proof. Take (x∗, λ) ∈ N̂((x̄, ν̄); epiϕ). By definition (2.4) one has

〈(x∗, λ), (x− x̄, ν − ν̄)〉+ o
(‖(x− x̄, ν − ν̄)‖) ≤ 0(5.6)

whenever (x, ν) is sufficiently close to (x̄, ν̄). Pick (z, µ) ∈ epiϕ close to (x̄, ϕ(x̄));
hence (z, ν̄+µ−ϕ(x̄)) ∈ epiϕ is close to (x̄, ν̄). Substituting (x, ν) = (z, ν̄+µ−ϕ(x̄))
into (5.6), we get

〈(x∗, λ), (z − x̄, µ− ϕ(x̄))〉+ o
(‖(z − x̄, µ− ϕ(x̄))‖) ≤ 0

for all (z, µ) sufficiently close to (x̄, ϕ(x̄)), meaning that (x∗, λ) ∈ N̂((x̄, ϕ(x̄)); epiϕ).
If ϕ is strictly differentiable at x̄, then it is locally Lipschitzian around this point,

and hence ∂∞ϕ(x̄) = {0}. Moreover, ∂̂ϕ(x̄) = ∂ϕ(x̄) = {∇ϕ(x̄)} in this case. This
implies (5.5) due to (2.6) and the well-known representation

∂̂ϕ(x̄) =
{
x∗ ∈ X∗∣∣ (x∗,−1) ∈ N̂((x̄, ϕ(x̄)); epiϕ)

}
,

which finishes the proof.
The following theorem gives fuzzy necessary optimality conditions for the multi-

objective problemM with non-Lipschitzian functional constraints in terms of Fréchet
normals to graphs and epigraphs of constraint functions.

Theorem 5.4. Let x̄ be a (local) solution to M, where C is locally closed, f is
locally Lipschitzian, and ϕi are lower semicontinuous for i = 1, . . . ,m and continuous
for i = m+ 1, . . . , n around x̄. Then for any ε > 0 there are x0 ∈ x̄+ εBX ,

(xi, ϕi(xi)) ∈ (x̄, ϕi(x̄)) + εBX×R, i = 1, . . . , n,

xn+1 ∈ C ∩ (x̄+ εBX), y0, y1 ∈ f(x̄) + εBY ,(5.7)

λ0 ∈ [0, 1], (x∗
i ,−λi) ∈ N̂((xi, ϕi(xi)); epiϕi), i = 1, . . . ,m,
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(x∗
i ,−λi) ∈ N̂((xi, ϕi(xi)); gphϕi), i = m+ 1, . . . , n, x∗

n+1 ∈ N̂(xn+1;C),(5.8)

and y∗ ∈ N̂(y1; clL(y0)) satisfying

0 ∈ λ0∂̂〈y∗, f〉(x0) +

n+1∑
i=1

x∗
i + εBX∗(5.9)

with the nontriviality conditions

λ0 +

n∑
i=1

‖(x∗
i , λi)‖+ ‖x∗

n+1‖ = 1, ‖y∗‖ = 1.(5.10)

Proof. Let Ω be the set of all points in X satisfying the constraints in problemM.
Then x̄ is a solution to the initial multiobjective problemM0 with the only geometric
constraint x ∈ Ω. Applying Proposition 5.1 to the latter problem, we find

x0, x̂∈ x̄+ (ε/3)BX , y0, y1∈f(x̄) + (ε/3)BY , x∗∈N̂(x̂; Ω), y∗∈N̂(y1; clL(y0))

with ‖y∗‖ = 1 and

0 ∈ x∗ + ∂̂〈y∗, f〉(x0) + (ε/3)BX∗ .(5.11)

From the definition of N̂(x̂; Ω) in (2.4) one has

〈x∗, x− x̂〉 − (ε/3)‖x− x̂‖ ≤ 0 for all x ∈ Ω near x̂.

Then x̂ is a local solution to the standard minimization problem with a Lipschitzian
objective and nonsmooth constraints:

Minimize −〈x∗, x− x̂〉+ (ε/3)‖x− x̂‖
subject to ϕi(x) ≤ 0, i = 1, . . . ,m,

ϕi(x) = 0, i = m+ 1, . . . , n,

x ∈ C.

Choose ε′ < ε/3(n+ 1) and apply [13, Theorem 5.1(i)] to the latter problem. In this
way, taking Lemma 5.3 into account, we have

(xi, ϕi(xi)) ∈ (x̄, ϕi(x̄)) + ε′BX×R, i = 1, . . . , n,

xn+1 ∈ C ∩ (x̄+ ε′BX), y0, y1 ∈ f(x̄) + ε′BY ,

λ0 ≥ 0, (x∗
i , λi) ∈ X∗ × R, i = 1, . . . , n, and x∗

n+1 ∈ N̂(xn+1;C) satisfying (5.7) and
(5.8) and such that

λ0x
∗ ∈

n+1∑
i=1

x∗
i +

(ε
3
+ ε′(n+ 1)

)
BX∗(5.12)

with the nontriviality condition in (5.10) obtained by normalization. Rescaling λ0 if
necessary, we have λ0 ∈ [0, 1]. Finally, multiplying (5.11) by λ0 and combining this
with (5.12), we arrive at (5.9) and complete the proof of the theorem.
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Next we obtain exact/limiting necessary conditions for the multiobjective prob-
lemM with non-Lipschitzian constraints using the limiting normal and subgradient
constructions defined in (2.2), (2.5), and (4.6).

Theorem 5.5. Let x̄ be a solution toM. Suppose, in addition to the assumptions
of Theorem 5.4, that dimY < ∞ and all but one of the sets epiϕi for i = 1, . . . ,m,
gphϕi for i = m + 1, . . . , n, and C are sequentially normally compact at the points
(x̄, ϕi(x̄)) and x̄, respectively. Then there are λ0 ∈ [0, 1],

y∗ ∈ Ñ(f(x̄); clL(f(x̄))), (x∗
i ,−λi) ∈ N((x̄, ϕi(x̄)); epiϕi), i = 1, . . . ,m,

(x∗
i ,−λi) ∈ N((x̄, ϕi(x̄)); gphϕi), i = m+ 1, . . . , n, x∗

n+1 ∈ N(x̄;C)
(5.13)

such that ‖y∗‖ = 1, (λ0, . . . , λn, x
∗
1, . . . , x

∗
n+1) �= 0, and

0 ∈ λ0∂〈y∗, f〉(x̄) +
n+1∑
i=1

x∗
i .(5.14)

Proof. Employing Theorem 5.4, we find sequences xk → x̄, λ0k → λ0, xik
ϕi→ x̄

for i = 1, . . . , n, x(n+1)k
C→ x̄, yik → f(x̄) for i = 0, 1, (x∗

ik, λik)
w∗
→ (x∗

i , λi) for

i = 1, . . . , n, x∗
(n+1)k

w∗
→ x∗

n+1, y
∗
k → y∗, and x∗

k ∈ ∂̂〈y∗k, f〉(xk) satisfying the relations

y∗k ∈ N̂(y1k; clL(y0k)) with ‖y∗k‖ = 1, x∗
(n+1)k ∈ N̂(x(n+1)k;C),

(x∗
ik,−λik) ∈ N̂((xik, ϕi(xik)); epiϕi) for i = 1, . . . ,m,

(x∗
ik,−λik) ∈ N̂((xik, ϕi(xik)); gphϕi) for i = m+ 1, . . . , n,

(5.15)

‖λ0kx
∗
k + x∗

1k + · · ·+ x∗
nk + x∗

(n+1)k‖ → 0 as k →∞, and(5.16)

λ0k +

n∑
i=1

‖(x∗
ik, λik)‖+ ‖x∗

(n+1)k‖ ≥ 1 for all k ∈ N.(5.17)

Since X is Asplund and the sequence {x∗
k} is bounded (due to the Lipschitz continuity

of f around x̄), it is weak∗ sequentially compact. Thus we may assume that x∗
k
w∗
→

x∗ ∈ X∗ as k →∞. Let us show that x∗ ∈ ∂〈y∗, f〉(x̄).
Indeed, it is easy to observe, since f is locally Lipschitzian, that the inclusion

x∗
k ∈ ∂̂〈y∗k, f〉(xk) is equivalent to

(x∗
k,−y∗k) ∈ N̂((xk, f(xk)); gph f), k ∈ N.

Passing there to the limit as k →∞, we get the relation

(x∗,−y∗) ∈ N((x̄, f(x̄)); gph f),

which is equivalent to x∗ ∈ ∂〈y∗, f〉(x̄); see [15, Theorem 5.2]. Passing to the limit
in (5.15) and (5.16) as k → ∞ and using the definitions of the normal cones (2.4)
and (4.6), we arrive at (5.13) and (5.14). It is clear that ‖y∗‖ = 1, since Y is finite-
dimensional. It remains to show that (λ0, . . . , λn, x

∗
1, . . . , x

∗
n+1) �= 0 under the SNC

assumptions of the theorem.
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Suppose the contrary and assume for definiteness that the sets epiϕi for i =
1, . . . ,m and gphϕi for i = m + 1, . . . , n are sequentially normally compact at
(x̄, ϕi(x̄)). Then ‖(x∗

ik, λi)‖ → 0 as k → ∞ for all i = 1, . . . , n. Since λ0k → 0,
we get from (5.16) that ‖x∗

n+1‖ → 0 as well. But this clearly contradicts (5.17) and
completes the proof of the theorem.

Note that Theorem 5.5 can also be proved by using the limiting extremal principle
of Theorem 4.7. Now we present two important corollaries of Theorem 5.5. The first
one gives necessary optimality conditions for M in terms of limiting subgradients
and singular subgradients of the constraint functions and is actually equivalent to
Theorem 5.5 due to subgradient representations of limiting normals to graphs and
epigraphs. In what follows we use the quantities τi defined in section 2 before the
formulation of Proposition 2.3.

Corollary 5.6. Let x̄ be a solution toM under the assumptions of Theorem 5.5.
Then the following alternative holds:

(i) either there exist x∗
i ∈ ∂∞(τiϕi)(x̄), i = 1, . . . , n, and x∗

n+1 ∈ N(x̄;C), not all
zero, satisfying

x∗
1 + · · ·+ x∗

n+1 = 0, or

(ii) there exist λi ≥ 0, i = 0, . . . , n, not all zero, and y∗ ∈ Ñ(f(x̄); clL(f(x̄)))
with ‖y∗‖ = 1 satisfying

0 ∈ λ0∂〈y∗, f〉(x̄) +
n∑

i∈{i| λi>0}
λi∂(τiϕi)(x̄) +

n∑
i∈{i| λi=0}

∂∞(τiϕi)(x̄) +N(x̄;C)

with some quantities τi described in the end of section 2.
Proof. This follows directly from Theorem 5.5 due to relationships (2.6) and (2.7)

between subgradients of functions and normals to their graphs and epigraphs.
The second corollary concerns Lipschitzian constraints in problem M when the

assumptions and relations of Theorem 5.5 can be essentially simplified.
Corollary 5.7. Let x̄ be a solution to M, where the set C is locally closed

and the functions f :X → R
s and ϕi:X → R, i = 1, . . . , n, are Lipschitz continuous

around x̄. Then there are multipliers λi ≥ 0, i = 0, . . . , n, not all zero, and y∗ ∈
Ñ(f(x̄); clL(f(x̄))) with ‖y∗‖ = 1 such that

λiϕi(x̄) = 0 for i = 1, . . . ,m, and

0 ∈ λ0∂〈y∗, f〉(x̄) +
m∑
i=1

λi∂ϕi(x̄) +

n∑
i=m+1

λi

(
∂ϕi(x̄) ∪ ∂(−ϕi)(x̄)

)
+N(x̄;C).

Proof. It follows from Corollary 5.6, since ∂∞ϕ(x̄) = {0} and since both sets epiϕ
and gphϕ are sequentially normally compact for locally Lipschitzian functions.

Note that in general the extended normal cone Ñ to the level set of the preference
in Theorem 5.5 and its corollaries cannot be replaced by the limiting normal cone N .
The following example concerns multiobjective problems with no constraints in finite-
dimensional spaces.

Example 5.8. Define a preference ≺ on R2 by (x1, x2) ≺ (y1, y2) if |x1| − 2|x2| >
|y1| − 2|y2|. Given f :Rp → R

2 as

f(x1, . . . , xp) :=


2 sign(x1)

(
p∑
i=1

x2
i

)1/2

,

(
p∑
i=1

x2
i

)1/2

 ,
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we consider its optimization with respect to the preference ≺. Then x̄ = 0 is obviously
a solution to this problem. One can easily check that Corollary 5.7 holds in this setting
while its counterpart in terms of N(·; clL) does not.

Remark 5.9. When both spaces X and Y are finite-dimensional and the mapping
clL(·) is normally semicontinuous at the point (f(x̄), f(x̄)), the results of Corollar-
ies 5.6 and 5.7 are derived in [24] by using a method similar to the proof of the
extremal principle. That paper also contains qualification conditions ensuring that
λ0 �= 0 in the above statements and discusses optimization problems with variational
inequality constraints.

The results established in Theorem 5.5 and its corollaries extend to the multi-
objective case the corresponding results for nonsmooth optimization problems with
real-valued cost functions derived in [12] and [13] in finite-dimensional and Asplund
spaces, respectively, by using the extremal principle for set systems (3.1). Finally in
this section, we obtain an extension to non-Lipschitzian multiobjective problems of
the results of Proposition 2.3 on necessary optimality conditions in the “weak fuzzy”
form; cf. [3], [17], and [19]. The main difference between the next theorem and The-
orem 5.4 is that, instead of Fréchet normal to graphs and epigraphs, we now use
Fréchet subgradients of constraint functions. However, the price we pay is that, in-
stead of a small dual ball as in (5.9), we have to involve a weak∗ neighborhood of the
origin in the following conditions.

Theorem 5.10. Let x̄ be a solution to M, where C is locally closed, f is locally
Lipschitzian, and ϕi are lower semicontinuous for i = 1, . . . ,m and continuous for
i = m + 1, . . . , n around x̄. Assume also that (2.8) and (2.9) are fulfilled. Then for
any ε > 0 and any weak∗ neighborhood V of the origin in X∗ there are x0 ∈ x̄+ εBX ,

(xi, ϕi(xi)) ∈ (x̄, ϕi(x̄)) + εBX×R, i = 1, . . . , n,

xn+1 ∈ C ∩ (x̄+ εBX), y0, y1 ∈ f(x̄) + εBY ,

y∗ ∈ N̂(y1; clL(y0)) with ‖y∗‖ = 1,

and multipliers λi ≥ 0, i = 1, . . . , n, not all zero, such that

0 ∈ ∂̂〈y∗, f〉(x0) +

n∑
i=1

λi∂̂(τiϕi)(xi) + N̂(xn+1;C) + V(5.18)

with some quantities τi described in the end of section 2.
Proof. Let Ω be a set of feasible points for problem M. Then this problem

can be rewritten in the form of problem M0 from the beginning of this section.
Applying Proposition 5.1, for any ε > 0 we find x0, x̂ ∈ x̄+ εBX , y0, y1 ∈ f(x̄)+ εBY ,

x∗ ∈ N̂(x̂; Ω), and y∗ ∈ N̂(y1; clL(y0)) with ‖y∗‖ = 1 such that inclusion (5.1) holds.

Now taking an arbitrary small ε′ > 0 and using construction (2.4) for x∗ ∈ N̂(x̂; Ω),
we have

〈x∗, x− x̂〉 − ε′‖x− x̂‖ ≤ 0 for all x ∈ Ω ∩ U,

where U ⊂ X is an appropriate neighborhood of x̂. Thus x̂ is a local solution to the
constrained minimization problem P from section 2 with

ϕ0(x) := −〈x∗, x− x̂〉+ ε′‖x− x̂‖.
Employing Proposition 2.3 and then Lemma 5.3, for any weak∗ neighborhood V ⊂
X∗ of the origin we get, under assumptions (2.8) and (2.9), points (xi, ϕi(xi)) ∈
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(x̂, ϕi(x̂)) + ε′BX×R, i = 1, . . . , n, and xn+1 ∈ x̂+ ε′BX as well as multipliers λi ≥ 0,
i = 1, . . . , n, not all zero, satisfying the inclusion

x∗ ∈
n∑
i=1

λi∂̂(τiϕi)(xi) + N̂(xn+1;C) + V.

Substituting this into (5.1), we finish the proof.

6. Multiplayer games. In this concluding section of the paper we briefly con-
sider some applications of the extended extremal principle to a class of multiobjective
games with many players. These can be roughly described as games with n play-
ers, where each player wants to choose a strategy x̄i from a space Xi such that
they ≺i optimize (with respect to the preference ≺i on Y ) an objective function
f : X1 ×X2 × · · · ×Xn → Y given all other players choices x̄j , j �= i.

This is a general game setting that covers, in particular, the case when each of
the players can have a different objective function fi:X1 × · · · × Xn → Yi. In the
latter case one has f := (f1, . . . , fn):X1 × · · · × Xn → Y := Y1 × · · · × Yn with the
ordering ≺i on Y defined by

y ≺i v for y, v ∈ Y provided that yi ≺i vi for yi, vi ∈ Yi.

It is well known that an essential concept in all game theory is that of a saddle
point. Let us give a generalized version of this concept for the above multiobjective
setting, where ≺ stands for (≺1, . . . ,≺n).

Definition 6.1. A point x̄ = (x̄1, . . . , x̄n) is a local ≺-saddle point of f :X1 ×
· · · ×Xn → Y if for each i = 1, . . . , n there is a neighborhood Ui of x̄i such that

f(x̄) ≺i f(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n) for all xi ∈ Ui.

This can be different from the usual saddle point concept regardless of the space,
as the following example shows.

Example 6.2. Consider the mapping f : R4 → R
2 given by

f(x, y, u, v) := (x2 + u,−y2 − ev).

Let us group the variables so that x and y are for player one and u and v are for
player two. This means that X1 = X2 = Y = R2. The order ≺1 on Y = R2 for player
one is that (w, z) ≺1 (w1, z1) if w < w1 and z ≥ z1 or w ≤ w1 and z > z1. The order
≺2 on Y = R2 for player two is that (w, z) ≺2 (w1, z1) if w < w1 and z < z1. This is
a mixture of Pareto and weak Pareto optimality. Any point of the form (0, 0, u, v) is
a ≺-saddle point for these orderings.

Now we present necessary optimality conditions for multiobjective games (in the
sense of finding saddle points from Definition 6.1) under additional constraints. For
simplicity we consider only the case of geometric constraints. Given f :X1×· · ·×Xn →
Y and ≺i as above, we impose constraints xi ∈ Ci ⊂ Xi for each i = 1, . . . , n and
consider a (local) ≺-saddle point x̄ for game G under these constraints. Due to
Definition 6.1 (taking constraints into account) we have the following multiobjective
optimization problem for each player i:

Mi Minimize f(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n)

subject to xi ∈ Ci,

where “minimization” is understood with respect to the preference ≺i on Y .
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Denote fi(xi) := f(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n) and consider the level sets Li(y)
induced by the preferences ≺i on Y . Employing the results of section 5 based on the
extended extremal principle, we get the following necessary optimality conditions for
constrained multiobjective games.

Theorem 6.3. Let x̄ be a local ≺-saddle point for game G, where the preferences
≺i are locally satiated and almost transitive. Assume that the spaces X1, . . . , Xn and
Y are Asplund, that f is locally Lipschitzian around x̄, and that Ci are locally closed
around x̄i for all i. Then for any ε > 0 there exist points

ui, xi ∈ x̄i + εBXi , yi, zi ∈ fi(x̄i) + εBY , x∗
i ∈ N̂(xi;Ci), y∗i ∈ N̂(zi; clLi(yi))

with ‖y∗i ‖ = 1 satisfying

0 ∈ x∗
i + ∂̂〈y∗i , fi〉(ui) + εBX∗

i
for each i = 1, . . . , n.

If in addition dimY < ∞, then there are y∗i ∈ Ñ(fi(x̄i); clLi(fi(x̄i))) with ‖y∗i ‖ = 1
such that

∂〈y∗i , fi〉(x̄i) ∩
(−N(x̄i;C)

) �= ∅, i = 1, . . . , n.

Proof. This follows from Proposition 5.1 and Theorem 5.5 applied to the mul-
tiobjective optimization problems Mi corresponding to the above definition of local
≺-saddle points for game G.
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[11] P. D. Loewen, Limits of Fréchet normals in nonsmooth analysis, in Optimization and Non-
linear Analysis, A. Ioffe et al. eds., Pitman Res. Notes Math. Ser. 244, Longman, Harlow,
UK, 1992, pp. 178–188.

[12] B. S. Mordukhovich, Approximation Methods in Problems of Optimization and Control,
Nauka, Moscow, 1988.



MULTIOBJECTIVE OPTIMIZATION 379

[13] B. S. Mordukhovich, The extremal principle and its applications to optimization and eco-
nomics, in Optimization and Related Topics, A. Rubinov and B. Glover, eds., Appl. Op-
tim. 47, Kluwer Academic, Dordrecht, The Netherlands, 2001, pp. 343–369.

[14] B. S. Mordukhovich and Y. Shao, Extremal characterizations of Asplund spaces, Proc. Amer.
Math. Soc., 124 (1996), pp. 197–205.

[15] B. S. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces, Trans.
Amer. Math. Soc., 348 (1996), pp. 1235–1280.

[16] B. S. Mordukhovich and Y. Shao, Fuzzy calculus for coderivatives of multifunctions, Non-
linear Anal., 29 (1997), pp. 605–626.

[17] B. S. Mordukhovich and B. Wang, Necessary suboptimality and optimality conditions via
variational principles, SIAM J. Control Optim., 41 (2002), pp. 623–640.
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Abstract. Limited-memory BFGS quasi-Newton methods approximate the Hessian matrix of
second derivatives by the sum of a diagonal matrix and a fixed number of rank-one matrices. These
methods are particularly effective for large problems in which the approximate Hessian cannot be
stored explicitly.

It can be shown that the conventional BFGS method accumulates approximate curvature in a
sequence of expanding subspaces. This allows an approximate Hessian to be represented using a
smaller reduced matrix that increases in dimension at each iteration. When the number of variables
is large, this feature may be used to define limited-memory reduced-Hessian methods in which
the dimension of the reduced Hessian is limited to save storage. Limited-memory reduced-Hessian
methods have the benefit of requiring half the storage of conventional limited-memory methods.

In this paper, we propose a particular reduced-Hessian method with substantial computational
advantages compared to previous reduced-Hessian methods. Numerical results from a set of uncon-
strained problems in the CUTE test collection indicate that our implementation is competitive with
the limited-memory codes L-BFGS and L-BFGS-B.

Key words. unconstrained optimization, quasi-Newton methods, BFGS method, reduced-
Hessian methods, conjugate-direction methods
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DOI. 10.1137/S1052623497319973

1. Introduction. BFGS quasi-Newton methods have proved reliable and effi-
cient for the unconstrained minimization of a smooth nonlinear function f : Rn → R.
However, the need to store an n × n approximate Hessian has limited their applica-
tion to problems with a small-to-moderate number of variables (say, less than 500).
For larger n it is necessary to use methods that do not require the storage of a full
n × n matrix. Sparse quasi-Newton updates can be applied if the Hessian has a
significant number of zero entries (see, e.g., Powell and Toint [29], Fletcher [10]).
However, if the Hessian is dense, as is often the case for certain subproblems arising
in nonlinearly constrained optimization, other methods must be used. Such meth-
ods include conjugate-gradient methods, limited-memory quasi-Newton methods, and
limited-memory reduced-Hessian quasi-Newton methods.

Conjugate-gradient methods require storage for only a few n-vectors (see, e.g.,
Gill, Murray, and Wright [17, pp. 144–150]). These methods can be equivalent to
the BFGS quasi-Newton method on a quadratic function, but they are generally
acknowledged to be less robust on general nonlinear problems (see Gill and Murray
[14] for some numerical comparisons). Limited-memory quasi-Newton methods also
require storage of few n-vectors but have a more explicit relationship with quasi-
Newton methods. Limited-memory methods exploit the fact that the approximate
Hessian (or its inverse) can be written as the sum of a diagonal matrix and a number
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of rank-one matrices. This allows the search direction to be calculated as a simple
linear combination of the vectors that define each rank-one update. The idea of
a limited-memory method is to store a fixed number m (m � n) of pairs of update
vectors and to discard older pairs as new ones are computed. These methods appeared
in the early 1980s (see, e.g., Shanno [30] and Nocedal [26]), and they have now been
developed to a considerable level of sophistication (see Byrd, Nocedal, and Schnabel [5]
and Kaufman [19]). Limited-memory approximate Hessians may be used directly in
a conventional quasi-Newton method, or they may be used as preconditioners for
a nonlinear conjugate-gradient method (see, e.g., Buckley [2, 3], Gill, Murray, and
Wright [17, pp. 151–152], Morales and Nocedal [22], and Nazareth [25]).

A different approach has been taken by Fenelon [8] and Siegel [33], who indepen-
dently proposed methods in which the curvature is accumulated in a subspace spanned
by a set of m independent vectors. These reduced-Hessian methods exploit the fact
that quasi-Newton methods accumulate approximate curvature in a sequence of ex-
panding subspaces (see Gill and Leonard [13]). Reduced-Hessian methods represent
the approximate Hessian using a smaller reduced matrix that increases in dimension at
each iteration. This reduced matrix incorporates curvature information that has been
accumulated during earlier iterations and allows the search direction to be calculated
from a linear system that is smaller than that used in conventional methods.

In this paper we propose the limited-memory method L-RHR, which may be
viewed as a limited-memory variant of the reduced-Hessian method RHR of Gill and
Leonard [13]. L-RHR has two features in common with the limited-memory method of
Siegel [33]: a basis of search directions is maintained for the sequence of m-dimensional
subspaces, and an implicit orthogonal decomposition is used to define an orthonor-
mal basis for each subspace. However, L-RHR is different from Seigel’s algorithm in
several ways: (i) L-RHR updates the Cholesky factor of the reduced Hessian instead
of updating an explicit reduced inverse Hessian; (ii) the formulation of L-RHR as a
modification of RHR allows the application of Hessian reinitialization, which is shown
to greatly enhance performance on large problems; and (iii) L-RHR employs selective
basis reorthogonalization to improve robustness for moderate values of the subspace
dimension. Property (i) implies that in exact arithmetic, even if implemented with-
out Hessian reinitialization and selective reorthogonalization, the L-RHR iterates are
different from those of Siegel’s method (see section 3.6). Properties (i)–(iii) not only
provide substantial improvements in efficiency compared to Siegel’s method, but also
make reduced-Hessian methods competitive with the state-of-the-art limited-memory
method L-BFGS-B of Zhu et al. [34]. L-RHR requires the storage of an n×m matrix,
two m×m nonsingular upper-triangular matrices, and a fixed number of n- and m-
vectors. For a given m, this is approximately half the storage required for L-BFGS-B

to represent essentially the same amount of second-derivative information. Moreover,
L-RHR requires fewer floating-point operations per iteration, which results in smaller
overall computation times on many problems.

The paper is organized as follows. In section 2 we briefly review various theoretical
aspects of reduced-Hessian quasi-Newton methods, including the definition of Algo-
rithm RHR, a reduced-Hessian method with Hessian reinitialization. Algorithm RHR

provides the theoretical framework for the limited-memory algorithm L-RHR proposed
in section 3. We give algorithms for maintaining both gradient- and search-direction
subspace bases, and it is shown that L-RHR has the property of finite termination
on a strictly convex quadratic function. To simplify the discussion, the algorithms of
sections 2–3 are stated with the assumption that all computations are performed in
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exact arithmetic. The effects of rounding error and the use of reorthogonalization are
discussed in sections 4.1, 4.2, and 4.3. Finally, section 5 includes some numerical re-
sults obtained when various limited-memory reduced-Hessian algorithms are applied
to test problems from the CUTE test collection of Bongartz et al. [1]. It is shown
that reinitialization and selective reorthogonalization (in conjunction with an explicit
factorization for the subspace basis) give, respectively, significantly fewer function
evaluations and increased robustness compared to Siegel’s method. Section 5 also
includes comparisons of L-RHR with two alternative implementations of the conven-
tional limited-memory BFGS method.

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its
subordinate matrix norm.

2. Motivation. The BFGS method generates a sequence of iterates {xk} such
that xk+1 = xk+αkpk, where pk is the search direction and αk is a scalar step length.
The search direction satisfies Hkpk = −∇f(xk), where Hk is an approximate Hessian.
The application of the BFGS update to Hk gives a matrix H ′

k such that

H ′
k = Hk − 1

δTkHkδk
Hkδkδ

T
kHk +

1

γTk δk
γkγ

T
k ,(2.1)

where δk = xk+1−xk, gk = ∇f(xk), and γk = gk+1−gk. A conventional BFGS method
then defines Hk+1 = H ′

k (another choice for Hk+1 is discussed in section 2.2). If H0 is
symmetric and positive definite, and if αk is such that the approximate curvature γTk δk
is positive, then Hk is symmetric positive definite for all k ≥ 0. Conditions imposed
on the step length by practical step-length algorithms can ensure both positivity of
the approximate curvature and sufficient descent. This is the case, for example, for
any αk satisfying the Wolfe conditions

f(xk + αkpk) ≤ f(xk) + µαkg
T
kpk and gTk+1pk ≥ ηgTkpk,(2.2)

where the constants µ and η are chosen so that 0 ≤ µ < η < 1 and µ < 1
2 .

The need to solve a linear system for pk makes it convenient to use the upper-
triangular Cholesky factor Ck such that Hk = CTk Ck. In this case, the Cholesky factor
Ck+1 of Hk+1 is obtained from a rank-one change to Ck (see Dennis and Schnabel [7]).
We omit the details of this procedure and simply write Ck+1 = update(Ck, δk, γk).

2.1. Reduced-Hessian methods. Reduced-Hessian methods provide an al-
ternative way of implementing the BFGS method. Let Gk denote the subspace
Gk = span{g0, g1, . . . , gk}, and let G⊥k denote the orthogonal complement of Gk in
R
n. Reduced-Hessian methods are based on the following result (see, e.g., Fletcher

and Powell [11], Fenelon [8], and Siegel [33]).
Lemma 2.1. Consider the BFGS method applied to a general nonlinear function.

If H0 = σI (σ > 0) and Hkpk = −gk, then pk ∈ Gk for all k. Moreover, if z ∈ Gk and
w ∈ G⊥k , then Hkz ∈ Gk and Hkw = σw.

Let rk denote dim(Gk), and let Bk (B for “basis”) denote an n× rk matrix whose
columns form a basis for Gk. An orthonormal basis Zk can be defined from the QR
decomposition Bk = ZkTk, where Tk is a nonsingular upper-triangular matrix. Let
the n− rk columns of Wk define an orthonormal basis for G⊥k . If Qk is the orthogonal
matrix Qk =

(
Zk Wk

)
, then the transformation x = QkxQ defines a transformed

approximate Hessian QTkHkQk and a transformed gradient QTkgk. If H0 = σI (σ > 0),
it follows from (2.1) and Lemma 2.1 that the transformation induces a block-diagonal



LIMITED-MEMORY METHODS 383

structure, with

QTkHkQk =

(
ZTkHkZk 0

0 σIn−rk

)
and QTkgk =

(
ZTkgk

0

)
.(2.3)

The positive-definite matrix ZTkHkZk is known as a reduced approximate Hessian (or
just reduced Hessian). The vector ZTkgk is known as a reduced gradient.

If we write the equation for the search direction as (QTkHkQk)QTk pk = −QTk gk, it
follows from (2.3) that

pk = Zkqk, where qk satisfies ZTk HkZkqk = −ZTkgk.(2.4)

If the Cholesky factorization ZTk HkZk = RTkRk is known, qk can be computed from
the forward substitution RTk dk = −ZTk gk and back-substitution Rkqk = dk. The
practical benefit of this approach is that, if k � n, the matrices Zk and Rk require
much less storage than Hk.

There are a number of alternative choices for Bk (see Gill and Leonard [13, The-
orem 2.3]). Both Fenelon and Siegel propose that Bk be formed from a linearly
independent subset of {g0, g1, . . . , gk}. With this choice, the orthonormal basis can
be accumulated columnwise as the iterations proceed using Gram–Schmidt orthogo-
nalization (see, e.g., Golub and Van Loan [18, pp. 218–220]). During iteration k, the
number of columns of Zk either remains unchanged or increases by one, depending on
the value of the scalar ρk+1 such that ρk+1 = ‖(I−ZkZTk )gk+1‖. If ρk+1 = 0, the new
gradient has no component outside range(Zk) and gk+1 is said to be rejected. Thus,
if ρk+1 = 0, Zk already provides a basis for Gk+1 with rk+1 = rk and Zk+1 = Zk.
Otherwise, rk+1 = rk+1 and the gradient gk+1 is said to be accepted. In this case, Zk
gains a new column zk+1 defined by the identity ρk+1zk+1 = (I − ZkZ

T
k )gk+1. The

calculation of zk+1 also provides the rk-vector uk = ZTk gk+1 and the scalar zTk+1gk+1

(= ρk+1), which are the components of the reduced gradient ZTk+1gk+1 for the next
iteration. For simplicity, we write (Zk+1, uk, ρk+1, rk+1) = orthog(Zk, gk+1, rk) in
the algorithms that follow. This orthogonalization procedure requires approximately
2nrk flops. Gram–Schmidt orthogonalization may be considered as an algorithm for
computing the QR decomposition of Bk without storing Tk. Suppose that at the start
of iteration k there exists a nonsingular Tk with Bk = ZkTk. If gk+1 is accepted, then

Bk+1 =
(
Bk gk+1

)
=
(
Zk zk+1

)( Tk ZTk gk+1

0 ρk+1

)
= Zk+1Tk+1,(2.5)

where the last equality defines Tk+1, which is nonsingular since ρk+1 �= 0. Otherwise,
Tk+1 = Tk.

Definition (2.4) of each search direction implies that pj ∈ Gk for all 0 ≤ j ≤ k.
This leads naturally to another basis for Gk based on orthogonalizing the search
directions p0, p1, . . . , pk. The next theorem implies that the columns of Zk constitute
an orthonormal basis for Pk, the span of all search directions {p0, p1, . . . , pk} (for a
proof, see Gill and Leonard [13]).

Theorem 2.2. If H0 = σI (σ > 0), then the subspaces Gk and Pk generated by
the gradients and search directions of the conventional BFGS method are identical.

This result implies that Zk can be generated from either gradients or search
directions, a point that will be used to advantage in section 3.



384 PHILIP E. GILL AND MICHAEL W. LEONARD

Given Zk+1 and Hk, the calculation of the search direction for the next iteration
requires the Cholesky factor of ZTk+1Hk+1Zk+1.1 This factor can be obtained from
Rk in a two-step process without the need to know Hk. The first step, which is not
needed if gk+1 is rejected, is to compute the factor R′

k of ZTk+1HkZk+1. This step
involves adding a row and column to Rk to account for the new last column of Zk+1.
It follows from Lemma 2.1 and (2.3) that

ZTk+1HkZk+1 =

(
ZTk HkZk ZTk Hkzk+1

zTk+1HkZk zTk+1Hkzk+1

)
=

(
ZTk HkZk 0

0 σ

)
,

giving an expanded block-diagonal factor R′
k defined by

R′
k =




Rk if rk+1 = rk;(
Rk 0

0 σ1/2

)
if rk+1 = rk + 1.

(2.6)

The algorithm that defines R′
k from Rk will be denoted by expand for obvious

reasons. This expansion also involves vectors vk = ZTk gk, uk = ZTk gk+1, and qk =
ZTk pk, which are updated to give v′k = ZTk+1gk, u′

k = ZTk+1gk+1, and q′k = ZTk+1pk. As
both pk and gk lie in range(Zk), if gk+1 is accepted, the vectors v′k and q′k are trivially
defined from vk and qk by appending a zero component (see (2.3)). Similarly, the
vector u′

k is formed from uk and ρk+1. If gk+1 is rejected, v′k = vk, u′
k = uk, and

q′k = qk. In either case, vk+1 is equal to u′
k and need not be calculated at the start of

iteration k + 1 (see Algorithm 2.1 below).
The second step of the modification alters R′

k to reflect the BFGS update to
Hk. This update gives a modified factor R′′

k = update(R′
k, sk, yk), where sk =

ZTk+1(xk+1 − xk) = αkq
′
k, and yk = ZTk+1(gk+1 − gk) = u′

k − v′k.

2.2. Reinitialization. The initial approximate Hessian can greatly influence
the practical performance of quasi-Newton methods. The usual choice H0 = σI
(σ > 0) can result in many iterations and function evaluations—especially if the
iterates tend toward a minimizer at which the Hessian of f is ill-conditioned (see,
e.g., Powell [27] and Siegel [33]). This is sometimes associated with “stalling” of the
iterates, a phenomenon that can greatly increase the overall cpu time for solution
(or termination). The form of the transformed Hessian QTkHkQk (see (2.3)) reveals
the influence of H0 on the approximate Hessian. In particular, the scale factor σ
represents the approximate curvature along all directions in G⊥k . However, in the
reduced-Hessian formulation, this initial approximate curvature is not installed until
the end of iteration k, when it is used in the expand procedure according to (2.6).
Our idea is to replace σ whenever gk+1 is accepted with a value more representative
of the approximated curvature. This has the effect of reinitializing the approximate
curvature along zk+1 and is meant to alleviate inefficiencies resulting from poor choices
of H0. An estimate σk of the approximate curvature is maintained and updated as
new curvature information is obtained. Some popular choices for σk are considered
by Leonard [20, pp. 44–48]. In section 5 we discuss values that have been proposed
for limited-memory methods.

The initial approximate curvature can be reinitialized by using some σk+1 in place
of σk in the expand procedure. Gill and Leonard [13] show that reinitialization can

1As mentioned earlier, Hk+1 is usually H
′
k, which is defined by (2.1). However, we will implicitly

alter H′
k further, as described in section 2.2.
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be done either before or after the expand , but they recommend the latter because
it results in a simpler convergence result. Here, the reinitialization is performed
after update to be consistent with that article. The procedure reinitialize involves

simply changing the trailing diagonal element of R′′
k from σ

1/2
k to σ

1/2
k+1 whenever gk+1

is accepted.

2.3. Summary. We conclude this section by defining a generic reduced-Hessian
method that is the basis of the limited-memory method proposed in section 3. As
described above, the reduced-Hessian method involves four main procedures: an or-
thogonalize, which determines Zk+1 using the Gram–Schmidt QR process; an expand,
which increases the order of the reduced Hessian by one; an update, which applies a
BFGS update directly to the reduced Hessian; and a reinitialize, which reinitializes
the last diagonal of the reduced-Hessian factor.

Algorithm 2.1. (RHR) Reduced-Hessian method with reinitialization.
Choose x0 and σ0 (σ0 > 0);
k = 0; r0 = 1; g0 = ∇f(x0);

Z0 =
(
g0/‖g0‖

)
; R0 =

(
σ

1/2
0

)
; v0 = ‖g0‖;

while not converged do
Solve RTk dk = −vk; Rkqk = dk;

pk = Zkqk;
Find αk satisfying the Wolfe conditions (2.2);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk);
(Zk+1, uk, ρk+1, rk+1) = orthog(Zk, gk+1, rk);
(R′

k, u
′
k, v

′
k, q

′
k) = expand(Rk, uk, vk, qk, ρk+1, σk);

sk = αkq
′
k; yk = u′

k − v′k; R′′
k = update(R′

k, sk, yk);

Compute σk+1; Rk+1 = reinitialize(R′′
k , σk+1);

vk+1 = u′
k;

k = k + 1;
end do

When no reinitialization is done, this algorithm generates the same iterates as the
conventional BFGS method with H0 = σ0I. In exact arithmetic, the methods differ
only in the storage needed and the number of operations per iteration. It can be
shown that both with and without reinitialization, the algorithm retains two impor-
tant properties of the BFGS method: it has quadratic termination, and it converges
globally and Q-superlinearly on strongly convex functions (see Gill and Leonard [13]).

Algorithm RHR implicitly defines a full-sized BFGS approximate Hessian Hk. Let
Zk and Rk be defined at the start of the kth iteration, and let Qk =

(
Zk Wk

)
denote an orthogonal matrix whose first rk columns are the columns of Zk. The
full-sized approximate Hessian is given by

Hk = Qk

(
RTk 0

0 σ
1/2
k In−rk

)(
Rk 0

0 σ
1/2
k In−rk

)
QTk .(2.7)

Given Rk, Zk, and any n-vector v, the identity

Hkv = ZkR
T
kRkZ

T
k v + σk(I − ZkZ

T
k )v

implies that products Hkv can be calculated. This allows the reduced-Hessian ap-
proach to be used in constrained optimization algorithms that use Hk as an operator
via products of the form Hkv (see, e.g., Gill, Murray, and Saunders [15]).
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3. A limited-memory reduced-Hessian method. In this section we propose
a limited-memory method that may be viewed as a reduced-Hessian method in which
only the most recent curvature information is retained. As in Algorithm RHR, a
triangular factor of the reduced Hessian is updated and reinitialized at each iteration—
the crucial difference is that the number of basis vectors (and hence the dimension
of the reduced Hessian) is limited by a preassigned value m. For problems with
many variables, a choice of m � n gives significant savings in storage compared to
conventional quasi-Newton methods.

A simple limited-memory version of RHR can be defined by discarding the oldest
gradient when the storage limit is reached. However, algorithms based on this idea
have proved to be inefficient in practice. One explanation of this inefficiency is that
discarding the oldest gradient invalidates RHR’s property of finite termination on
a quadratic function (see Theorem 3.1 and the concluding remarks of section 3.7).
There is considerable numerical evidence that quadratic termination is beneficial when
minimizing general functions; see, e.g., Siegel [31] and Leonard [20]. The limited-
memory method proposed here retains the property of finite termination by following
Siegel’s suggestion of using a basis of search directions rather than gradients. This
strategy is sufficient to maintain quadratic termination when the oldest basis vector
is discarded (see section 3.3).

An important feature of the method is that it is necessary to store and update
the triangular factor Tk associated with the orthogonal factorization Bk = ZkTk. In
practice, we store Tk and either Zk or Bk.

3.1. The search-direction basis and its factorization. We start by describ-
ing how the orthogonal factorization is maintained as directions are added to the basis.
Initially, this procedure is described in the context of building an m-dimensional basis
before a search direction is discarded, where m is assumed to satisfy m ≥ 2. The usual
context is to add and remove a vector at every iteration. The procedure for removing
a direction from the basis is described in section 3.2. To simplify the discussion, we
assume that every gradient is accepted.

In order to allow for the fact that Zk is used in the equations that define pk,
the gradient gk is used as a temporary basis vector until it can be replaced by pk.
This implies that the kth iteration involves three basis matrices: Bk, B′

k, and B′′
k .

The starting basis is Bk = ( p0 · · · pk−1 gk ). The matrix B′
k is obtained from

Bk by replacing gk by pk as soon as it is computed, and B′′
k is found by adding the

accepted gradient to B′
k. The matrices Bk and B′

k differ by a single column, yet, by
Theorem 2.2, their columns span the same subspace during the build process.

The procedure starts with B0 =
(
g0

)
, T0 =

( ‖g0‖
)
, and Z0 =

(
z0
)
, where

z0 = g0/‖g0‖. Once p0 is calculated, it is swapped into the basis to give B′
0 =

(
p0

)
and T ′

0 =
( ‖p0‖

)
. After the line search, g1 is accepted (by assumption) and we define

B′′
0 =

(
p0 g1

)
, T ′′

0 =

(
‖p0‖ u0

0 ρ1

)
, and Z ′

0 =
(
z0 z1

)

(see (2.5) and recall that uk = ZTk gk+1). With our assumption that m ≥ 2, no
vector need be discarded and these matrices define B1, T1, and Z1. The kth iteration
(1 ≤ k ≤ m− 1) proceeds in a similar way, with

Bk =
(
p0 · · · pk−1 gk

)
, Tk =

(
T ′
k−1 vk

)
, T ′

k−1 =

(
T ′
k−1

0

)
,
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and Zk = ( z0 · · · zk−1 zk ) (the form of the last column of Tk follows from the
definition of vk as ZTk gk). Once pk is computed, it is swapped with gk in the basis
with no computation required, yielding

B′
k =

(
p0 · · · pk−1 pk

)
and T ′

k =
(
T ′
k−1 qk

)
,

where qk = ZTk pk. The matrix Zk is unchanged. While building the basis, the last
component of qk is nonzero and the swap can always be done (see Leonard [20, pp. 94–
99]). After the line search, gk+1 is accepted and the orthogonalization procedure yields

B′′
k =

(
B′
k gk+1

)
=
(
p0 · · · pk−1 pk gk+1

)
, T ′′

k =

(
T ′
k uk

0 ρk+1

)
,

and Z ′
k = ( z0 · · · zk−1 zk zk+1 ). These matrices are then passed to iteration k+ 1

as Bk+1, Tk+1, and Zk+1, respectively.

3.2. Discarding the oldest basis vector. Now suppose that k = m−1. Given
the assumption that every gradient is accepted, there are m + 1 vectors in the basis
at the end of this iteration. At this point, p0, the oldest search direction, must be
discarded before starting iteration k + 1. This gives the new basis

Bk+1 =
(
p1 · · · pk gk+1

)
.

(On the other hand, if at least one gradient is rejected, then no vector is discarded
at iteration m. In this case, Bk+1 contains rk+1 (rk+1 ≤ m) linearly independent
vectors consisting of at most one gradient (the vector gk+1) and a linearly indepen-
dent set of search directions. If gk+1 is rejected, Bk+1 will consist of rk+1 linearly
independent search directions.) Discarding a vector from the basis will decrease the
rank by one. Hence, a symbol r′k is needed for the intermediate rank determined by
the orthogonalization procedure orthog . The final rank rk+1 is then either r′k − 1 or
r′k depending upon whether or not a basis vector is discarded.

When the oldest direction p0 is discarded, the removal of its associated column
from the basis must be reflected in all factorizations associated with B′′

k . To simplify
the description, the subscript k is suppressed, and a bar is used to denote quantities
with subscript k + 1.

The relationship between the old and new bases B′′ and B̄ (= Bk+1) is given by
B′′ =

(
p0 B̄

)
, where B̄ is n×m. Associated with B̄, we require Z̄ and T̄ such that

B̄ = Z̄T̄ . Moreover, the change from Z ′ to Z̄ induces a corresponding change to the
Cholesky factor. If R′′′ denotes the factor defined by the reinitialize procedure, then
we require the factor R̄ such that R̄TR̄ = Z̄TH ′′Z̄, where H ′′ is defined as in (2.7) but
in terms of σ̄, Z ′, and R′′′. The matrix H ′′ is the Hk+1 defined in section 2.2.

Daniel et al. [6] give the following method for updating Z ′ and T ′′. Given any
orthogonal S, the orthogonal factorization of B′′ may be written as B′′ = Z ′T ′′ =
Z ′STST ′′ = ZSTS (say). The matrix S is constructed so that TS has the partitioned
form

TS =

(
t T̄

τ 0

)
,

where T̄ is the desired m ×m upper-triangular matrix, t is an m-vector, and τ is a
scalar. In particular, S = Pm,m+1Pm−1,m · · ·P12, where Pi,i+1 is an (m+ 1)× (m+ 1)
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plane rotation in the (i, i + 1) plane that annihilates the (i + 1, i + 1) element of
Pi−1,i · · ·P12T

′′.
The matrix Z̄ consists of the first m columns of ZS, i.e., ZS =

(
Z̄ z

)
, where z

is an n-vector. From the definition of B′′, we have

B′′ =
(
p0 B̄

)
= ZSTS =

(
Z̄t + τz Z̄T̄

)
,

and it follows that B̄ = Z̄T̄ is the required orthogonal factorization.
Next, we propose how to update R′′′ when the first column of B′′ is discarded.

The old and new orthogonal bases are related by the identity Z̄ = ZSEm, where
Em comprises the first m columns of the identity matrix of order m + 1. From the
definitions of Z̄ and H ′′, the new reduced Hessian is given by

Z̄TH ′′Z̄ = ET
mZ

T
S H

′′ZSEm = ET
mSZ

′TH ′′Z ′STEm = ET
mSR

′′′TR′′′STEm.

In general, R′′′ST is not upper triangular, but it may be restored to upper-triangular
form by a second sweep of plane rotations S̃. The (m + 1) × (m + 1) matrix S̃

is orthogonal and is chosen so that S̃R′′′ST is upper triangular. If RS = S̃R′′′ST

denotes the resulting product, then Z̄TH ′′Z̄ = ET
mR

T
S RSEm, which implies that the

leading m×m block of RS is the required factor R̄. Note that at this point, we can
define H̄ (= Hk+1) in terms of R̄, Z̄, and σ̄.

The matrix S̃ is the product P̃m,m+1 · · · P̃ 23P̃ 12, where P̃ i,i+1 is an (m + 1) ×
(m + 1) plane rotation in the (i, i + 1) plane that annihilates the (i, i + 1) element of

P̃ i−1,i · · · P̃ 12R
′′′PT12 · · ·PTi,i+1. In practice, the two sweeps S̃ and S are interlaced so

that only O(m2) operations are required.
It remains to show how u′ (= Z ′T ḡ) is updated, thereby avoiding the mn opera-

tions necessary to compute the new reduced gradient u′′ (= Z̄T ḡ) from scratch. The
identity u′′ = Z̄T ḡ = (ZSEm)T ḡ = ET

mS(Z ′T ḡ) = ET
mSu

′ implies that u′′ comprises
the first m components of Su′.

3.3. Comparison of the bases. We now revert to using subscripts to denote
iteration indices. Under the assumption that every gradient is accepted, the gradient
and search-direction bases at the start of iteration m − 1 are given by Gm−1 =
( g0 g1 · · · gm−1 ) and Pm−1 = ( p0 p1 · · · pm−2 gm−1 ). Theorem 2.2 implies
that range(Gm−1) = range(Pm−1), and we can expect that the value of pm−1 is
independent of the choice of basis. However, the following argument shows that this
is not necessarily true for pm, and hence the gradient and search-direction bases are
not necessarily the same in the limited-memory context.

At the end of iteration m − 1, both bases will have m + 1 vectors. In the
limited-memory context, the oldest basis vector must be discarded, giving bases
Gm = ( g1 g2 · · · gm ) and Pm = ( p1 p2 · · · pm−1 gm ). These bases do
not include g0 and p0 (which is parallel to g0), respectively. Note that pm−1 is not
necessarily in range(Gm) because pm−1 may have a nonzero component of g0, which
has been discarded from the gradient basis. Since pm−1 ∈ range(Pm) by construction,
it follows that range(Gm) �= range(Pm). We will discuss a specific implication of this
phenomenon in section 3.7.

3.4. An implicit representation of Z. When a basis vector is discarded, the
application of the plane rotations to the right of Z ′

k requires approximately 4mn
operations. Although it is possible to reduce this to 3mn operations (see Daniel et
al. [6]), the update to Z ′

k dominates the time to perform an iteration and reduces the
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efficiency compared to other methods. For example, the total number of operations
for an iteration of the limited-memory method of Nocedal [26] is approximately 4mn.

Our limited-memory reduced-Hessian method is substantially faster if, as pro-
posed by Siegel, the basis matrix Bk is stored instead of Zk. In this case, products
involving Zk are computed as needed using Tk and Bk, and the number of operations
required to drop a column from the basis is reduced to O(r2

k).
With an implicit definition of Zk, the orthogonalization procedure becomes a

method for updating the orthogonal factorization of Bk without storing Zk. Given
Bk and a new gradient gk+1, the first step is to compute uk = ZTk gk+1 from the
equations T ′T

k uk = B′T
k gk+1. Once uk is known, ρk+1 can be computed from the

identity ρ2
k+1 = ‖gk+1‖2 − ‖uk‖2. The updated triangular factor T ′′

k is defined by

augmenting T ′
k by a column formed from uk = ZTk gk+1 and ρk+1 (see (2.5)). Note

that the column zk+1 is not needed. The implicit form of Zk reduces the cost of the
orthogonalization procedure by half to approximately nrk operations.

3.5. The limited-memory algorithm. We have described a reduced-Hessian
limited-memory algorithm that needs three procedures in addition to those needed
by Algorithm RHR: a swap, which replaces an accepted gradient gk with pk in the
definition of Bk, giving a basis defined by B′

k and T ′
k; a new orthogonalize, which

orthogonalizes gk+1 with respect to Zk, giving a new orthonormal basis defined by
B′′
k and T ′′

k ; and a discard, which drops the oldest search direction from the basis.
As in Algorithm RHR, statements of the form (B′

k, T
′
k) = swap(Bk, Tk) indicate

computed quantities and their dependencies associated with a given procedure. Simi-
larly, the results of the implicit orthogonalization and discard procedures are denoted
by (B′′

k , T
′′
k , uk, ρk+1, r

′
k) = iorthog(B′

k, T
′
k, gk+1, rk) and (Bk+1, Tk+1, Rk+1, u

′′
k) =

drop(B′′
k , T

′′
k , R

′′′
k , u

′
k).

Algorithm 3.1. (L-RHR) Limited-memory version of Algorithm RHR.
Choose x0, σ0 (σ0 > 0), and m (m ≥ 2);
k = 0; r0 = 1; g0 = ∇f(x0);

B0 =
(
g0

)
; T0 =

( ‖g0‖
)
; v0 = ‖g0‖; R0 =

(
σ

1/2
0

)
;

while not converged do
Solve RTk dk = −vk; Rkqk = dk;

Solve Tkw = qk; pk = Bkw;
if gk was accepted then (B′

k, T
′
k) = swap(Bk, Tk);

Find αk satisfying the Wolfe conditions (2.2);
xk+1 = xk + αkpk; gk+1 = ∇f(xk + αkpk);
(B′′

k , T
′′
k , uk, ρk+1, r

′
k) = iorthog(B′

k, T
′
k, gk+1, rk);

(R′
k, u

′
k, v

′
k, q

′
k) = expand(Rk, uk, vk, qk, ρk+1, σk);

sk = αkq
′
k; yk = u′

k − v′k; R′′
k = update(R′

k, sk, yk);

Compute σk+1; R′′′
k = reinitialize(R′′

k , σk+1);

if r′k equals m + 1 then

(Bk+1, Tk+1, Rk+1, u
′′
k) = drop(B′′

k , T
′′
k , R

′′′
k , u

′
k); rk+1 = m;

else
Rk+1 = R′′′

k ; Bk+1 = B′′
k ; Tk+1 = T ′′

k ; u′′
k = u′

k; rk+1 = r′k;

end if
vk+1 = u′′

k ;

k = k + 1;
end do
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Iteration k of Algorithm L-RHR requires 2nrk+2n+O(r2
k) operations. (This total

includes the work required for the swap, iorthog , update , and drop procedures but
does not include any overhead incurred during the line search.)

3.6. Keeping the reduced Hessian vs. the reduced inverse Hessian. If
Siegel’s algorithm and an un-reinitialized version of L-RHR are applied with the same
line search, then the same search directions and subspace bases are generated for the
first m iterations. During these iterations the full n×n Hessian of L-RHR (see (2.7)) is
the inverse of the full inverse Hessian of Siegel’s method. However, once a basis vector
is discarded, the methods generate different search directions. In both algorithms,
the updating procedures associated with a discard relegate curvature information
associated with the oldest basis vector to the last row and column of their respective
reduced matrices. The off-diagonal entries of this row and column are replaced by
zero, and the diagonal element is set to either σ or 1/σ depending on the method. At
this point the two basis matrices generate the same subspace, but because the leading
m×m principal submatrices of a symmetric matrix and its inverse are not generally
the inverse of each other, the full Hessian of L-RHR is no longer the inverse of the
full inverse Hessian of Siegel’s method. At the next iteration, the methods generate
different search directions, and subsequent bases and reduced matrices are no longer
related.

3.7. Finite termination on quadratics. Next we briefly discuss the properties
of Algorithm L-RHR when it is applied with an exact line search to a strictly convex
quadratic function.

Theorem 3.1. Consider Algorithm L-RHR implemented with an exact line search
and σ0 = 1. If this algorithm is applied to a strictly convex quadratic function, then
Rk, Bk, and Tk (k ≥ 1) satisfy

Rk =




al/hl bl 0 · · · 0

al+1 bl+1
. . .

...
. . .

. . . 0

ak−1 bk−1

σ
1/2
k




, Bk =
(
pl pl+1 · · · pk−1 gk

)
,

and

Tk =




hldl hltl,l+1 hltl,l+2 · · · hltl,k−1 0

dl+1 tl+1,l+2 · · · tl+1,k−1 0

dl+2

...
...

. . . tk−2,k−1 0

dk−1 0

‖gk‖




,

where l = max{0, k −m + 1} and the scalars aj, bj, tij, dj, and hj are given by

aj =
‖gj‖

(yTj sj)
1/2

, bj = − ‖gj+1‖
(yTj sj)

1/2
, tij = − ‖gj‖

2

σj‖gi‖ , dj = −‖gj‖
σj

, hj = δj
‖pj‖σj
‖gj‖
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with δj = 1 if j = 0, and δj = −1 otherwise. Furthermore, the search directions are
given by

p0 = −g0; pk = − 1

σk
gk + βk−1pk−1, βk−1 =

σk−1

σk

‖gk‖2
‖gk−1‖2 , k ≥ 1.

Proof. See Leonard [20].
Corollary 3.2. If Algorithm L-RHR is used to minimize a strictly convex

quadratic under the conditions of Theorem 3.1, then the method converges to the
minimizer in at most n iterations.

Proof. We show by induction that the search directions are parallel to the
conjugate-gradient directions {dk}. Specifically, σkpk = dk for all k. This is true
for k = 0 since 1 · p0 = −g0 = d0. Assume that σk−1pk−1 = dk−1. Using Theorem 3.1
and the inductive hypothesis, we find

σkpk = −gk + σk−1
‖gk‖2
‖gk−1‖2 pk−1 = −gk +

‖gk‖2
‖gk−1‖2 dk−1 = dk,

which completes the induction. The result now follows from the quadratic termination
property of the conjugate-gradient method.

We remark that the specific form of L-RHR discussed in Theorem 3.1 defines a
“rescaled” form of the classical Fletcher–Reeves conjugate-gradient method [12].

Let pGm and pPm denote the search directions defined during iteration m of the
gradient- and search-direction variants of the limited-memory algorithm. Observe
that pm−1 is parallel to dm−1, regardless of which basis is used. However, since
gm ∈ range(Gm), but possibly pm−1 �∈ range(Gm), the vector pGm may not be parallel
to dm and the gradient-basis variant does not have quadratic termination.

4. Implementation details. In this section, we describe some details associ-
ated with a particular implementation of Algorithm L-RHR. We outline a method
for improving the orthonormal basis and discuss a practical criterion for accepting a
gradient. We also provide information about the line search, the BFGS update, and
restarts.

4.1. Reorthogonalization. For general applications the implicit QR version
of Zk is recommended, with default memory size m = 5. For larger values of m
(e.g., m ≥ 15), it is often beneficial to use reorthogonalization in combination with
the explicit QR. L-RHR employs the following reorthogonalization scheme proposed
by Daniel et al. [6]. Let uk and wk denote the computed values of ZTk gk+1 and
gk+1−Zkuk, respectively. The vectors uk and wk may be improved using one or more
steps of the iterative refinement scheme:

∆uk = ZTk wk, uk ← uk + ∆uk;

and

∆wk = −Zk∆uk, wk ← wk + ∆wk.

L-RHR uses criteria suggested by Daniel et al. [6] for invoking and terminating the
reorthogonalization. Each step of reorthogonalization adds approximately 2nrk op-
erations to the cost of an iteration. Moreover, the use of an explicit Zk requires an
additional nrk operations for the calculation of zk+1 and an extra 3nrk operations
when a basis vector is discarded (since the plane rotations associated with a discard
must be applied to Zk as well as Tk).
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4.2. The criterion for gradient acceptance. In exact arithmetic, a gradient
is accepted for the basis if ρk+1 > 0, where ρk+1 is the norm of (I − ZkZ

T
k )gk+1.

This condition ensures that the basis vectors are linearly independent, and hence that
T ′′
k is nonsingular. When ρk+1 is computed in finite-precision, gradients with small

(but nonzero) ρk+1 must be rejected to prevent Tk+1 and Bk+1 from being too ill-
conditioned. In practice, an accepted gradient must satisfy ρk+1 ≥ ε‖gk+1‖, where
ε is a preassigned positive constant. In the results of section 5, ε was set to 10−4.
Rounding error in the calculation of ρk+1 is exacerbated by the use of an implicit
form for Zk—for example, it is necessary to reject gk+1 if the computed value of
ρ2
k+1 = ‖gk+1‖2 − ‖uk‖2 is negative. However, a negative computed value of ρ2

k+1

rarely occurred in our experiments, and when it did, it did not prevent the method
from terminating successfully (see section 5 for the criterion used). For example, a
negative value was computed 268 times during the 69747 iterations in the runs of
Table 5.6 below. Moreover, of the 10 problems in which a negative value occurred, all
were solved successfully.

4.3. The line search, the BFGS update, and restarts. The line search is
a slightly modified version of the one used in the package NPSOL [16]. It is designed
to ensure that αk satisfies the so-called strong Wolfe conditions,

f(xk + αkpk) ≤ f(xk) + µαkg
T
kpk and |gTk+1pk| ≤ η|gTkpk|,(4.1)

where the constants µ and η are chosen so that 0 ≤ µ < η < 1 and µ < 1
2 (see Gill

et al. [16] or Fletcher [9, pp. 26–30]). The step-length parameters are µ = 10−4 and
η = 0.9. The line search is based on using a safeguarded polynomial interpolation to
find an approximate minimizer of the univariate function

φk(α) = f(xk + αpk)− f(xk)− µαgTkpk

(see Moré and Sorensen [23]). The step αk is the first member of a minimizing sequence
{αik} that satisfies the Wolfe conditions. The sequence is usually started with α0

k = 1
(see below).

If αk satisfies the strong Wolfe conditions, it follows that yTksk ≥ −(1−η)gTksk > 0
and the BFGS update can be applied without difficulty. On very difficult problems,
however, the combination of a poor search direction and rounding error in f may
prevent the line search from satisfying the line search conditions within 20 function
evaluations. In this case, the search terminates with the step corresponding to the
best value of f found so far. If this αk defines a strict decrease in f , the minimization
continues. In this case, the BFGS update is skipped unless yTksk ≥ εM |gTksk|, where
εM is the machine precision. If a strict decrease is not obtained after 20 function
evaluations, the algorithm is restarted with Tk =

( ‖gk‖ ), vk = ‖gk‖, and Rk =(
σ

1/2
k

)
. To prevent the method from degenerating into steepest descent, no more

restarts are allowed until the reduced Hessian has built up to its full size of m rows
and columns. In practice, a restart is rarely invoked. For example, in the experiments
of Table 5.6, L-RHR used only one restart (on problem freuroth, which was not solved
successfully). For comparison, L-BFGS-B used two restarts (on problem bdqrtic, again
without success).

If pk is a poorly scaled version of the steepest-descent direction, the step to a
minimizer of φk(α) may be very small relative to one, and a large number of func-
tion evaluations may be needed to find an acceptable step length. To prevent this
inefficiency, the initial step for the first line search and each line search immediately
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following a restart is limited so that α0
k ≤ min{∆/‖pk‖, 1}, where ∆ is a preassigned

constant (∆ = 2 in the experiments described in the next section). This procedure
ensures that the initial change in x does not exceed ∆.

5. Numerical results. In this section, we give numerical results for most of the
large unconstrained problems in the CUTE2 collection (see Bongartz et al. [1]). After
some discussion of the test problems, we compare L-RHR with and without reinitial-
ization. Next, we illustrate the differences between L-RHR and Siegel’s Algorithm 6
[33], which we refer to as ALG6. This is followed by results that compare L-RHR with
L-BFGS and L-BFGS-B, which are two alternative implementations of the limited-
memory BFGS method. L-BFGS is based on an algorithm that maintains an implicit
approximate inverse Hessian as a sequence of update pairs. L-BFGS-B employs an al-
gorithm that updates an approximate Hessian in factored form θI −WMWT , where
θ is a scalar and WMWT is a matrix of low rank. L-BFGS-B is intended for problems
with upper and lower bounds on the variables but is also recommended over L-BFGS-B

for unconstrained problems (see Zhu et al. [34]).
Throughout, we use mLB to denote the number of update pairs to be kept in

memory by L-BFGS and L-BFGS-B. This should not be confused with m, the number
of vectors stored by L-RHR.

5.1. Test problem selection. The test set was constructed using the CUTE

interactive select tool, which allows the identification of groups of problems with
certain features. In our case, the select tool was first used to locate the twice-
continuously differentiable unconstrained problems for which the number of variables
in the data file can be varied. Of these problems, the number of variables was set to
a value in the range 100 ≤ n ≤ 1500 according to criteria that we discuss below. The
input for the select tool was as follows:

Objective function type : *

Constraints type : U (No constraints)

Regularity : R (twice-cont. differentiable)

Degree of available derivatives : *

Problem interest : *

Explicit internal variables : *

Number of variables : v (variable dimension)

Number of constraints : 0.

A total of 87 problems was obtained from this selection. Six fixed-dimension problems
were obtained by using the select tool with the number of variables set as follows:

Number of variables : in [ 50, 1000 ].

Additional criteria were used to determine the suitability of these 93 problems, as we
now explain.

After using the select tool, it remained to determine a suitable value of n for
the problems with variable dimension. The value n = 1500 was used for the twelve
problems dixmaana–dixmaanl , as suggested by Zhu et al. [34]. Values n ≈ 1000 were
used for most of the remaining problems, but it was necessary to choose significantly
smaller values of n in some cases. The problems chnrosnb, errinros, and watson

2The version of CUTE used was obtained September 7, 2001.
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have limits on the size of n, and the mandated maximum values of 50, 50, and 31,
respectively, were used in these cases. It was also necessary to limit n to be less than
1000 if a problem could not be decoded using the CUTE decoder sifdec (compiled
with the option tobig). For any such problem, the values n = 300 and n = 100
were tried successively until the decoding succeeded. Problems in this category were
arglina–arglinc, brownal , hilberta, hilbertb, mancino, penalty3 , and sensors. The
value n = 300 was used for arglina, brownal , hilberta, and hilbertb. The value n = 100
was used for mancino, penalty3 , and sensors. The problems arglinb (n = 300) and
arglinc (n = 100) and penalty3 (n = 100) were successfully decoded but were removed
from the set for reasons described below.

A value of n such that n < 1000 was also used if both L-BFGS-B and L-RHR

failed to meet the termination criterion with m, mLB = 5, 15, 30, and 45. (The
termination criterion will not be satisfied if there is a failure in the line search or
40,000 iterations are completed.) In this case, 300 and 100 were tried successively
to determine an acceptable value for n. The problems arglinb, arglinc, curly10 ,
curly20 , curly30 , fletchbv , hydc20ls (fixed n = 99), indef , nonmsqrt , penalty3 ,
sbrybnd , scosine, scurly10 , scurly20 , and scurly30 were removed from the test set
since, even with n = 100, neither method could meet the termination criterion. The
value n = 100 was used for penalty2 since neither L-RHR nor L-BFGS-B could achieve
the termination criterion with n = 1000 or n = 300.

These selection criteria had the effect of removing 15 problems from the list gen-
erated by the select tool. This left 78 problems suitable for testing. For complete-
ness, we list the problems not already mentioned, with their associated values of
n. There were 44 variable-dimension problems with n = 1000: arwhead , bdqrtic,
broydn7d , brybnd , chainwoo, cosine, cragglvy , dixon3dq , dqdrtic, dqrtic, edensch,
engval1 , extrosnb, fletcbv2 , fletcbv3 , fletchcr , freuroth, genhumps, genrose, liarwhd ,
morebv , ncb20 , ncb20b, noncvxu2 , noncvxun, nondia, nondquar , penalty1 , powellsg ,
power , quartc, schmvett , sinquad , sparsine, sparsqur , spmsrtls, srosenbr , testquad ,
tointgss, tquartic, tridia, vardim, vareigvl , and woods. There were four problems with
n = 1024: fminsrf2 , fminsurf , msqrtals, and msqrtbls. The remaining three variable-
dimension problems were eigenals (n = 1056), eigenbls (n = 1056), and eigencls
(n = 1122). Finally, the names and numbers of variables of the five fixed-dimension
problems included in the test set were deconvu (n = 61), eg2 (n = 1000), tointgor
(n = 50), tointpsp (n = 50), and tointqor (n = 50).

All runs were made on a Sun UltraSPARC-IIi (single cpu at 333MHz) with 256MB
of RAM. The algorithms L-RHR, L-BFGS-B, and L-BFGS are coded in Fortran and
were compiled using g77. ALG6 is coded in C and was compiled using gcc. Full
compiler optimization was used in all cases. The caption of each table specifies the
amount of limited memory used and indicates whether or not reinitialization and/or
reorthogonalization was used. All methods were terminated when ‖gk‖∞ < 10−5, as
proposed by Zhu et al. [34].

5.2. L-RHR with and without reinitialization. Table 5.1 gives the results
of running L-RHR both with and without reinitialization. Without reinitialization,
the parameter σ was fixed at yT0s0/‖s0‖2 (see (2.6)).3 This is the scheme proposed
by Siegel [33]. With reinitialization, σ0 = 1 and σk = yTkyk/y

T
ksk (k ≥ 1), which are

the reciprocals of the parameters used by Liu and Nocedal [21]. Of the 78 problems

3The steepest-descent direction is used for the first iteration. After the first step, σ is set to
yT0s0/‖s0‖2 and R is defined accordingly.
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attempted, L-RHR with reinitialization solved 74 problems satisfactorily and reduced
the gradient to within two orders of magnitude of the 10−5 target value on three
others (bdqrtic, freuroth, and noncvxun). The algorithm was unable to reduce ‖gk‖∞
below 1.5×10−2 for fletcbv3 . Without reinitialization, L-RHR was able to solve only 70
problems and required considerably more function and gradient evaluations on almost
every problem attempted. (The additional four unsolved problems were chainwoo,
cragglvy , edensch, and penalty2 .) Table 5.1 gives the total number of iterations,
function evaluations and cpu seconds for L-RHR with and without reinitialization on
the 70 problems that could be solved by both versions. These results indicate that
reinitialization provides substantial practical benefits and indicates an advantage of
L-RHR compared to Siegel’s method, which does not include reinitialization. A direct
comparison between L-RHR and Siegel’s method is given in the next section.

Table 5.1
L-RHRa with and without reinitialization on 70 CUTE problems.

L-RHR Itns Fncs Cpu Fail

with reinitialization 65115 66914 1567 4
without reinitialization 83611 107253 1884 8

a m = 5; without reorthogonalization.

5.3. L-RHR compared with ALG6. Next we compare L-RHR with Siegel’s
ALG6. In the first set of runs, ALG6 uses the recommended value of ε = 10−3 for the
gradient acceptance parameter (see [32, p. 8]). The line search in ALG6 is a slightly
modified version of the one in Powell’s Fortran package TOLMIN [28]. It attempts
to satisfy the Wolfe conditions (see (2.2)) with µ = 10−2 and η = 0.9 but allows
f(xk+1) ≥ f(xk) to within a small tolerance. ALG6 is not optimized for cpu time,
and it may be possible to improve the performance by making appropriate changes
to the code. However, the relative differences in cpu times are unlikely to be altered
by recoding because many of the run times are dominated by the cumulative cost of
the function evaluations (see section 5.5).

Table 5.2 gives the results of comparing ALG6 with a version of L-RHR imple-
mented without reinitialization. Algorithm L-RHR succeeded on 70 of the 78 test
problems and reduced the gradient norm to at most 10−3 on seven others: bdqrtic,
chainwoo, cragglvy , edensch, freuroth, noncvxun, and penalty2 . On the other unsuc-
cessful case, fletcbv3 , the final gradient norm was 1.1× 10−1. ALG6 succeeded on 74
out of the 78 problems. On arwhead , bdqrtic, and noncvxun, ALG6 was able to reduce
the gradient norm to at most 10−3. On fletcbv3 , ALG6 reduced the gradient norm to
4.7× 10−2. Table 5.2 summarizes the results for the 69 problems that both methods
were able to solve successfully. If the L-RHR line search is made to conform to ALG6

by allowing f(xk+1) ≥ f(xk) to within a prescribed tolerance, then L-RHR is able to
solve three more problems, chainwoo, edensch, and penalty2 .

Table 5.2
L-RHRa compared with ALG6b on 69 CUTE problems.

Method Itns Fncs Cpu Fail

L-RHR 83601 107237 1884 8
ALG6 101959 194091 5744 4

a m = 5; with no reinitialization and no reorthogonalization; ε = 10−4.
b m = 5; with Siegel’s version of the TOLMIN line search; ε = 10−3.
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Since the L-RHR and ALG6 directions have similar definitions when L-RHR does
not use reinitialization, it might seem surprising that L-RHR requires significantly
fewer function evaluations than ALG6. This phenomenon can be partly explained by
differences in the line search and the different choice of ε. To illustrate these effects,
Table 5.3 gives a comparison between L-RHR and ALG6 when both algorithms are
implemented with the NPSOL line search and ε = 10−4. Note that the number of
function evaluations for ALG6 decreases dramatically, though the stricter requirement
that f(xk+1) < f(xk) results in a few more failures.

Table 5.3
L-RHRa compared with ALG6b on 69 CUTE problems.

Method Itns Fncs Cpu Fail

L-RHR 82363 105997 1884 8
ALG6 86970 138512 3620 8

a m = 5; with no reinitialization and no reorthogonalization; ε = 10−4.
b m = 5; with the line search from NPSOL; ε = 10−4.

The results are closer, but Table 5.3 illustrates that the methods are still gener-
ating different iterates. This is because, in the limited-memory context, an algorithm
based on updating a reduced Hessian is fundamentally different from an algorithm
based on updating a reduced inverse Hessian. The directions generated by ALG6

and an un-reinitialized version of L-RHR are only the same until a basis vector is
discarded. From this point, the Hessian of L-RHR is no longer related to the inverse
Hessian of ALG6 (see section 3.6). For example, Table 5.4 illustrates that if L-RHR

and ALG6 are applied to problem msqrtals with m = 30, the function values and
gradient norms are in close agreement at iteration 30. At the next iteration the first
discard is made and most of the agreement is lost. By iteration 50, only 1 significant
digit of agreement remains. The total numbers of iterations required are 2556 and
3133 for L-RHR and ALG6, respectively. It follows that L-RHR’s significant advantage
in the “Fncs” column of Table 5.3 results from the use of a reduced Hessian instead
of a reduced inverse Hessian.

Table 5.4
L-RHRa and ALG6b applied to msqrtals with m = 30.

L-RHR ALG6

k fk ‖gk‖∞ fk ‖gk‖∞
30 0.387222166177969 0.583990052575414 0.387222166177971 0.583990052575427
31 0.341636067001799 0.569093782828364 0.341694835004789 0.569019238515868
50 0.096802831009406 0.126889757489794 0.097640019163964 0.140754040816826

a m = 5; with no reinitialization and no reorthogonalization; ε = 10−4.
b m = 5; with the line search from NPSOL; ε = 10−4.

We provide one final comparison in which L-RHR uses reinitialization. In this
case, both L-RHR and ALG6 succeed on 74 problems, and there are 73 problems that
are solved by both methods. Table 5.5 shows the overall results for these 73 problems.
Note that, overall, the use of reinitialization by L-RHR results in significantly fewer
function evaluations compared to ALG6.
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Table 5.5
L-RHRa compared with ALG6b on 73 CUTE problems.

Method Itns Fncs Cpu Fail

L-RHR 69737 71782 1592 4
ALG6 103217 195405 5752 4

a m = 5; with reinitialization; without reorthogonalization.
b m = 5; with Siegel’s implementation of the TOLMIN line search.

5.4. L-RHR compared with L-BFGS-B. L-RHR and Seigel’s method are re-
lated to the limited-memory BFGS method of Byrd et al. [4] because all three meth-
ods consolidate the quasi-Newton updates into dense matrices. By contrast, L-BFGS

keeps an implicit inverse Hessian by storing a fixed number of vector pairs (γk, δk)
(see (2.1) for the definitions of γk and δk). Products of the inverse Hessian with a
vector are then formed without the need to keep an explicit Hk (see Nocedal [26]).
Consolidation of the updates is crucial for efficiency if a limited-memory method is
to be extended to handle upper and lower bounds on the variables. In this section we
compare L-RHR with Version 2.1 of the code L-BFGS-B (see Zhu et al. [34]), which is
an implementation of the method of Byrd, Lu, Nocedal and Zhu. L-BFGS-B applies
the strong Wolfe conditions (4.1) using the line search of Moré and Thuente [24] with
line search parameters µ = 10−4 and η = 0.9. The memory for L-BFGS-B was limited
to mLB = 5 pairs of vectors, which is twice the storage used by L-RHR.

Table 5.6 summarizes the performance of L-RHR and L-BFGS-B on the 74 CUTE

problems on which both methods succeed. On these 74 problems, L-RHR requires
fewer function evaluations than L-BFGS-B on 27 problems and more function evalua-
tions on 43 problems. L-RHR requires less cpu time than L-BFGS-B on 55 problems
and more cpu time than L-BFGS-B on 16 problems. L-BFGS-B was able to solve one
more problem than L-RHR, namely, fletcbv3 (L-RHR reduced the gradient norm to
1.5× 10−2 in this case). Neither method was able to satisfy the termination criterion
on bdqrtic, freuroth, and noncvxun. In these cases, the final gradient norms for L-RHR

(L-BFGS-B) were 2.90×10−4 (6.08×10−4), 3.40×10−4 (1.60×10−5), and 1.00×10−3

(1.66×10−3), respectively. Overall, L-RHR requires a comparable number of function
evaluations and has a significant advantage in terms of cpu time.

Table 5.6
L-RHRa and L-BFGS-Bb on 74 CUTE problems.

Method Itns Fcns Cpu Fail

L-RHR 69747 71798 1592 4
L-BFGS-B 66717 72264 1916 3

a m = 5 n-vectors; with reinitialization; without reorthogonalization.
b mLB = 5 pairs of n-vectors.

Although the values m = 5 and mLB = 5 are recommended for L-RHR and
L-BFGS-B, it is of interest to investigate the relative performance of the algorithms as
the memory size is increased. For example, the overhead required to solve an unsym-
metric 2mLB × 2mLB system every iteration of L-BFGS-B might suggest that L-RHR

would have a greater cpu time advantage as m and mLB are increased. Table 5.7 gives
the performance of L-RHR and L-BFGS-B with increasing memory-size parameters m
and mLB . When m ≥ 15 it is recommended that L-RHR use reorthogonalization to
maintain a good basis and improve robustness (see section 4.1). However, to illustrate
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the difference when L-RHR with m = 5 does and does not use reorthogonalization,
the results of Table 5.7 use reorthogonalization for all memory sizes. For m = 5, 15,
30, and 45, the numbers of failures for L-RHR without reorthogonalization are 4, 5,
7, and 11, respectively. With reorthogonalization, these numbers drop to 4, 4, 3, and
3, respectively. Table 5.7 provides the total number of reorthogonalizations required
for each value of m. Although the amount of work per iteration is more than doubled
with reorthogonalization, the cpu seconds required for m = 5 decreases from 1590 to
1580. In this case, the reductions in iterations and function evaluations compensates
for the increased cost of computing the search direction.

All 78 problems were attempted, but the totals in each row include only the
statistics for problems that could be solved by both methods. The cpu time advantage
for L-RHR increases from 82% of the time required by L-BFGS-B to 59% as m and
mLB are increased from 5 to 45. However, L-BFGS-B gains an advantage in terms of
the number of function evaluations. The interpretation of these results is complicated
by the sharp increase in function evaluations when m is increased from 15 to 30.
This increase occurs because both methods are able to solve problem noncvxun when
m = 30. If noncvxun is removed from the problem set, a total of 69,522 (72,264),
67,293 (62,470), 64,808 (57,114), and 58,075 (54,391) evaluations are required by
L-RHR (L-BFGS-B) for m (mLB ) with the values 5, 15, 30, and 45, respectively. These
results indicate that for both methods, the number of function evaluations generally
decreases as the limited-memory size is increased.

Table 5.7
L-RHRa and L-BFGS-B with various memory sizes for 78 CUTE problems.

L-RHR L-BFGS-B

Mem Itns Fcns Reors Cpu Fail Itns Fcns Cpu Fail

5 67573 69522 42018 1580 4 66717 72264 1916 3
15 65050 67293 57662 1951 4 57302 62470 2155 5
30 99122 101432 95445 2866 3 80669 86304 3744 2
45 78344 80550 76173 2782 3 65859 70962 4686 3

a With reinitialization and reorthogonalization.

5.5. L-RHR compared with L-BFGS. We conclude this section by providing
a comparison of L-RHR with L-BFGS, which is a limited-memory BFGS method that
maintains an implicit inverse approximate Hessian as a sequence of mLB update pairs
(see Nocedal [26] and Liu and Nocedal [21]). The recommended memory size is
mLB = 5. The search direction requires approximately 4nmLB operations, which is
roughly twice the work required by L-RHR. L-BFGS uses the Moré and Thuente line
search with the same parameter settings as L-BFGS-B.

Table 5.8 summarizes the performance of L-RHR and L-BFGS on the 74 prob-
lems that both methods solved successfully. Of these 74 problems, L-RHR required
fewer function evaluations on 27 problems and L-BFGS required fewer evaluations
on 43 problems. L-RHR required less cpu time on 30 problems and more time on
41 problems. Overall, L-BFGS and L-RHR required comparable numbers of function
evaluations and iterations. However, even though L-RHR requires roughly half as
much work to compute the search direction, the overall cpu time was very close to
that of L-BFGS. Further investigation using a performance profiler indicated that the
cost of evaluating the objective for seven of the problems (eigenals, eigenbls, eigencls,
msqrtals, msqrtbls, ncb20 , and ncb20b) dominated the overall computation time. The
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cpu time required by L-RHR to compute the search direction was less than 60% of
that needed by L-BFGS. However, on these seven critical problems, the calculation of
the search direction constitutes less than 10% of the solve time.

Table 5.8
L-RHRa and L-BFGSb on 74 CUTE problems.

Method Itns Fcns Cpu Fail

L-RHR 69747 71798 1592 4
L-BFGS 66445 71978 1670 4

a m = 5 n-vectors; with reinitialization; without reorthogonalization.
b mLB = 5 pairs of n-vectors.

In order to compare L-RHR with L-BFGS as m and mLB are increased, L-RHR

uses reorthogonalization for improved robustness. As m and mLB take on the values
5, 15, 30, and 45, the total function evaluations on the problems solved by both
methods L-RHR (L-BFGS) are 69,522 (71,978), 67,293 (63,466), 101,432 (80,832), and
80,550 (88,717). As in the comparison with L-BFGS-B, L-RHR is competitive in terms
of function evaluations, but in this case L-RHR requires more cpu time when m ≥ 15.
Although some of the functions dominate the overall cpu time when m = 5, their
evaluation carries less weight with increasing m. This effect, when combined with the
cost of reorthogonalization, is why L-RHR is slower than L-BFGS when m = 45, even
though L-RHR requires significantly fewer function evaluations. We reemphasize that
L-RHR requires approximately half the storage of L-BFGS.

6. Summary and conclusions. We have presented theoretical and practical
details of a limited-memory reduced-Hessian method for large-scale smooth uncon-
strained optimization problems for which first derivatives are available. The method
maintains the Cholesky factor of a reduced Hessian and requires roughly half the
storage of conventional limited-memory methods.

The numerical results of section 5 confirm that L-RHR is efficient and reliable on
a set of large test problems from the CUTE collection. Moreover, it is shown that
Hessian reinitialization and selective reorthogonalization are vital components of an
efficient and robust reduced-Hessian method.

When compared to the state-of-the-art code L-BFGS-B on our test set, L-RHR con-
verges in less cpu time, while requiring comparable numbers of function evaluations.
Compared to the code L-BFGS, L-RHR required comparable numbers of function eval-
uations and iterations when both algorithms were applied with their default memory
sizes.
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Abstract. This article considers continuous trajectories of the vector fields induced by primal-
dual potential-reduction algorithms for solving linear programming problems. It is known that these
trajectories converge to the analytic center of the primal-dual optimal face. We establish that this
convergence may be tangential to the central path, tangential to the optimal face, or in between,
depending on the value of the potential function parameter.
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1. Introduction. During the past two decades, interior-point methods (IPMs)
emerged as one of the most efficient and reliable techniques for the solution of linear
programming problems. The development of IPMs and their theoretical convergence
analyses often rely on certain continuous trajectories associated with the given linear
program. The best known examples of such trajectories are the central path and the
weighted centers—the sets of minimizers of the parametrized standard and weighted
logarithmic barrier functions in the interior of the feasible region.

Primal-dual variants of IPMs, which have been very successful in practical imple-
mentations, not only solve the given linear program but also its dual. If both the given
linear program and its dual have strictly feasible solutions, the primal-dual central
path starts from the analytic center of the primal-dual feasible set and converges to
the analytic center of the optimal solution set. Similarly, weighted centers converge
to weighted analytic centers. This property of the central trajectories led to the de-
velopment of path following IPMs: algorithms that try to reach an optimal solution
by generating a sequence of points that are “close” to a corresponding sequence of
points on the central path (or the weighted central path) that converge to its limit
point.

An alternative characterization of the central path and weighted centers can be
obtained by representing them as solutions of certain differential equations. Using this
perspective, Adler and Monteiro analyzed the limiting behavior of continuous trajec-
tories associated with primal-only affine-scaling and projective-scaling algorithms as
well as a primal-only potential-reduction method [1, 11, 12]. Kojima et al. [7] studied
similar trajectories for primal-dual potential-reduction methods.

Potential-reduction algorithms use the following strategy: First, one defines a
potential function that measures the quality (or potential) of any trial solution of
the given problem, combining measures of proximity to the set of optimal solutions,
proximity to the feasible set in the case of infeasible interior-points, and a measure
of centrality within the feasible region. Potential functions are chosen such that one
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approaches an optimal solution of the underlying problem by reducing the potential
function. Then the search for an optimal solution can be performed by progressive
reduction of the potential function, leading to a potential-reduction algorithm. We
refer the reader to two excellent surveys for further details on potential-reduction
algorithms [2, 15].

Often, implementations of potential-reduction interior-point algorithms exhibit
behavior that is similar to that of path-following algorithms. For example, they take
about the same number of iterations as path-following algorithms, and they tend
to converge to the analytic center of the optimal face, just like most path-following
variants. Since potential-reduction methods do not generally make an effort to follow
the central path, this behavior is surprising. In an effort to better understand the
limiting behavior of primal-dual potential-reduction algorithms for linear programs
this paper studies continuous trajectories associated with the algorithm proposed by
Kojima, Mizuno, and Yoshise (KMY) [8], which uses scaled and projected steepest-
descent directions for the Tanabe–Todd–Ye (TTY) primal-dual potential function
[14, 16].

Using earlier results [9, 10, 7], we show that all trajectories of the vector field
induced by the KMY search directions converge to the analytic center of the primal-
dual optimal face. Our main results are on the direction of convergence for these
trajectories. We demonstrate that their asymptotic behavior depends on the poten-
tial function parameter. There is a threshold value of this parameter—the value that
makes the TTY potential function homogeneous. When the parameter is below this
threshold, the centering is too strong, and the trajectories converge tangentially to
the central path. When the parameter is above the threshold, trajectories converge
tangentially to the optimal face. However, the direction of convergence of these tra-
jectories depends on the initial point. At the threshold value, the behavior of the
trajectories is in between these two extremes and depends on the initial point.

Following this introduction, section 2 discusses continuous trajectories associated
with the KMY methods and proves their convergence. Section 3 is devoted to the
analysis of the limiting behavior of these trajectories. Our notation is fairly standard:
For an n-dimensional vector x, the corresponding capital letter X denotes the n× n
diagonal matrix with Xii ≡ xi. We will use the letter e to denote a column vector
with all entries equal to 1, and its dimension will be apparent from the context. We
also denote the base of the natural logarithm with e, and sometimes the vector e
and the scalar e appear in the same expression, but no confusion should arise. For
a given matrix A, we use R(A) and N (A) to denote its range (column) and null
space. For a vector-valued differentiable function x(t) of a scalar variable t, we use
the notation ẋ or ẋ(t) to denote the vector of the derivatives of its components with
respect to t. For n-dimensional vectors x and s, we write xs to denote their Hadamard
(componentwise) product. Also, for an n-dimensional vector x, we write xp to denote
the vector Xpe, where p can be fractional if x > 0.

2. Primal-dual potential-reduction trajectories. We consider linear pro-
grams in the following standard form:

(LP) min
x

cTx,

Ax = b,
x ≥ 0,

(2.1)

where A ∈ �m×n, b ∈ �m, c ∈ �n are given, and x ∈ �n. Without loss of generality
we assume that the constraints are linearly independent. Then the matrix A has full
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row rank. Further, we assume that 0 < m < n; m = 0 and m = n correspond to
trivial problems.

The linear programming dual of this (primal) problem is

(LD) max
y,s

bT y,

AT y + s = c,
s ≥ 0,

(2.2)

where y ∈ �m and s ∈ �n. We can rewrite the dual problem by eliminating the y
variables in (2.2). This is achieved by considering GT , a null-space basis matrix for
A; that is, G is an (n −m) × n matrix with rank n −m, and it satisfies AGT = 0,
GAT = 0. Note also that AT is a null-space basis matrix for G. Further, let d ∈ �n be
a vector satisfying Ad = b. Then (2.2) is equivalent to the following problem, which
has a high degree of symmetry with (2.1):

(LD′) min
s

dT s,

Gs = Gc,
s ≥ 0.

(2.3)

Let F and F0 denote the primal-dual feasible region and its relative interior:

F := {(x, s) : Ax = b,Gs = Gc, (x, s) ≥ 0},
F0 := {(x, s) : Ax = b,Gs = Gc, (x, s) > 0}.

We assume that F0 is nonempty. This assumption has the important consequence
that the primal-dual optimal solution set Ω defined below is nonempty and bounded:

Ω := {(x, s) ∈ F : xT s = 0}.(2.4)

We also define the optimal partition B ∪N = {1, . . . , n} for future reference:

B := {j : xj > 0 for some (x, s) ∈ Ω},
N := {j : sj > 0 for some (x, s) ∈ Ω}.

The fact that B and N form a partition of {1, . . . , n} is a classical result of Goldman
and Tucker. The analytic center of Ω is the point (x∗, s∗) = ((x∗B, 0), (0, s

∗
N )), where

x∗B and s∗N are unique maximizers of the following problems:

max
∑
j∈B

lnxj ,

ABxB = b,
xB > 0

and

max
∑
j∈N

ln sj ,

GN sN = Gc,
sN > 0.

(2.5)

The central path C of the primal-dual feasible set F is the set of points on which
the componentwise product of the primal and dual variables is constant:

C := {(x(µ), s(µ)) ∈ F0 : x(µ)s(µ) = µe for some µ > 0}.(2.6)

The points on the central path are obtained as unique minimizers of certain barrier
problems associated with the primal and dual linear programs, and they converge to
the analytic center of the primal-dual optimal face; see, e.g., [18].
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While the central path is the main theoretical tool in the construction of path-
following algorithms, primal-dual potential-reduction algorithms for linear program-
ming are derived using potential functions, i.e., functions that measure the quality
(or potential) of trial solutions for the primal-dual pair of problems. The most fre-
quently used primal-dual potential function for linear programming problems is the
TTY potential function [14, 16]:

Φρ(x, s) := ρ ln(xT s)−
n∑
i=1

ln(xisi) for every (x, s) > 0.(2.7)

When ρ > n, the TTY potential function diverges to −∞ along a feasible sequence
{(xk, sk)} only if this sequence is converging to a primal-dual optimal pair of solutions.
Therefore, the primal-dual pair of linear programming problems can be solved by
minimizing the TTY potential function.

KMY developed a primal-dual algorithm that monotonically reduces the TTY
potential function using a scaled and projected steepest-descent search direction us-
ing a primal-dual scaling matrix [8]. In the remainder of this article, we will study
continuous trajectories that are naturally associated with their algorithm. Given an
iterate (x, s) ∈ F0, the search direction used by the KMY method is the solution of
the following system:

A∆x = 0,
G∆s = 0,

S∆x + X∆s =
xT s

ρ
e− xs,

(2.8)

where X = diag(x), S = diag(s), and e is a vector of ones of appropriate dimension.
When we discuss the search direction given by (2.8) and associated trajectories, we
will assume that ρ > n.

For any given (x0, s0) ∈ F0, one can associate a trajectory {(x(t), s(t)) : t ≥ 0}
starting from (x0, s0) with the property that the tangent direction to the trajectory
at any of its points coincides with the KMY direction. In other words, we consider
trajectories that solve the following system of ODEs:


 A 0

0 G
S X


[ ẋ

ṡ

]
=




0
0

xT s

ρ
e− xs


 ,(2.9)

with the initial condition (x(0), s(0)) = (x0, s0). In [7, section 4.3], Kojima et al.
study these trajectories and establish that their solution curves satisfy the following
system of equations:

Ax(t) = b, Gs(t) = Gc, x(t)s(t) = w(t), t ≥ 0,(2.10)

where

w(t) = e−tw0 + h(t)e with w0 = x0s0 and(2.11)

h(t) =
eTw0

n

(
exp {− (1− β) t} − e−t

)
with β =

n

ρ
.(2.12)

Since w(0) = w0, we will use these two expressions interchangeably. Kojima et al. do
not address the existence and uniqueness of the solutions to (2.9) rigorously, but these
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results follow easily from standard theory of ODEs; see, e.g., Theorem 1 on p. 162
and Lemma on p. 171 of the textbook by Hirsch and Smale [6]. We also note that
Monteiro [12] studies trajectories based on primal-only potential-reduction algorithms
and obtains similar but less explicit descriptions of these trajectories.

The characterization of the potential-reduction trajectories using the system (2.10)
leads to the following observations.

Theorem 2.1. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9)
with the initial condition (x(0), s(0)) = (x0, s0). Then the following statements hold:

(i) For ρ > n, Φρ (x(t), s(t)) is a decreasing function of t.
(ii) When w0 = x0s0 = µe for some µ > 0 (i.e., when (x0, s0) is on the central

path), then {(x(t), s(t)) : t ≥ 0} is a subset of the central path C.
(iii) (x(t), s(t)) converges to the analytic center of the primal-dual optimal face Ω

as t→∞.
Proof. Lemma 4.14 in [7] proves (i). Observing that w0 = µe implies w(t) =

µe−(1−β)te with β = n
ρ , (ii) follows immediately from (2.6) and (2.10). For (iii), first

observe that w(t)
‖w(t)‖ → e√

n
as t→∞. Now, the proof of Theorem 9 in [9] (or Corollary

2 of Theorem 5 in [10]) immediately leads to (iii).
So these trajectories converge to a unique point regardless of their starting point as

they monotonically decrease the potential function. Further, they include the central
path as a special case, giving a theoretical basis for the observation that central path-
following search directions are often very good potential-reduction directions as well.
Another related result is by Nesterov [13], who observes that the neighborhood of the
central path is the region of fastest decrease for a homogeneous potential function.

A direct proof of (iii) in Theorem 2.1 can be obtained using the following result,
which will also be useful in the next section.

Lemma 2.2. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9) with
the initial condition (x(0), s(0)) = (x0, s0). Then xB(t) and sN (t) solve the following
pair of problems:

max
∑
j∈B

wj(t) lnxj ,

ABxB = b−ANxN (t),
xB > 0

and

max
∑
j∈N

wj(t) ln sj ,

GN sN = Gc−GBsB(t),
sN > 0.

(2.13)

Proof. We prove the optimality of xB(t) for the first problem in (2.13)—the
corresponding result for sN (t) can be proven similarly. xB(t) is clearly feasible for the
given problem. It is optimal if and only if there exists y ∈ �m such that

wB(t)x−1
B (t) = ATBy.

From (2.10) we obtain wB(t)x−1
B (t) = sB(t). Note that for any s feasible for (LD′)

we have that c − s ∈ R(AT ), and therefore cB − sB ∈ R(ATB). Furthermore, since
s∗ = (0, s∗N ) is also feasible for (LD′) we must have that cB ∈ R(ATB) and that
sB(t) ∈ R(ATB). This is exactly what we needed.

3. Asymptotic analysis of the trajectories. In the previous section, we saw
that all primal-dual potential-reduction trajectories (x(t), s(t)) that solve the differen-
tial equation (2.9) converge to the analytic center (x∗, s∗) of the primal-dual optimal
face Ω regardless of the initial point of the trajectory. In this section, we investigate
the direction of convergence for these trajectories. That is, we want to analyze the
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limiting behavior of the normalized vectors ( ẋ(t)
‖ẋ(t)‖ ,

ṡ(t)
‖ṡ(t)‖ ). Inevitably, this analysis is

quite technical.
Our strategy for this analysis is as follows. Using the optimal partition B ∪ N

we express the “basic” components of the convergence directions of the trajectories
in terms of the “nonbasic” ones in Lemma 3.1. Then we establish a bound on the
convergence speed of the “nonbasic” components in Lemma 3.3. The dependence of
the convergence direction on ρ, the potential function parameter, becomes apparent
at this point, and a case analysis is required. Lemma 3.4 and Theorems 3.5 and 3.6
consider the case ρ ≤ 2n, while Theorem 3.8 addresses the case ρ > 2n.

Let β = n
ρ , and note that β ∈ (0, 1). We now introduce some notation:

ŵB(t) = wB(t)e(1−β)t, ŵN (t) = wN (t)e(1−β)t,

dB(t) = ŵ
1
2

B (t)x
−1
B (t), dN (t) = ŵ

1
2

N (t)s−1
N (t),

DB(t) = diag (dB(t)) , DN (t) = diag (dN (t)) ,
d−1
B (t) = D−1

B (t)e, d−1
N (t) = D−1

N (t)e,

ÃB(t) = ABD−1
B (t), G̃N (t) = GND−1

N (t),
x̃B(t) = DB(t)ẋB(t) = dB(t)ẋB(t), s̃N (t) = DN (t)ṡN (t) = dN (t)ṡN (t),

uB(t) = ŵ
− 1

2

B (t)wB(0), uN (t) = ŵ
− 1

2

N (t)wN (0).

For our asymptotic analysis, we express “basic” components of the vectors ẋ(t) and
ṡ(t) in terms of the “nonbasic”ones in the next lemma, which forms the backbone of
our analysis.

Lemma 3.1. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9) with
the initial condition (x(0), s(0)) = (x0, s0). Then the following equalities hold:

DB(t)ẋB(t) = −Ã+
B (t)AN ẋN (t)− n · e−βt

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)
uB(t),(3.1)

DN (t)ṡN (t) = −G̃+
N (t)GBṡB(t)− n · e−βt

ρ (1− e−βt)

(
I − G̃+

N (t)G̃N (t)
)
uN (t).(3.2)

Here, Ã+
B (t) and G̃+

N (t) denote the pseudoinverse of ÃB(t) and G̃N (t), respectively.
Proof. We prove only the first identity; the second one follows similarly. Recall

from Lemma 2.2 that xB(t) solves the first problem in (2.13). Therefore, as in the
proof of Lemma 2.2, we must have that

wB(t)x−1
B (t) ∈ R(ATB).(3.3)

Differentiating with respect to t we obtain

wB(t)x−2
B (t)ẋB(t)− ẇB(t)x−1

B (t) ∈ R(ATB) or
wB(t)x−1

B (t)ẋB(t)− ẇB(t) ∈ R(XB(t)ATB).

Observe that

ẇB(t) = −wB(0)e−t + ḣ(t)eB = −wB(t) +
eTw0

ρ
e−(1−β)teB.

Therefore, from ŵB(t) = wB(t)e(1−β)t, we obtain

ŵB(t)x−1
B (t)ẋB(t) + ŵB(t)− eTw0

ρ
eB ∈ R(XB(t)ATB).(3.4)
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From (3.3) it also follows that ŵB(t) ∈ R(XB(t)ATB). Note also that

eTw0

ρ
eB =

n

ρ (1− e−βt)
ŵB(t)− n · e−βt

ρ (1− e−βt)
wB(0).

Combining these observations with (3.4) we get

ŵB(t)x−1
B (t)ẋB(t) +

n · e−βt
ρ (1− e−βt)

wB(0) ∈ R(XB(t)ATB).(3.5)

Next, observe that

ABẋB(t) = −AN ẋN (t).(3.6)

Using the notation introduced before the statement of the lemma, (3.5) and (3.6)
can be rewritten as follows:

x̃B(t) +
n · e−βt

ρ (1− e−βt)
uB(t) ∈ R(ÃTB),(3.7)

ÃB(t)x̃B(t) = −AN ẋN (t).(3.8)

Let Ã+
B (t) denote the pseudoinverse of ÃB(t) [3]. For example, if rank(ÃB(t))=m,

then Ã+
B (t) = ÃTB(t)(ÃB(t)ÃTB(t))

−1. Then, PR(ÃT
B) := Ã+

B (t)ÃB(t) is the orthogo-

nal projection matrix onto R(ÃTB) and PN (ÃB) := I − Ã+
B (t)ÃB(t) is the orthogonal

projection matrix onto N (ÃB) [3]. From (3.8) we obtain

PR(ÃT
B)x̃B(t) = Ã+

B (t)ÃB(t)x̃B(t) = −Ã+
B (t)AN ẋN (t),

and from (3.7), using the fact that R(ÃTB) and N (ÃB) are orthogonal to each other,
we get

PN (ÃB)x̃B(t) = −
n · e−βt

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)
uB(t).

Combining these results, we have

x̃B(t) = PR(ÃT
B)x̃B(t) + PN (ÃB)x̃B(t)

= −Ã+
B (t)AN ẋN (t)− n · e−βt

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)
uB(t),

which gives (3.1).
To determine the convergence directions of the trajectories, we need to study the

relative convergence speeds of ẋB(t), ẋN (t), etc. Thus, we compute limits of some of
the expressions that appear in (3.1) and (3.2):

lim
t→∞ ŵB(t) =

eTw0

n
eB, lim

t→∞ ŵN (t) =
eTw0

n
eN ,(3.9)

lim
t→∞DB(t) =

√
eTw0

n
(X∗

B)
−1, lim

t→∞DN (t) =

√
eTw0

n
(S∗

N )−1,(3.10)

lim
t→∞ ÃB(t) =

√
n

eTw0
ABX∗

B, lim
t→∞ G̃N (t) =

√
n

eTw0
GNS∗

N ,(3.11)

lim
t→∞uB(t) =

√
n

eTw0
wB(0), lim

t→∞uN (t) =

√
n

eTw0
wN (0).(3.12)
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Lemma 3.2.

lim
t→∞ Ã+

B (t) =

√
eTw0

n
(ABX∗

B)
+
,(3.13)

lim
t→∞ G̃+

N (t) =

√
eTw0

n
(GNS∗

N )
+
.(3.14)

Proof. This result about the limiting properties of the pseudoinverses is an im-
mediate consequence of Lemma 2.3 in [4] and (3.11).

Differentiating the identity

x(t)s(t) = w(t) = e−tw0 + h(t)e,

we obtain

x(t)ṡ(t) + ẋ(t)s(t) = −e−tw0 + ḣ(t)e

= −e−tw0 − eTw0

n
(1− β) e−(1−β)te+

eTw0

n
e−te.(3.15)

Next, we will establish that ẋN (t) and ṡB(t) converge to zero no slower than exp{−(1−
β)t}. For this purpose, we consider the normalized direction vectors (x̂, ŝ) which are
defined as follows:

x̂(t) = exp {(1− β) t} ẋ(t), and ŝ(t) = exp {(1− β) t} ṡ(t).(3.16)

From (3.15) it follows that

x(t)ŝ(t) + x̂(t)s(t) = −e
Tw0

n
(1− β) e+ e−βt

(
eTw0

n
e− w0

)
.(3.17)

The expression on the right-hand side of (3.17) is clearly bounded. With some more
work, we have the following conclusion.

Lemma 3.3. Let (x̂(t), ŝ(t)) be as in (3.16), and assume that ρ > n. Then
(x̂N (t), ŝB(t)) remains bounded as t tends to ∞.

Proof. We will prove that x(t)ŝ(t) and x̂(t)s(t) remain bounded as t → ∞.
Then, since xB(t) and sN (t) converge to x∗B > 0 and s∗N > 0, respectively, and
therefore remain bounded away from zero, we can conclude that x̂N (t) and ŝB(t)
remain bounded.

Since the right-hand side of (3.17) is bounded as t tends to ∞, it is sufficient to

show that [x(t)ŝ(t)]
T
[x̂(t)s(t)] remains bounded below to conclude that both x(t)ŝ(t)

and x̂(t)s(t) have bounded norms as t→∞.

Let v(t) = x
1
2 (t)s

1
2 (t) = w

1
2 (t) and δ(t) = x

1
2 (t)s−

1
2 (t). Then

x(t)ŝ(t) = v(t)δ(t)ŝ(t) and x̂(t)s(t) = v(t)δ−1(t)x̂(t).
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Note that [δ(t)ŝ(t)]
T [

δ−1(t)x̂(t)
]
= [δ(t)ṡ(t)]

T [
δ−1(t)ẋ(t)

]
= 0. Let V (t) =

diag(v(t)), ∆(t) = diag(δ(t)), and W0 = diag(w0). Then V 2(t) = X(t)S(t) =
eTw0

n

(
e−(1−β)t − e−t

)
I + e−tW0. Now,

[x(t)ŝ(t)]
T
[x̂(t)s(t)] = [v(t)δ(t)ŝ(t)]

T [
v(t)δ−1(t)x̂(t)

]
= [δ(t)ŝ(t)]

T
V 2(t)

[
δ−1(t)x̂(t)

]
= e2(1−β)t [δ(t)ṡ(t)]

T
V 2(t)

[
δ−1(t)ẋ(t)

]

=
eTw0

n

(
e(1−β)t − e(1−2β)t

)
[δ(t)ṡ(t)]

T [
δ−1(t)ẋ(t)

]
+ e(1−2β)t [δ(t)ṡ(t)]

T
W0

[
δ−1(t)ẋ(t)

]
= e−βt

[
e(1−β)t/2δ(t)ṡ(t)

]T
W0

[
e(1−β)t/2δ−1(t)ẋ(t)

]
.(3.18)

Recall from (3.9) that limt→∞ ŵj(t) = limt→∞ e(1−β)twj(t) =
eTw0

n for all j. There-

fore, we have limt→∞
√
ŵj(t) = limt→∞ e(1−β)t/2vj(t) =

√
eTw0

n , and defining

ṽ(t) = e(1−β)t/2

(
v(t)− v(t)T v(t)

ρ
v−1(t)

)
,

we have limt→∞ ṽj(t) = (1− β)
√

eTw0

n .

Now, recalling (2.8) we observe that the vectors e(1−β)t/2δ−1(t)ẋ(t) and
e(1−β)t/2δ(t)ṡ(t) are orthogonal projections of the vector −ṽ(t) into the null space
of A∆(t) and range space of [A∆(t)]T , respectively. Since we showed that the vector
ṽ(t) is convergent as t tends to ∞, both of these projections converge, and therefore
the expression in (3.18) converges to zero. Thus, x(t)ŝ(t) and x̂(t)s(t) have bounded
norms as t→∞.

It is interesting that the conclusion of the lemma above holds for any ρ ≥ 0.
An alternative proof of Lemma 3.3 can be obtained using the proof technique in [5].
Combining (3.1) and Lemmas 3.2 and 3.3 we obtain the following result.

Lemma 3.4. Let (x̂(t), ŝ(t)) be as in (3.16), and assume that n < ρ ≤ 2n. Then
(x̂(t), ŝ(t)) remains bounded as t tends to ∞.

Proof. From (3.1) we have that

DB(t)x̂B(t) = −Ã+
B (t)AN x̂N (t)− n · e(1−2β)t

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)
uB(t).(3.19)

When ρ ≤ 2n, the factor n·e(1−2β)t

ρ(1−e−βt)
is convergent as t tends to ∞. Now, using Lemma

3.2 and (3.11)–(3.12), we conclude that the second term in the right-hand side of
the equation above remains bounded. Combining this observation with the fact that
x̂N (t) remains bounded as t tends to∞, we obtain that DB(t)x̂B(t) remains bounded.
Using (3.10) we conclude that x̂B(t) is also bounded as t tends to ∞. The fact that
ŝ(t) is bounded follows similarly.
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Now, the following two results are easy to prove.
Theorem 3.5. Let (x̂(t), ŝ(t)) be as in (3.16). Then we have that limt→∞ x̂N (t)

and limt→∞ ŝB(t) exist and satisfy the following equations:

lim
t→∞ x̂N (t) = −e

Tw0

n
(1− β) (s∗N )

−1
,(3.20)

lim
t→∞ ŝB(t) = −e

Tw0

n
(1− β) (x∗B)

−1
.(3.21)

Proof. From (3.17) we have that

xB(t)ŝB(t) + x̂B(t)sB(t) = −e
Tw0

n
(1− β) eB + e−βt

(
eTw0

n
eB − wB(0)

)
.

Taking the limit on the right-hand side as t → ∞ we obtain − eTw0

n (1 − β)eB. Since
sB(t) → 0 and x̂B(t) is bounded, we must then have that xB(t)ŝB(t) converges to

− eTw0

n (1 − β)eB. Since xB(t) → x∗B, it follows that limt→∞ ŝB(t) exists and satisfies
(3.21). The corresponding result for x̂N (t) follows identically.

Let

ξB = X∗
B (ABX∗

B)
+
AN (s∗N )

−1
, σN = S∗

N (GNS∗
N )

+
GB (x∗B)

−1
,

πB = X∗
B
(
I − (ABX∗

B)
+
ABX∗

B
)
wB(0), πN = S∗

N
(
I − (GNS∗

N )
+
GNS∗

N
)
wN (0).

Observe that πB = 0 if and only if wB(0) ∈ R(X∗
BA

T
B), which holds, for example,

when (x0, s0) is on the central path and w(0) = µe for some µ > 0—the observation
that e ∈ R(X∗

BA
T
B) follows easily from the optimality of x∗B for the first problem in

(2.5). Similarly, πN = 0 if and only if wN (0) ∈ R(S∗
NG

T
N ).

Theorem 3.6. Let (x̂(t), ŝ(t)) be as in (3.16), and assume that ρ ≤ 2n. Then we
have that limt→∞ x̂B(t) and limt→∞ ŝN (t) exist. When ρ < 2n we have the following
identities:

lim
t→∞ x̂B(t) =

eTw0

n
(1− β) ξB,(3.22)

lim
t→∞ ŝN (t) =

eTw0

n
(1− β)σN .(3.23)

When ρ = 2n, the following equations hold:

lim
t→∞ x̂B(t) =

eTw0

2n
ξB − n

2(eTw0)
πB,(3.24)

lim
t→∞ ŝN (t) =

eTw0

2n
σN − n

2(eTw0)
πN .(3.25)

Proof. Recall (3.19). When ρ < 2n, the second term on the right-hand side
converges to zero since e(1−2β)t tends to zero and everything else is bounded. Thus,
using (3.10) and (3.11) we have limt→∞ x̂B(t) = −X∗

B (ABX∗
B)

+
AN limt→∞ x̂N (t),

and (3.22) is obtained using Theorem 3.5. Similarly, one obtains (3.23).
When ρ = 2n, the factor in front of the second term in (3.19) converges to the

positive constant β = 1
2 . Therefore, using Theorem 3.5 and (3.9)–(3.12) we get (3.24)

and (3.25).
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Limits of the normalized vectors ( ẋ(t)
‖ẋ(t)‖ ,

ṡ(t)
‖ṡ(t)‖ ) are obtained immediately from

Theorems 3.5 and 3.6.
Corollary 3.7. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9)

with the initial condition (x(0), s(0)) = (x0, s0) with (x0, s0) ∈ F0, and assume that
ρ ≤ 2n. All trajectories of this form satisfy the following equations:

lim
t→∞

ẋ(t)

‖ẋ(t)‖ =
qP
‖qP ‖ , lim

t→∞
ṡ(t)

‖ṡ(t)‖ =
qD
‖qD‖ ,(3.26)

where

qP =

[
ξB

− (s∗N )
−1

]
and qD =

[ − (x∗B)
−1

σN

]
if ρ < 2n,(3.27)

qP =

[
ξB −

(
n

eTw0

)2

πB
− (s∗N )

−1

]
and qD =

[ − (x∗B)
−1

σN −
(

n
eTw0

)2

πN

]
if ρ = 2n.

When ρ = 2n the TTY potential-function Φρ(x, y) is a homogeneous function and
exp{Φρ(x, y)} is a convex function for all ρ ≥ 2n [17]. The value 2n also represents a
threshold value for the convergence behavior of the KMY trajectories. When ρ = 2n
the direction of convergence depends on the initial point (x0, s0) ∈ F0, as indicated
by the appearance of the w0 = x0s0 terms in the formulas. We note that when
ρ < 2n the asymptotic direction of convergence does not depend on the initial point
and is identical to that of the central path. Therefore, when ρ < 2n all trajectories
of the vector field given by the search direction of the KMY primal-dual potential-
reduction algorithm converge to the analytic center of the optimal face tangentially
to the central path. We show below that the asymptotic behavior of the trajectories
is significantly different when ρ > 2n.

Theorem 3.8. Let (x(t), s(t)) for t ≥ 0 denote the solution of the ODE (2.9)
with the initial condition (x(0), s(0)) = (x0, s0), and assume that ρ > 2n. Define

x̄(t) = eβtẋ(t) and s̄(t) = eβtṡ(t).(3.28)

If πB �= 0 and πN �= 0, then we have that limt→∞ x̄(t) and limt→∞ s̄(t) exist and
satisfy the following equations:

lim
t→∞

x̄(t)

‖x̄(t)‖ =
qP
‖qP ‖ and lim

t→∞
s̄(t)

‖s̄(t)‖ =
qD
‖qD‖ ,(3.29)

where

qP =

[ −πB
0N

]
and qD =

[
0B
−πN

]
.

Proof. From (3.1) we have that

DB(t)x̄B(t) = −Ã+
B (t)AN x̄N (t)− n

ρ (1− e−βt)

(
I − Ã+

B (t)ÃB(t)
)
uB(t).(3.30)

Note that x̄N (t) = e−(1−2β)tx̂N (t). Since x̂N (t) is bounded and −(1 − 2β) < 0, we
conclude that x̄N (t) → 0. Therefore, using (3.30) and (3.9)–(3.12) we observe that
x̄B(t) converges to a positive multiple of −πB �= 0 and immediately obtain the first
equation in (3.29). The second identity in (3.29) is obtained similarly.
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This final theorem indicates that when ρ > 2n, most trajectories associated with
the KMY algorithm converge to the analytic center of the optimal face tangentially
to the optimal face, and their direction of convergence depends on the initial point.
In the exceptional case of πB = 0 or πN = 0 (for example, when (x0, s0) is on the
central path), the last term in (3.30) no longer dominates the right-hand side, and
in such cases we conjecture that the trajectory converges tangentially to the central
path.

We conclude by noting the similarity of our asymptotic results to those of Mon-
teiro [12]. In his analysis of the trajectories based on primal-only potential-reduction
algorithms, Monteiro also finds that there is a threshold value of the potential func-
tion parameter that leads to different asymptotic behavior. In his case, this threshold
value is 2 |N | rather than 2n, where |N | denotes the cardinality of the set N from
the optimal partition of {1, . . . , n}. Just like in our case, when the potential function
parameter is above this value, his trajectories converge tangentially to the central
path, and below the threshold the convergence is tangential to the optimal face.
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Abstract. This paper describes a class of frame-based direct search methods for uncon-
strained and linearly constrained optimization. A template is described and analyzed using Clarke’s
nonsmooth calculus. This provides a unified and simple approach to earlier results for grid- and
frame-based methods, and also provides partial convergence results when the objective function is
not smooth, undefined in some places, or both. The template also covers many new methods which
combine elements of previous ideas using frames and grids. These new methods include grid-based
simple descent algorithms which allow moving to points off the grid at every iteration and can auto-
matically control the grid size, provided function values are available. The concept of a grid is also
generalized to that of an admissible set, which allows sets, for example, with circular symmetries.
The method is applied to linearly constrained problems using a simple barrier approach.

Key words. derivative-free optimization, positive basis methods, nonsmooth convergence anal-
ysis, frame-based methods
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1. Introduction. This paper discusses the use of frames and grids in derivative-
free optimization. The unconstrained optimization problem is examined first and an-
alyzed using Clarke’s nonsmooth calculus [3]. This is extended to linearly constrained
problems by aligning the frames and grids with appropriate subsets of the linear con-
straints. Herein a grid is the set of points in Rn which contains a given origin point
and all points which differ from this origin by an integer combination of members of
a basis for Rn.

In 1997, Torczon [17] showed that many existing direct search methods conform to
a common structure called generalized pattern search (GPS), which restricts attention
to a sequence of interrelated meshes. A mesh is defined in the same way as a grid,
except that only nonnegative integer combinations are used, and the basis is replaced
by a set of vectors whose nonnegative combinations (with real coefficients) contain
Rn. In [17] GPS was shown to converge under mild conditions, including continuous
differentiability of the objective function. Since then a number of generalizations and
modifications of GPS have been proposed. Amongst them is the work of Lewis and
Torczon [12, 13] in extending GPS to bound and linearly constrained problems. A
simple barrier approach is used where the objective function is declared to be infinite
at any point which violates one or more constraints. The barrier approach aligns the
set of interrelated meshes with the constraints. This allows the set of search steps
to adequately reflect each possible cone of feasible directions. More recently, Audet
and Dennis [1] have simplified the analysis in [13, 17] and extended it to nonsmooth
functions by using Clarke’s generalized derivatives [3].

In GPS the meshes are related because each mesh is a subset of some member of
a sequence of nested grids. Coope and Price [6] have shown that for unconstrained
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optimization problems, the grids do not have to be related to one another. In [6] a
step to any lower point (not necessarily a grid point) is permitted each time a new grid
is selected. The orientation and shape of the new grid can be chosen independently
from those of previous grids. This permits grids to be chosen to reflect information
gathered during previous iterations. In contrast to GPS, the algorithm in [6] must
force the grids to become arbitrarily fine. As shall be shown later there are convenient
methods for doing this.

A disadvantage of the grid-based template in [6] is that steps to arbitrary lower
points can occur only when there is a change of grid, and such changes can be infre-
quent. In [4] a frame-based method which allows steps to arbitrary lower points is
described, and convergence is shown under mild conditions. This method uses a suffi-
cient descent condition to enforce convergence. A similar set of methods is described
by Garćıa-Palomares and Rodŕıguez [10]. These methods [10] are not explicitly for-
mulated in terms of frames and restrict themselves to a fixed set of search directions
for all iterations. Indeed, it can be shown that the implemented algorithms SDSA
and NSDSA in [10] are special cases of the framework presented in [4] and also of the
template presented herein. It is shown in section 4 that the prototype sequential algo-
rithms presented in [10] also conform to a simple extension of the template presented
herein. Without the extension, our work uses a single sufficient descent condition for
all directions, whereas [10] uses a different condition for each direction. An explicit
sufficient descent condition is used in [4], which is the only reason why the prototype
sequential algorithms in [10] do not conform to the framework in [4]. The convergence
results in [10] are similar to the ones in this paper and exceed those in [4] as the latter
restricts attention to C1 functions. Unlike [10], we do not consider the case when f
is locally convex.

This paper looks at the use of grids and frames in unconstrained and linearly
constrained derivative-free optimization. The optimization problem may be concisely
expressed as

min
x∈Ω

f(x), where Ω ⊆ Rn(1.1)

and where a local minimum is sought. The objective function f maps Rn into R ∪
{+∞}, with the convention that f is assigned the value +∞ in regions where it is
undefined. We also focus attention on the cases where f is locally Lipschitz, strictly
differentiable [3], or C1. The lack of second derivatives means that stationary points
will be accepted as solutions in practice. The case when linear constraints are present
is also examined. These constraints are used to define the feasible region Ω. We look
at how grids and frames can be chosen to take into account the geometry of Ω.

This paper shows that grid-based methods can be expressed and analyzed in terms
of frames, thereby unifying the treatment of grid- and frame-based methods. This
unification allows many hybrid methods to be formed, including those which permit
arbitrary simple descent steps at every iteration. This is achieved by formulating
a frame-based template which can temporarily restrict attention to a subset of Rn

called an admissible set. The concept of an admissible set is a generalization of the
idea of a mesh in GPS or of a grid in [6]. A sequence of admissible sets may be
used, where these sets eventually become progressively finer. For grid-based methods
the grids are the admissible sets. For frame-based methods the admissible sets are
equal to Rn. The introduction of admissible sets allows methods which are analogous
to grid-based methods but do not use rectangular grids. The template is described
in terms of sufficient descent. For appropriate choices of admissible set the phrase
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sufficient descent means simple descent; for other choices of admissible set sufficient
descent is stricter than simple descent. The template is strongly connected with GPS
methods when simple descent is always used and only points in the admissible sets
are considered, where the admissible sets are nested grids (or subsets thereof). This
is discussed in detail in [6].

The basic strategy is to generate a sequence of iterates in Ω whose cluster points
are solutions of (1.1) under appropriate conditions. The function values at these
iterates form a decreasing sequence. For convenience, one point is said to be lower
(or better) than another if it has a lower function value. At each iteration a search
is conducted for a point which is sufficiently lower than the current iterate. When
the search is unsuccessful, the current iterate is called quasi-minimal. The search
for a sufficiently lower point is required to satisfy a number of conditions. Included
are conditions which ensure it is a finite process and conditions which ensure the
search is not declared unsuccessful until it has adequately explored the region around
the current iterate. This exploration takes into account the local geometry of Ω and
evaluates f at a set of points called a frame.

Frames are defined precisely in section 2, but, loosely speaking, a frame is a group
of points which surround a central point called the frame center. If none of these
surrounding points is significantly lower than the frame center, then the frame and
the frame center are called quasi-minimal. A quasi-minimal frame center (or quasi-
minimal iterate) is, in some sense, a discrete approximation to a local minimum. The
frame center itself is not part of the frame.

The basic approach of a frame-based algorithm is to generate an infinite sequence
of quasi-minimal frames such that the distances between points in these frames shrink
to zero in the limit. The nature of the cluster points of the sequence of quasi-minimal
iterates is examined using Clarke’s nonsmooth analysis. In this part our approach is
similar to Audet and Dennis’s analysis of GPS [1].

We first examine an arbitrary unspecified algorithm that generates a sequence of
iterates {x(k)} ∈ Ω, where this sequence of iterates contains an infinite subsequence
{z(m)} of quasi-minimal frame centers. The two indices k and m count the number
of iterations and quasi-minimal frames, respectively. The function k = k(m) gives
the number of the iteration in which the mth quasi-minimal frame occurs. At each
iteration a new iterate x(k+1) is chosen which satisfies one of two conditions: either
x(k+1) is an admissible point which is sufficiently lower than x(k) or the algorithm
finds a quasi-minimal frame centered on x(k+1), and x(k+1) is not higher than x(k).
In the latter case, this new frame center x(k+1) may be anywhere in Ω, but the quasi-
minimal frame may be required to consist of points which lie in the current admissible
set. Various strategies are used to ensure a quasi-minimal frame is located in a finite
time. It is shown that this guarantees the sequence {z(m)} is infinite. It is then
shown that the Clarke generalized derivative at each cluster point of {z(m)} in each
limiting direction is nonnegative. In the case when the objective function is C1 and
Ω = Rn, it is shown that all such cluster points are stationary points of f . These
results are extended to linearly constrained optimization problems by using a barrier
approach [1, 13] and choosing each frame to span the relevant tangent cone.

In section 3 the algorithm template is described, and its behavior is analyzed in
sections 4 and 5. Section 4 develops the main convergence results and applies them to
the unconstrained optimization problem. Section 5 addresses the linearly constrained
optimization problem. It describes how frames can be constructed which take into
account the linear constraints and presents the convergence results for methods using
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such frames. Section 6 looks at how the frames’ sizes may be chosen, and concluding
remarks are made in section 7.

The template (Template D) described herein is opportunistic, as are framework A
in [6] and the framework presented in [4]. This means it can abandon a partially com-
pleted frame immediately after discovering a point of sufficient descent. The price
paid for this opportunism is that the convergence theory applies only to the subse-
quence of quasi-minimal iterates {z(m)}. A nonopportunistic approach is presented
in framework B of [6] and template C of [14]. These templates require each frame
to be completed and to search along the ray from the frame’s center through a point
not higher than the lowest frame point. The advantage of this is that the conver-
gence theory applies to the whole sequence of iterates {x(k)}, not merely {z(m)}. The
restriction that each frame must be completed is not serious for certain types of algo-
rithms. For instance, methods using finite differences [7] or polytopes [15] must come
within one point of completing a frame in order to construct the gradient estimate or
polytope.

2. Positive bases and frames. A frame is a finite set of points which strictly
contains another point (the frame’s center) in its convex hull. The directions from
the frame’s center to each point in the frame form a positive basis [9], which is a set
of vectors V+ = {vi} such that

B1: every vector in Rn can be written as a nonnegative combination of the vectors
in V+ and

B2: no proper subset of V+ satisfies B1.
The term “nonnegative combination” means a (finite) linear combination without
negative coefficients. Sets of vectors which satisfy property B1 only are called positive
spanning sets. Any positive spanning set not satisfying B2 must contain a positive
basis as a proper subset. It is also shown in [9] that any positive basis for Rn must
satisfy n+1 ≤ |V+| ≤ 2n. The members of each positive basis V+ which is constructed
are assigned a specific order, and from now on each positive basis is assumed to be
ordered unless stated otherwise.

A frame Φ is the set of points

Φ = Φ (z, h,V+) = {z + hv : v ∈ V+} ,(2.1)

where z is the frame center and the positive scalar h is the frame size.
A frame Φ is called minimal if and only if

f (z) ≤ f(x) ∀x ∈ Φ (z, h,V+) .

It is useful to work with frames which are only “nearly” minimal. Such frames are
called quasi-minimal and are easier to generate than minimal frames. The generation
of quasi-minimal (or minimal) frames is important for two reasons: the convergence
theory applies to the sequence of centers of quasi-minimal frames, and some algorithm
parameters can be altered only after a quasi-minimal frame has been found. A frame
Φ is called εz–quasi-minimal if and only if

f (z) ≤ f(x) + εz ∀x ∈ Φ (z, h,V+)(2.2)

for a preselected nonnegative εz. The notation Φ(m) = Φ(z(m), h
(m)
z ,V(m)

+ ) is used to
denote the mth quasi-minimal frame.

Each quasi-minimal frame may have a different value ε
(m)
z for εz. Hence, when a

frame Φ(m) is called “quasi-minimal” this is understood to mean ε
(m)
z –quasi-minimal.
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It is necessary to have values for ε and h at every iteration, and so new sequences

{ε(k)} and {h(k)} are introduced. The sequences {h(k)} and {h(m)
z } are linked by the

relation h
(m)
z = h(k(m)). In other words, h

(m)
z is the value h(k) takes in the iteration

k(m) in which the mth frame is located. The quantities ε
(m)
z and ε(k) are similarly

related.
The sequence of ε values is required to satisfy the following condition:

lim
k→∞

ε(k)

h(k)
= 0.(2.3)

A requirement of the convergence theory is that h(k) → 0 as k → ∞, and so one
simple choice that satisfies (2.3) is ε = Nhν , with ν > 1 and N ≥ 0. In any case (2.3)
requires that {ε(k)} goes to zero faster than {h(k)}.

One could easily define frames using positive spanning sets rather than positive
bases. However, there are a number of advantages to the latter (see, e.g., [4, 14]). For
convergence purposes a number of restrictions must be imposed on the set V+ used
to define a frame, and this is more easily done if V+ is a positive basis rather than
a positive spanning set. Second, frame-based templates permit a finite number of
arbitrary points (not included in V+) to be examined during each iteration. Including
such points in V+ subjects them to unnecessary restrictions. In practice these extra
points may be used in a similar way to the members of V+, but for theoretical purposes
they are best kept separate.

An upper bound K is imposed on the length of each member of each V(m)
+ ,

‖v‖ ≤ K ∀m and ∀v ∈ V(m)
+ ,(2.4)

where K is independent of m and k.

A set V(∞)
+ = {v(∞)

1 , . . . , v
(∞)
p } is a limit of the sequence of ordered positive bases

{V(m)
+ }∞m=1 if and only if an infinite subsequence of {V(m)

+ } exists such that each
positive basis belonging to this subsequence has cardinality p, and

lim
m→∞ v

(m)
i = v

(∞)
i ∀i = 1, . . . , p,(2.5)

where the limit is understood to be taken over this subsequence. Condition (2.4)
ensures that such limits exist. The following assumption is needed.

Assumption 2.1. All members of the sequence {V(m)
+ } satisfy (2.4), and each

limit V(∞)
+ of the sequence {V(m)

+ } is an ordered positive basis.
This assumption may be enforced in a variety of ways, some of which are discussed

in [4, 14].

3. The algorithm template. The template consists of two nested loops. The
outer loop (steps 2–6, indexed by m) generates a sequence of quasi-minimal frames
with the desired properties. The purpose of the inner loop (steps 3–5, indexed by
k) is to generate a quasi-minimal frame. Iterations of the inner loop are performed
until a quasi-minimal frame is found, where quasi minimality is defined in (2.2) by

ε
(m)
z . Each iteration of the inner loop which does not find a quasi-minimal frame

obtains a point of sufficient descent instead. Fixing certain quantities during each
iteration of the outer loop (and hence each execution of the inner loop) ensures that a
quasi-minimal frame must be located in a finite number of inner loop iterations under
standard assumptions. In particular, it is assumed that the sequences of function
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values {f (k)} and iterates {x(k)} remain bounded. Here the notation f (k) = f(x(k))
has been used.

The purpose of the outer loop is to generate a sequence of quasi-minimal frames
with the desired properties. In particular, this sequence of quasi-minimal frames
must be infinite. In other words, each iteration of the outer loop must be a finite
process. Termination of the mth iteration of the outer loop can be guaranteed either
by choosing ε to be bounded away from zero or by restricting points of sufficient
descent to an admissible set G(m). In the former case, ε is given a strictly positive lower
bound E(m), and E(m) is kept constant between quasi-minimal frames. Sufficient
descent means that f(x(k)) is reduced by more than E(m) at each iteration of the inner
loop. The mth iteration of the outer loop can fail to terminate only if sufficient descent
is always obtained. This means that f (k) → −∞ as k goes to infinity. In the latter
case, ε = 0 is permitted, but G(m) must contain only a finite number of points in any
bounded subset of Rn, amongst other things. Hence the inner loop cannot generate a
bounded infinite sequence of iterates with strictly decreasing function values. A new
G(m) can be chosen after each quasi-minimal frame, and so G(m) denotes the admissible
set used during the search for the mth quasi-minimal frame. When E(m) > 0 we define
G(m) = Rn for completeness.

At each iteration of the inner loop f is calculated at a finite number of points. An
iteration is completed when either sufficient descent is obtained or a quasi-minimal
frame is located. Here sufficient descent means reducing f by more than ε, where ε
is the same constant used to define quasi minimality. At each iteration the algorithm
may calculate f at a finite number of points. If neither sufficient descent nor a
quasi-minimal frame has been obtained, then the algorithm begins forming a frame in
G(m) about a frame center x, where x is not higher than the previous iterate x(k−1).
The frame either is quasi-minimal or contains a point in G(m) more than ε lower
than x(k−1). This completes an iteration of the inner loop. If sufficient descent was
obtained, then the algorithm increments k and starts a new iteration of the inner
loop. Otherwise, the inner loop terminates.

During each iteration of the outer loop a positive bound H(m) on h(k) is imposed.
Theoretically this bound is superfluous, but its presence highlights the existence of a
lower bound on h(k) implicit in the choice of G(m) (if E(m) = 0) or E(m) (otherwise).
Further remarks on this are made later in this section and section 6, respectively.

Algorithm Template D.

1. Initialize: set k = 1, m = 1, and choose the initial point x(0) ∈ Ω.
2. Choose H(m) > 0, E(m) ≥ 0, and G(m).
3. Choose h(k) ≥ H(m) and ε(k) ≥ E(m).
4. Execute any finite process which satisfies one of these conditions:

(a) generates an iterate x(k) ∈ Ω ∩ G(m) satisfying f
(
x(k)

)
< f (k−1) − ε(k);

or
(b) generates a quasi-minimal frame Φ(m) = Φ(z(m), h

(m)
z ,V(m)

+ ), where

x(k) ∈ Ω and f (k) ≤ f (k−1). Here z(m) = x(k), h
(m)
z = h(k), and

ε
(m)
z = ε(k); or

(c) case (b) of this step with the added restriction Φ(m) ⊂ G(m).
5. If x(k) is not quasi-minimal, increment k and go to step 3.
6. Increment m and k. If stopping conditions are not satisfied, go to step 2.

Condition (c) is included in step 4 to highlight the fact that an attempt to satisfy
condition (c) by forming a frame in G(m) guarantees the satisfaction of either (a)
or (c). In contrast, attempts to satisfy either (a) or (b) may end in failure without
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satisfying any of (a)–(c). An example of how condition (c) is used is presented later
in Figure 3.1.

The arbitrary process in step 4 allows f to be evaluated at points anywhere in Ω.
These points can be used, for example, to include a quasi-Newton step, points chosen
by an heuristic, or even randomly selected points. This arbitrary process also permits
the lowest point from a previous quasi-minimal frame to be included in the current
iteration. This is useful because a quasi-minimal frame which is not minimal contains
at least one point which is lower than the frame’s center. Inclusion of such points
allows movement away from a strictly concave maximum. For example, if f = −x2

in R1, with x(0) = 0, h(0) = 1, V+ = {1,−1}, and ε = 2h2, then x(0) is a quasi-
minimal frame center for all positive h. However, if the frame points from the first
iteration are included in the arbitrary finite process of the next iteration, then on the
second iteration an algorithm will step to a point x(2) satisfying f (2) ≤ −1 and escape
the local maximum. Otherwise, an algorithm might generate an infinite sequence of
quasi-minimal frames centered on the origin.

The points examined in step 4’s arbitrary process are useful in the analysis of the

template, and so we define S(m)
+ as the set containing all nonzero vectors v satisfy-

ing (2.4) such that f(z(m) + h
(m)
z v) ≥ f(z(m)) − ε

(m)
z is established by the arbitrary

process in step 4. That is to say,

S(m)
+ =

{
v : 0<‖v‖ ≤ K and f

(
z(m)+h(m)

z v
)
≥f

(
z(m)

)
−ε(m)

z is shown in step 4
}
.

(3.1)

The set G(m) may be a grid [6], Rn, or otherwise. For example [6], G(m) may be
a grid centered on z(m−1) and containing all points differing from z(m−1) by a sum of

integer multiples of the vectors v
(m)
1 , . . . , v

(m)
n , where v

(m)
1 , . . . , v

(m)
n form a basis for

Rn. Many other possibilities also exist. The choice of G(m) is subject to a number
of restrictions when E(m) is zero. When E(m) �= 0 we use G(m) = Rn without loss of
generality.

Assumption 3.1. If E(m) = 0, then the following two conditions hold:

G1: G(m) contains only a finite number of points in any bounded subset of Ω; and
G2: for all z ∈ Ω there exists at least one frame Φ(z, hz,V+) in G(m) for which hz

and V+ satisfy all restrictions required by the template (including Assump-
tion 2.1 or, in the constrained case, Assumption 5.3).

Condition G2 in Assumption 3.1 is used to ensure that an algorithm can always
find a frame centered on any point it chooses. Condition G2 excludes such sets as
the set of positive integers in R1 because this set does not contain a frame about
x = 0. Condition G2 conspires with inequality (2.4) to impose a lower limit on h. For
example, if G(m) is the grid of all integer points in Rn, and K = 5 in (2.4), then h
must be at least 1/5 in order for condition G2 to be satisfied.

When E(m) = 0 points of sufficient descent must be chosen from G(m), but quasi-
minimal iterates are not required to belong to G(m). This permits an algorithm to
consider points not in G(m) at every iteration via the following process. Let step 4
start with an iterate x(k−1) in G(m). The arbitrary finite process in this step selects a
point x ∈ Ω which is not higher than x(k−1). Note that x ∈ G(m) is not required. If the
algorithm subsequently locates a quasi-minimal frame around x, then condition (b)
has been achieved, which completes step 4. Otherwise, termination of step 4 is forced
by trying to achieve condition (c): that is to say, the algorithm forms a frame in
G(m) with x as the frame’s center. Either this frame is quasi-minimal (condition (c)
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Fig. 3.1. An illustration of how step 4 works. All intersections of two lines, or of a line and
a circle, are admissible points. Black dots are points considered by step 4, and arrows point from
each frame center to the corresponding frame points.

is satisfied) or a point in G(m) which is sufficiently lower than x(k−1) is located (which
satisfies condition (a)). Either way step 4 then terminates. Condition (c) is actually
superfluous; if condition (c) holds, then condition (b) is automatically satisfied.

An illustration of step 4 is given in Figure 3.1. Here E(m) = ε(k) = 0, and G(m) is
the set of all points which are intersections of either two lines or of a line and a circle.
The lines form two irregularly spaced parallel sets. The circles are centered on integer
points in R2, and all have the same radius. Clearly G(m) satisfies Assumption 3.1,
provided h(k) is not too small. Points considered by step 4 are marked with dots,
and also the legend of the form f(xi) = F . Here points are used in the order given
by the index i, and F is the function value of the ith such point. The index i is not
an iteration number; inside step 4 both k and m are fixed. The notations xi and
fi = f(xi) are restricted to this paragraph and Figure 3.1. Arrows point from each
frame center to the points in the corresponding frame. Step 4 begins with the current
iterate x1. It calculates f2. Now x2 is an admissible point, so if x2 were also lower
than x1, then step 4 would terminate under condition (a) and return x2 as a point
of sufficient descent. However, x2 is higher than x1 and is thus rejected. Step 4 then
calculates f at x3, which is lower than x1. Now x3 is not admissible, so step 4 cannot
return x3 as a point of sufficient descent. Instead step 4 forms a frame around x3,
consisting of x1, x4, and x5. If this frame were quasi-minimal (which is the same as
minimal since ε(k) = 0), then step 4 would terminate under condition (b) and return
x3 as a quasi-minimal iterate. However, the frame is not quasi-minimal because x5

is lower than x3. Unfortunately, x5 is not admissible, and so it cannot be returned
as a point of sufficient descent. Step 4 then forms a frame around x5 consisting only
of admissible points: x6, x7, and x8. This forces the termination of step 4: either at
least one of x6, x7, and x8 is lower than x5 (and hence lower than x1) or all three
are at least as high as x5. In the former case step 4 would terminate under condition
(a) and return the lowest of x6, x7, and x8. In the latter case step 4 would terminate
under condition (c) and return x5 as a quasi-minimal center (which is what happens).
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Hence x5 becomes both the new x(k) and the new z(m). The set S(m)
+ consists of the

vectors (xi − x5)/h
(m)
z , i �= 5, which satisfy the inequalities in (3.1).

Template D uses the same set of admissible points G(m) for each iteration between
quasi-minimal frames. At each iteration attention could be restricted to a subset of
G(m) which satisfies conditions G1 and G2, and this would not affect the convergence
results. This has not been done for two reasons. First, the current form of Template

D and the resulting analysis is clearer. Second, by judicious choice of h
(m)
z and V(m)

+

restricting attention to a subset of G(m) can be achieved implicitly.

The convergence analysis examines the asymptotic properties of the sequences
of iterates when the stopping conditions are never invoked. Practical considerations
make stopping conditions essential, which is why they are featured in Template D. The
current placement of stopping conditions ensures that the algorithm always terminates
with a quasi-minimal frame. Stopping conditions could also be checked in the inner
loop, for example at step 5.

4. The main convergence results. First it is shown that the subsequence of
quasi-minimal frames is infinite under appropriate conditions.

Theorem 4.1. Assume that for each m either E(m) > 0 or G(m) satisfies con-
ditions G1 and G2 in Assumption 3.1. Then at least one of the three following
possibilities holds:

(i) the subsequence of quasi-minimal iterates is infinite; or
(ii) the sequence of iterates is unbounded; or
(iii) f (k) → −∞ as k →∞.

Proof. We assume case (i) does not occur and that J is the final value of m. In
the case when E(J) = 0 it is then shown that (ii) must occur. Similarly, when E(J) is
strictly positive it is shown that (iii) must occur.

If E(J) = 0, then step 4 generates a sequence of points in G(J) ∩ Ω with strictly
decreasing function values. This sequence must contain an infinite number of distinct
points in G(J)∩Ω. However, G(J)∩Ω can contain only a finite number of points inside
any bounded subset of Ω, by condition G1. Hence the sequence of iterates must be
unbounded.

Let E(J) be strictly positive. Once m = J occurs, step 4 is executed endlessly, and
it reduces the best known function value by more than E(J) each time it is executed.
Hence f (k) → −∞ in the limit k →∞, as required.

In addition to conditions on the sequences of ordered positive bases and admissible
sets, the following assumption is needed to establish convergence.

Assumption 4.2. The following conditions hold:

(a) the points at which f is calculated lie in a compact subset of Rn;
(b) the sequence of function values {f (k)} is bounded below;
(c) h(k) → 0 as k →∞; and
(d) ε(k)/h(k) → 0 as k →∞.

The first two parts of this assumption eliminate possibilities (ii) and (iii) of The-
orem 4.1, which guarantees that the sequence {z(m)} has cluster points. Parts (c)
and (d) ensure that these cluster points have interesting properties. Satisfaction of
these latter two parts can be ensured by an appropriate implementation of the tem-
plate. Collectively parts (c) and (d) ensure ε(k) → 0 as k →∞.

The next theorem establishes the basic convergence result using Clarke’s gener-
alized derivative [3], which is
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f◦(x; v) = lim sup
h↓0 y→x

f(y + hv)− f(y)

h
.

Provided f is locally Lipschitz at x it can be shown [3] that f◦(x; v) is subadditive
and positively homogeneous in v. Moreover, if M is a Lipschitz constant for f at x,
then |f◦(x; v)| ≤M‖v‖.

Theorem 4.3. Let f be locally Lipschitz at z(∞). Let v be any vector such

that there exists a sequence {(z(m), v(m))} with v(m) ∈ S(m)
+ for all m and such that

(z(∞), v) is a cluster point of this sequence, where S(m)
+ is defined in (3.1). Then

f◦
(
z(∞); v

)
≥ 0.

Proof. We restrict our attention to a subsequence of {z(m)} for which the cor-
responding subsequence {(z(m), v(m))} converges uniquely to (z(∞), v). The defini-
tion (3.1) implies that

f
(
z(m) + h(m)

z v(m)
)
− f

(
z(m)

)
+ ε(m)

z ≥ 0.

Hence

lim sup
m→∞

f
(
z(m)+h

(m)
z

(
w(m)+v

))
−f
(
z(m)+h

(m)
z w(m)

)
+f
(
z(m)+h

(m)
z w(m)

)
−f(z(m))

h
(m)
z

≥0,

where w(m) = v(m)−v. Now w(m) → 0 as m→∞, and so the first two terms provide
a lower bound on f◦, which yields

f◦
(
z(∞); v

)
+ lim sup

m→∞

f
(
z(m) + h

(m)
z w(m)

)
− f(z(m))

h
(m)
z

≥ 0.

The last term vanishes because f is locally Lipschitz and because w(m) → 0, which
yields the required result.

An alternative way of looking at Theorem 4.3 is as follows.
Corollary 4.4. There does not exist an open halfspace on which f◦(z(∞); v) is

negative for all v in this halfspace.

Proof. The template guarantees V(m)
+ ⊆ S(m)

+ for all m. Assumption 2.1 and

Theorem 4.3 imply there exists a positive basis V(∞)
+ such that

f◦
(
z(∞); v

)
≥ 0 ∀v ∈ V(∞)

+ .

Now every open halfspace contains a member of V(∞)
+ . Hence no open halfspace exists

on which the generalized derivative of f at z(∞) is negative.

4.1. The differentiable case. Corollary 4.4 is useful because all C1 functions
have open halfspaces of descent directions at all nonstationary points. We now look
at the case when f is strictly differentiable [3] at z(∞), i.e.,

∃w ∈ Rn such that f◦(z(∞); v) = wT v ∀ v ∈ Rn.

This yields the following important corollary.
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Corollary 4.5. If f is strictly differentiable at z(∞), then z(∞) is a stationary
point of f .

Proof. Strict differentiability implies

∃w ∈ Rn such that f◦(z(∞); v) = wT v ∀ v ∈ Rn.

If w is nonzero, then f◦(z(∞); v) is negative on the open halfspace {v : wT v < 0},
contradicting Corollary 4.4. The only remaining possibility is that w = 0. Hence z(∞)

must be a stationary point of f .
The difference between these two corollaries is that Corollary 4.4 can eliminate

many points of nondifferentiability from the set of possible cluster points of {z(m)},
whereas Corollary 4.5 cannot. For example, let f = min{‖x‖, ‖x‖2}, where the 2-
norm has been used. Corollary 4.5 has x = 0 and {x : ‖x‖ = 1} as possible cluster
points, whereas Corollary 4.4 shows that x = 0 is the only possible cluster point.

Clearly if f is continuously differentiable at z, then it is also strictly differentiable
there, and so Corollary 4.5 establishes the convergence results of [4] and framework A
of [6]. It also establishes convergence for methods which do not conform to either [4]
or [6]. An example of such a method is any algorithm which uses E = ε = 0 and
also uses frame centers which are not necessarily members of the current admissible
set G(m). Further examples include any method using E = ε = 0 and a grid with
hexagonal, triangular, or circular symmetries in some dimensions. An example of an
admissible set with both circular and rectangular symmetries is the set of all points in
R2 which have either integer Cartesian coordinates (x1 and x2) or have integer values
for r and rθ/π, where r and θ are the standard polar coordinates. An admissible
set like this could be used with functions that may have both straight grooves and
circular grooves centered on the origin. Many other possibilities for the admissible set
exist, including those which incorporate random elements. For example, G(m) could
be the set of all points x+v(x) ∈ Rn, where all components of x are integer and where
v(x) is a random vector function of x over the set of vectors satisfying ‖v(x)‖ ≤ 1.

4.2. The Lipschitz condition. In this subsection the case when f is locally
Lipschitz but not differentiable is discussed. Let f be locally Lipschitz with Lipschitz
constant M at z(∞), and let v be a direction satisfying f◦(z(∞); v) < 0 at z(∞). Let
u be a unit vector, and let η ∈ R be positive. Then

f◦
(
z(∞); v + ηu

)
≤ f◦

(
z(∞); v

)
+ ηf◦

(
z(∞);u

)
≤ f◦

(
z(∞); v

)
+ ηM.

This shows that f◦(z(∞); .) is negative for all directions in a cone containing v in its
interior. Hence an algorithm conforming to the template will eventually find a descent
direction if it looks along a sequence of directions converging to v as z goes to z(∞).

It should be noted that the existence of descent directions at a point does not
guarantee that f◦ is negative along these directions. A very simple example is the
function f = −|x| in one dimension at the origin. A more interesting example in two
dimensions is

f =

{
r, |θ| ≥ θ0,
r (2|θ| − θ0) /θ0, |θ| < θ0,

again at the origin. For clarity, this example is described using polar coordinates r
and θ, with r ≥ 0 and −π < θ ≤ π. The function is well defined for all θ0 values,
but we are primarily interested in 0 < θ0 < π. For these values f looks like an
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upward pointing cone with a notch slanting downwards along θ = 0. The example
would be presented to an algorithm as an unconstrained problem in the rectangular
coordinates x1 = r cos(θ) and x2 = r sin(θ). Simple calculations show that f◦ is
positive for every direction whenever θ0 < π/2. However, directions with 2|θ| < θ0
are descent directions at the origin.

The necessity of the Lipschitz condition can be seen by considering, for example,
the function f = −x2 + 5

√|x1|. Elementary calculations show the directional deriva-
tive f ′(0; e2) = −1, where ei is the ith unit vector. However, if the direction e2 is
replaced by the parabolic arc tv(t), where v(t) = e2 + te1, then

f ′
arc(0; v(·)) = lim

t→0

f(0 + tv(t))− f(0)

t
= 4.

Here the fact that the direction of v(t) alters as t goes to zero means that a descent
step is not located even though v(t) becomes parallel to the descent direction e2 as t
tends to zero. There is nothing special about keeping the direction constant. Similar
calculations with the function f = −x2 + 5

√
|x1 − x2

2| give f ′
arc(0; v(·)) = −1 and

f ′(0; e2) = 4. This time the fixed direction fails, and by curving v(t) into the limiting
direction e2, a descent step is found. So if f is not locally Lipschitz and lacks any
other special properties, then little can be said.

There is one computationally expensive way to attack such problems using the
arbitrary finite process in step 4 of the template. The idea is eventually to look
everywhere in some neighborhood of each cluster point of the sequence of iterates.
Let x(k) + y, y ∈ Y (k), be the set of points at which f is calculated in the arbitrary
finite process in step 4 during iteration k.

Theorem 4.6. If f is continuous and the sequence of sets {Y (k)} satisfies the
following two properties,

Y1: the sequence is eventually nested, i.e., Y (k) ⊆ Y (k+1) for all k sufficiently
large; and

Y2: there exists a positive constant µ such that ∪∞k=1Y
(k) is dense in the open ball

of radius µ centered on the origin,
then all cluster points of the sequence of iterates are local minimizers of f .

Proof. The proof is by contradiction. Let x(∞) be a cluster point of the sequence
of iterates which is not a local minimizer. Replace the sequence of iterates {x(k)} with
an infinite subsequence of itself such that all members of this subsequence are within
µ/3 of x(∞), and replace {Y (k)} with the corresponding subsequence of itself. We
note that this subsequence of {Y (k)} satisfies both Y1 and Y2. Property Y1 ensures
that property Y2 is not lost when moving to this subsequence. Now there exists a
point xµ within µ/3 of x(∞) which is strictly lower than x(∞). Continuity of f means
that there is a ball of strictly positive radius ξ < µ/3 around xµ on which f is strictly
less than f(x(∞)). Property Y2 means that for some finite k step 4 will evaluate f at
a point in the ball of radius ξ about xµ. This contradicts the fact that the sequence
of function values {f(x(k))} is monotonically decreasing.

This is not a particularly practical way of ensuring convergence except on very
small problems. However, it is one way of gaining some confidence in a solution when
f is not smooth.

4.3. Generalizing sufficient descent. The sequential algorithms of Garćıa-
Palomares and Rodŕıguez [10] conform to Template D except on one point: the choice
of sufficient descent condition. Herein the same measure of sufficient descent (i.e., ε)
is used for all search steps, whereas the prototype sequential algorithms in [10] use
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a different value for each search direction. Template D is easily adapted to include
these prototype algorithms. This is done by replacing the sequence of constants {ε(k)}
with a sequence of functions {ε(k)(v)}. The sufficient descent condition for a step h(k)v
from the iterate x(k) becomes

f
(
x(k) + h(k)v

)
< f

(
x(k)

)
+ ε(k)(v).

A frame Φ which contains no point of sufficient descent is quasi-minimal. The sequence
{ε(k)(v)} is required to have the following properties:

lim
k→∞

(
sup
v∈Rn

ε(k)(v)

)/
h(k) = 0(4.1)

and

ε(k)(v) ≥ E(m(k)) ∀v ∈ Rn and ∀k.

Here m(k) is the value of m at step 3 of iteration k, which is the index of the quasi-
minimal frame the template is searching for at iteration k. A corresponding sequence

of functions {ε(m)
z (v)} is also defined, with ε

(m)
z (v) = ε(k(m))(v) for all v, as before.

Equation (4.1) ensures that the proof of Theorem 4.3 is still valid, and the rest of the
convergence theory depends only on the lower bounds E(m), not on ε itself.

5. The linearly constrained case. Following [1, 13, 18] we develop a theory
for the linearly constrained optimization problem (LCOP)

min
x∈Ω

f(x), where Ω={x : aTi x+bi=0 ∀i=1, . . . , q and aTi x+bi≤0 ∀i=q+1, . . . , L}.
(5.1)
We regard any point x ∈ Ω as a solution of (5.1) if and only if no feasible direction
exists at x along which the directional derivative of f is negative. The constraints
defining Ω are imposed via a barrier function. A new objective function fc(x) = f(x)+
ψ(x) is defined, where ψ(x) is the indicator function for the set Ω. Hence fc(x) = f(x)
if x ∈ Ω, and fc(x) = ∞ otherwise. Algorithms conforming to Template D may be
applied to fc; however, the discontinuous nature of fc means that Theorem 4.3 does
not guarantee convergence to one or more solutions of (5.1). To ensure that an
algorithm locates solution(s) of the LCOP we consider a specialization of Template D

which requires that each positive basis V(m)
+ conforms to the shape of the feasible

region Ω near z(m). This specialization is presented later as Template E.
For the unconstrained case the crucial feature of a positive basis is that at any

point x it positively spans the set of feasible directions at x and also at any point near
x. For constrained problems we need finite sets of directions with the same property,
although, in general, the set of feasible directions is now a closed polyhedral cone
rather than Rn. The set of feasible directions can also vary from point to point, in
contrast to the unconstrained case.

Template E generates a sequence of feasible iterates which contains an infinite
subsequence {z(m)} of quasi-minimal frame centers. At each frame center the con-
straints which could be active (i.e., hold with equality) at or near this frame center
are identified. The directions in that frame’s positive basis are aligned with the iden-
tified set of constraints. More precisely, for any cone of feasible directions defined
by a subset of those constraints, there is a subset of the frame’s positive basis which
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positively spans that cone of feasible directions. These aligned positive bases can be
used to extend the convergence theory in section 4 to the linearly constrained case.

For each frame a subset of the constraints is selected which includes those con-
straints which are active at or near the quasi-minimal center z(m). This is done by
choosing a positive constant δ and selecting all constraints with residuals not more
than δ. These constraints are indexed by the working set W (m) which must satisfy∣∣∣aTi z(m) + bi

∣∣∣ ≤ δ =⇒ i ∈W (m),(5.2)

where δ > 0 is independent of m. The feasibility of each z(m) means that every
constraint which is active (which includes all equality constraints) at some point near
z(m) appears in W (m). Hence, for any x ∈ Ω near z(m), the set of active constraints

at x is contained in W (m). The positive basis V(m)
+ is then constructed so that some

subset of it positively spans the cone of feasible directions at x. In practice W (m)

would often contain constraints with residuals much greater than δ. This would assist
an algorithm in traversing the boundary of the feasible region more quickly.

The constraints in W (m) define a polyhedral cone

K(m) =
{
v : aTi v = 0 ∀i = 1, . . . , q and aTi v ≤ 0 ∀i ∈W (m) ∩ {i : i > q}

}
(5.3)

which is the cone of feasible directions at any point in Ω for which W (m) is the active
set of constraints. A positive basis for the null space of the equality constraints is
constructed which contains a positive basis for any cone (see section 5.1) defined
by any subset of W (m) containing all equality constraints. A positive basis which
satisfies these conditions is said to be aligned with the set of constraints W (m) at z(m)

or, more simply, aligned. Occasionally the phrase “aligned with a cone” is used; it
means aligned with the set of constraints defining that cone. A frame is constructed
by the same process used in (2.1). Any such frame is also called aligned. In the next
section the formation of aligned frames is discussed, followed by the barrier approach
to linearly constrained problems.

5.1. Generating aligned positive bases and frames. A polyhedral cone K
may be defined as the intersection of a finite number of halfspaces and hyperplanes:

K =
{
v : aTi v = 0, i = 1, . . . , q and aTi v ≤ 0, i = q + 1, . . . , .

}
.(5.4)

For convenience we have omitted the (m) superscripts and have assumed that the
first . − q inequality constraints are those in the current working set. In this sub-
section only, the constraints under discussion are those defining the cones of feasible
directions. These constraints are of the form

aTi v = 0, i = 1, . . . , q and aTi v ≤ 0, i = q + 1, . . . , ..

That is to say, the constants bi have been omitted from the constraints which define
Ω. Any such cone can be rewritten as a finitely generated cone

∃v1, . . . , vp such that K =

{
p∑
i=1

ηivi : ηi ≥ 0 ∀i = 1, . . . , p

}
(5.5)

as is shown by Theorem 4.18 of [16]. The vectors v1, . . . , vp are often referred to as a
set of generators of the cone K. A minimal set of generators V+ for a closed polyhedral
cone K is a set of vectors {v1, . . . , vp} such that



FRAMES AND GRIDS IN OPTIMIZATION 429

K1: {v1, . . . , vp} satisfies (5.5) and
K2: no proper subset of V+ satisfies (5.5).
Initially we consider the special case where the ai, i ≤ ., are linearly independent.

A positive basis aligned with K is constructed in two parts: one each for the subspace
containing these ai and for the subspace orthogonal to these ai. For illustrative
purposes, choose any basis for Rn which satisfies ai = ei for i = 1, . . . , . but is
otherwise arbitrary. Here ei is the ith unit vector. If U+ is any positive basis for the
subspace spanned by e�+1, . . . , en, then

{−ei : i = q + 1, . . . , .} ∪ U+

is a set of generators for K. Interestingly, this is a subset of the following positive
basis for the null space of the equality constraints

V+ = {±ei : i = q + 1, . . . , .} ∪ U+.

This positive basis for the null space of the equality constraints contains a set of
generators for every polyhedral cone defined by the equality constraints and any subset
of the constraints vT ei ≥ 0, vT ei ≤ 0, and vT ei = 0 for i = q+1, . . . , .. This property
is crucial: it means that V+ contains a set of generators for every possible cone of
feasible directions at z(m) and at all points near z(m).

We now revert back to the original basis for Rn and work with ai. The assumption
that the set {ai : i ∈ W (m)} is linearly independent is retained. For notational
simplicity we continue to assume that W (m) = {1, . . . , .}. Let A = [a1, . . . , a�] and
select an invertible matrix S = [s1, . . . , sn] satisfying STA = [e1, . . . , e�]. This allows
the following Theorem to be stated.

Theorem 5.1. If W and S are as defined above, then the set

{−si : i = q + 1, . . . , .} ∪ {Su : u ∈ U+}(5.6)

is an ordered minimal set of generators for the cone K defined in (5.4). Here U+ is
an ordered positive basis for the subspace spanned by e�+1, . . . , en.

Proof. First, it is clear that all members of (5.6) lie in K. We now must show
that an arbitrary w1 ∈ K can be expressed as a nonnegative linear combination of
the members of (5.6). Since w1 ∈ K, it follows that ATw1 ≤ 0. Moreover, the first q
elements of ATw1 must be zero. For convenience let ATw1 = y. Now, for appropriate
nonnegative choices of ηi, i = q + 1, . . . , ., the vector

w2 =

�∑
i=q+1

ηi(−si) solves ATw2 =

�∑
i=q+1

−ηiei = y ≤ 0.

Hence w2−w1 is a member of the null space of AT (hereafter N(AT ) ). Clearly w2 is
a nonnegative linear combination of the members of (5.6). Moreover, {Su : u ∈ U+}
is an ordered positive basis for the null space N(AT ), and so w1 can be written as a
nonnegative linear combination of the members of (5.6).

Minimality can be seen as follows. For a specific j ∈ q+1, . . . , . one has AT (−sj) =
−ej , whereas eTj A

T v = 0 for all other v in (5.6). Hence −sj cannot be expressed as
a nonnegative linear combination of the remaining members of (5.6). Finally, assume
some Suj , uj ∈ U+ is redundant, i.e.,

Suj =

�∑
i=q+1

σi(−si) +
∑
i 
=j

θiSui(5.7)
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for some θi, σi ≥ 0. Now ATSu = 0 for all u ∈ U+, which implies σi = 0 for all i.
Multiplying (5.7) by S−1 yields a contradiction with the fact that U+ is a positive
basis.

Corollary 5.2. The set

V+ = {si : i = q + 1, . . . , .} ∪ {−si : i = q + 1, . . . , .} ∪ {Su : u ∈ U+}(5.8)

contains a set of generators for any cone defined by the equality constraints and any
subset of the inequality constraints in (5.4).

Proof. Without loss of generality let the selected subset of inequality constraints
be indexed by i = q + 1, . . . , r, where r ≤ .. Using U+ as a positive basis for the
subspace spanned by e�+1, . . . , en as above, the set

{±si : i = r + 1, . . . , .} ∪ {Su : u ∈ U+}

is a positive basis for the null space N([a1 . . . ar]
T ). The corollary then follows from

Theorem 5.1.

As an illustration, consider the constraints x1 ≤ 0 and x2 ≤ 0 in R2. Equa-
tion (5.8) gives V+ = {±e1,±e2}. There are four possible sets of active constraints:
none; x1 ≤ 0 only; x2 ≤ 0 only; and both. The sets of generators for the correspond-
ing tangent cones are V+, {−e1,±e2}, {±e1,−e2}, and {−e1,−e2}. Equation (5.8) is

used to define each V(m)
+ . Corollary 5.2 means that every V(m)

+ is a positive basis for
the null space of the set of equality constraints.

When degeneracy is present in a set of active constraints the above approach must
be modified. (Readers not interested in the degenerate case may wish to proceed
directly to Assumption 5.3.) The existence of an aligned positive spanning set V ld

+

is guaranteed by Theorem 4.18 of [16], but its construction can be computationally
expensive [13]. The superscript “ld” is used to highlight the fact that V ld

+ is not
necessarily a positive basis and is no longer defined by (5.8). The set V ld

+ must contain
a set of generators for the cone K in (5.4) and also for every cone defined by any subset
of the constraints in W which includes all equality constraints. If the constraints are
linearly dependent, then V ld

+ is a positive spanning set for the subspace defined by
the equality constraints, but it is no longer a positive basis. For convenience, in
the following discussion we assume any linear dependence in the subset of equality
constraints has been removed by deleting redundant equality constraints.

The construction of V ld
+ is in two parts. The first part is a positive basis for the

null space of the normals of the constraints indexed by W . The second part is for the
subspace T spanned by aq+1, . . . , a�, where T is of dimension r − q.

For the first part of V ld
+ , order the constraints so that a1, . . . , aq+r are linearly

independent. Let the invertible matrix S = [s1, . . . , sn] satisfy ST [a1, . . . , ar] =
[e1, . . . , er]. The first part of V ld

+ is

SU+ = {Su : u ∈ U+} ,

where U+ is a positive basis for the subspace spanned by er+1, . . . , en. Clearly SU+

positively spans the null space N([a1, . . . , ar]
T ).

The second part of V ld
+ contains a positive scalar multiple of each vector ±v

which lies in T and satisfies with equality any r − 1 linearly independent constraints
indexed by the set W , including all equality constraints. Note that ±v may violate
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any constraint it is not required to satisfy with equality. Clearly V ld
+ must contain the

V+ defined by (5.8) for each subset of W which includes all equality constraints and
has r linearly independent constraint normals. The set of all such vectors for all such
subsets of W includes many pairs of vectors which are positive scalar multiples of one
another. Eliminating such pairs gives V ld

+ . In the particular case when all constraint
normals indexed by W are linearly independent, these vectors ±v are positive scalar
multiples of ±sq+1, . . . ,±s� in (5.8), and the definition of V ld

+ reverts back to that
in (5.8).

It is now shown that V ld
+ contains a set of generators for every cone defined by any

subset of the constraints in W which includes all equality constraints. Consider a cone
Ks defined by a subset Ws of W which contains all equality constraints but is otherwise
arbitrary. Let the dimension of Ks be ρ. For convenience reorder the inequality
constraints so that a1, . . . , aρ are linearly independent, and 1, . . . , ρ ∈ Ws. Define Ts

to be the subspace spanned by aq+1, . . . , aρ. We now add further constraint normals
ai, i ∈W , to a1, . . . , aρ to obtain a maximal linearly independent set a1, . . . , ar. The
construction of V ld

+ ensures that it contains an ordered positive basis (given by (5.8))
defined by the working set {1, . . . , r}. Hence V ld

+ must contain a positive basis for the
null space of a1, . . . , aρ by Corollary 5.2.

It remains to show that V ld
+ contains a set of generators for the cone Ks∩Ts. Define

the hyperplane H = {v ∈ Ts : (aq+1 + · · ·+aρ)
T v = −1}. Clearly Ks ∩Ts is contained

in the cone {v ∈ Ts : aTi v ≤ 0 for all i = q + 1, . . . , ρ}. Also, because aq+1, . . . , aρ is a
basis for Ts, it is clear that Ks ∩Ts ∩H is bounded, and hence is a polytope P . It can
be shown [16] that a set of generators for Ks ∩ Ts is precisely the set of vectors from
the origin to the vertices of P . Each of these vectors v satisfies aTi v = 0 for all but
one of i = 1, . . . , ρ. By adding an appropriate member of N([a1, . . . , aρ]

T ) to v one
can obtain a vector v+ which satisfies aTi v+ = 0 for all but one i ∈ 1, . . . , r. Hence
each such v+ is a positive scalar multiple of a member of V ld

+ . Thus V ld
+ contains an

ordered set of generators for every cone Ks defined by any subset of constraints in W
which includes all equality constraints.

The following assumption is needed to ensure the limits of the sequence of positive
bases have the required properties.

Assumption 5.3.

(a) All limits of the sequence of ordered positive bases {U (m)
+ } are ordered positive

bases.
(b) The methods used to generate S and V+ − SU+ are repeatable. That is to

say, they will always return the same S and V+ − SU+ when given the same
working set W .

(c) Each V(m)
+ satisfies (2.4).

This assumption is the equivalent of Assumption 2.1 for the LCOP (5.1). In the

case when constraints are absent, U (m)
+ ≡ V(m)

+ for all m, and Assumption 5.3 reduces
to Assumption 2.1. For the case when the normals of the constraints in W are linearly
independent Assumption 5.3(b) amounts to returning the same S when given the same

W . It is possible that some members of V(m)
+ violate the bound in (2.4). This bound

is imposed retrospectively by replacing any v ∈ V(m)
+ violating (2.4) with Kv/‖v‖.

5.2. The template for linearly constrained problems. The following tem-
plate lists the specialized form of Template D required for linearly constrained prob-
lems.
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Algorithm Template E.
1. Initialize: set k = 1, m = 1, and choose the initial point x(0) ∈ Ω. Choose

δ > 0.
2. Choose H(m) > 0, E(m) ≥ 0, and G(m).
3. Choose h(k) ≥ H(m) and ε(k) ≥ E(m).
4. Execute any finite process which satisfies one of these conditions:

(a) generates an iterate x(k) ∈ Ω ∩ G(m) satisfying f
(
x(k)

)
< f (k−1) − ε(k);

or
(b) generates a quasi-minimal frame Φ(m) = Φ(z(m), h

(m)
z ,V(m)

+ ), where

x(k) ∈ Ω and f (k) ≤ f (k−1). Here z(m) = x(k), h
(m)
z = h(k), and

ε
(m)
z = ε(k). The frame Φ(m) must be aligned with an identified working

set W (m) satisfying (5.2); or
(c) case (b) of this step with the added restriction Φ(m) ⊂ G(m).

5. If x(k) is not quasi-minimal, increment k and go to step 3.
6. Increment m and k. If stopping conditions are not satisfied, go to step 2.

If the active constraint normals are linearly independent at every point on the
boundary of Ω, then the constant δ in Template E can be defined implicitly. The case
when all constraint normals are linearly independent is trivial. For the remaining
case, the equality constraints are indexed by i = 1, . . . , q as above, and the inequality
constraints are ordered so that |aTi z(m)+bi| is an increasing function of i. The working
set W is chosen as the largest set {1, . . . , r} for which the corresponding constraint
normals are linearly independent. The residual of the r + 1st constraint in this list
must have a uniform positive lower bound for all feasible z in an arbitrary compact
set Ξ, and δ can be chosen as this bound. If this were not the case there would be a
linearly dependent set of constraints indexed by W , say, and also a sequence of points
{zj} ⊂ Ω for which

lim
j→∞

(
max
i∈W

∣∣aTi zj + bi
∣∣) = 0.

Continuity of the constraint functions then implies a degenerate point exists on the
boundary of Ω, contradicting the initial assumption. Assumption 4.2(a) ensures a
compact set Ξ exists which contains all points of interest.

5.3. Convergence results for the linearly constrained case. Algorithms
conforming to Template D may be applied to the LCOP by applying such methods
to the barrier function fc. The non-Lipschitz nature of fc means that Theorem 4.3 is
not directly applicable, and convergence to solution points of the LCOP (5.1) must be
established some other way. In order to guarantee convergence to solution(s) of the
LCOP under standard conditions a further restriction must be imposed. Specifically,
each frame Φ(m) generated by such an algorithm must be aligned with the working
set of constraints W (m). This working set includes all constraints with small residuals
(≤ δ) at z(m). With this restriction, Template D becomes Template E.

First we note that Theorem 4.1 is directly applicable, and parts (a) and (b) of
Assumption 4.2 ensure the sequence of quasi-minimal iterates {z(m)} is infinite and
has cluster points. Next we establish a constrained version of Theorem 4.3.

Definition 5.4. Let z(∞) be a cluster point of the sequence of quasi-minimal

iterates. Define S(∞)
+ (W ) as the set of all vectors v for which there exists an infinite

subsequence {(z(m), v(m))}m∈M with the following properties:
(i) this subsequence converges uniquely to (z(∞), v);
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(ii) z(m) + h
(m)
z v(m) ∈ Ω for all m ∈M;

(iii) v(m) ∈ S(m)
+ for all m ∈M, where S(m)

+ is as defined in (3.1);

(iv) W (m) = W for all m ∈M;
(v) ‖z(m) − z(∞)‖ < γ for all m ∈M, where γ > 0;
(vi) no point in the closed ball of radius 2γ about z(∞) violates any constraint not

in the active set for the point z(∞); and

(vii) h
(m)
z < γ/K, where K is the constant used in the upper bound (2.4) on each
‖v(m)‖.

The notation S(∞)
+ is used to denote the union of all S(∞)

+ (W ) when W ranges over
all possible subsets of the set of constraint indices {1, . . . , L}.

Condition (ii) in Definition 5.4 requires that v be a feasible direction at z(∞).
Note that the finiteness of the number of different working sets W means that anyM
satisfying all conditions except (iv) will have an infinite subset which satisfies all seven

conditions. Hence condition (iv) does not exclude any v from S(∞)
+ . For any (z(∞), v),

conditions (iv)–(vii) can always be satisfied for an appropriate choice ofM, provided
the first three conditions can. This follows directly from condition (i) and the facts

that the number of constraints is finite and h
(m)
z → 0 as m→∞. Conditions (v)–(vii)

mean that constraints not in W are automatically satisfied by all z(m) + h
(m)
z v when

v ∈ S(m)
+ and m ∈ M. In particular, this includes all points in the frames Φ(m),

m ∈ M. Conditions (i)–(iii) are needed for the proof of Theorem 5.5. The last four
conditions are superfluous to the proof of Theorem 5.5 but are needed in the proof of
Theorem 5.6.

Theorem 5.5. Let z(∞) be a cluster point of the sequence of quasi-minimal

iterates. Then f◦ (z(∞), v
) ≥ 0 for all v in S(∞)

+ .

Proof. Since every z(m) is feasible, condition (ii) of Definition 5.4 allows us to use
the fact that f ≡ fc on Ω. Conditions (i) and (iii) of Definition 5.4 allow Theorem 4.3
to be invoked, yielding the required result.

Next it is shown that Theorem 5.5 applies to a set of directions rich enough to
include a set of generators for the cone of feasible directions at z(∞).

Theorem 5.6. Let z(∞) be a limit point of the sequence of quasi-minimal iterates.

The set S(∞)
+ , as defined in Definition 5.4, contains a set of generators for the cone

of feasible directions K(∞) at the limit point z(∞).

Proof. Let W (∞) be the set of active constraints at z(∞). Consider an infinite
increasing sequence of positive integers M with the following properties:

(a) z(m) → z(∞) as m→∞, m ∈M;

(b) V(m)
+ → V(∞)

+ as m→∞, m ∈M;

(c) W (m) is the same for all m ∈M;
(d) ‖z(m) − z(∞)‖ < γ for all m ∈M, where γ is a positive constant;
(e) no point in the closed ball of radius 2γ centered on z(∞) violates any constraint

not in W (∞); and

(f) h
(m)
z < γ/K for all m ∈M, where K is the constant in (2.4).

The existence of M is guaranteed by the following facts: (a) holds because z(∞) is
a limit point of {z(m)}; (b) holds by Assumption 5.3; (c) and (e) hold because the
number of different possible working sets is finite; (d) follows from (a); and (f) follows
from Assumption 4.2(c).

If attention is restricted to the sequence {v(m)
i }m∈M for a fixed value of i, then

(a) and (b) together, and (c), (d), (e), and (f), respectively, yield items (i), (iv), (v),
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(vi), and (vii) of Definition 5.4. The fact that V(m)
+ ⊆ S(m)

+ for all m yields item (iii)
of Definition 5.4, which leaves just condition (ii).

Now (5.2) implies W (∞) ⊆ W (m) for all m such that z(m) is sufficiently near

z(∞). Hence (a) and (c) imply W (∞) ⊆ W (m) for all m in M. Therefore each V(m)
+ ,

m ∈M, contains a set of generators for the cone K(∞) of feasible directions at z(∞).
Each such set of generators for K(∞) consists of two parts. The first part (hereafter
W+) is the part contained in the span of {ai : i ∈ W (m)} and the second part is

SU (m)
+ = {Su : u ∈ U (m)

+ }. The construction of the first part depends only on W (m),
and so W+ is the same for all m ∈ M by Assumption 5.3(b). The matrix S is also

independent of m, again by Assumption 5.3(b). Item (b) means that {U (m)
+ }m∈M

has a unique limit U (∞)
+ , which is an ordered positive basis, by Assumption 5.3(a).

Clearly W+ and SU (∞)
+ = {Su : u ∈ U (∞)

+ } are both subsets of S(∞)
+ (W (m)). The set

W+ ∪ SU (∞)
+ is also a set of generators for K(∞).

Each z(m) lies in Ω, and each member of W+ ∪ SU (m)
+ lies in K(∞). Hence

z(m) + h
(m)
z v does not violate any constraint indexed by the set W (∞) for all m ∈M

and for all v ∈ W+ ∪ SU (m)
+ . Items (d)–(f) and the bound on ‖v‖ in (2.4) imply

no member of W+ ∪ SU (m)
+ , m ∈ M, can violate any constraint not in W (∞). Thus

all conditions of Definition 5.4 hold for all v(m) ∈ W+ ∪ SU (m)
+ for every m in M.

Their limits W+ ∪ SU (∞)
+ are a set of generators for K(∞) contained in S(∞)

+ , as
required.

Theorems 5.5 and 5.6 show that a set of generators for the cone K(∞) exists such
that f◦ is nonnegative at z(∞) along each of these generators, where K(∞) is the
cone of feasible directions at z(∞). The following result extends this to all feasible
directions in the case when f is strictly differentiable at z(∞).

Theorem 5.7. If f is strictly differentiable at z(∞), then no feasible direction
exists at z(∞) along which f has a negative directional derivative.

Proof. Now, for a general v ∈ K(∞), we can write

v =

p∑
i=1

ηiv
(∞)
i , where ηi ≥ 0 ∀i

and where {v(∞)
1 , . . . , v

(∞)
p } ⊆ S(∞)

+ is a set of generators for K(∞). The strict differ-

entiability of f at z(∞) yields

∇fT v =

p∑
i=1

ηi∇fT v(∞)
i =

p∑
i=1

ηif
◦
(
z(∞); v

(∞)
i

)
≥ 0,

as required. Hence no feasible direction exists at z(∞) along which f has a negative
directional derivative, and z(∞) is a solution of the LCOP (5.1).

For the moment we continue to consider a subsequence of quasi-minimal iterates
as defined in the proof of Theorems 5.5–5.7. It is shown in the proof of Theorem 5.6

that z(m) + h
(m)
z v ∈ Ω for every v ∈ W+ ∪ SU (m)

+ when m ∈ M. In contrast, in

early iterations z + hv can easily violate constraints not in W (∞). When this occurs
fc = +∞ at z + hv, and the direction v is effectively ignored. Rather than do this,
one could evaluate f at z+αv, where α ∈ R is the largest value such that z+αv ∈ Ω.
Any such function evaluations can be included in the arbitrary finite process of step 4
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of the template, which means that Theorem 5.6 still applies. The advantage of such
function evaluations is that an algorithm can look along the direction v immediately,
rather than having to wait until h is small enough to make z + hv feasible.

6. Selecting the frame size. Template D imposes a number of restrictions on
h. In addition to the explicit requirement that h tend to zero, there is also a sequence
of lower bounds {H(m)}. These lower bounds are not required for convergence pur-
poses, but other lower bounds on h are implicit in Assumption 4.2(d) and condition
G2. The presence of the explicit lower bounds on h in Template D is to reinforce the
fact that the implicit lower bounds exist. These implicit lower bounds are discussed
first, and the cases E = 0 and E > 0 are treated separately.

If E = 0, then condition G1 and the bound (2.4) mean that condition G2 can
not be satisfied if h is too small. In practice one could define G(m) using a length
H(m) which would become a lower bound for h until the next quasi-minimal frame is
located. For example, in [6]

G(m) =

{
x0 + h

n∑
i=1

ηivi : ηi is integer ∀i = 1, . . . , n

}

is used, where x0 is the origin of the grid and where v1, . . . , vn are a basis for Rn.
In [6] h is used to define both the admissible set G(m) and also the quasi-minimal
frame Φ contained in that set. Therefore in [6], h is kept constant between quasi-
minimal frames. Under Template D the h value used to define the grid would become
the lower bound H(m), and h values in excess of this would be permitted.

If E > 0, then the requirement that ε/h → 0 means that h must approach zero
more slowly than E. The simplest method of ensuring this is to connect ε and h via a
relation like ε = Nhν , where N > 0 and ν > 1. The bound ε ≥ E is then equivalent to
a positive lower bound on h. In fact, in [4] the lower bound on ε is imposed indirectly
via this relation and a specific positive lower bound H on h.

The convergence theory requires that h→ 0 as k →∞ but does not state how this
is to be done. Simple approaches such as using h(k) = 2−k have obvious drawbacks.
Indeed, h permanently falls below machine precision after a fixed number of iterations.
Such an approach takes no account of how quickly or slowly the sequence of iterates
is converging. When a solution is located quickly h should become small quickly in
order to verify that it is indeed a solution. In contrast, if good reductions in f occur
with h large, then h should remain large until such reductions cease. Similarly, if the
sequence of iterates moves from a region where small steps are necessary into a region
where large steps are better, then h should increase. This suggests that h should vary
in sympathy with the lengths of recent steps and also with the recent reductions in
f . One possibility is to impose an upper bound on h of the form

h(k) ≤ max
{
γH(m(k)),Υ(k)

x Υ
(k)
f

}
.(6.1)

Here Υf and Υx are moving averages of the past decreases in function values and step
lengths, respectively, and γ is a constant satisfying γ ≥ 1. The value m(k) is the value
of m at step 3 of iteration k. The two moving averages are defined in terms of two
sequences {ωi}∞i=1 and {βi}∞i=1 of nonnegative weights as follows:

Υ
(k)
f =

k−1∑
i=1

ωk−i
∣∣∣f (i−1) − f (i)

∣∣∣ and Υ(k)
x =

k−1∑
i=1

βk−i
∥∥∥x(i) − x(i−1)

∥∥∥ ,



436 C. J. PRICE AND I. D. COOPE

with the convention that Υ
(1)
f = Υ

(1)
x = 0. The two sequences of weights chosen are

so that

∞∑
i=1

ωi and

∞∑
i=1

βi

are both finite. If the sequence of iterates is bounded, then the sequence of Υ
(k)
x values

is bounded. If f is bounded below on any bounded set, then the sequence of Υ
(k)
f

values must converge to zero. Given the quadratic nature of smooth functions near

local minima, one could replace Υ
(k)
f with its square root in (6.1).

An alternative for the case when E is always positive is presented in [4]. There
ε = Nhν is used, with ν > 1, and N > 0. The bound ε ≥ E is imposed indirectly
by imposing a strictly positive lower bound H(m) on h. When sufficient descent is
obtained h may be increased by up to a fixed multiple of itself. If a quasi-minimal
frame is located, then h is reduced in such a way that if h is reduced repeatedly, then
h→ 0. In essence, if the sequence {h} has a strictly positive lower bound (hmin say),
then f is reduced by at least Nhνmin an infinite number of times. Hence either h→ 0
or f → −∞. More details are presented in [4].

Template D and related algorithm frameworks gain much flexibility by not making
h → 0 a direct consequence of conforming to the template. In contrast, GPS [17]
guarantees h→ 0 when f is C1 and the sequence of iterates is bounded. If Template D
satisfies (6.1) or uses the approach in [4], then it also guarantees h → 0 under the
same conditions.

7. Concluding remarks. Template D contains algorithms which bear a striking
resemblance to the implicit filtering algorithms in [2, 11]. These implicit filtering
algorithms use the positive basis {±e1, . . . ,±en} to form frames (or, in the language
of [2, 11], stencils) about the current iterate x. Using the frame an estimate g of the
gradient at x is formed, and a search direction is generated. A finite line search is
conducted along this direction, where satisfaction of a sufficient descent condition is
sought. If sufficient descent is not obtained, if the gradient at x is small, or (in [2]) if
the frame is minimal, then h is reduced. Given that convergence occurs, [11] shows
that convergence rate is linear for bound constrained problems when the line search
direction is −g, except that any infeasible point in the line search is replaced with
the closest feasible point to it. In the absence of bounds, [2] shows that a superlinear
rate can be obtained when a quasi-Newton search direction is used.

Implicit filtering differs from Template D on a number of points, including the
type of sufficient descent condition in the line search and that frame points are not
considered as candidates for the next iterate. This last difference has enormous theo-
retical implications. The possibility of a frame point becoming the next iterate rather
than a line search point means that the rate theorems of implicit filtering are not
guaranteed to apply to any algorithm conforming to Template D. The absence of
steps to frame points in implicit filtering means that the convergence theory behind
Template D is inapplicable to implicit filtering. Steps to frame points are crucial to
the convergence theory, and so implicit filtering in its current form [2, 11] falls outside
the scope of Template D.

Nevertheless, from a practical perspective, implicit filtering is very similar to
some algorithms conforming to Template D. Minor modifications to implicit filtering
would make it conform to Template D, and hence provably convergent. In the case
when steps to frame points occur only in early iterations (numerical experiments in [8]
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suggest that this is common) the rate theorems of implicit filtering would apply. The
numerical results for implicit filtering [2, 11] and the work on the global aspects of
finite differences [19] show that the use of frames can enable algorithms to “step over”
many local minima to find a much lower minimum.

A frame-based template for unconstrained and linearly constrained optimization
has been developed. Applicability to linearly constrained problems is achieved by
aligning frames with active and nearly active constraints. The use of frames means
that clearly inactive constraints can be ignored, and the linear constraints can involve
irrational numbers, in contrast to [1, 13]. It has been shown that algorithms con-
forming to the template generate sequences of quasi-minimal iterates whose cluster
points are stationary points of the optimization problem under mild conditions. The
cluster points of the sequence of quasi-minimal iterates retain interesting properties
even when the objective function is not differentiable.

The approach taken unifies methods using sufficient descent and simple descent.
The former use the sufficient descent condition to ensure quasi-minimal frames are
generated. The latter do so when necessary by restricting the frame points (but not the
frame centers) to admissible sets. The frame centers are not restricted, which allows
these simple descent methods to select quasi-minimal iterates which lie outside of the
admissible set every iteration. The facts that the admissible sets can be unrelated
to one another, can incorporate random elements, and can sometimes yield quasi-
minimal frames outside the admissible set means that for some algorithms conforming
to Template D there is no “pattern” restricting the locations of iterates. All that can
be said is that the admissible sets get finer as h approaches zero. This is a level of
flexibility not present in previous simple descent methods such as GPS [13, 17] or [6].
These earlier simple descent methods also specifically use rectangular grids or subsets
of them. The greater choice of admissible sets allows these sets to possess, for example,
circular or spherical symmetries in some dimensions. This could be very useful when,
for example, minimizing a quadratic penalty function involving nonlinear constraints
with known symmetries.

Template D encompasses a wide class of algorithms including existing frame-based
and grid-based methods. Numerical results for existing methods in this class [5, 8, 15]
show that there are effective methods conforming to Template D. There is much scope
for future work in developing algorithms which exploit the great flexibility afforded
by the template.
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Abstract. A popular approach to solving the Karush–Kuhn–Tucker (KKT) system, mainly
arising from the variational inequality problem, is to reformulate it as a constrained minimization
problem with simple bounds. In this paper, we propose a trust region method for solving the
reformulation problem with the trust region subproblems being solved by the truncated conjugate
gradient (CG) method, which is cost effective. Other advantages of the proposed method over
existing ones include the fact that a good approximated solution to the trust region subproblem can
be found by the truncated CG method and is judged in a simple way; also, the working matrix in
each iteration is H, instead of the condensed HTH, where H is a matrix element of the generalized
Jacobian of the function used in the reformulation. As a matter of fact, the matrix used is of reduced
dimension. We pay extra attention to ensure the success of the truncated CG method as well as the
feasibility of the iterates with respect to the simple constraints. Another feature of the proposed
method is that we allow the merit function value to be increased at some iterations to speed up the
convergence. Global and superlinear/quadratic convergence is shown under standard assumptions.
Numerical results are reported on a subset of problems from the MCPLIB collection [S. P. Dirkse
and M. C. Ferris, Optim. Methods Softw., 5 (1995), pp. 319–345].
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1. Introduction. Given a continuously differentiable function F : Rn → R
n

and twice continuously differentiable functions h : Rn → R
p and g : Rn → R

m, we
consider the following Karush–Kuhn–Tucker (KKT) system in (x, y, z):

L(x, y, z) = 0
h(x) = 0

g(x) ≥ 0, z ≥ 0, zT g(x) = 0


 ,(1)

where L is called the Lagrangian of the functions F, g, and h and is defined by

L(x, y, z) := F (x) +∇h(x)y −∇g(x)z.

Due to its close relationship with the variational inequality problem (VIP) and
the nonlinear constrained optimization problem (NLP) (in both cases, the functions
h and g define the corresponding equality and inequality constraints, respectively),
there is a growing interest in constructing efficient algorithms for (1); for the latest
references, see [30, 11, 19]. In particular, Qi and Jiang [30] reformulate (1) to various
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semismooth equations, and local semismooth Newton methods are studied for these
semismooth equations. One of these semismooth equations is based on the Fischer–
Burmeister function [12]: ϕ : R2 → R defined by ϕ(a, b) := (a + b) − √a2 + b2. An
interesting property of ϕα is that ϕ(a, b) = 0 if and only if a, b ≥ 0, ab = 0. Define

φ(g(x), z) := (ϕ(g1(x), z1), . . . , ϕ(gm(x), zm))T ∈ Rm,

and let Φ : Rn × Rp × Rm → R
n × Rp × Rm be the equation operator

Φ(w) := Φ(x, y, z) :=


 L(x, y, z)

h(x)
φ(g(x), z)


 .

Then w∗ = (x∗, y∗, z∗) ∈ Rn ×Rp ×Rm is a solution of (1) if and only if it solves the
system of nonlinear equations Φ(w) = 0. In other words, solving (1) is equivalent to
finding a global solution of the problem

min Ψ(w),(2)

where

Ψ(w) :=
1

2
Φ(w)TΦ(w) =

1

2
‖Φ(w)‖2

denotes the natural merit function of the equation operator Φ. This unconstrained
optimization approach has been used in [8, 9, 30] to develop some Newton-type meth-
ods for the solution of (1). Despite their strong theoretical and numerical properties,
these methods may fail to find the unique solution of (1) arising from strongly mono-
tone variational inequalities because the variable z is not forced to be nonnegative in
[8, 9, 30]. For such an example, see [26, 11]. This, together with the fact that the
variable z has to be nonnegative at a solution of (1), motivates Facchinei et al. [11]
to investigate a quadratic programming (QP) based method for the solution of the
constrained minimization problem

min Ψ(w) subject to (s.t.) z ≥ 0.(3)

The subproblem in d = (dx, dy, dz) ∈ Rn × Rp × Rm solved at the current iteration
wk = (xk, yk, zk) (given zk ≥ 0) is of the type

min ∇Ψ(wk)T d +
1

2
dT (HT

k Hk + ρkI)d

s.t. zk + dz ≥ 0,
(4)

where ρk > 0, Hk ∈ ∂Φ(wk), and ∂Φ(wk) is the set of the generalized Jacobian of
Φ at wk in the sense of Clarke [4]. An inexact version of this QP-based method was
provided by Kanzow [17] for the nonlinear complementarity problem (NCP) with an
inexact solution of the QP subproblem being calculated by an interior-point method
and the inexactness being measured in a similar way as described by Gabriel and
Pang [14]. We emphasize that it is the interior-point method that guarantees the
constraints to be nonviolated. Using an active-set strategy, Kanzow and Qi [19]
proposed a QP-free method, which requires solving one system of linear equations
rather than a QP problem per iteration and enjoys the favorable property that all
iterates remain feasible with respect to (3). These two properties are also shared in a
feasible equation-based method recently proposed by Kanzow [18]. We note that all of
these methods are of the line-search type, and the superlinear/quadratic convergence
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of these methods when applied to (3) requires that all the elements in ∂Φ(w∗) be
nonsingular, where w∗ is a solution of (1). Such a solution is usually called a strongly
regular solution of (1).

There are several semismooth equation-based trust region methods which can be
used to solve (1). The unconstrained trust region methods in [16, 20] are applicable
to (2), while the box-constrained trust region method in [37] can be adapted to solve
(3). Each of these methods requires at each iteration either an exact solution of the
trust region subproblem [16]; a solution restricted to a (very small) subspace [20];
or an inexact solution which should satisfy some prescribed accuracy [37]. To be
more precise, for global convergence only, the subspace in [20] can be as small as
one-dimensional (i.e., spanned by the gradient direction), while for Ulbrich’s method,
any inexact solution satisfying the fraction of Cauchy decrease condition is enough
(i.e., the affinely scaled gradient is a candidate). For local convergence, [20] requires
that the subspace contain the generalized Newton direction, whereas [37] requires
one to use the inexact generalized Newton direction. The use of iterative methods
such as the conjugate gradient (CG) method is attractive because, on the one hand,
first direction used in the CG method is the gradient direction, and quite often (e.g.,
when the trust region radius is larger than the length of the generalized Newton
direction) the CG method yields an inexact generalized Newton direction and hence
often speeds up the convergence process; on the other hand, when the number of
variables is large, it is cost effective by the CG method to solve the trust region
subproblem approximately. The key issue of efficiently implementing the CG method
is the preconditioning. Although it is understood that no single preconditioning is
“best” for all conceivable types of matrices, we will use the symmetric successive
overrelaxation (SSOR) preconditioner in our numerical experiments. We will discuss
it more in our numerical implementations.

In this paper we study how to apply the truncated CG method to a trust region
subproblem of (3) so as to keep the computational cost at a reasonable level, and we
show how to merge the truncated CG method with the semismooth Newton method
as the iterates of our trust region method approach a minimizer, so that the use of the
truncated CG method does not slow down the fast convergence of the proposed trust
region method. Another favorable consequence of using the truncated CG method is
that, although the quadratic term in the subproblem is constructed with dTHT

k Hkd,
the calculation process of an approximation to the solution of the subproblem works
directly on the matrix Hk, not on the usually condensed matrix HT

k Hk. In addi-
tion, all iterates of our method remain feasible with respect to the simple bounds
in (3), and the trust region subproblem is in a reduced form. This latter property
is essential for the success of the truncated CG method and is guaranteed by incor-
porating an active-set strategy into the proposed trust region method. Finally, the
superlinear/quadratic convergence of the proposed method is established under the
assumption of nonsingularity.

The truncated CG method was first used by Toint [36] and Steihaug [33] to solve
the trust region subproblem for unconstrained optimization problems and is shown
to be efficient, especially in large scale optimization. Let f : Rn → R be continu-
ously differentiable. Then the usual trust region subproblem for the unconstrained
optimization problem minx∈Rn f(x) is

min φ(d) = gT d +
1

2
dTBd

s.t. ‖d‖ ≤ ∆,
(5)



442 HOUDUO QI, LIQUN QI, AND DEFENG SUN

where ∆ > 0 is a trust region bound, g ∈ Rn is the gradient of the objective function
f at the current iterate, and B ∈ Rn×n is symmetric and is an approximation to the
Hessian of f(x). Although the truncated CG method is widely used in practice, it
was only recently proved that it indeed provides a sufficient decrease in the objective
function for the case of strict convexity. In fact, when B is positive definite, Yuan1

proved in [38] that the reduction in the objective function by the truncated CGmethod
is at least half of the reduction by the global minimizer in the trust region. However,
this result may be invalid when the bound constraint x + d ≥ 0 is preserved. This
can be shown by the following example. Consider the strictly convex problem in R2:
minx≥0 x1+ .5x2

1−x2+ .5x2
2. Obviously, (0, 1) is the unique solution. The trust region

subproblem at x = (ε, ε) is

min (1 + ε)d1 + (−1 + ε)d2 +
1

2
d2
1 +

1

2
d2
2

s.t. ‖d‖ ≤ ∆, x + d ≥ 0.

The truncated CG method for solving this subproblem first generates a direction by
ignoring the bound constraint and then takes a small enough step along this direction
to ensure feasibility. Hence, the next iterate is x1 = (0, 2ε/(1 + ε)) (∆ = 1 and
ε ∈ (0, 1)). We continue to build the trust region subproblem around x1; this time,
the truncated CG method results in a direction which immediately goes infeasible,
leading to the zero steplength. In other words, the truncated CG method fails to
solve the strictly convex problem. The reason is that very small components of x may
result in a very small (even zero) steplength. One way to avoid the collapse of the
steplength is to build the trust region subproblem only around those components of
the current iterate which are relatively large enough, while paying a special attention
to the smaller ones.

The paper realizes the above ideas with a trust region method, which is solved
by a truncated CG method. The paper is organized as follows. Some background is
summarized in the next section. The subproblem is derived in section 3. A truncated
CG method for this subproblem is introduced in section 4. Our algorithm is presented
in section 5. Global and local convergence results are established in sections 6 and 7,
respectively. Numerical results on a subset of problems from the MCPLIB collection
[7] are presented in section 8. Finally, some conclusions are drawn in section 9.

2. Mathematical background.

2.1. Notation. A function G : Rt → R
t is called a Ck function if it is k times

continuously differentiable, and an LCk function if it is a Ck function and its kth
derivative is locally Lipschitz continuous everywhere. The Jacobian of a C1 function
G at a point w ∈ Rt is denoted by G′(w), whereas ∇G(w) is the transposed Jacobian.
This notation is consistent with our notation of a gradient vector ∇g(w) for a real-
valued function g : Rt → R since we view ∇g(w) as a column vector.

If M ∈ Rt×t, M = (mij), is any given matrix and I, J ⊆ {1, . . . , t} are two
subsets, then MIJ denotes the |I| × |J | submatrix with elements mij , i ∈ I, j ∈ J .
Similarly, M.J indicates the submatrix with elements mij , i ∈ {1, . . . , t}, j ∈ J ; i.e.,
we obtain M.J from M by removing all columns with indices j �∈ J . Similar notation
is used for subvectors. If w = (xT , yT , zT )T ∈ Rn × Rp × Rm, we often simplify our

1Yuan attributes to P. Tseng a slightly weaker result that the reduction of the objective function
by the truncated CG method is at least 1/3 (instead of 1/2) of the reduction by the global minimizer.
And Yuan’s result for the positive definite case is generalized to the positive semidefinite case in [6].
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notation and write w = (x, y, z). All vector norms used in this paper are Euclidean
norms, and matrix norms are the 2-norms of the matrices. For a given symmetric
positive definite matrix C, a norm induced by C is defined by ‖x‖C :=

√
xTCx.

2.2. Properties of the reformulation. Our analysis will make frequent use of
some properties on the generalized Jacobian ∂Φ(w) (in the sense of Clarke [4]). An
explicit formula of calculating an element from ∂Φ(w) is given in [9]. We will discuss
more about it in the section of numerical experiments. Although Φ itself is not
continuously differentiable in general, its square norm Ψ is continuously differentiable
and

∇Ψ(w) = HTΦ(w) ∀ H ∈ ∂Φ(w).(6)

Another favorable property of the equation operator Φ is that the nonsingularity of
its generalized Jacobian is ensured by Robinson’s strong regularity condition. We for-
mally state this result as the following. For the precise definition, some further char-
acterizations, and sufficient conditions for the strong regularity, we refer the reader
to Robinson [32] as well as to Liu [22].

Proposition 2.1 (see [9]). A point w∗ = (x∗, y∗, z∗) ∈ Rn × Rp × Rm is a
strongly regular solution of (1) if and only if all elements in the generalized Jacobian
∂Φ(w∗) are nonsingular.

The next property follows from the fact that Φ is a (strongly) semismooth operator
under certain smoothness assumptions for F, h, and g; see, e.g., [29, 31, 25, 13].

Proposition 2.2. For any w = (x, y, z) ∈ Rn × Rp × Rm, we have

‖Φ(w + d)− Φ(w)−Hd‖ = o(‖d‖) for d→ 0 and H ∈ ∂Φ(w + d).

If F is an LC1 mapping, and h and g are LC2 mappings, then

‖Φ(w + d)− Φ(w)−Hd‖ = O(‖d‖2) for d→ 0 and H ∈ ∂Φ(w + d).

An immediate consequence of the strong regularity of w∗ and the semismoothness
of Φ is that the function value ‖Φ(w)‖ provides a local error bound near w∗; see, e.g.,
[29, 25].

Proposition 2.3. Assume that w∗ is a strongly regular solution of (1). Then
there are constants c1 > 0 and δ1 > 0 such that

‖Φ(w)‖ ≥ c1‖w − w∗‖

for all w with ‖w − w∗‖ ≤ δ1.

3. Subproblem. Given a current iterate wk = (xk, yk, zk) ∈ Rn×Rp×Rm with
zk ≥ 0, a traditional choice of the trust region subproblem for (3) is

min ∇Ψ(wk)T d +
1

2
dTHT

k Hkd

s.t. ‖d‖ ≤ ∆k, zk + dz ≥ 0,

where Hk ∈ ∂Φ(wk) and ∆k is the current trust region radius. In order to make
the truncated CG method successful with this subproblem, small components, as we
observed in the introduction, should be detected and not involved in this subproblem,
and the matrix HT

k Hk should be regularized to be positive definite in order for our
algorithm to be well defined.
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To make the idea precise, we introduce three index sets,

I := {1, . . . , n},
P := {n + 1, . . . , n + p},
J := {n + p + 1, . . . , n + p + m},

where I denotes the index set for the variables x, P is the index set for the equality
constraints and the variables y, and J is the index set for the inequality constraints
and the variables z. For example, if w = (x, y, z) ∈ Rn×Rp×Rm is any given vector,
then wI = x, wP = y, and wJ = z. We also stress that if j ∈ J or J ⊆ J , then wj is
a component of the z-part of the vector w and wJ is a subvector of the z-part of w.

To detect the small components of zk, we introduce at each iteration an indicator
δk > 0 and the index set

Jk := {j ∈ J | wkj ≤ δk},(7)

which contains all indices whose corresponding components in zk are thought to be
small. We shall give it special attention in our algorithm since the truncated CG
method may fail depending on it. Let

J̄k := I ∪ P ∪ (J \ Jk).(8)

In order to make the matrix HT
k Hk positive definite, we need a continuous function

ρ : R → R with the following properties: (i) ρ(s) ≥ 0 for all s ∈ R, and (ii) ρ(s) = 0
if and only if s = 0. Such a function is usually called a forcing function.

From now on, we will often abbreviate the gradient vector ∇Ψ(wk) by gk (in
contrast to g(xk), which denotes the function value of the inequality constraints at
the current point xk, so there should be no ambiguity). Partition Hk = (Hk

.Jk
, Hk

.J̄k
).

We build our trust region subproblem only around the components of wk
J̄k
; that is,

min (gk
J̄k
)T dJ̄k +

1

2
dTJ̄k

(
(Hk

.J̄k
)THk

.J̄k
+ ρ(Ψ(wk))I

)
dJ̄k

s.t. ‖dJ̄k‖ ≤ ∆k, wkJ\Jk + dJ\Jk ≥ 0.
(9)

It is clear that the above subproblem is a strictly convex quadratic problem if Ψ(wk) �=
0.

4. Truncated CG method. In this section, we adapt the truncated precondi-
tioned conjugate gradient (PCG) method described in [33] to our subproblem, which
is a q := (n + p + m− |Jk|)-dimensional convex problem.

Suppose a symmetric positive definite matrix C ∈ Rq×q is given with decom-
position property C = PTP , where P is nonsingular. For simplicity we denote the
variable dJ̄k by s. Consider the preconditioned version of (9):

mins∈Rq mk(s) := sT b +
1

2
sTBks

s.t. ‖s‖C ≤ ∆k, wkJ\Jk + sJ\Jk ≥ 0,
(10)

where b := gk
J̄k
, A := Hk

.J̄k
, σ := ρ(Ψ(wk)), and Bk := ATA+σI. Taking into consider-

ation the special structure of Bk and the decomposition property of the preconditioner
C, we arrive at the following truncated PCG method for problem (10).



SOLVING KARUSH–KUHN–TUCKER SYSTEMS 445

Algorithm 4.1 (truncated PCG method).
(S.0) Let s0 = 0, r0 = b, r̃0 = P−T r0, p0 = −r̃0, i := 0.
(S.1) If ‖∇mk(s

i)‖ = 0, then set s∗ = si and go to (S.4). Otherwise calculate

ti = P−1pi, qi = Ati, and αi = ‖r̃i‖2/(‖qi‖2 + σ‖ti‖2).
(S.2) If ‖si + αit

i‖C ≥ ∆k, then go to (S.3). Otherwise set

si+1 := si + αit
i, ri+1 := ri + αi(σti + AT qi),

r̃i+1 := P−T ri+1, βi := ‖r̃i+1‖2/‖r̃i‖2, pi+1 := −r̃i+1 + βip
i.

Set i := i + 1, and go to (S.1).
(S.3) Calculate α∗

i ≥ 0 satisfying ‖si + α∗
i t
i‖C = ∆k; set s∗ := si + α∗

i t
i.

(S.4) Compute the largest τk ≥ 0 satisfying wkJ\Jk + τs∗J\Jk ≥ 0 for all τ ∈ (0, τk].

(S.5) Output the approximate solution to (10): dk
J̄k

= min{1, τk}s∗.
Remarks. First, we note that the computation of s∗ above is exactly Steihaug’s

algorithm [33]. Second, in each iteration of the PCG method, there are two matrix-
vector multiplications involving A (to get Ati and AT (Ati)) and two matrix-inverse
multiplications involving P (to get P−T ri and P−1(P−T ri)). If we choose C to be
the SSOR preconditioner, we shall see in section 8 by referring to several specific
references that the usually condensed matrix Bk is not involved in the calculation.
In fact, only nonzero elements in A come to be used. Third, the termination rule in
(S.1) is only for theoretical purposes. We shall use a more practical criterion in our
implementation.

The vector s∗ generated above has a close relation to the exact solution of the
following problem:

min mk(dJ̄k) s.t. ‖dJ̄k‖C ≤ ∆k.(11)

This relation follows from a recent result of Yuan [38, Thm. 2].
Proposition 4.2. Suppose that Bk is positive definite. Let d∗̄

Jk
be the exact

solution of (11) and s∗ be generated by Algorithm 4.1. Then we have

mk(s
∗) ≤ 1

2
mk(d

∗̄
Jk
).

Moreover, if ‖d∗̄
Jk
‖C < ∆k, then s∗ = d∗̄

Jk
.

Proof. As remarked above, the calculation of s∗ in Algorithm 4.1 is actually
Steihaug’s algorithm applied to the subproblem (11). Let y = Ps and y∗ = Ps∗.
Then y∗ is the point obtained by applying the truncated CG method to the following
trust region problem:

miny∈Rq m̃k(y) := yT (P−T b) +
1

2
yT (P−TBkP−1)y

s.t. ‖y‖ ≤ ∆k.
(12)

Let ỹ∗ be the unique solution of (12). According to a result of Yuan [38, Thm. 2], it
holds that m̃k(y

∗) ≤ 1
2m̃k(ỹ

∗) and y∗ = ỹ∗ if ‖ỹ∗‖ < ∆k. We note that m̃k(y
∗) =

mk(s
∗) and m̃k(ỹ

∗) = mk(d
∗̄
Jk
). Then the inequality relation in the proposition fol-

lows. Moreover, s∗ = d∗̄
Jk

if ‖d∗̄
Jk
‖C < ∆k.

In the following as well as in our convergence analysis, we assume that Ck = I for
simplicity, where Ck is the preconditioner in (10) at each iteration. However, to keep
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all convergence results in sections 6 and 7 valid, we need more assumptions on the
preconditioner sequence {Ck}; namely, there exist two constants κ and κ̄ such that,
for all k,

‖C−1
k ‖ ≤ κ and ‖Ck‖ ≤ κ̄.(13)

This condition implies that Ck has a condition number that is bounded independent
of the iterate. The latter condition has been singled out in [21, p. 1120] to emphasize
its theoretical importance in a trust region method. We note that the two conditions
are equivalent under boundedness of the whole iterate sequence {wk}. Standard
convergence proofs involving condition (13) (in the special case that Ck is diagonal)
can be found in [5] (proofs leading up to Theorem 11 there). We also note that we
use the Hessian matrix Hk in building up Bk, implying that the standard condition
restricted on Bk in trust region methods is fulfilled automatically in our setting.
Proposition 4.2 allows us to put a bound on the predicted decrease mk(d

k
J̄k
). Two

bounds are given in the following result. The first corresponds to the case where
τk ≥ 1 so that dk

J̄k
= s∗; the second corresponds to the case where τk < 1 so that

dk
J̄k
�= s∗.
Proposition 4.3. Let dk

J̄k
and s∗ be generated by Algorithm 4.1 applied to (9),

and define

Ωk := {j ∈ J \ Jk| − s∗j > wkj }.
Then the following statements hold:

(i) If Ωk is empty (in particular if δk ≥ ∆k), then we have

mk(d
k
J̄k
) ≤ −1

4
‖gkJ̄k‖min

{
∆k,
‖gkJ̄k‖
‖Bk‖

}
.

(ii) If Ωk �= ∅, then

mk(d
k
J̄k
) ≤ − δk

4∆k
‖gkJ̄k‖min

{
∆k,
‖gkJ̄k‖
‖Bk‖

}
.

Proof. (i) Let d∗ be the unique solution to (9). Then it follows from [27, Thm. 4]
that

mk(d
∗) ≤ −1

2
‖gkJ̄k‖min

{
∆k,
‖gkJ̄k‖
‖Bk‖

}
.(14)

Also by simple calculation we have τk ≥ 1 if Ωk = ∅. This is also true in particular
if δk ≥ ∆k. Hence dk

J̄k
= s∗ is also generated by Yuan’s truncated CG method [38]

applied to (9) with the simple constraints not being violated. Therefore, Proposition
4.2 implies

mk(d
k
J̄k
) = mk(s

∗) ≤ 1

2
mk(d

∗).(15)

The combination of (15) and (14) gives the result in (i).
(ii) Let j ∈ Ωk. Then τk < 1 and

∆k ≥ −s∗j > wkj > δk.
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Hence

dkJ̄k = τks
∗ and τk ≥ δk/∆k.

Now we consider the one-dimensional function

M(t) := mk(ts
∗) = t(gkJ̄k)

T s∗ +
1

2
t2(s∗)TBks∗.

Let

τ∗ =
−(gkJ̄k)T s∗

(s∗)TBks∗
.

It follows from the fact thatM(1) = mk(s
∗) ≤ 0 that 2τ∗ ≥ 1. Now we consider two

cases. First if τk ≤ τ∗, the convexity ofM implies that

mk(d
k
J̄k
) =M(τk) ≤M(δk/∆k)

=
δk
∆k

(gkJ̄k)
T s∗ +

1

2

(
δk
∆k

)2

(s∗)TBks∗

≤ δk
∆k
M(1) =

δk
∆k

mk(s
∗).(16)

If τk ≥ τ∗, then it is easy to see from the convexity ofM again that

mk(d
k
J̄k
) =M(τk) ≤M(1) = mk(s

∗).(17)

Now the result in (ii) follows from (14), (16), (17), and Proposition 4.2.

5. Algorithm. Suppose ∆k, w
k, Jk, J̄k, and the function mk(·) are given as in

the last section, and a search direction d̃k is partitioned as

d̃k =

(
d̃kJk
d̃k
J̄k

)
.

Let the ratio between the actual decrease and the predicted decrease associated with
the direction d̃k be calculated by

rk :=
(
Ψ(wk)−Ψ(wk + d̃k)

)
/Predk,(18)

where

Predk := −(gkJk)T d̃kJk −mk(d̃
k
J̄k
).

The update rule used in our trust region algorithm is as follows:

wk+1 :=

{
wk if rk < ρ1,

wk + d̃k if rk ≥ ρ1,
∆k+1 :=




σ1∆k if rk < ρ1,
max{∆min,∆k} if rk ∈ [ρ1, ρ2),
max{∆min, σ2∆k} if rk ≥ ρ2,

(19)
where ∆min > 0 is a prescribed constant. The proposed trust region algorithm is then
formally stated below.
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Algorithm 5.1 (trust region algorithm).
(S.0) Choose w0 = (x0, y0, z0) ∈ Rn × Rp × Rm with z0 ≥ 0, ∆0 > 0, 0 < ρ1 <

ρ2 < 1, 0 < σ1 < 1 < σ2, ∆min > 0, γ ∈ (0, 1), c > 0, δ > 0, ε > 0, ind0 := 0,
β0 = 0, and set k := 0.

(S.1) Let

δk := min

{
δ, c
√
‖Φ(wk)‖

}

and define the set Jk and J̄k by (7) and (8), respectively.
(S.2) Let

vk :=

(
vkJk
vk
J̄k

)
,

where

vkJk = min{wkJk , gkJk} and vkJ̄k = gkJ̄k .

If ‖vk‖ ≤ ε, stop.
(S.3) Choose preconditioner Ck and let dk

J̄k
be the final iterate of Algorithm 4.1 for

the trust region subproblem (10).
(S.4) Compute the search directions

dk :=

( −wkJk
dk
J̄k

)
and d̃k :=

( −min{1,∆k}vkJk
dk
J̄k

)
.

(S.5) (i) If indk = 0, check if the following rule holds:

Ψ(wk + dk) ≤ γ
√
‖Φ(wk)‖.(20)

If test (20) is successful, then let

wk+1 := wk + dk, ∆k+1 := max{∆min, σ2∆k}, γk+1 :=
Ψ(wk+1)

Ψ(wk)

and

γ̄ := γk+1 if γk+1 ≥ γ, βk+1 :=

{
Ψ(wk+1) if γk+1 ≥ γ,
βk if γk+1 < γ,

indk+1 :=

{
1 if γk+1 ≥ γ,
0 if γk+1 < γ.

If test (20) is not successful, then calculate rk by (18), update wk+1 and ∆k+1

according to rule (19), and let βk+1 := βk, indk+1 := 0.
(ii) If indk = 1, check if the following holds:

Ψ(wk + dk) ≤ γ

γ̄
βk.(21)

If test (21) is successful, let

wk+1 := wk + dk, ∆k+1 := max{∆min, σ2∆k}, βk+1 := βk, indk+1 := 0.

If test (21) is not successful, then calculate rk by (18), update wk+1 and ∆k+1

according to the rule (19), and let βk+1 := βk, indk+1 := 1.
(S.6) Set k := k + 1 and go to (S.1).
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More explanation on Algorithm 5.1 is as follows. The indicator δk defined in (S.1)
was also used in [19, 18] to identify the actual active set under the nonsingularity
assumption. A result due to Kanzow and Qi [19] justifies the termination rule in
(S.2). We will present this result in a lemma below. The direction dk

J̄k
in (S.3) has

been extensively discussed in the last section. The crucial parts of Algorithm 5.1
are (S.4) and (S.5). In (S.4) two directions are defined. The direction d̃k (which we
call safe step below) is always a descent direction of the function Ψ(·) at wk if ∆k

is sufficiently small; while direction dk (fast step) will yield a superlinear decrease in
the function value of Ψ(·) when wk is sufficiently close to a strongly regular solution
w∗. The task in (S.5) is then to decide which step we should take. Fast steps are
accepted in a nonmonotone fashion, so that it can happen that an accepted fast step
increases the value of Ψ. To keep control over those possible increases, a flag ind is
used to distinguish between two states of the algorithm: If ind = 0 (which is the case
at the very beginning), the fast step dk is accepted if test (20) is successful. Now, if
Ψ(wk + dk) ≥ γΨ(wk), the flag ind is set to 1 (and remains raised until it is cleared
again) to signal that dk did not achieve sufficient decrease. Now consider any iteration
k that is entered with ind = 1, indicating that the most recent accepted fast step
dl (l < k) did not achieve sufficient decrease. In this situation, the fast step dk is
accepted only if test (21) is successful. If this occurs, ind is set to 0 again. In all
iterations where the fast step is not accepted, the safe step is used as the trial step of
the trust region method with a standard reduction-ratio-based acceptance test. We
stress that both γ̄ and βk are used to record the cases where (20) is successful and
γk+1 ≥ γ, i.e., to record the cases where the function values are possibly increased.

From now on we assume that ε = 0. The following result from [19, Lem. 1]
justifies the termination criterion used in our trust region algorithm. We recall that a
point w∗ = (x∗, y∗, z∗) ∈ Rn × Rp × Rm with z∗ ≥ 0 is a stationary point of problem
(3) if ∇xΨ(w∗) = 0, ∇yΨ(w∗) = 0, and

z∗i > 0 =⇒ ∂Ψ(w∗)
∂zi

= 0, z∗i = 0 =⇒ ∂Ψ(w∗)
∂zi

≥ 0.

Lemma 5.2. Let wk = (xk, yk, zk) ∈ Rn × Rp × Rm be any given point with
zk ≥ 0. Then the following holds:

wk is a stationary point of (3) ⇐⇒ vk = 0 ⇐⇒ (gk)T vk = 0.

The following result shows that the iterates {wk} generated by Algorithm 5.1 stay
feasible with respect to the simple bounds in (3).

Lemma 5.3. Let wk = (xk, yk, zk) ∈ Rn × Rp × Rm be any given point with
zk ≥ 0, and assume that wk is not a stationary point of (3). Then the next iterate
wk+1 can be computed by Algorithm 5.1 and it holds that zk+1 ≥ 0.

Proof. Let wk be given as in Lemma 5.3. We have no problem running steps
(S.1)–(S.4) of Algorithm 5.1. Hence, for Algorithm 5.1 to be well defined, we need to
show that (S.5) is well defined

Since wk is not a stationary point of (3), Ψ(wk) > 0 so that γ̄ in (S.5)(i) is well
defined if (20) is successful. If (20) does not hold, we need only to show Predk �= 0 so
that rk is well defined. It follows from Proposition 4.3 that

mk(d
k
J̄k
) ≤ 0 and mk(d

k
J̄k
) = 0 ⇐⇒ gkJ̄k = 0.
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On the other hand we have, for j ∈ Jk,

gkj v
k
j =

{
(gkj )

2 if gkj ≤ wkj ,

gkjw
k
j if gkj > wkj .

Noting that wkj ≥ 0 for j ∈ Jk, we obtain

(gkJk)
T vkJk ≥ 0.

Hence Predk = min{1,∆k}(gkJk)T vkJk −mk(d
k
J̄k
) ≥ 0, and if Predk = 0, we must have

both (gkJk)
T vkJk = 0 and gk

J̄k
= 0, which means that (gk)T vk = (gkJk)

T vkJk+‖gkJ̄k‖2 = 0.

By Lemma 5.2, wk must be a stationary point of (3), contradicting the assumption
of this lemma. Hence Predk > 0, and consequently rk is well defined and wk+1 is
obtained.

Now we prove zk+1 ≥ 0. There are three possible ways to determine wk+1,
namely, wk+1 = wk, wk+1 = wk + dk, or wk+1 = wk + d̃k. The first case is trivial, so
we consider the remaining two cases. We note that the components wk+1

j , j ∈ J \Jk,
are updated by

wk+1
j = wkj + (dkJ̄k)j = wkj +min{1, τk}s∗j ≥

{
wkj if s∗j ≥ 0,

wkj + τks
∗
j if s∗j < 0,

where s∗ is computed by Algorithm 4.1. It follows from (S.4) of Algorithm 4.1 that
wk+1
j ≥ 0. For the components j belonging to Jk, if wk+1 = wk + dk, then wk+1

j =

wkj − wkj = 0; if wk+1 = wk + d̃k, then

wk+1
j = wkj −min{1,∆k}min{wkj , gkj }

≥
{

wkj ≥ 0 if min{wkj , gkj } ≤ 0,

wkj − wkj = 0 if min{wkj , gkj } > 0.

This proves that wk+1
j ≥ 0 for all j ∈ J .

We note that as long as wk is not a global minimizer of (3), Algorithm 4.1 is
always successful for subproblem (9), and the estimation in Proposition 4.3 always
holds since Bk is always positive definite. So we can apply an induction argument by
invoking Lemma 5.3 and then obtain the following result.

Theorem 5.4. Algorithm 5.1 is well defined and generates a sequence {wk} =
{(xk, yk, zk)} with zk ≥ 0 for all k.

6. Global convergence. From now on we assume that Algorithm 5.1 generates
an infinite sequence {wk}. Let K contain all the indices at which the function value
is possibly increased; that is,

K :=

{
k ∈ {0, 1, 2, . . .} | indk = 0, Ψ(wk + dk) ≤ γ

√
‖Φ(wk)‖ and γk+1 ≥ γ

}
.(22)

Then we have the following convergence result.
Lemma 6.1. Suppose that K contains infinitely many iterations. Then

lim
k→∞

Ψ(wk) = 0.
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Hence, every limit point of {wk} is a solution of (1) and therefore a stationary point
of (3).

Proof. Let us denote K by

K = {k0, k1, k2, . . .}.
In the following we want to prove

(a) the sequence {Ψ(wk)}k∈K converges to zero, i.e., liml→∞ Ψ(wkl) = 0;
(b) the sequence {Ψ(wk)}(k−1)∈K converges to zero, i.e., liml→∞ Ψ(wkl+1) = 0;

and
(c) for any k such that kl + 1 < k ≤ kl+1 for some l ∈ {0, 1, . . .}, we have

Ψ(wk) ≤ Ψ(wkl+1).(23)

It is easy to see that (b) follows directly from (a) since Ψ(wkl+1) ≤ γ
√
‖Φ(wkl)‖. (b)

and (c) together yield

lim
k∈(kl+1,kl+1]

k→∞
Ψ(wk) = 0.

We observe that every iterate wk must belong to k ∈ K, or (k − 1) ∈ K, or kl + 1 <
k ≤ kl+1 for some l ∈ {0, 1, 2, . . .}. Hence we must have limk→∞ Ψ(wk) = 0 if (a), (b),
and (c) are true. Consequently, every limit of {wk} is a solution of (1) and therefore
a stationary point of (3).

Now we prove (a) and (c) together. First, for any k between 0 and k0, i.e.,
0 ≤ k < k0, we have indk = 0. This means Algorithm 5.1 uses (S.5)(i) to find the
next iterate. If (20) is successful at k, then we must have γk+1 < γ (otherwise k
would belong to K, resulting in k0 ≤ k, a contradiction). Hence it follows from the
definition of γk+1 that

Ψ(wk+1) = γk+1Ψ(wk) < γΨ(wk) < Ψ(wk).(24)

If (20) is not successful at k, then wk+1 is obtained by rule (19). In this case, it is
obvious that

Ψ(wk+1) ≤ Ψ(wk).(25)

By the induction argument on k between 0 and k0, relations (24) and (25) give us
that

Ψ(wk0) ≤ Ψ(wk0−1) ≤ · · · ≤ Ψ(w1) ≤ Ψ(w0).(26)

Now we take a look at how Algorithm 5.1 runs at iterations between kl and kl+1. Our
first observation is that

βkl+1
= βkl+1−1 = · · · = βkl+1 = Ψ(wkl+1).(27)

For any kl ∈ K, according to (S.5)(i)

Ψ(wkl+1) = γ̄Ψ(wkl), indkl+1 = 1 (since γkl+1 ≥ γ).(28)

Then Algorithm 5.1 uses (S.5)(ii) (since indkl+1 = 1) to generate the next iterate
wkl+2. The algorithm will repeat (S.5)(ii) until (21) is successful at some iterate, say
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wk̄, putting indk̄+1 back to zero so that the algorithm uses (S.5)(i) to find the next
iterate until k reaches kl+1. Hence, there is exactly one such k̄ satisfying kl + 1 ≤
k̄ < kl+1. At iteration k, where kl + 1 ≤ k < k̄, the algorithm always uses rule (19)
to generate the next iterate, which means that

Ψ(wkl+1) ≥ Ψ(wkl+2) ≥ · · · ≥ Ψ(wk̄).(29)

At this stage, γ̄ remains unchanged; i.e., γ̄ = Ψ(wkl+1)/Ψ(wkl) for all k ∈ [kl + 1, k̄].
Since (21) is successful at k̄, we have

Ψ(wk̄+1) ≤ γ

γ̄
βk̄ =

γ

γ̄
Ψ(wkl+1) (using (27))

≤ γ
Ψ(wkl)

Ψ(wkl+1)
Ψ(wkl+1) (using γ̄ = Ψ(wkl+1)/Ψ(wkl))

= γΨ(wkl).(30)

On the other hand, at iteration k, where k̄ + 1 ≤ k < kl+1, the algorithm uses either
rule (19) or (20) to generate the next iterate. If the algorithm uses (19), then it
is obvious that Ψ(wk+1) ≤ Ψ(wk). If the algorithm uses (20), then we must have
γk+1 < γ, which also yields Ψ(wk+1) < Ψ(wk). Hence, we have

Ψ(wk̄+1) ≥ Ψ(wk̄+2) ≥ · · · ≥ Ψ(wkl+1).(31)

Putting (30) and (31) together, we obtain by an induction argument

Ψ(wkl+1) ≤ γΨ(wkl) ≤ γ2Ψ(wkl−1) ≤ · · · ≤ γl+1Ψ(w0).

The last inequality uses (26). Taking the limit in the above inequalities gives (a).
Finally, it follows from (30) that

Ψ(wk̄+1) ≤ γΨ(wkl) ≤ γkl+1Ψ(wkl) = Ψ(wkl+1).

This together with (29) and (31) implies (23).
We now consider the case that K contains only finitely many elements, say

K = {k0, k1, . . . , kl}.

Lemma 6.2. Suppose that K contains finitely many elements. Then the following
hold:

(i) The sequence {Ψ(wk)}k≥kl+1 is monotonically decreasing.
(ii) If test (20) holds infinitely many times, then

lim
k→∞

Ψ(wk) = 0.

In this case, every limit of {wk} is a solution of (1).
Proof. Since kl is the last element in K, we have by the definition of K that

indkl+1 = 1, γ̄ = Ψ(wkl+1)/Ψ(wkl), and γ̄ remains unchanged from kl+1 and onward.
(i) Since indkl+1 = 1, the algorithm uses (S.5)(ii) to generate the iterate wkl+2.

We note that test (21) could possibly hold only once after the iteration kl + 1 since
once (21) holds the algorithm puts indk back to zero and will never use (S.5)(ii)
thereafter. Suppose that (21) holds at iteration k̄ (k̄ ≥ kl + 1). For iterations k
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satisfying kl + 1 ≤ k < k̄, indk = 1 and hence the algorithm uses rule (19) to update
wk. Therefore, we have

Ψ(wk+1) ≤ Ψ(wk) ∀ k ∈ [kl + 1, k̄).

At iteration k̄, we have, from γ̄ ≥ γ,

Ψ(wk̄+1) ≤ γ

γ̄
Ψ(wk̄) ≤ Ψ(wk̄)

and indk̄+1 = 0. So from iteration k̄+1 onward, the algorithm uses (S.5)(i) to update
wk. Let k ≥ k̄ + 1 be given. If (20) is successful at k, then we must have γk+1 < γ
(otherwise k ∈ K, resulting in k ≤ kl, a contradiction of k ≥ k̄ + 1 ≥ kl + 2). Then

Ψ(wk+1) = γk+1Ψ(wk) < γΨ(wk).(32)

If (20) is not successful at k, the algorithm uses rule (19) to update wk, giving
Ψ(wk+1) ≤ Ψ(wk). If (21) never holds from kl + 1 onward, then the algorithm uses
rule (19) to generate wk+1 for all k ≥ kl + 1. We then have Ψ(wk+1) ≤ Ψ(wk) for all
k ≥ kl + 1. All in all, we have proved the statement in (i).

(ii) Suppose that test (20) holds infinitely many times, which means that there
exists k̄ ≥ kl + 1 such that (21) holds at k̄. The algorithm uses (S.1)(i) to update
wk from k̄ + 1 onward, and (20) holds infinitely many times after k̄ + 1. Hence the
relation (32) holds infinitely many times after k̄ + 1. Noting that {Ψ(wk)}k≥kl+1 is
monotonically decreasing, we certainly have (ii) from (32).

The goal we want to achieve in this section is that any limit of the sequence {wk}
is a stationary point of (3), which under reasonable conditions [11, Thm. 3.1] is already
a solution of (1). Because of Lemmas 6.1 and 6.2, we need only consider the case that
K contains finitely many elements and test (20) holds only finitely many times. In
other words, we need only consider the case that Algorithm 5.1, after finitely many
iterations, uses only rule (19) to update wk. Without loss of generality we assume
from now on that the whole sequence {wk} is generated according to the trust region
rule (19). The convergence analysis for this part is quite standard from the trust
region point of view.

Lemma 6.3. Suppose that the whole sequence {wk} was generated according to
rule (19), and that w∗ is the limit of a subsequence {wk}K̃ . If w∗ is not a stationary
point of (3), then

lim
k→∞

inf
k∈K̃

∆k > 0.

Proof. It is obvious that the function value sequence {Ψ(wk)}k≥1 is monotonically
decreasing, and so is the sequence {δk}. Moreover,

lim
k→∞

δk = δ∗ := min{δ, c
√
‖Φ(w∗)‖} > 0;

the last inequality uses the fact Ψ(w∗) > 0 as w∗ is not a stationary point of (3). Now
define the index set

K̄ := {k − 1| k ∈ K̃}.
Then the subsequence {wk+1}k∈K̄ converges to w∗. Suppose that the result of this
lemma does not hold. Subsequencing if necessary we can assume that

lim
k→∞,k∈K̄

∆k+1 = 0.(33)

In view of the updating rule for the trust region radius (note that the lower bound
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∆min > 0 plays an important role here), (33) implies that for all iterations k ∈ K̄
sufficiently large, we have

rk < ρ1, wk = wk+1, ∆k+1 = σ1∆k.(34)

Hence

{wk}K̄ → w∗ and lim
k→∞,k∈K̄

∆k = 0.(35)

Because of the continuity of ∇Ψ(·), the first convergence in (35) implies the bounded-
ness of {‖gkJk‖}K̄ . Taking into account the boundedness of {wkJk}∞1 (since 0 ≤ wkj ≤ δk
for all j ∈ Jk and all k) we obtain the boundedness of {‖vkJk‖}K̄ .

Due to the upper semicontinuity of the generalized Jacobian, the sequence
{‖HT

k Hk‖} is bounded for all k ∈ K̄; hence the norm of its submatrix {‖(Hk
.J̄k

)THk
.J̄k
‖}

is also bounded for k ∈ K̄. The fact

lim
k→∞

ρ(Ψ(wk)) = ρ(Ψ(w∗))

implies that there is a constant κ1 > 0 such that

‖Bk‖ ≤ κ1(36)

for all k ∈ K̄. We recall from the proof of Lemma 5.3 that (gk)T vk = (gkJk)
T vkJk +

‖gk
J̄k
‖2 and (gkJk)

T vkJk ≥ 0 for all k. Since w∗ is not a stationary point of (3), in view
of Lemma 5.2 there exists a constant κ2 > 0 such that

max{(gkJk)T vkJk , ‖gkJ̄k‖} ≥ κ2(37)

for all k ∈ K̄. By (35) and δ∗ > 0, we have δk ≥ ∆k for all k ∈ K̄ sufficiently
large. This implies that the estimate in Proposition 4.3(i) holds for all sufficiently
large k ∈ K̄. Hence we have, for all k ∈ K̄ sufficiently large,

Predk ≥ ∆k(g
k
Jk
)T vkJk +

1

4
‖gkJ̄k‖min

{
∆k,
‖gkJ̄k‖
‖Bk‖

}
≥ 1

4
γ2∆k,(38)

‖d̃k‖ ≤ min{1,∆k}‖vkJk‖+ ‖dkJ̄k‖ ≤
(
1 + ‖vkJk‖

)
∆k,

where the last inequality in (38) uses the bounds (36)–(37) and the limit (35). Then
{d̃k}k∈K̄ → 0 because of the boundedness of {‖vkJk‖}k∈K̄ and (35). By the mean
value theorem, we have

Ψ(wk + d̃k) = Ψ(wk) +∇Ψ(ξk)T d̃k for some ξk = wk + θkd̃
k, θk ∈ (0, 1).

Obviously, we have {ξk}k∈K̄ → w∗ as {d̃k}k∈K̄ → 0. Then we obtain for k ∈ K̄
sufficiently large

|rk − 1| =
∣∣∣∣∣Ψ(wk)−Ψ(wk + d̃k)

Predk
− 1

∣∣∣∣∣
=

1

Predk

∣∣∣∣∆k

(
(∇Ψ(ξk)−∇Ψ(wk))Jk

)T
vkJk +

(
(∇Ψ(wk)−∇Ψ(ξk))J̄k

)T
dkJ̄k

+
1

2
(dkJ̄k)

TBkdkJ̄k
∣∣∣∣ (by (35) and the definition of d̃k)
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≤ 4

γ2∆k

(
∆k

∥∥(∇Ψ(ξk)−∇Ψ(wk))Jk
∥∥ ‖vkJk‖+ ∥∥(∇Ψ(wk)−∇Ψ(ξk))J̄k

∥∥ ‖dkJ̄k‖
+

1

2
‖Bk‖‖dkJ̄k‖2

)
(by the Cauchy–Schwarz inequality and (38))

≤ 4

γ2

(
(1 + ‖vkJk‖)‖∇Ψ(wk)−∇Ψ(ξk)‖+ 1

2
‖Bk‖∆k‖

)
(by ∆k ≥ ‖dkJ̄k‖)

→ 0 (by the boundedness of {‖vkJk‖}K̄ and (35)).

Hence the subsequence {rk}k∈K̄ converges to 1, which is a contradiction to rk ≤ ρ1

in (34).
With the help of Lemma 6.3, we are able to prove the following global convergence

result. Its proof is quite standard and is omitted here. One can mimic the proof of
[20, Thm. 3.1] to prepare one.

Lemma 6.4. Suppose that the whole sequence {wk} was generated according to
rule (19). Then any accumulation point of {wk} is a stationary point of (3).

Combining the results of Lemmas 6.1, 6.2, and 6.4, we have our main result in
this section.

Theorem 6.5. Let {wk} be generated by Algorithm 5.1, with the subproblem (9)
being solved by the truncated CG Algorithm 4.1. Then any accumulation point of {wk}
is a stationary point of (3).

7. Local convergence. Let {wk} be a sequence generated by Algorithm 5.1,
and let w∗ be a strongly regular solution of (1). Our main result in this section is
that if w∗ is an accumulation point of {wk}, then the whole sequence converges to w∗

superlinearly/quadratically. The proof is based on a number of lemmas. The proof
techniques of some of those lemmas are borrowed from [19]. Therefore, we will omit
most of proofs in this section, but we would like to indicate their connections to [19]
and refer to [28] for fully worked out proofs.

The two results of the following lemma are simple consequences of the strong
regularity. The first one is about the active set J∗ at w∗ defined by

J∗ := {i ∈ J | z∗j = 0}.

Since our algorithm makes use of an active-set strategy, we hope that the set Jk is
capable of identifying J∗ correctly whenever wk is close to w∗. This can be shown by
using a recently proposed identification technique by Facchinei, Fischer, and Kanzow
[10]. The second is the uniform nonsingularity of a matrix sequence [19, Lem. 5].

Lemma 7.1. Suppose that {wk} is a sequence generated by Algorithm 5.1 and w∗

is a strongly regular solution of (1). If w∗ is an accumulation point of {wk}, then the
following hold:

(i) Jk = J∗ for all wk in a sufficiently small ball around w∗.
(ii) There is a constant c2 > 0 such that the matrices (Hk

.J̄k
)THk

.J̄k
are nonsingular

and ∥∥∥∥((Hk
.J̄k

)THk
.J̄k

)−1
∥∥∥∥ ≤ c2

for all wk in a sufficiently small ball around w∗.
Suppose w∗ is a solution of Φ(w) = 0. Then ‖Φ(w)‖ = o(

√‖Φ(w)‖) whenever w
is close enough to w∗. Using this fact, Proposition 4.3, (6), and Lemma 7.1(ii), we
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can obtain the following bound on dk by using a proof technique similar to that of
[19, Lem. 6].

Lemma 7.2. Suppose that {wk} is a sequence generated by Algorithm 5.1, and
w∗ is a strongly regular solution of (1). If w∗ is an accumulation point of {wk}, then
there exists a constant c3 > 0 such that

‖dk‖ ≤ c3

√
‖Φ(wk)‖

for all wk sufficiently close to w∗, where dk denotes the vector computed in step (S.4)
of Algorithm 5.1.

Using Lemma 7.2, we are now able to show the convergence of the whole sequence
{wk} (see [19, Lem. 8] for a proof.)

Lemma 7.3. Let {wk} be generated by Algorithm 5.1, and let w∗ be a strongly
regular solution of (1). If w∗ is an accumulation point of {wk}, then the whole sequence
{wk} converges to w∗.

The results developed so far allow us to establish one more technical result, which
in turn implies that the iterates are eventually generated by wk+dk. The third result
of the next lemma can be proved similarly to the proof of [19, Lem. 11].

Lemma 7.4. Let {wk} be generated by Algorithm 5.1, and let w∗ be a strongly reg-
ular solution of (1) and an accumulation point of {wk}. Let {dk} denote the directions
computed in step (S.4) of Algorithm 5.1. Then the following hold:

(i) For all k sufficiently large, it holds that

Ψ(wk + dk) ≤ γ
√
‖Φ(wk)‖.

(ii) There are infinitely many iterates wk at which indk = 0.
(iii) It holds that indk = 0 for all k sufficiently large.
Proof. Under the assumed conditions, it is proved in Lemma 7.3 that the whole

sequence {wk} converges to w∗ with Φ(w∗) = 0. Then Lemma 7.2 implies that there
exists c3 > 0 such that

‖dk‖ ≤ c3

√
‖Φ(wk)‖

for all k sufficiently large. So the sequence {wk + dk} also converges to w∗. Then for
all k sufficiently large we have


‖Φ(wk + dk)‖ ≤ L‖wk + dk − w∗‖,
‖Φ(wk)‖ ≥ c1‖wk − w∗‖, ‖Hk‖ ≤ κ3,√
‖Φ(wk)‖ ≤ min{γ/(2L2c2

3), c1c3},
(39)

where L is the Lipschitz constant of Φ(·) in a small ball around w∗, c1 is the constant
used in Proposition 2.3, and κ3 is the constant used in the proof of Lemma 7.2. It
also follows from Proposition 2.2 and Lemma 7.1 that for all k sufficiently large

‖Φ(wk)− Φ(w∗)−Hk(w
k − w∗)‖ = o(‖wk − w∗‖)(40)

and

Jk = J∗.(41)
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(i) The inequalities in (39) yield (i) as follows for all k sufficiently large:

Ψ(wk + dk) =
1

2
‖Φ(wk + dk)‖2

≤ L2

2
‖wk + dk − w∗‖2 ≤ L2

2

(‖wk − w∗‖+ ‖dk‖)2
≤ L2

2

(
‖Φ(wk)‖/c1 + c3

√
‖Φ(wk)‖

)2

≤ L2

2c2
1

‖Φ(wk)‖
(

c1c3 +
√
‖Φ(wk)‖

)2

≤ 2(Lc3)
2‖Φ(wk)‖ ≤ γ

√
‖Φ(wk)‖.

(ii) Suppose to the contrary that there is a k̄ such that indk = 1 for all k ≥ k̄.
We again let K be defined as (22). Then K contains finitely many indices, which we
denote by

K := {k0, k1, . . . , kl}
for some integer l. By the update rule for βk, we have

βk = βkl+1 = Ψ(wkl+1) ∀ k > kl + 1,

and there is no new update for γ̄ after kl + 1, i.e.,

γ̄ = γkl+1 =
Ψ(wkl+1)

Ψ(wkl)
∀ k > kl + 1.

Since {wk + dk} converges to w∗, Ψ(wk + dk) converges to Ψ(w∗) = 0. Hence for all
k sufficiently large

Ψ(wk + dk) ≤ γΨ(wkl) ≤ γ

γ̄
Ψ(wkl+1) =

γ

γ̄
βk;

that is, test (21) is successful for all k sufficiently large. Since indk = 1 for k large
enough, Algorithm 5.1 (S.5)(ii) assigns indk+1 = 0, which contradicts our assumption.
This establishes (ii). (iii) can be proved similarly to the proof of [19, Lem. 11] by
noticing Proposition 4.2.

We are now at the position to state the main local convergence result.
Theorem 7.5. Let {wk} be a sequence generated by Algorithm 5.1, and let w∗

be a strongly regular solution of (1) and an accumulation point of {wk}. Then the
following statements hold:

(a) The whole sequence {wk} converges to w∗.
(b) The rate of convergence is Q-superlinear.
(c) The rate of convergence is Q-quadratic if, in addition, F is an LC1 function

and h, g are LC2 functions and ρ(Ψ(wk)) = O(
√
Ψ(wk)).

Proof. Statement (a) follows immediately from Lemma 7.3. We have proved in
Lemma 7.4 that indk = 0 and test (20) holds for all k sufficiently large. Hence, there
exists k̄ > 0 such that for all k ≥ k̄

wk+1 := wk + dk.

Then by an argument similar to the proof of [19, Lem. 11], we can prove

‖wk+1 − w∗‖ = o(‖wk − w∗‖),
and under the condition in (c) and with Proposition 2.2, we can prove

‖wk+1 − w∗‖ = O(‖wk − w∗‖2).
This proves (b) and (c).
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8. Numerical results. In this section, we present some numerical experiments
on a subset of problems from the MCPLIB collection [7]. The details about the
implementation are described as follows.

(a) The penalized Fischer–Burmeister function. Instead of using the Fischer–
Burmeister function ϕ, we use its penalized version ϕα : R2 → R defined by

ϕα(a, b) := αϕ(a, b) + (1− α)a+b+, α ∈ (0, 1],

where a+ = max{0, a} for any a ∈ R. Numerical tests indicate that the penalized
Fischer–Burmeister function usually leads to better numerical performance than the
Fischer–Burmeister function [3, 34]. In our implementation, α = 0.7, as recommended
by Ulbrich [37].

(b) SSOR preconditioner. As we pointed out in the introduction, the key issue
of efficient implementation of CG-type methods is the preconditioning. Steihaug’s
CG method with preconditioner C can be found in [33]. Although there is no single
preconditioning that is “best” for all conceivable types of matrices, we choose C to
be the SSOR preconditioner of the following type of linear equations:

(ATA + ρI)x = b,(42)

where A, b have compatible dimension and ρ is a small positive number. This type of
equation is exactly what we try to solve at each iteration. Then the SSOR precondi-
tioner corresponds to taking

C = PTP and P = D
−1/2
A (DA + ωLTA), 0 ≤ ω < 2,(43)

with the standard splitting ATA + ρI = LA + DA + LTA, where LA is strictly lower
triangular. The cost of matrix-vector product for each of the SSOR PCG iterations
including the matrix-vector product with ATA is in fact only 4nnz(A), and ATA is
not formed explicitly, where nnz is (Matlab) notation of the number of nonzero ele-
ments. See [15, Table 1], [1, p. 284], and [2] for more information about the counting.
According to [15], SSOR-CG and TMRES (transformed minimal residual algorithm)
are the two most efficient methods for solving linear equations of type (42) compared
with several other (iterative) methods. Theory and numerical experiments indicate
that ω = 1 is often close to the optimum choice of ω [1]. In our implementation,
ω = 1.

(c) Nonmonotone calculation of the reduction-ratio rk. In calculating rk in (18),
we used its nonmonotone version,

rk =
(
Wk −Ψ(wk + d̃k)

)
/Predk,

where Wk := max{Ψ(wj)| j = k + 1 − =, . . . , k} denotes the maximal function value
of Ψ over the last = iterations. The nonmonotone version often gives an overall bet-
ter performance than its monotone version. For more discussion, see [37]. In our
implementation, = = 4.

(d) Test problems. The test problems we used are selected from the MCPLIB
collection [7] and have at most one bound per variable, i.e., ui − li = +∞ for all
i. The collection itself is updated from time to time. As of the initial point of
those problems, we follow a suggestion of Ulbrich [37] that interior starting points
enable constrained algorithms to identify the correct active constraints more efficiently
than starting points close to the boundary. Let x̂0 be the initial point returned by
the initialization routine mcpinit. Then the initial point chosen is given by x0 =
max{l + 0.1,min{u− 0.1, x̂0}}.
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The algorithm was implemented in Matlab and run on a SUN Solaris (CDE
Version 1.2) workstation. The parameters used are ∆0 = min{0.1‖g0‖, 30√10n},
∆min = 1, ρ1 = 10−4, ρ2 = 0.75, σ1 = 0.1, σ2 = 10, c = 1, γ = 0.9, δ = 10−4, and
tol = 10−10. The algorithm was terminated if one of the following conditions was
met:

max{Ψ(wk), ‖∇Φ(wk)‖, ‖vk‖} ≤ tol or it outer ≥ 100,

where it outer denotes the (outer) iteration number. The forcing function used in
our implementation is ρ(Ψ(w)) = min{10−6,

√
Ψ(w)}. The stop rule (S.1) used in

Algorithm 4.1 is replaced by

‖Bksi − gkJ̄k‖Ck
/‖gkJ̄k‖Ck

≤ tol

if gk
J̄k
�= 0, and s = 0 would otherwise be the (unique) solution of the subproblem.

There are two iterative procedures in the implementation: One is the iterative
procedure in Algorithm 5.1, which we call the outer iterative procedure. For each
outer iteration, there is the truncated PCG iterative procedure described in Algo-
rithm 4.1 for solving the trust region subproblem, which we call the inner iterative
procedure. The average number of inner iterations per outer iteration is essential
to the efficiency of our approach. The following data are reported in our numerical
results: n, the problem size; it outer, number of outer iterations when Algorithm
5.1 was terminated; it inner, average number of PCG iterations per out iteration,
i.e., it inner = [Total numbers of PCG iterations/it outer], where [z] denotes the
nearest integer to z; nf, number of evaluations of the function F ; Ψ(wf ), the value
of Ψ(·) at the final iterate; ‖∇Ψ(xf )‖, the value of ‖∇Ψ(·)‖ at the final iterate; ‖vf‖,
the value of ‖vk‖ at the final iteration. it outer is also equal to the number of
evaluations of the Jacobian F ′(x).

We tested Algorithm 5.1 with two purposes: to demonstrate the importance of
preconditioning and to compare our numerical results with existing ones.

(e) Importance of preconditioning. For this purpose, we tested three versions
of Algorithm 5.1. tcg: Algorithm 5.1 without preconditioning (C = I); tcg ssor:
Algorithm 5.1 with SSOR-preconditioner (C = PTP with P given by (43)); and
tcg chol: Algorithm 5.1 with Cholesky direct factorization (C = RTR with R being
the Cholesky factor of Bk). We expect that tcg ssor is much more efficient than
tcg and is less efficient than tcg chol (we use tcg ssor as benchmark). The nu-
merical results confirm this expectation. Table 1 contains results from tcg and Table
2 contains results from tcg ssor. On the one hand, tcg failed to solve four more
problems (i.e., bertsekas, freebert, games, and methan08) than tcg ssor. But for
the remaining solved problems, they behaved quite similarly except for colvdual. To
solve this problem, tcg took many more functional evaluations and outer iterations
than tcg ssor did. The observation clearly shows that the preconditioned version is
much more efficient than the unpreconditioned version. On the other hand, tcg chol

is able to solve one more problem (ne-hard) than tcg ssor, and they behaved very
similarly for the rest of the problems in terms of number of functional evaluations
and outer iterations. For this reason and to save space as well, we did not include
the complete results for tcg chol, but the final information for ne-hard is included
in Table 2. We note that when the Cholesky preconditioner is applied in Algorithm
4.1, in theory it takes only one inner iteration to solve the trust region subproblem,
and the resulting direction is of the Gauss–Newton type. Its steplength is controlled
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Table 1
Numerical results with tcg.

Problem n it inner it outer nf Ψ(xf ) ‖∇Ψ(xf )‖ ‖vf‖
badfree 5 2 4 5 2.68e-13 8.87e-07 8.87e-07
bertsekas 15 – – – – – –
billups 1 1 1 2 9.80e-05 2.94e-02 0.00e+00
bishopl 1645 – – – – – –
colvdual 20 19 48 200 7.11e-13 6.56e-06 6.56e-06
colvnlp 15 18 6 8 3.34e-13 2.91e-05 2.91e-05
cycle 1 1 5 7 2.18e-15 2.44e-07 2.44e-07
degen 2 1 5 7 2.88e-11 7.51e-06 7.51e-06
duopoly 63 – – – – – –
ehl k40 41 – – – – – –
ehl k60 61 – – – – – –
ehl k80 81 – – – – – –
ehl kost 101 – – – – – –
explcp 16 8 11 13 1.97e-13 4.40e-07 4.40e-07
forcebsm 184 – – – – – –
forcedsa 186 – – – – – –
freebert 15 – – – – – –
games 16 – – – – – –
hanskoop 14 10 22 32 1.65e-12 1.51e-05 1.51e-05
hydroc06 29 94 64 170 8.24e-11 2.59e-04 2.59e-04
hydroc20 99 – – – – – –
jel 6 8 6 9 5.84e-14 6.09e-06 6.09e-06
josephy 4 3 4 5 3.38e-20 1.60e-09 1.60e-09
kojshin 4 4 3 4 1.17e-11 2.70e-05 2.70e-05
lincon 419 – – – – – –
mathinum 3 3 5 6 8.82e-15 2.63e-07 2.63e-07
mathisum 4 3 8 10 5.83e-11 5.62e-05 5.62e-05
methan08 31 – – – – – –
nash 10 10 5 6 1.47e-17 2.87e-07 2.87e-07
ne-hard 3 – – – – – –
pgvon106 106 – – – – – –
powell 16 12 5 6 6.93e-14 6.14e-06 5.46e-06
powell mcp 8 7 2 3 3.33e-13 7.37e-06 7.37e-06
qp 4 2 9 45 1.26e-14 8.55e-07 3.19e-07
scarfanum 13 10 13 16 2.83e-16 8.57e-07 8.57e-07
scarfasum 14 12 11 45 7.31e-19 4.28e-08 4.28e-08
scarfbsum 40 – – – – – –
shubik 45 – – – – – –
simple-ex 17 – – – – – –
simple-red 13 15 10 15 2.12e-11 3.10e-06 3.10e-06
sppe 27 36 4 5 1.56e-18 3.58e-09 3.57e-09
tinloi 146 5 6 63 1.30e-11 1.71e-02 1.59e-02
tobin 42 36 8 43 2.02e-22 2.08e-10 1.85e-10
trafelas 2904 – – – – – –

by the trust region radius. In practice, it may take more than one inner iteration
to produce a direction due to the accumulated roundoff. Moreover, when the linear
equations of the type (42) is near singular, the Cholesky factor may not exist, leading
to the failure of tcg chol. In our experiments, tcg chol took only one inner iteration
per outer iteration. So it is not appropriate to compare tcg ssor with tcg chol in
terms of inner iterations taken per outer iteration. However, it is safe to say that the
efficiency of the preconditioned Algorithm 5.1 varies with the preconditioners used.

(f) Comparison. The results in Table 2 are comparable to those results obtained
with existing methods [37, 35]. Moreover, for most of the tested problems the av-
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Table 2
Numerical results with tcg ssor.

Problem n it inner it outer nf Ψ(xf ) ‖∇Ψ(xf )‖ ‖vf‖
badfree 5 3 4 5 1.15e-12 1.84e-06 1.84e-06
bertsekas 15 7 18 58 8.84e-18 1.43e-07 1.43e-07
billups 1 1 1 2 9.80e-05 2.94e-02 0.00e+00
bishop 1645 – – – – – –
colvdual 20 14 22 68 8.05e-13 9.11e-05 9.11e-05
colvnlp 15 11 6 8 3.35e-13 2.92e-05 2.92e-05
cycle 1 1 5 7 2.18e-15 2.44e-07 2.44e-07
degen 2 1 5 7 2.88e-11 7.51e-06 7.51e-06
duopoly 63 – – – – – –
ehl k40 41 – – – – – –
ehl k60 61 – – – – – –
ehl k80 81 – – – – – –
ehl kost 101 – – – – – –
explcp 16 4 11 13 1.96e-13 4.39e-07 4.39e-07
forcebsm 184 – – – – – –
forcedsa 186 – – – – – –
freebert 15 7 24 117 1.18e-12 7.12e-05 7.12e-05
games 16 12 14 36 1.74e-14 5.16e-06 4.58e-06
hanskoop 14 9 24 37 1.09e-13 3.75e-06 3.72e-06
hydroc06 29 41 36 42 6.09e-11 1.86e-07 1.86e-07
hydroc20 99 – – – – – –
jel 6 5 6 9 5.84e-14 6.09e-06 6.09e-06
josephy 4 3 4 5 3.38e-20 1.60e-09 1.60e-09
kojshin 4 4 3 4 1.17e-11 2.70e-05 2.70e-05
lincon 419 – – – – – –
mathinum 3 3 5 6 8.82e-15 2.63e-07 2.63e-07
mathisum 4 3 8 10 5.83e-11 5.62e-05 5.62e-05
methan08 31 46 51 59 9.08e-11 9.95e-09 9.95e-09
nash 10 4 5 6 1.49e-17 2.86e-07 2.86e-07
ne-hard 3 1 25 51 5.09e-11 5.60e-02 6.60e-02
pgvon106 106 – – – – – –
powell 16 10 14 61 5.69e-12 3.80e-05 3.31e-05
powell mcp 8 7 2 3 3.33e-13 7.36e-06 7.36e-06
qp 4 2 9 45 1.26e-14 8.55e-07 3.19e-07
scarfanum 13 8 13 16 2.83e-16 8.57e-07 8.57e-07
scarfasum 14 9 11 45 7.31e-19 4.28e-08 4.28e-08
scarfbsum 40 – – – – – –
shubik 45 – – – – – –
simple-ex 17 – – – – – –
simple-red 13 10 10 15 1.04e-11 2.18e-06 2.18e-06
sppe 27 15 4 5 1.50e-18 1.96e-09 1.96e-09
tinloi 146 5 6 63 1.30e-11 1.71e-02 1.59e-02
tobin 42 19 8 43 2.78e-23 1.93e-11 1.89e-11
trafelas 2904 – – – – – –

erage number of inner iterations per outer iteration (column 3) in Table 2 is small
compared with the problem size. Although we have a few more failed problems, we
would like to point out that for some of those failed problems, say ehl 60, ehl 80,
and ehl kost, all of which can be solved in [37, 35], we were able to arrive at points
with functional values at the order of 10−5 and 10−8 for hydroc20 within 10 itera-
tions, but our algorithm hardly achieved any significant improvement thereafter. The
difficulties may come from two resources: On the one hand, there are many ways, all
mathematically equivalent, in which to implement the CG method for (42). In exact
arithmetic they will all generate the same sequence of approximations and all have
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finite termination property, but in finite precision the achieved accuracy may differ
substantially. On the other hand, it is hard to select the “best” preconditioner for all
linear systems of type (42) arising from our implementation. Hence for those failed
problems, an appropriate option is an efficient implementation of the CG method with
a more suitable preconditioner (other than SSOR). Fortunately, many other precondi-
tioners with corresponding efficient implementation of the CG method are available;
see [1, pp. 293–311]. We also learned that the number of inner iterations may grow
significantly for (very) ill-conditioned linear systems of type (42) in order to meet the
required accuracy. We refer readers who are interested in the reasons to a recent pa-
per [15] by Hager. We also observed that the sooner direction dk is taken, the sooner
the active set is identified. In fact, for most cases, the active set is identified at least
two or three iterations before termination.

Based on the numerical results reported and observation in (e) and (f), we feel
that the trust region PCG method proposed in this paper provides an alternative to
the existing methods for solving KKT systems. More numerical experiments need to
be done to evaluate the proposed approach, especially on large-scale problems with a
Jacobian appearing in a certain pattern of sparsity.

9. Conclusions. In this paper, we proposed a trust region algorithm for solving
KKT systems arising from VIPs. Built around those components of the current
iterate, which are far from the boundary of the constrained region, the trust region
subproblem is solved by the truncated PCG method. Global and local convergence
analysis are provided for this method. Numerical experiments show that the proposed
method is promising, mainly due to its computational inexpensiveness in that the trust
region subproblem is solved by the truncated CG method. We also briefly discussed
ways for improving practical efficiency of the proposed method.

Acknowledgments. The authors would like to thank the associate editor and
two anonymous referees for their detailed comments, which considerably improved
the presentation of the paper. In particular, one referee’s expert comments on PCG
methods led us to the current version of Algorithm 4.1 as well as condition (13).
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Abstract. This article revisits the maximum entropy algorithm in the context of recovering the
probability distribution of an asset from the prices of finitely many associated European call options
via partially finite convex programming. We are able to provide an effective characterization of the
constraint qualification under which the problem reduces to optimizing an explicit function in finitely
many variables. We also prove that the value (or objective) function is lower semicontinuous on its
domain. Reference is given to a website which exploits these ideas for the efficient computation of
the maximum entropy solution (MES).
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1. Introduction. Entropy optimization, used for recovering a probability dis-
tribution from information on a few of its moments, is well established and ubiquitous
throughout the sciences [14]. Recently (cf. Buchen and Kelly [9] and Avellaneda et
al. [1], [2]), this idea has been explored in the context of financial derivatives. In this
risk-neutral model, one wishes to infer the probability distribution for the price of an
asset at some future date T from the prices of European call options based upon the
asset with expiration at T .

A classical approach to the application of entropy optimization has been to use
the theory of Lagrange multipliers. While this formal approach does yield correct and
useful results, it does not provide for a complete analysis. The purpose of this article
is to analyze the option-maximum entropy problem within the framework of partially
finite programming and demonstrate the extra insight and power that this approach
provides. In doing so, we not only legitimize the formal calculations with Lagrange
multipliers but also provide a more detailed analysis of the maximum entropy solution
and the notion of admissible data. We also specifically exploit the unique structure of
the piecewise linear constraints to reduce the problem to maximization of an explicit
function of finitely many variables; hence greatly simplifying the computation of the
maximum entropy solution.

The option-maximum entropy problem. Let I be an the interval of the form
[0,K) with either some fixed K > 0 or K = +∞. For 0 = k1 < k2 < · · · < km, and
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d ∈ Rm,

(P)

∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize Ih(p) :=
∫
I

h
(
p(x)

)
dx

s.t. 1 =

∫
I

p(x) dx,

dj =

∫
I

cj(x)p(x) dx.

Here, p(x) denotes the probability density function for the price x of an asset at a
set future time T , and dj represents the price of a European call option based on the
underlying asset with strike price kj and expiration date T . The interval I denotes
the set of feasible prices for the asset at time T which may or may not be a priori
constrained. The function cj(x) represent the payoffs of the jth option as a function
of the asset price x at time T . Thus

cj(x) = (x − kj)
+ = max{0 , x − kj}.(1)

Finally the convex function h : R → R represents the entropy functional, the most
common of which being the Boltzmann–Shannon entropy

h(t) :=




t log t− t if t > 0,
0 if t = 0,
+∞ if t < 0.

(2)

Note that traditionally, the entropy is taken to be −h, and hence maximum entropy
entails solving for the minimum in (P). We refer to the minimizer associated with
(P) as the maximum entropy solution, or simply the MES.

The particular choice of the Boltzmann–Shannon entropy yields a simple case
of the minimum cross entropy problem using the Kullback–Leibler entropy. Here the
idea is that given additionally a prior guess q(x) for the asset price distribution at
T (which one might infer from the market), one seeks to find the least prejudiced
posterior density p(x) consistent with the constraints which is closest to or least
deviant from q(x) in the following sense (see Cover and Thomas [10] for details): find
a constraint satisfying p(x) which minimizes∫

I

p(x) log

(
p(x)

q(x)

)
dx.

Our problem (P) is the simple case of the above where no prior is available and hence
q(x) is close to a uniform distribution and may be taken to be a constant. Of course
to be precise, it will be uniform if p(x) = 0 for all x sufficiently large (cf. [9]). For
simplicity we first carry out our analysis for the Boltzmann–Shannon entropy (i.e.,
uniform prior). In section 7, we briefly comment on the necessary modifications and
drawbacks in the more realistic situation of including a nontrivial prior.

The constraints in (P) may appear to be missing something. Indeed, they should
read

dj = DC(T )

∫
I

cj(x)p(x) dx,

where DC(T ) represents the riskless discount factor up to time T . For example, one
could take

DC(T ) = e−rT ,
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where r is the risk-free constant interest rate. Without loss of generality we set
DC(T ) = 1 throughout this paper. Finally, we emphasize that this model, in which
the option prices are simply the expected values of a discounted pay-off function,
assumes risk-neutrality. See [13] (also [9] and the references therein) for further infor-
mation on risk-neutral pricing and arbitrage-free models.

Convex programming approach. In this article, we reexamine problem (P)
within the general framework of convex duality and partially finite convex program-
ming. Why this approach? To begin with, it legitimizes the calculations done in [9]
and [1] which are based upon Lagrange multipliers. This standard approach is based
on relaxing the hard constraints via Lagrange multipliers, reducing the problem to

sup
λ∈Rm+1

inf
p

L(λ, p),(3)

where

L(λ, p) := Ih(p) + λ0

(
1−

∫ ∞

0

p dx

)
+

m∑
i=1

λi

(
di −

∫ ∞

0

ci p dx

)
.(4)

The minimization over p is carried out via the first variation of L(λ, p) with respect
to p; i.e., one “differentiates” the Lagrangian with respect to density functions p.
There is a problem with this type of calculation. Indeed, the Lagrangian has support
on the set {p ∈ L1(I) | p ≥ 0 a.e.}. The complement of this set is dense in L1 and,
moreover, any reasonable definition of the Boltzmann–Shannon entropy gives a value
of +∞ on any function in the complement. Thus, not only is the Lagrangian nowhere
differentiable, it is indeed nowhere continuous. The approach via conjugation-duality
is in part to circumvent this differentiation. Moreover, with other entropies, there
can be additional complications to these formal calculations resulting from a lack
of weak compactness. See [8] for a fuller discussion. We emphasize, however, that
the benefits of our approach are far from confined to the legitimization of the now
fairly ubiquitous if flawed formal analysis with “Lagrange multipliers.” Such benefits
include the following:

• We transform the maximum entropy problem into a closed-form finite-dimen-
sional maximization problem. That is, under certain explicit conditions on the
data, finding the MES is equivalent to maximizing an explicit dual function
(cf. (9), (12), and (16)) of finitely many real variables. The simple fact that
the dual function can be written explicitly with no integrals is an advantage
of using a uniform prior.
• Our approach greatly simplifies the numerical computation1 of the MES
where many of the previous numerical calculations (cf. [9]) involved in com-
puting the optimal λ can now be done symbolically.
• We give a detailed analysis of the constraint qualification (CQ) and a full in-
vestigation of when the MES exists, and when the maximization with respect
to λ in the dual (cf. (9), (12)) does indeed yield the solution. These results
are pertinent when analyzing the dependence of the MES on the data d.

1An interface has been set up at http://www.cecm.sfu.ca/projects/MomEnt+/moment.html
which computes the MES for a variety of moment constraints, including the ones discussed in the
present paper. One can test our algorithm by first pricing the list of options using, for example, a
log-normal distribution, and then comparing the distribution with the computed MES based only on
the option prices. In this way, one finds that the accuracy of recovering a known distribution with
eight options is quite high even with a uniform prior.
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• Our general approach applies to any convex entropy, not just to the standard
Boltzmann–Shannon entropy used in [9], [1]. It is also amenable to natural
extensions such as relaxations of the constraints, for example, requiring the
moments to lie in some small finite interval.
• Partially finite duality and attainment results are usually confined to pri-
mal function spaces defined over bounded domains. The problem provides
an interesting and simple example whereby a partially finite duality and at-
tainment theorem can be proved in the case where the primal functions are
defined over an infinite domain (Theorem 2). We know of no general result
which would capture this.

In section 3 we prove two duality results: one for the case of a finite interval I
and the other for I = [0,∞). The first (Corollary 1) is a direct consequence of a
well-known duality result (Theorem 1). The latter (Theorem 2) is proved directly by
exploiting the monotonicity of the constraints ci. In either case, the MES exists if d
satisfies the CQ. Conversely, for the MES to exist in its exponential form (cf. (10),
and (13)), this CQ must hold. The CQ amounts to the data d lying in the relative
interior of the feasible set, i.e., the set of vectors (y0, y1, . . . , ym) ∈ Rm+1 such that

yi =

∫
I

ci(x)p(x) dx for i = 0, . . . ,m

for some distribution p with finite entropy. In section 4 we show that this condition
is equivalent to the data d lying in some open polyhedral set which we characterize
explicitly (cf. Proposition 2). It is important to note that the feasible set is not
relatively open, and hence there can exist boundary points which are feasible even
though the CQ fails. In such cases, the analysis via the Lagrange multipliers λi will
fail. Indeed, as the data approaches such a boundary point, some components of the
associated λ will become infinite.

We provide a simple—though perhaps artificial from a finance point of view—
example to illustrate these points. We use only two constraints for simplicity (similar
examples exist with many options) and assume the first option has strike price zero.
That is, we consider strike prices k1 = 0, k2 with associated option prices d1 and d2

(with d2 ≥ 1/2). This data satisfies the CQ if and only if

0 < d1 − d2 < k2.

The boundary point where d1 − d2 = k2 is of particular interest. Clearly, this data is
feasible; for example, consider

p = χ[k2+d2− 1
2 ,k2+d2+

1
2 ].

Moreover one can readily show (see (18)) that any probability distribution satisfying
the associated constraints must vanish on the interval [0, k2]. Hence, no MES solution
of the exponential form (i.e., (10)) can exist. Indeed, as data satisfying the CQ
tends to this boundary point, the associated λ must blow up. This simple example
illustrates that an infimum associated with problem (P) might still be finite but not
attainable. In section 6, we explore this matter further by studying the value (or
objective) function and whether or not there exists a duality gap.

2. Preliminaries. We first reformulate problem (P). Let I = [0,K) with either
K > 0 fixed or K = +∞. For m ≥ 1, we assume that 0 = k1 < · · · < km < K, and
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d = (d0, d1, . . . , dm) ∈ Rm+1 with d0 = 1. Consider

(P) inf
{Ih(p) + δ

(
Ap − d

∣∣ 0)} , where Ih(p) :=
∫
I

h(p(x)) dx,

δ is the indicator function defined for the set {0}, i.e., for y ∈ Rm+1,

δ
(
y
∣∣ 0) :=

{
0 if y = 0,

∞ otherwise,

and A is the linear operator defined by

Ap :=

∫
I

c(x)p(x) dx ∈ Rm+1,

with c(x) = (c0(x), c1(x), . . . , cm(x)), c0(x) ≡ 1, cj(x) = (x− kj)
+ = max{0, x− kj}.

Finally, h always denotes the Boltzmann–Shannon entropy defined by (2). The space
we will work in for admissible p is L1(I). We will separate the cases of bounded I and
I = [0,∞). For the latter case, A may be infinite on some p ∈ L1([0,∞)), and hence
for the problem at hand A is not a well-defined linear operator on L1([0,∞)) as it
would be on, say, L1([0,M ]) for some fixed M > 0. One notes that even though the
operator A is densely defined on L1([0,∞)), it is not closed. Hence this case requires
a different approach. For the case of bounded I, we will directly apply partially finite
convex programming (Theorem 1) to establish the duality relation under a CQ. A
similar duality relation (Theorem 2), under the same CQ, holds true for the infinite
domain I = [0,∞) and will be proved directly, bypassing the Fenchel duality of
Theorem 1.

For omitted definitions and elementary facts from convex analysis in Rn we refer
the reader to [17]. Let V and V  be vector spaces equipped with 〈·, ·〉, a bilinear
product on V ×V . The convex (Fenchel) conjugate of a convex function f on V with
respect to 〈·, ·〉 is the function f defined on V ∗ by

f(ξ) := sup
{〈x, ξ〉 − f(x)

∣∣ x ∈ V
}
.

We consider the functional on L1(I) (for I bounded or unbounded) defined by

u �−→ Ih(u) :=
∫
I

h(u(x)) dx,(5)

where the integral is interpreted in the sense of Rockafellar (cf. [18, p. 7]). Thus Ih
is a well-defined operator from L1(I) to [−∞,∞] and, since the entropy h is convex,
also convex on L1(I).

For the conjugate of this integral functional, we take I to be a bounded interval
and let L := L1(I) and L∗ := L∞(I). One can define a bilinear product on L×L by

(u, u) �−→ 〈
u, u

〉
:=

∫
I

u(x)u(x) dx.(6)

To compute the convex conjugate of Ih with respect to (6), we may conjugate the
integrand, as in the following proposition.

Proposition 1. Let I be bounded and consider the pair 〈L,L〉 of subspaces of
L1(I) as defined above with bilinear product (6). Then for any q ∈ L, we have

Ih(q) =
∫
I

h
(
q(t)

)
dt.
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The proof of Proposition 1 can be found in either [19] or [16]. Finally, we recall a
Fenchel duality theorem in its partially finite version. The proof of Theorem 1 as stated
can be inferred from Theorem 4.2 in [4], with the attainment of the infimum proved
via Theorems 3.7 and 3.8 of [7]. In what follows, “ri” denotes the relative interior of
a subset of Rn and “dom” denotes the effective domain of a convex function (i.e., the
set of points at which the function is finite).

Theorem 1. Let V and V  be vector spaces, and let 〈·, ·〉 be a bilinear product
on V × V . Let G : V → R

n be a linear map with adjoint GT , let F : V → R̄ be a
proper convex function, and let g : Rn → R̄ be a proper concave function. Then, under
the CQ

(CQ) ri(G domF ) ∩ ri(dom g) �= ∅,
we have

inf
{
F (u)− g(Gu)

∣∣ u ∈ V
}
= sup

{
g(λ)− F (GTλ)

∣∣ λ ∈ Rn} ,(7)

with the supremum on the right being attained when finite. Moreover for the case
where V is a normed vector space with dual V ∗, if F is strongly rotund (i.e., satisfies
the three conclusions of Lemma 2), the infimum on the left is attained at a unique u.

3. Duality results. Theorem 1 directly applies to (P) with I bounded. That
is, n = m+1, V = L1(I), V  = L∞(I), 〈·, ·〉 is given by (6), G := A, and the function
g is defined by

g(Ap) = − δ
(
Ap − d

∣∣ 0) .
Lastly, F = Ih, where h is the Boltzmann–Shannon entropy functional defined by (2),
which by Lemma 2 is strongly rotund. The CQ amounts to

(CQ) d ∈ ri(A dom Ih).(8)

Precisely, we have the following.
Corollary 1. Let I be bounded and assume (8) holds. Then (P) has a unique

solution and

inf
{Ih(p) ∣∣ p ∈ L1(I), Ap = d

}
= sup

{
m∑
i=0

λidi − Ih(AT (λ))
∣∣∣∣∣ λ ∈ Rm+1

}
.(9)

Moreover the solution of the primal problem (left-hand side of (9)) is

e
∑m

i=0 λ̄ici(x),(10)

with λ̄i being the unique solution to the dual problem (right-hand side of (9)).
It is straightforward to check (see section 5) that

Ih(AT (λ)) =
∫
I

eµ(x) dx, µ(x) :=

m∑
i=0

λici(x),

where one can explicitly carry out the integration (cf. (16)). We also note in section
5 that the distribution given by (10) is indeed a probability distribution.



470 J. BORWEIN, R. CHOKSI, AND P. MARÉCHAL

As previously mentioned, the case where I = [0,∞) is best treated differently. The
duality result is identical; however, to prove it we shall bypass the direct application
of Theorem 1 and exploit properties of the value function. We rewrite the CQ as

(CQ) d ∈ riA,(11)

where

A := {x ∈ Rm+1
∣∣ ∃ p ∈ L1[0,∞) with Ih(p) finite and Ap = x

}
.

We have the following theorem.
Theorem 2. Let I = [0,∞) and assume (11) holds. Then (P) has a unique

solution and

inf
{Ih(p) ∣∣ p ∈ L1([0,∞)), Ap = d

}

= sup

{
m∑
i=0

λidi −
∫ ∞

0

eµ(x) dx

∣∣∣∣∣ λ ∈ Rm+1

}
.(12)

Moreover, the solution of the primal problem is

e
∑m

i=0 λ̄ici(x),(13)

with λ̄i being the unique value of the right-hand side of (12).
Proof of Theorem 2. Consider the value function

V(d) := inf {Ih(p) ∣∣ Ap = d
}
= inf

{Ih(p) + δ
(
Ap − d

∣∣ 0) ∣∣ p ∈ L1([0,∞))} .

We prove that under the (CQ) of (11),

V(d) = sup

{
m∑
i=0

λidi −
∫ ∞

0

eµ(x) dx

∣∣∣∣∣ λ ∈ Rm+1

}
.(14)

First note that (14) easily holds with = replaced with ≥. To see this, note that by
the definition of h, for every p ∈ dom Ih with

∫
ci(x)p(x)dx = di, we have∫

h(µ)dx +

∫
h(p)dx ≥

∫ m∑
i=0

λi ci(x) p(x) dx =

m∑
i=0

λidi

holding for any λ ∈ Rm+1. The inequality follows by first taking the infimum over all
such p, and then the supremum over λ ∈ Rm+1.

We now prove the reverse inequality. The (CQ) implies that d ∈ ri(domV).
Moreover, it is easily verified that V is convex on its domain. Hence (see, for example,
[3]), there exists a λ̄ ∈ Rm+1 such that λ̄ ∈ ∂V(d), the subgradient of V at d. Thus
for all z ∈ Rm+1, V(z) ≥ V(d) + 〈λ̄, z− d〉. Fix M > 0. Restricting our attention to
p with support in [0,M ], we have (by definition of V(z)) for all p ∈ L1([0,M))

V(d) − 〈λ̄,d〉 ≤ Ih(p) − 〈λ̄,Ap〉.
Setting µ̄(x) =

∑m
i=0 λ̄ici(x), we have

V(d) −
m∑
i=0

λ̄idi ≤
∫ M

0

(h(p(x)) − p(x) µ̄(x)) dx,



PROBABILITY DISTRIBUTION VIA MAXIMUM ENTROPY 471

and hence

sup
p∈L1[0,M ]

{∫ M

0

p(x)µ̄(x) − h(p(x)) dx

}
≤

m∑
i=0

λ̄idi − V(d).

The left-hand side of the above is by definition Ih(µ̄). Hence applying Proposition 1
to Ih(p) on [0,M ], we have

Ih(µ̄) =
∫ M

0

h(µ̄)dx =

∫ M

0

eµ̄(x)dx ≤
m∑
i=0

λ̄idi − V(d),

or

m∑
i=0

λ̄i di −
∫ M

0

eµ̄(x)dx ≥ V(d).

Since the above holds for each M > 0, the monotone convergence theorem implies

m∑
i=0

λ̄idi −
∫ ∞

0

eµ̄(x)dx ≥ V(d).(15)

Lastly, we prove primal attainment. The (CQ) holds, and hence the supremum
on the right of (12) is finite, and moreover the previous analysis shows that there
exists λ̄ which attains this supremum. It remains to show that the dual function

D(λ) :=

m∑
i=0

λidi −
∫ ∞

0

eµ(x) dx

is differentiable at λ = λ̄. To this end, we note that by (15),∫ ∞

km

eµ̄(x) dx < ∞.

Since for x > km, µ̄(x) = λ̄0 + x
∑m
i=1 λ̄i −

∑m
i=1 kiλ̄i, we must have

∑m
i=1 λ̄i < 0,

and hence D(λ) is differentiable at λ = λ̄. Thus

dk =

∫ ∞

0

ck(x) e
µ̄(x),

p̄(x) := eµ̄(x) is feasible for the primal problem, and

Ih(eµ̄(x)) =

m∑
k=0

λ̄k dk −
∫ ∞

0

eµ̄(x)dx.

Since equality holds in (12), eµ̄(x) must indeed be the MES. The uniqueness follows
from the strict convexity of the entropy (see, for example, [3]).

In the following sections we complement Corollary 1 and Theorem 2 by giving an
explicit characterization of the (CQ) for our problem (P), and by computing the dual
function D explicitly in a form with no integrals.
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4. The CQ. In Proposition 2 below, we give an explicit form of the CQ for
problem (P), first for I = [0,∞) and then for I = [0,K]. We shall need the following
simply lemma, whose proof is left as an exercise.

Lemma 1. Let I = [0,∞) and ϕ(x) := [ATλ](x) = λ0+λ1c1(x)+ · · ·+λmcm(x).
The following conditions are equivalent:

(a) for all p s.t. Ih(p) is finite and Ap ∈ Rm+1, we have 〈λ,Ap〉 ≥ 0;
(b) ϕ(x) ≥ 0 for all x ∈ R+;
(c) Mλ ≥ 0 (componentwise), where

M :=




1
1 k2 − k1

...
...

. . .

1 km − k1 · · · km − km−1

0 1 · · · 1 1


 .

If A is an (m×n)-matrix and KA is the convex cone defined by KA := {x ∈ Rn |
Ax ≥ 0}, one may easily verify that for the dual cone K+

A , we have

K+
A :=

{
y ∈ Rn ∣∣ 〈y , x

〉 ≥ 0 ∀x ∈ KA

}
= ATRm+ ,

where AT denotes the adjoint of A (for example, see [3]).
Proposition 2. Let I = [0,∞) and m > 2. Then (1, d1, . . . , dm) satisfies the

CQ (11) for (P) if and only if (d1, . . . , dm)
T satisfies

dm > 0, N−1B(d1, . . . , dm)
T > 0, and 〈N−1B(d1, . . . , dm)

T ,u〉 < 1,

in which u is the vector of appropriate dimension whose components are all equal to 1,
and N and B are, respectively, the (m−1)× (m−1)- and (m−1)×m-matrices given
by

N :=



k2 − k1 · · · km − k1

. . .
...

km − km−1


 , B :=



1 −1

. . .
...

1 −1


 .

Proof. We denote by cl the closure of a subset of Rn. A classical separation
argument shows that the vector d′ ∈ R1+m does not belong to the closed convex set
clA if and only if there exists λ ∈ R1+m such that

(α) 〈λ,d′〉 < 0, and
(β) 〈λ, ξ〉 ≥ 0 for all ξ ∈ clA.

Clearly, clA can be replaced by A in condition (β), which can thus be rewritten as
(β′) 〈ATλ, p〉 ≥ 0 for all p s.t. Ih(p) is finite and Ap ∈ Rm+1.

But from Lemma 1, the latter condition is equivalent to Mλ ≥ 0. In other words,
we have shown that d′ ∈ clA if and only if for all λ ∈ R1+m, either 〈λ,d′〉 ≥ 0 or
Mλ �≥ 0.

Let us define CM =
{
λ ∈ R1+m|Mλ ≥ 0}. We have

clA = {d′ ∣∣ ∀λ, Mλ �≥ 0 or 〈λ , d′ 〉 ≥ 0}
=
{
d′ ∣∣ ∀λ, λ �∈ CM or

〈
λ , d′ 〉 ≥ 0}

=
{
d′ ∣∣ ∀λ ∈ CM ,

〈
λ , d′ 〉 ≥ 0}

= C+
M .
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By the previously mentioned characterization of C+
M as well as by standard properties

of the relative interior of convex sets (see [17], section 6), we obtain

riA = ri clA = riMT
R

1+m
+ =MT riR1+m

+ =MT (0,∞)1+m.

Consequently, (1, d1, . . . , dm) belongs to riA if and only if


1 = ξ0 + ξ1 + · · · + ξm−1

d1 = (k2 − k1)ξ1 + · · · + (km − k1)ξm−1 + ξm

...

dm−1 = (km − km−1)ξm−1 + ξm

dm = ξm

for some ξ > 0. By subtracting the last line from lines 2, . . . ,m − 1 in the above
system, we see that (1, d1, . . . , dm) ∈ riA dom Ih if and only if

dm > 0, N−1B(d1, . . . , dm)
T > 0, and 〈N−1B(d1, . . . , dm)

T ,u〉 < 1.

Notice that N is invertible since km > · · · > k1 by assumption.
For the case of bounded I = [0,K], one can show Proposition 2 holds with the

one modification of replacing B by

BK :=



1 − K − k1

K − km
. . .

...

1 −K − km−1

K − km


 .

The proof of this is similar to that of Proposition 2.

5. Maximizing the dual function. Recall from Corollary 1 that under the
CQ (8), the optimal value of (P) is equal to the optimal value of the dual problem

(D) max

{
D(λ0,λ) := λ0 +

m∑
i=1

λidi − Ih
(
A
T (λ0,λ

)
)

∣∣∣∣∣ (λ0,λ) ∈ R1+m

}
.

The formal adjoint AT of A is readily computed as

A
T ((λ0,λ)) =

〈
(λ0,λ) , (1, c(·))

〉
.

By Proposition 1, we have

Ih
(
A
T (λ0,λ)

)
=

∫
I

h
(
λ0 + 〈λ, c(x)〉

)
dx

= expλ0 ×
∫ K

0

exp

[
m∑
i=1

λi(x− ki)
+

]
dx

= expλ0 ×
m∑
j=1

∫ kj+1

kj

exp

[(
j∑
i=1

λi

)
x−

j∑
i=1

λiki

]
dt

= expλ0 ×
m∑
j=1

(
exp(−νj)expµjkj+1 − expµjkj

µj

)
,(16)
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in which km+1 := K, νj :=
∑j
i=1 λiki, and µj :=

∑j
i=1 λi. The expression

µ−1
j (expµjkj+1 − expµjkj) is understood to be kj+1 − kj when µj = 0.
For the case I = [0,∞), Theorem 2 directly gave rise to the same dual function

(with the integration carried out over the entire half line). In this case we have∫∞
0

eµ(x) equal to (16) with km+1 := +∞ and the understanding that exp(−∞) is
equal to zero.

We remark that e−λ0 can be taken to be

Z(λ) :=

∫ ∞

0

exp

[
m∑
i=1

λi(x− ki)
+

]
dx,

and hence the dual function to be maximized can be written in terms of λ = (λ1, . . . , λm)
as

logZ(λ)−
m∑
i=1

λidi.(17)

In particular, the MES is indeed a probability distribution and has the form

1

Z(λ)
e
∑m

i=1 λici(x),

with λi maximizing (17).

6. The value function. The value (or objective) function associated with prob-
lem (P) is defined for d = (1, d1, . . . , dm) by

V(d) := inf {Ih(p) ∣∣ d = Ap} .

While it is known that the value function is continuous on the interior of the CQ set,
it is not in general on its closure. It turns out that if V is lower semicontinuous on its
domain (the set of all feasible data), then there is no duality gap, i.e., (9) and (12)
hold whenever the left-hand side is finite.

We will prove V is lower semicontinuous on its domain for the case I = [0,∞).
The proof for bounded I follows verbatim from the first part of the proof. Our proof
of lower semicontinuity only requires the entropy functional (over a bounded domain)
to have weakly compact level sets. The following result from [7] (Theorem 3.8) implies
that our proof holds not just for h but also for any entropy whose convex conjugate
is everywhere finite and differentiable.

Lemma 2. Let I be bounded and let φ : R → R̄ be such that φ∗ is everywhere
finite and differentiable; then

Iφ(p) =

∫
I

φ(p(x)) dx

(i) is strictly convex, (ii) has weakly compact level sets in L1(I), and (iii) pn → p in
L1(I) whenever Iφ(pn)→ Iφ(p) and pn → p weakly in L1(I).

We will also need the following useful lemma, which explicitly gives the MES for
the case of two constraints.
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Lemma 3. The two-constraint problem,2 i.e.,∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize Ih(p) :=
∫ ∞

0

h
(
p(x)

)
dx

s.t. d0 =

∫ ∞

0

p(x) dx,

d1 =

∫ ∞

0

x p(x) dx,

has the explicit solution

p̂(x) =
d2
0

d1
e−(d0/d1)x.

Proof of Lemma 3. Let λ0 = log
d20
d1
and λ1 = −d0d1 . One readily checks that p̂(x)

is feasible (satisfies the two constraints), and Ih(p̂) = d0 log d
2
0/d1−2d0. On the other

hand,

D(λ0, λ1) = λ0d0 + λ1 d1 −
∫ ∞

0

eλ0+λ1x dx = d0 log d
2
0/d1 − 2d0.

The result follows by (12)—in fact, the result would follow simply from weak duality,
i.e., (12) with equality replaced by ≥, which always holds true.

Theorem 3. The value function V is lower semicontinuous on its domain.
Proof. The basis for our proof lies in the fact that the particular structure of the

constraint functions allows us to rewrite all but the first two constraints as integrals
over a finite domain. To this end, observe that for j = 2, . . . ,m, we have

dj =

∫ ∞

kj

(x− kj)p(x) dx

=

∫ ∞

0

xp(x) dx− kj

∫ ∞

0

p(x) dx+

∫ kj

0

(kj − x)p(x) dx(18)

= d1 − kj +

∫ kj

0

(kj − x)p(x) dx.

Consequently, all constraints corresponding to j > 1 can be rewritten as∫ M

0

(kj − x)+p(x) dx = δj := dj − d1 + kj ,

where M is any constant greater than or equal to km.

With this in hand, suppose d,d(n) ∈ domV (d0 = d
(n)
0 = 1) with d(n) → d and

for some constant C, V(d(n)) ≤ C for all n. We prove that V(d) ≤ C. To this end,
pick a sequence p(n) such that Ap(n) = d(n) and Ih(p(n)) ≤ C + 2−n. Fix M > km
and define

d
(n)
M,0 =

∫ M

0

p(n)(x) dx and d
(n)
M,1 =

∫ M

0

x p(n)(x) dx.

2This constrained problem is used as a tool in our analysis. In the context of options, not only
would d0 = 1, but d1 would also be predetermined by the risk-free interest rate.
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Then 1 = d
(n)
M,0 + ε

(n)
M,0 and d

(n)
1 = d

(n)
M,1 + ε

(n)
M,1, where

ε
(n)
M,0 =

∫ ∞

M

p(n)(x) dx and ε
(n)
M,1 =

∫ ∞

M

x p(n)(x) dx.

Clearly, 0 ≤ d
(n)
M,0 ≤ 1 and 0 ≤ d

(n)
M,1 ≤ d

(n)
1 → d1, so we have, up to taking a

subsequence (not relabeled), that d
(n)
M,0 tends to some dM,0 and d

(n)
M,1 tends to some

dM,1. Then ε
(n)
M,0 → εM,0 := 1− dM,0 and ε

(n)
M,1 → εM,1 := d1 − dM,1.

Assume for the moment that for some constant c,∫ M

0

h(p(n)(x)) dx < c.(19)

Since h is everywhere finite and differentiable, Lemma 2 implies that there exists a
subsequence (not relabeled) such that p(n) weakly converges to some pM on [0,M ].
Furthermore, pM satisfies∫ M

0

(kj − x)+ pM (x) dx = δj , j > 1,

∫ M

0

pM (x) dx = dM,0 ≤ 1,

∫ M

0

x pM (x) dx = dM,1 ≤ d1.

We note that either
(a) dM,0 < 1 and dM,1 < d1, or
(b) dM,0 = 1 and dM,1 = d1.
For case (a), we consider the two-constraint problem∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize Ih(p̃) :=
∫ ∞

M

h
(
p̃(x)

)
dx

s.t. ε
(n)
M,0 =

∫ ∞

M

p̃(x) dx,

ε
(n)
M,1 =

∫ ∞

M

x p̃(x) dx.

By Lemma 3, this has an explicit solution

p̃(n)(x) =
(ε

(n)
M,0)

2

ε
(n)
M,1 −Mε

(n)
M,0

e
− ε

(n)
M,0

ε
(n)
M,1−Mε

(n)
M,0

(x−M)

.

Note that on [M,∞) the entropy of p̃(n) is

ε
(n)
M,0 log

(
(ε

(n)
M,0)

2

ε
(n)
M,1 −Mε

(n)
M,0

)
− 2ε(n)

M,0,(20)

which, since ε
(n)
M,0, ε

(n)
M,1 are bounded, is bounded below. Moreover, p̃

(n)(x) converges
pointwise to
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p̃(x) :=
ε2
M,0

εM,1 −MεM,0
e
− εM,0

εM,1−MεM,0
(x−M)

.

Note that for case (a), εM,1 −MεM,0 > 0. Define p̂ to be pM on [0,M ] and p̃ on
[M,∞). Then p̂ is feasible for d, and by taking a subsequence (not relabeled) of p(n),
we have

Ih(p̂) =
∫ M

0

h(pM )dx+

∫ ∞

M

h(p̃)dx

≤
∫ M

0

h(p(n))dx+

∫ ∞

M

h(p̃(n))dx+ 2−n

≤
∫ ∞

0

h(p(n)) + 2−n ≤ C + 2−n + 2−n.

Above we used the weak lower semicontinuity of Ih on [0,M ] in the first inequality,
and the fact that p̃(n) was optimal with respect to its constraints on [M,∞) in the
second inequality. Letting n→∞ gives V(d) ≤ C.

In case (b), pM (extended to be 0 on [M,∞)) is feasible for d. We have p(n) → 0 in
L1 on [M,∞), but since we do not know that Ih is lower semicontinuous on the infinite
domain, we cannot immediately conclude anything about the limit of

∫∞
M

h(p(n)). It

suffices to prove that the liminf
∫∞
M

h(p(n)) = A, with A for some finite A ≥ 0. Then,
by weak lower semicontinuity of Ih on [0,M ], we may pick a subsequence to find

V(d) ≤ Ih(pM ) ≤
∫ M

0

h(pM ) dx + A ≤
∫ ∞

0

h(p(n))dx + 2−n ≤ C + 2−n+1.

To this end, we note that since Ih(p(n)) < C+2−n and
∫M
0

h(p(n)) is bounded below,

liminf
∫∞
M

h(p(n)) cannot be +∞. Moreover, since both ε
(n)
M,0 and ε

(n)
M,1 tend to 0, the

liminf of the entropies of the optimal p̃(n) (i.e., (20)) is greater than or equal to zero.
Since p(n) restricted to [M,∞) always has greater entropy than p̃(n), liminf

∫∞
M

h(p(n))
is some finite number A ≥ 0.

Finally we address assumption (19). Suppose this did not hold; then (up to taking
a subsequence) the entropy of p(n) on [M,∞) would have to approach −∞. But this is
impossible since we have shown above that the optimal (lowest entropy) distribution
on [M,∞), over constraints for which p(n) restricted to [M,∞) is admissible, has
entropy bounded below.

Corollary 2. Equality holds in (9) and (12) whenever the left-hand side is
finite.

Proof. See [18].

7. Remark. We briefly comment on the presence of a prior distribution. For a
fixed distribution q (i.e., q ∈ L1(I),

∫
I
q(x) dx = 1), consider

(Pq)

∣∣∣∣∣∣∣∣∣
minimize

∫
I

p(x) log

(
p(x)

q(x)

)
dx

s.t. 1 =

∫
I

p(x) dx and dj =

∫
I

cj(x)p(x) dx.

Here we minimize the “entropic” distance to a prior distribution q(x). This gives a
more realistic approach to recovering the price distribution, as our previous model
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is based upon the assumption that the only a priori guess for p(x) is uniform. In
practice, one may have a priori information that the unknown distribution could be,
say, log-normal.

For the analysis to carry over, we require q to be bounded away from zero at
x = 0. Particularly, we would require

e−ax < q(x) < ebx a.e. for some positive constants a, b.

This assumption may seem rather odd but it is simply a consequence of the structure
of MESs. Note, for example, that the MES is never zero when x = 0 regardless of the
moment constraints.

The main modification in the results would be that the measure dx in the dual
function D is replaced with q(x)dx, with the corresponding adjustment in the closed
form of the primal solution. Note that this would prevent one from carrying out the
integration performed in (16) for an explicit representation. In this way, the uniform
prior is rather special.
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[15] P. Maréchal, On the principle of maximum entropy as a methodology for solving linear

inverse problems, in Probability Theory and Mathematical Statistics, B. Grigelionis et al.,
eds., VPS/TEV, Zeist, The Netherlands, 1999, pp. 481–492.
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Abstract. In this paper, we are concerned with a primal-dual interior point method for solving
nonlinearly constrained optimization problems, in which Newton-like methods are applied to the
shifted barrier KKT conditions. We propose a new primal-dual merit function, called the primal-
dual quadratic barrier penalty function, framework of line search methods, and show the global
convergence properties of our method. Asymptotic superlinear convergence of the method is achieved
by carefully controlling the parameters. Some numerical experiments are presented to show the
performance of our method.
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1. Introduction. In this paper, we consider the constrained optimization prob-
lem

minimize f(x), x ∈ Rn,
subject to g(x) = 0, xi ≥ 0, i ∈ IP ,

(1)

where we assume that the functions f : Rn → R and g : Rn → Rm are twice
continuously differentiable, and IP is a subset of the index set {1, 2, . . . , n}. Let
p = |IP | > 0 and E be a p×n matrix whose rows consist of eti, i ∈ IP , where ei ∈ Rn

denotes the ith column vector of the identity matrix. Then problem (1) is written as

minimize f(x), x ∈ Rn,
subject to g(x) = 0, Ex ≥ 0.

In what follows, we use the notation

x′ ≡ Ex ∈ Rp

for simplicity.
Let the Lagrangian function of the above problem be defined by

L(w) = f(x)− ytg(x)− ztEx = f(x)− ytg(x)− ztx′,

where w = (x, y, z)t, and y ∈ Rm and z ∈ Rp are the Lagrange multiplier vec-
tors which correspond to the equality and inequality constraints, respectively. Then
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Karush–Kuhn–Tucker (KKT) conditions for optimality of the above problem are
given by

r0(w) ≡

 ∇xL(w)g(x)

X ′Ze


 =


 0

0
0


(2)

and

x′ ≥ 0, z ≥ 0,(3)

where

∇xL(w) = ∇f(x)−A(x)ty − Etz,

A(x) =



∇g1(x)

t

...
∇gm(x)t


 ,

X ′ = diag
(
x′

1, . . . , x
′
p

)
,

Z = diag (z1, . . . , zp) ,

e = (1, . . . , 1)
t ∈ Rp.

To solve the above problem by a primal-dual interior point method, many re-
searchers have applied Newton’s method to the equality part of the barrier KKT
conditions 

 ∇xL(w)
g(x)

X ′Ze− µe


 =


 0

0
0


 , x′ > 0, and z > 0,(4)

where µ > 0 is a barrier parameter. In this case, the Newton step ∆w = (∆x,∆y,∆z)t

is defined by a solution of the Newton equation
 G −A(x)t −Et

A(x) 0 0
ZE 0 X ′


∆w = −


 ∇xL(w)

g(x)
X ′Ze− µe


 ,

where we use the relation X ′Ze = X ′z = ZEx. The matrix G is ∇2
xL(w) or a

quasi-Newton approximation to the Hessian matrix.
To globalize the algorithm, Yamashita [18] introduced the barrier penalty function

Φ(•, µ) : S → R, which is defined by

Φ(x, µ) = f(x)− µ

p∑
i=1

log x′
i + ρ

m∑
i=1

|gi(x)| ,(5)

where µ and ρ are given positive constants, and

S = {x ∈ Rn |x′ > 0} .(6)

Yamashita proposed using the function (5) as a merit function, based on the fact that if
ρ is sufficiently large, the necessary condition for the optimality of the barrier penalty
function minimization problem for a given µ > 0 is the barrier KKT conditions. The
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function (5) is a merit function in the primal space. Using this function for primal
variable x, Yamashita [18], Yamashita and Tanabe [20], and Yamashita, Yabe, and
Tanabe [22] showed the global convergence properties of their primal-dual interior
point methods within the framework of line search strategy and trust region strategy,
respectively. For the variable z, the step size is controlled by a box constraint, and
for the variable y, several step sizes could be theoretically possible, but the one equal
to the step size of z is adopted in this paper. Both algorithms are shown to be quite
efficient through numerical experiments. Different primal merit functions were used,
for example, by Akrotirianakis and Rustem [1, 2] and Vanderbei and Shanno [16]
within the framework of line search strategies. Primal merit functions within the
framework of trust region strategies have also been dealt with by, for example, Byrd,
Gilbert, and Nocedal [4], Byrd, Hribar, and Nocedal [5], Conn et al. [7], and Dennis,
Heinkenschloss, and Vicente [9]. Some researchers have considered primal-dual merit
functions within the framework of line search strategies (see, for example, Argaez and
Tapia [3], El-Bakry et al. [10], and Forsgren and Gill [12]). Specifically, Argaez and
Tapia combined the augmented Lagrangian function and the barrier function as the
merit function. El-Bakry et al. used the residual function of the KKT conditions
for optimality. Forsgren and Gill derived a differentiable primal-dual merit function
based on shifted barrier KKT conditions, which will be discussed below. On the other
hand, superlinear convergence properties of primal-dual methods based on solving the
barrier KKT conditions have been studied by several authors, for example, Martinez,
Parada, and Tapia [14], El-Bakry et al. [10], Yamashita and Yabe [21], Yabe and
Yamashita [17], Yamashita, Yabe, and Tanabe [22], and Byrd, Liu, and Nocedal [6].

In this paper, we consider a more conventional merit function,

F0(x, µ) = f(x)− µ

p∑
i=1

log x′
i +

1

2µ

m∑
i=1

gi(x)
2,(7)

which is extensively described in a book by Fiacco and McCormick [11]. We also call
this function the barrier penalty function. To discriminate this function from (5), we
may call this the quadratic barrier penalty function, whereas the function defined in
(5) may be called the l1 barrier penalty function.

The necessary condition for the optimality of the problem

minimize F0(x, µ), x ∈ S,

is

∇F0(x, µ) = ∇f(x)− µEt(X ′)−1e+
1

µ

m∑
i=1

gi(x)∇gi(x) = 0(8)

and x′ > 0, where S is defined by (6). As in [11, 12, 18], we introduce the variables y
and z by y = −g(x)/µ and z = µ(X ′)−1e. Then the above conditions are written as

r(w, µ) ≡

 ∇f(x)−A(x)ty − Etz

g(x) + µy
X ′Ze− µe


 =


 0

0
0


(9)

and x′ > 0, z > 0 (see, for example, [11]). We call these conditions the shifted
barrier KKT (SBKKT) conditions. It should be noted that we treat x, y, and z as
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independent variables. These conditions are also considered by Forsgren and Gill [12].
Based on these conditions, they proposed a differentiable primal-dual merit function1

MFG(x, y, z) = F0(x, µ) +
ρ

2µ
‖g(x) + µy‖2 − µρ

p∑
i=1

(
log

x′
izi
µ

+ 1− x′
izi
µ

)
,(10)

where F0(x, µ) is defined by (7) and ρ is a positive penalty parameter. They showed
that the Newton step for the SBKKT conditions becomes a descent search direction
for this merit function, but global convergence property was not proved in [12].

The main purpose of this paper is to analyze global convergence and local behavior
of the primal-dual interior point method based on the SBKKT conditions (9). This
paper is organized as follows. We will first propose a differentiable primal-dual merit
function different from (10) in section 2.2 and show global convergence property within
the framework of the line search strategy in section 2.3. Furthermore in section 3,
superlinear convergence of the method to a point satisfying the SBKKT conditions
will be proved. Finally preliminary numerical results and concluding remarks will be
presented in section 4.

We call w satisfying x′ > 0 and z > 0 an interior point. The algorithm in this
paper will generate such interior points. In what follows, the subscript k denotes an
iteration count in the inner iteration or in the outer iteration. Let ‖ · ‖ denote the l2
norm for vectors and the operator norm induced from the l2 vector norm for matrices.
Let Rp

+ = {z ∈ Rp| z > 0}.
2. Algorithm and its global convergence.

2.1. Outer iteration. A prototype of the algorithm that uses the SBKKT con-
ditions is described as follows.

Algorithm IP.
Step 0. (Initialize) Set ε > 0, Mc > 0, and k = 0. Let a positive sequence {µk} , µk ↓ 0

be given.
Step 1. (Approximate SBKKT point) Find an interior point wk+1 that satisfies

‖r(wk+1, µk)‖ ≤Mcµk.(11)

Step 2. (Termination) If ‖r0(wk+1)‖ ≤ ε, then stop.
Step 3. (Update) Set k := k + 1 and go to Step 1.

We note that the barrier parameter sequence {µk} in Algorithm IP need not be
determined beforehand. The value of each µk may be set adaptively as the iteration
proceeds. We call condition (11) the approximate SBKKT condition, and we call a
point that satisfies this condition an approximate SBKKT point.

The following theorem shows the global convergence property of Algorithm IP.
Theorem 2.1. Let {wk} be an infinite sequence generated by Algorithm IP.

Suppose that the sequences {xk} and {yk} are bounded. Then {zk} is bounded, and
any accumulation point of {wk} satisfies KKT conditions (2) and (3).

Proof. Assume that {zk} is not bounded, i.e., that there exists an i such that
(Etzk)i →∞. Equation (11) yields∣∣∣∣ (∇f(xk)−A(xk)

tyk)i
(Etzk)i

− 1

∣∣∣∣ ≤Mc
µk−1

(Etzk)i
.

1Forsgren and Gill [12] originally dealt with the minimization problem min f(x) subject to
g(x) = 0 and h(x) ≥ 0, where f : Rn → R, g : Rn → Rm, h : Rn → Rp. In this paper, their merit
function is rewritten for problem (1).
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The sequences {xk} and {yk} are bounded, and f and g are twice continuously differ-
entiable, and µk → +0 as k →∞. This implies that 1 ≤ 0, which is a contradiction.
Thus the sequence {zk} is bounded.

Let ŵ be any accumulation point of {wk}. Since the sequences {wk} and {µk}
satisfy (11) for each k and µk approaches zero, r0(ŵ) = 0 follows from the definition
of r(w, µ). Therefore the proof is complete.

2.2. Solving the SBKKT conditions. In this subsection we consider a method
for solving the SBKKT conditions approximately for a given µ > 0 (Step 1 of Algo-
rithm IP). Therefore the index k denotes the inner iteration count for a given µ > 0.
We note that x′

k > 0 and zk > 0 for all k in the following. The Newton-like iteration
for solving (9) is defined by

Jk∆wk = −r(wk, µ),(12)

where the matrix Jk is given by

Jk =


 Gk −A(xk)t −Et

A(xk) µI 0
ZkE 0 X ′

k


 ,

and the matrix Gk is ∇2
xL(wk) or its approximation. If Gk = ∇2

xL(wk), then Jk
becomes the Jacobian matrix of r(w, µ) at wk. We note that (12) can be represented
by the forms

Gk∆xk −A(xk)
t∆yk − Et∆zk = −∇xL(wk),(13)

A(xk)∆xk + µ∆yk = −g(xk)− µyk,(14)

ZkE∆xk +X ′
k∆zk = µe−X ′

kzk.(15)

The following lemma gives a sufficient condition for (12) to be solvable.
Lemma 2.2. If the matrix Gk+Et(X ′

k)
−1ZkE+ 1

µA(xk)
tA(xk) is positive definite,

then the matrix Jk is nonsingular.
Proof. Consider the equation

Jk


 vx

vy
vz


 = 0

for (vx, vy, vz)
t ∈ Rn ×Rm ×Rp. Then we have(

Gk + Et(X ′
k)

−1ZkE +
1

µ
A(xk)

tA(xk)

)
vx = 0,

vy = −µ−1A(xk)vx,

vz = −(X ′
k)

−1ZkEvx.

By the assumption we obtain vx = 0, and therefore vy = 0 and vz = 0. This proves
the lemma.

From (13), (14), and (15), we have(
Gk + Et(X ′

k)
−1ZkE +

1

µ
A(xk)

tA(xk)

)
∆xk = −∇F0(xk, µ).(16)
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Therefore it is easy to see that under appropriate assumptions the function F0(x, µ)
can be used as a merit function as in [18]. Because F0(x, µ) depends only on the
primal variables, we should use a method similar to the one which is given in [18]
for controlling the step sizes for dual variables. Instead of following this possibility,
we consider a merit function in the primal-dual space in this paper. As noted in
the introduction, primal-dual merit functions based on the barrier KKT conditions
(4) have been proposed by Argaez and Tapia [3] and El-Bakry et al. [10], while a
primal-dual merit function based on the SBKKT conditions (9) has been proposed by
Forsgren and Gill [12].

To have a merit function which has a minimum point at the SBKKT point, and
which gives a descent direction with a Newton step, it is natural to consider

F0(x, µ) +
ρ

2
‖g(x) + µy‖2 + ρ

2
‖X ′z − µe‖2 ,

where ρ is a positive constant. We note that the second and third terms correspond
to the second and third components in r(w, µ), respectively. However, this function
does not prevent each component of z from tending to zero, and therefore cannot give
a globally convergent algorithm unless an appropriate procedure is devised. Thus we
need a sort of barrier term for the variable z. In this paper we propose the following
function, called the primal-dual barrier penalty function:

F (w, µ) = F0(x, µ) + ρ log
(x′)tz/p+ ‖g(x) + µy‖2 + ‖X ′z − µe‖2

(
∏p
i=1 x

′
izi)

1/p
,(17)

where p is defined in section 1 and ρ > 0 is a constant. This function is a modification
of the primal-dual merit function proposed by Yamashita [19]. The denominator in
the second term is to prevent each zi from tending to 0. For notational convenience
we denote the expression in the last term in (17) by ρφ(w), i.e.,

φ(w) ≡ log
(x′)tz/p+ ‖g(x) + µy‖2 + ‖X ′z − µe‖2

(
∏p
i=1 x

′
izi)

1/p
(18)

= log
(
(x′)tz/p+ ‖g(x) + µy‖2 + ‖X ′z − µe‖2

)
− 1

p

p∑
i=1

log x′
izi.

For later convenience we quote two well-known relations between arithmetic and ge-
ometric means:

(x′)tz
p
≥
(

p∏
i=1

x′
izi

)1/p

,(19)

p∑
i=1

1

px′
izi
≥ 1

(
∏p
i=1 x

′
izi)

1/p
,(20)

where x′ > 0 and z > 0. In the above inequalities, the equalities hold if and only if
x′

1z1 = · · · = x′
pzp.

The function defined by (18) has the following properties.
Lemma 2.3. Suppose that x′ > 0 and z > 0. The following relationships hold:
(i) φ(w) ≥ 0.
(ii) φ(w) = 0 if and only if g(x) + µy = 0 and X ′z − µe = 0.
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Proof. (i) Inequality (19) yields

(x′)tz
p

+ ‖g(x) + µy‖2 + ‖X ′z − µe‖2 ≥
(

p∏
i=1

x′
izi

)1/p

.

Thus we have

φ(w) ≥ log 1 = 0.

(ii) Suppose that g(x) + µy = 0 and X ′z − µe = 0. Since x′
1z1 = · · · = x′

pzp = µ,
we have

(x′)tz
p

=

(
p∏
i=1

x′
izi

)1/p

,

which implies φ(w) = log 1 = 0.
Conversely suppose that φ(w) = 0. It follows from (19) that

(x′)tz
p

+ ‖g(x) + µy‖2 + ‖X ′z − µe‖2 =
(

p∏
i=1

x′
izi

)1/p

≤ (x′)tz
p

,

which implies

‖g(x) + µy‖2 + ‖X ′z − µe‖2 ≤ 0.

Therefore the proof is complete.
Now we calculate the derivatives of the merit function:

∇F (w, µ) =


 ∇F0(x, µ) + ρ∇xφ(w)

ρ∇yφ(w)
ρ∇zφ(w)


 ,(21)

where

∇xφ(w) = Etz/p+ 2A(x)t(g(x) + µy) + 2EtZ(X ′z − µe)

(x′)tz/p+ ‖g(x) + µy‖2 + ‖X ′z − µe‖2 − Et(X ′)−1e

p
,

∇yφ(w) = 2µ(g(x) + µy)

(x′)tz/p+ ‖g(x) + µy‖2 + ‖X ′z − µe‖2 ,

∇zφ(w) = x′/p+ 2X ′(X ′z − µe)

(x′)tz/p+ ‖g(x) + µy‖2 + ‖X ′z − µe‖2 −
Z−1e

p
.

The following lemma shows that an SBKKT point is equivalent to a stationary point
of the function F (w, µ) and gives the relationship between minimizers of functions F
and F0.

Lemma 2.4. Suppose that x′ > 0 and z > 0.
(i) The following statements are equivalent:

(a) r(w, µ) = 0.
(b) ∇F0(x, µ) = 0, g(x) + µy = 0, X ′z − µe = 0.
(c) ∇F (w, µ) = 0.
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(ii) A point w = (x, y, z) is an unconstrained local minimizer of the function
F (w, µ) if and only if x is an unconstrained local minimizer of the function
F0(x, µ) and w satisfies φ(w) = 0.

Proof. (i) The equivalence of (a) and (b) is obvious from (8) and (9).
The equivalence of (b) and (c) comes from (21). If ∇F0(x, µ) = 0, g(x)+µy = 0,

andX ′z−µe = 0, then we have∇F (w, µ) = 0. Conversely assume that∇F (w, µ) = 0.
Then it follows from the relations ∇yφ(w) = 0 and ∇zφ(w) = 0 that

g(x) + µy = 0

and

x′/p+ 2X ′(X ′z − µe)

(x′)tz/p+ ‖X ′z − µe‖2 −
Z−1e

p
= 0.(22)

Multiplying (22) through by Z(X ′)−1, one obtains

z/p+ 2Z(X ′z − µe)

(x′)tz/p+ ‖X ′z − µe‖2 −
(X ′)−1e

p
= 0,

which implies ∇xφ(w) = 0, and we have

∇F0(x, µ) = ∇xF (w, µ) = 0.

Equation (22) also yields

2(X ′z − µe) =
1

p

(
(x′)tz

p
+ ‖X ′z − µe‖2

)
(X ′Z)−1e− 1

p
e.

Multiplying both sides of the above equation by (X ′z − µe)t, we have

2‖X ′z − µe‖2 =
(
(x′)tz

p
+ ‖X ′z − µe‖2

)
− (x′)tz

p

−µ

p

(
(x′)tz

p
+ ‖X ′z − µe‖2

)
et(X ′Z)−1e+ µ

= ‖X ′z − µe‖2 + µ− µ

p

(
(x′)tz

p
+ ‖X ′z − µe‖2

)
et(X ′Z)−1e.

Then we have(
1 +

µ

p
et(X ′Z)−1e

)
‖X ′z − µe‖2 = µ− µ

(x′)tz
p

et(X ′Z)−1e

p

≤ µ− µ
(
∏p
i=1 x

′
izi)

1/p

(
∏p
i=1 x

′
izi)

1/p
(from (19) and (20))

= 0,

which implies X ′z − µe = 0 since µ
p e
t(X ′Z)−1e > 0.

(ii) For fixed x, let

ŷ(x) = − 1

µ
g(x) and ẑ(x) = µ(X ′)−1e.
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Since a point (x, ŷ(x), ẑ(x)) minimizes the function φ(w), and its minimum value is
zero by Lemma 2.3, we have

min
y,z

F (w, µ) = F (x, ŷ(x), ẑ(x), µ) = F0(x, µ).

Therefore by combining the above with result (i) of this lemma, the proof is com-
plete.

In the following, we set ∆x′ = E∆x. To derive an upper bound on the directional
derivative of F , we first calculate the one for φ.

(23)

∇φ(w)t∆w

=
(zt∆x′ + (x′)t∆z) /p+ 2(A(x)∆x+ µ∆y)t(g(x) + µy) + 2 (Z∆x′ +X ′∆z)

t
(X ′z − µe)

(x′)tz/p+ ‖g(x) + µy‖2 + ‖X ′z − µe‖2

− 1

p

p∑
i=1

zi∆x′
i + x′

i∆zi
x′
izi

.

Lemma 2.5. If ∆wk solves (12), then

∇φ(wk)t∆wk ≤ −‖g(xk) + µyk‖2 − ‖X ′
kzk − µe‖2

(x′
k)
tzk/p+ ‖g(xk) + µyk‖2 + ‖X ′

kzk − µe‖2 .(24)

Proof. Since (15) yields

ztk∆x′
k + (x′

k)
t∆zk = et(Zk∆x′

k +X ′
k∆zk)

= pµ− (x′
k)
tzk,

we have by (14), (15), and (23)

∇φ(wk)t∆wk =
µ− (x′

k)
tzk/p− 2 ‖g(xk) + µyk‖2 − 2 ‖X ′

kzk − µe‖2
(x′
k)
tzk/p+ ‖g(xk) + µyk‖2 + ‖X ′

kzk − µe‖2

−
p∑
i=1

µ− (x′
k)i(zk)i

p(x′
k)i(zk)i

=
µ− ‖g(xk) + µyk‖2 − ‖X ′

kzk − µe‖2
(x′
k)
tzk/p+ ‖g(xk) + µyk‖2 + ‖X ′

kzk − µe‖2

−
p∑
i=1

µ

p(x′
k)i(zk)i

.

From relations (19) and (20), we obtain

µ− ‖g(xk) + µyk‖2 − ‖X ′
kzk − µe‖2

(x′
k)
tzk/p+ ‖g(xk) + µyk‖2 + ‖X ′

kzk − µe‖2 −
p∑
i=1

µ

p(x′
k)i(zk)i

≤ pµ

(x′
k)
tzk
− µ

(
∏p
i=1(x

′
k)i(zk)i)

1/p
− ‖g(xk) + µyk‖2 + ‖X ′

kzk − µe‖2
(x′
k)
tzk/p+ ‖g(xk) + µyk‖2 + ‖X ′

kzk − µe‖2

≤ −‖g(xk) + µyk‖2 − ‖X ′
kzk − µe‖2

(x′
k)
tzk/p+ ‖g(xk) + µyk‖2 + ‖X ′

kzk − µe‖2 .

This proves the lemma.
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Lemma 2.6. If ∆wk solves (12), then

∇F (wk, µ)
t∆wk ≤ −∆xtk(Gk + Et(X ′

k)
−1ZkE +

1

µ
A(xk)

tA(xk))∆xk

−ρ ‖g(xk) + µyk‖2 + ‖X ′
kzk − µe‖2

(x′
k)
tzk/p+ ‖g(xk) + µyk‖2 + ‖X ′

kzk − µe‖2 .

Proof. From (16) and (21), we obtain

∇F (wk, µ)
t∆wk = −∆xtk(Gk + Et(X ′

k)
−1ZkE +

1

µ
A(xk)

tA(xk))∆xk(25)

+ρ∇φ(wk)t∆wk,

which proves the lemma in view of (24).
Lemma 2.7. Assume that ∆wk solves (12). If ∆xk = 0, g(xk) + µyk = 0, and

X ′
kzk − µe = 0, then wk is an SBKKT point.

Proof. ∆xk = 0 means ∇F0(xk, µ) = 0 from (16). Thus from Lemma 2.4(i),
r(wk, µ) = 0 follows.

Note that this lemma shows that if the matrixGk+Et(X ′
k)

−1ZkE+ 1
µA(xk)

tA(xk)
is positive definite and wk is not an SBKKT point, then the direction ∆wk is a descent
direction for the primal-dual barrier penalty function from Lemma 2.6. Furthermore
under these conditions, it follows from (16) that ∆xk is a descent direction for the
barrier penalty function F0(x, µ).

2.3. Line search algorithm. To obtain a globally convergent algorithm to an
SBKKT point for a fixed µ > 0, we modify the basic Newton iteration. Our iterations
take the form

wk+1 = wk + αk∆wk,

where αk is a step size determined by the line search procedure described below.
The main iteration is to decrease the value of the primal-dual barrier penalty

function F (w, µ) for fixed µ. Thus the step size is determined by the sufficient decrease
rule of the merit function. We adopt Armijo’s rule. At the point wk, we calculate the
maximum allowed step to the boundary of the feasible region by

αkmax = min

{
min
i

{
− (x′

k)i
(∆x′

k)i

∣∣∣∣ (∆x′
k)i < 0

}
,min

i

{
− (zk)i
(∆zk)i

∣∣∣∣ (∆zk)i < 0

}}
.

A step to the next iterate is given by

αk = ᾱkβ
lk , ᾱk = min {γαkmax, 1} ,

where γ ∈ (0, 1) and β ∈ (0, 1) are fixed constants and lk is the smallest nonnegative
integer such that

F (wk + ᾱkβ
lk∆wk, µ)− F (wk, µ) ≤ ε0ᾱkβ

lk∇F (wk, µ)
t∆wk,

where ε0 ∈ (0, 1).
Now we give the line search algorithm, which is called Algorithm LS. This al-

gorithm can be regarded as the inner iteration of Algorithm IP (see Step 1 of Al-
gorithm IP). We also note that ε′ given below corresponds to Mcµ in Algorithm IP.
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Algorithm LS.
Step 0. (Initialize) Let w0 ∈ S ×Rm ×Rp

+, and µ > 0, ρ > 0. Set ε′ > 0, γ ∈ (0, 1),
β ∈ (0, 1), ε0 ∈ (0, 1). Let k = 0.

Step 1. (Termination) If ‖r(wk, µ)‖ ≤ ε′, then stop.
Step 2. (Compute direction) Calculate the direction ∆wk by (12).
Step 3. (Step size) Calculate

αkmax = min

{
min
i

{
− (x′

k)i
(∆x′

k)i

∣∣∣∣ (∆x′
k)i < 0

}
,min

i

{
− (zk)i
(∆zk)i

∣∣∣∣ (∆zk)i < 0

}}
,

ᾱk = min {γαkmax, 1} .
Find the smallest nonnegative integer lk that satisfies

F (wk + ᾱkβ
lk∆wk, µ)− F (wk, µ) ≤ ε0ᾱkβ

lk∇F (wk, µ)
t∆wk.(26)

Calculate

αk = ᾱkβ
lk .

Step 4. (Update variables) Set

wk+1 = wk + αk∆wk.

Step 5. Set k := k + 1 and go to Step 1.
To prove global convergence of Algorithm LS, we need the following assumptions.
Assumption G.

(G1) The functions f and gi, i = 1, . . . ,m, are twice continuously differentiable.
(G2) The sequence {wk} generated by Algorithm LS remains in a compact set Ω

of S ×Rm ×R+.
(G3) The matrix Gk is uniformly bounded and the matrix Gk + Et(X ′

k)
−1ZkE +

1
µA(xk)

tA(xk) is uniformly positive definite.

Assumption (G2) ensures the existence of a limit point of the generated sequence
as shown in the next theorem. This compactness of the generated sequence is derived
if we assume the compactness of the level set of the function F (w, µ) at the initial
point, for example, because the iterates give decreasing function values.

It follows from Assumptions (G1) and (G2) that the function F (w, µ) is bounded
below on Ω. It is known that the step size rule (26) is well-defined under Assumptions
(G1) and (G2) (see, for example, Theorem 6.3.2 in [8]). We note that if a quasi-Newton
approximation is used for computing the matrix Gk, then we need the continuity of
only the first-order derivatives of functions in Assumption (G1). A specific updating
formula will be given in section 4 to show numerical experiments.

The following theorem gives a convergence of an infinite sequence generated by
Algorithm LS.

Theorem 2.8. Suppose that Assumption G holds. Let an infinite sequence {wk}
be generated by Algorithm LS. Then there exists at least one accumulation point of
{wk}, and any accumulation point of the sequence {wk} is an SBKKT point.

Proof. By Assumption (G2), the sequence {wk} remains in a compact set and thus
has at least one limit point. The compactness of {wk} implies that each component
of x′

k and zk is bounded above. Thus the term(
p∏
i=1

x′
izi

)1/p
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in the denominator and ‖X ′z − µe‖ in the numerator in (17) guarantee that each
component of x′

k and zk is bounded away from zero. Using this boundedness property
and Assumption (G3), there exists a positive number M such that

‖v‖2
M
≤ vt

(
Gk + Et(X ′

k)
−1ZkE +

1

µ
A(xk)

tA(xk)

)
v ≤M ‖v‖2 ∀v ∈ Rn(27)

for all k. From (25) and (27), we have

∇F (wk, µ)
t∆wk ≤ −‖∆xk‖2

M
+ ρ∇φ(wk)t∆wk < 0,(28)

and from (26),

F (wk+1, µ)− F (wk, µ) ≤ ε0ᾱkβ
lk∇F (wk, µ)

t∆wk(29)

≤ −ε0ᾱkβ
lk

(
‖∆xk‖2

M
− ρ∇φ(wk)t∆wk

)

< 0.

Because the sequence {F (wk, µ)} is decreasing and bounded below, the left-hand side
of (29) converges to 0. Since the inverse of the coefficient matrix of (16) is uniformly
bounded by (27), ‖∆xk‖ is uniformly bounded above. Then it follows from (14) and
(15) that ∆yk and ∆zk are also uniformly bounded. Thus we conclude that ‖∆wk‖
is uniformly bounded above. Since lim infk→∞(x′

k)i > 0 and lim infk→∞(zk)i > 0 for
i = 1, . . . , p, we have lim infk→∞ ᾱk > 0.

We will prove that

lim
k→∞

∇F (wk, µ)
t∆wk = 0.(30)

Suppose that there exist an infinite subsequence K ⊂ {0, 1, . . .} and a δ such that∣∣∇F (wk, µ)
t∆wk

∣∣ ≥ δ > 0 ∀k ∈ K.(31)

Then we have lk → ∞, k ∈ K, from (29) because the left-most expression tends to
zero, and therefore we can assume lk > 0 for sufficiently large k ∈ K without loss of
generality. In particular, the point wk + αk∆wk/β does not satisfy condition (26).
Thus, we have

F (wk + αk∆wk/β, µ)− F (wk, µ) > ε0αk∇F (wk, µ)
t∆wk/β.(32)

By the mean value theorem, there exists a θk ∈ (0, 1) such that

F (wk + αk∆wk/β, µ)− F (wk, µ) = αk∇F (wk + θkαk∆wk/β, µ)
t∆wk/β.(33)

Then, from (32) and (33), we have

ε0∇F (wk, µ)
t∆wk < ∇F (wk + θkαk∆wk/β, µ)

t∆wk.

This inequality yields

∇F (wk + θkαk∆wk/β, µ)
t∆wk −∇F (wk, µ)

t∆wk(34)

> (ε0 − 1)∇F (wk, µ)
t∆wk > 0.
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Thus by the property lk →∞, we have αk → 0 and thus ‖θkαk∆wk/β‖ → 0, k ∈ K,
because ‖∆wk‖ is uniformly bounded above. Thus the left-hand side of (34) and
therefore ∇F (wk, µ)

t∆wk converge to zero when k → ∞, k ∈ K. This contradicts
assumption (31). Therefore we have proved (30).

It follows from (24) and (28) that

∇F (wk, µ)
t∆wk ≤ −‖∆xk‖2

M
− ρ

‖g(xk) + µyk‖2 + ‖X ′
kzk − µe‖2

(x′
k)
tzk/p+ ‖g(xk) + µyk‖2 + ‖X ′

kzk − µe‖2 < 0.

Since the compactness of the sequence {wk} guarantees that the denominator of the
above equation does not approach infinity, (30) implies that

∆xk → 0, g(xk) + µyk → 0, X ′
kzk − µe→ 0.(35)

We should note that the existence of an accumulation point of the sequence {wk} is
ensured by Assumption (G2). Let an arbitrary accumulation point of the sequence
{wk} be ŵ = (x̂, ŷ, ẑ)t ∈ S ×Rm ×Rp

+. Then from (35), we have

ŷ = −g(x̂)

µ
and ẑ = µ(X̂ ′)−1e,

where X̂ ′ = diag(x̂′
1, . . . , x̂

′
p). Because ∆xk → 0 implies ∇F0(x̂, µ) = 0 from (16) and

assumption (G3), we have r(ŵ, µ) = 0 from Lemma 2.4(i).

3. Q-superlinear convergence. In this section, we discuss under which condi-
tion Algorithm IP can possess the superlinear convergence property. For this purpose,
we consider the following local algorithm, which is called Algorithm IPlocal. By ap-
propriately controlling the parameters µk (µk ↓ 0) and γk (γk ↑ 1) at each step near a
KKT point, we can show that the unit Newton-like step from an approximate SBKKT
point yields a next approximate SBKKT point that corresponds to the new updated
barrier parameter, and that the sequence {wk} generated by Algorithm IPlocal con-
verges Q-superlinearly to the KKT point.

Algorithm IPlocal.
Step 0. (Initialize) Set w0 ∈ S ×Rm ×Rp

+ and ε > 0. Let k = 0.
Step 1. (Termination) If ‖r0(wk)‖ ≤ ε, then stop.
Step 2. (Update the parameters) Choose the parameters µk > 0 and 0 < γk < 1.
Step 3. (Compute direction) Calculate the direction ∆wk by the linear system of

equations

Jk∆wk = −r(wk, µk),(36)

where the matrix Jk is given by

Jk =


 Gk −A(xk)t −Et

A(xk) µkI 0
ZkE 0 X ′

k


 .(37)

Step 4. (Step size) Set

αkmax = min

{
min
i

{
− (x′

k)i
(∆x′

k)i

∣∣∣∣ (∆x′
k)i < 0

}
,min

i

{
− (zk)i
(∆zk)i

∣∣∣∣ (∆zk)i < 0

}}
,

αk = min {γkαkmax, 1} .
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Step 5. (Update variables) Set

wk+1 = wk + αk∆wk.

Step 6. Set k := k + 1 and go to Step 1.
Denote the Jacobian matrix of r(w, µ) by

∇r(w, µ) =


 ∇2

xL(w) −A(x)t −Et

A(x) µI 0
ZE 0 X ′


 .

Let w∗ = (x∗, y∗, z∗)t be a KKT point of (1). In the following, we assume that k
is sufficiently large and µk is sufficiently close to 0. In order to prove superlinear
convergence, we need Assumption L.

Assumption L.
(L1) The sequence {wk} converges to w∗.
(L2) The second derivatives of the functions f and g are Lipschitz continuous at

x∗.
(L3) The second-order sufficient conditions for optimality and strict complemen-

tarity hold at w∗. Moreover, the active constraint gradients are linearly in-
dependent.

(L4) µk and γk are updated by the rules

µk = ξk‖r0(wk)‖1+τ1 and 1− γk = σξk‖r0(wk)‖τ2 ,
where τ1, τ2, and σ are positive constants such that min(1, τ2) > τ1 and
0 < σ < 1, and ξk is a positive number that satisfies 1

M ′ ≤ ξk ≤ M ′ for a
positive constant M ′.

(L5) The matrix Gk satisfies, for k sufficiently large,

‖Gk −∇2
xL(w

∗)‖ < δ

for a positive constant δ > 0 such that ‖∇r0(w∗)−1‖δ < 1, and

‖(Gk −∇2
xL(wk))∆xk‖ = O(‖∆wk‖1+τ3)(38)

for some positive constant τ3 such that τ3 > τ1.
First we note that the positive definiteness of the matrix Gk + Et(X ′

k)
−1ZkE +

1
µA(xk)

tA(xk) is not assumed. We should note that by (L3), the Jacobian matrix

∇r0(w∗) is nonsingular. Then by (L2), (L4), and (L5), we have

‖Jk −∇r0(w∗)‖ ≤ ‖∇r0(wk)−∇r0(w∗)‖+ ‖∇2
xL(wk)−∇2

xL(w
∗)‖

+‖Gk −∇2
xL(w

∗)‖+ µk

≤ ‖∇r0(wk)−∇r0(w∗)‖+ ‖∇2
xL(wk)−∇2

xL(w
∗)‖

+δ +M ′‖r0(wk)‖1+τ1 .
Thus there is some positive constant ζ1 such that

‖∇r0(w∗)−1‖‖Jk −∇r0(w∗)‖ ≤ ζ1 < 1,

the matrix Jk in (37) is nonsingular, and we have

‖J−1
k ‖ ≤ ζ2
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for a positive constant ζ2 by the Banach perturbation lemma. Thus the linear system
of equations (36) has a unique solution. We also note that condition (38) is stronger
than the condition

lim
k→∞

‖(Gk −∇2
xL(wk))∆xk‖
‖∆wk‖ = 0,

which was discussed by Martinez, Parada, and Tapia [14] and Yabe and Yamashita
[17] for superlinear convergence. (Note that this corresponds to the Dennis–Moré
condition for unconstrained optimization.)

Now we give the following theorem, which is very important for proving the
superlinear convergence property of Algorithm IPlocal.

Theorem 3.1. Suppose that Assumption L holds. Let Mc be a constant such
that 0 < Mc <

√
p.

(i) If a point ŵ = (x̂, ŷ, ẑ)t ∈ S ×Rm ×Rp
+ satisfies ‖r(ŵ, µk)‖ ≤Mcµk, then

ν1‖r0(wk)‖1+τ1 ≤ ‖r0(ŵ)‖ ≤ ν2‖r0(wk)‖1+τ1

for positive constants ν1 and ν2.
(ii) If ‖r(wk, µk−1)‖ ≤Mcµk−1, then αk = 1.
(iii) The following holds:

‖r(wk +∆wk, µk)‖ ≤Mcµk.(39)

Proof. (i) Since ‖r(ŵ, µk)‖ ≤Mcµk, we have

‖r0(ŵ)‖ =
∥∥∥∥∥∥r(ŵ, µk) + µk


 0
−ŷ
e



∥∥∥∥∥∥ = O(µk) = O(‖r0(wk)‖1+τ1).

The last equality follows from Assumption (L4). Furthermore we obtain

‖r0(ŵ)‖ =
∥∥∥∥∥∥r(ŵ, µk) + µk


 0
−ŷ
e



∥∥∥∥∥∥ ≥ µk

∥∥∥∥∥∥

 0
−ŷ
e



∥∥∥∥∥∥− ‖r(ŵ, µk)‖

= µk
√
‖ŷ‖2 + ‖e‖2 − ‖r(ŵ, µk)‖ ≥ (

√
p−Mc)µk

≥
√
p−Mc

M ′ ‖r0(wk)‖1+τ1 .

(ii) We will show that

γkmin
i

{
− (x′

k)i
(∆x′

k)i

∣∣∣∣ (∆x′
k)i < 0

}
≥ 1.(40)

Assumption (L4) implies γk → 1. For i such that (Ex∗)i > 0, it follows from (∆x′
k)i →

0 and γk → 1 that

−γk (x′
k)i

(∆x′
k)i

> 1 for (∆x′
k)i < 0.

Now we consider an index i such that (Ex∗)i = 0. In this case we note that (z∗)i > 0
by Assumption (L3), and thus (zk)i >

1
2 (z

∗)i. By (36), we have

(x′
k)i + (∆x′

k)i =
µk
(zk)i

− (x′
k)i(∆zk)i
(zk)i

.(41)
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Since ‖r(wk, µk−1)‖ ≤Mcµk−1, we have

µk ≥ 1

M ′ ‖r0(wk)‖1+τ1 ≥
ν1+τ1
1

M ′ ‖r0(wk−1)‖(1+τ1)2(42)

by result (i), and

|(x′
k)i(zk)i − µk−1| ≤Mcµk−1.

The latter yields

(x′
k)i ≤

(1 +Mc)µk−1

(zk)i
=

1 +Mc

(zk)i
ξk−1‖r0(wk−1)‖1+τ1 .

Since the uniform boundedness of J−1
k and the result of (i) imply

|(∆zk)i| ≤ ‖∆wk‖ = O(‖r(wk, µk)‖) = O(‖r0(wk)‖) = O(‖r0(wk−1)‖1+τ1),

we have

(x′
k)i|(∆zk)i| = O

(
‖r0(wk−1)‖2(1+τ1)

)
.(43)

It follows from (41) and (43) that

(x′
k)i + (∆x′

k)i >
µk
(zk)i

− ψ

(zk)i
‖r0(wk−1)‖2(1+τ1)

for some positive constant ψ. Since Assumption (L4) implies (1+τ1)
2 < 2(1+τ1), (42)

implies that the first term of the right-hand side is dominant in the above equation.
Thus for any constant σ̂ ∈ (0, 1), the following holds for k sufficiently large:

(x′
k)i + (∆x′

k)i > σ̂
µk
(zk)i

.

Letting σ̂ = σ given by (L4), we have

(x′
k)i + (∆x′

k)i > σ
µk
(zk)i

.(44)

Since (x′
k)i(zk)i ≤ ‖r0(wk)‖, Assumption (L4) guarantees

µk
(zk)i

=
ξk‖r0(wk)‖1+τ1

(zk)i
≥ ξk(x

′
k)i‖r0(wk)‖τ1

≥ ξk(x
′
k)i‖r0(wk)‖τ2 =

1

σ
(x′
k)i(1− γk);

then we have

σ
µk
(zk)i

≥ (x′
k)i(1− γk).(45)

Thus by (44) and (45) we obtain

(x′
k)i + (∆x′

k)i > (1− γk)(x
′
k)i,
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which implies

γk

(
− (x′

k)i
(∆x′

k)i

)
> 1 for (∆x′

k)i < 0.

Hence (40) holds.
In the same way as above, we can prove that

γkmin
i

{
− (zk)i
(∆zk)i

∣∣∣∣ (∆zk)i < 0

}
≥ 1.

Therefore the result follows.
(iii) From Assumptions (L1), (L4), and (L5), we directly obtain

‖r(wk +∆wk, µk)‖ = ‖r(wk, µk) +∇r(wk, µk)∆wk +O(‖∆wk‖2)‖
≤ ‖r(wk, µk) + Jk∆wk‖+O(‖∆wk‖2)

+‖(Jk −∇r(wk, µk))∆wk‖
= ‖(Gk −∇2

xL(wk))∆xk‖+O(‖∆wk‖2)
= O(‖∆wk‖min(1+τ3, 2))

= O(‖r(wk, µk)‖min(1+τ3, 2))

= O(‖r0(wk)‖min(1+τ3, 2))

= o(‖r0(wk)‖1+τ1)
= o(µk)

≤Mcµk.

This proves (39).
Therefore the proof of this theorem is complete.
Theorem 3.1 shows that if wk satisfies the approximate SBKKT condition for

µk−1, then αk is set to be unit in Step 4 of Algorithm IPlocal and wk+1 = wk +
∆wk also satisfies the approximate SBKKT condition for µk. Thus by result (i) of
Theorem 3.1, we have

ν1‖r0(wk)‖1+τ1 ≤ ‖r0(wk+1)‖ ≤ ν2‖r0(wk)‖1+τ1(46)

for positive constants ν1 and ν2. This implies that the R-superlinear convergence
property of Algorithm IPlocal can be obtained if we choose an approximate SBKKT
point for µ0 as an initial point. Furthermore, it follows from Assumption L that there
exist positive constants ν′1 and ν′2 such that

ν′1‖wk − w∗‖ ≤ ‖r0(wk)‖ ≤ ν′2‖wk − w∗‖.(47)

Combining Assumption (L4), (46), and (47), we obtain the following corollary.
Corollary 3.2. Suppose that Assumption L holds. Then the sequences {wk}

and {µk} generated by Algorithm IPlocal converge Q-superlinearly to the KKT point
w∗ and zero, respectively, and the relationships

ν′′1 ‖wk − w∗‖1+τ1 ≤ ‖wk+1 − w∗‖ ≤ ν′′2 ‖wk − w∗‖1+τ1

and

ν′′1µ
1+τ1
k ≤ µk+1 ≤ ν′′2µ

1+τ1
k

hold for positive constants ν′′1 and ν′′2 .
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4. Numerical experiment and concluding remarks. Before stating con-
cluding remarks, we show a preliminary numerical experiment of the algorithm of
this paper. A test code was written by Takahito Tanabe, and the following experi-
ment was executed by him. The matrix Gk is updated by the quasi-Newton method
using the BFGS formula. We use updating formula suggested by Powell [15] for the
SQP method,

Gk+1 = Gk − Gksks
t
kGk

stkGksk
+

uku
t
k

stkuk
,

where uk is calculated by

sk = xk+1 − xk,

vk = ∇xL(xk+1, yk+1, zk+1)−∇xL(xk, yk+1, zk+1),

uk = θkvk + (1− θk)Gksk,

θk =

{
1, stkvk ≥ 0.2stkGksk,

0.8stkGksk
st
k
Gksk−stkvk

, stkvk < 0.2stkGksk,

to satisfy stkuk > 0 for the hereditary positive definiteness of the update.
If the barrier parameter is large (µk > ε0, where ε0 = 104√εm,

√
εm � 1.4×10−8,

εm is the machine epsilon), we use Algorithms IP and LS, and the barrier parameter
is updated by

µk+1 = max

(‖r(wk+1, µk)‖
Mµ

,
µk
Mµ0

)

when the condition

‖r(wk+1, µk)‖ ≤Mcµk(48)

is satisfied. The following values of parameters are used in our experiment:

Mµ = 4, Mµ0 = 106, Mc = 3.

Suppose at wk+1, (48) is satisfied and the barrier parameter is considered small
(µk ≤ ε0); then we try to follow the steps described in Algorithm IPlocal hereafter.
In Algorithm IPlocal we use the values τ1 = 0.6, τ2 = 1. If the next iterate computed
by the method in IPlocal failed to satisfy (48), we would resort to Algorithm LS to
satisfy the condition, and then proceed to try the next iteration by Algorithm IPlocal
from the point obtained by Algorithm LS. If the iterate computed by the method
in IPlocal satisfies (48), we proceed to the next iteration in Algorithm IPlocal. The
barrier parameter is updated by the method described in Algorithm IPlocal in both
cases.

The test problems are chosen from the Hock and Schittkowski test set [13]. Of
the tested 39 problems, the code failed to solve 6 problems. The failed problems are
marked with *i and *d in Table 1. The mark *i shows that the method stopped because
of the iteration limits. The mark *d means that the method failed to produce a
descent direction. Of the failed problems, two cases stopped with nondescent direction
produced, and the remaining 4 problems stopped with iteration count over. In the
table, “objective” means the final objective function value, “residual” means the final



PRIMAL-DUAL QUADRATIC BARRIER PENALTY FUNCTION 497

Table 1

Problem n m Objective Residual #iter #eval

HS41 4 1 1.92593 6.6e-07 20 24

HS42 4 2 13.8579 1.6e-07 9 12

HS43 4 3 -44 8.5e-07 11 14

HS44 4 6 -4.73317 1.7e-07 23 28

HS45 5 0 1.00001 9.2e-07 29 32

HS46 5 2 3.1181e-07 3.6e-05 101 645 *i

HS47 5 3 4.21871e-09 5.1e-07 35 73

HS48 5 2 6.02339e-14 1.1e-07 7 9

HS49 5 2 3.6357e-07 1.1e-06 28 30

HS50 5 3 4.25159e-09 6.7e-07 19 22

HS51 5 3 1.34743e-12 9.5e-07 5 8

HS52 5 3 5.32665 1.5e-07 15 18

HS53 5 3 4.09302 6.7e-08 11 13

HS54 6 1 -0.903488 1.2e-06 60 97

HS55 6 6 6.33334 9.0e-07 14 17

HS56 7 4 -8.06032e+41 1.2e+14 7 27 *d

HS57 2 1 0.0306463 1.2e-07 11 14

HS59 2 3 -7.80279 7.1e-07 25 29

HS60 3 1 0.032568 9.5e-07 8 10

HS61 3 2 -143.646 1.3e-06 7 9

HS62 3 1 -26272.5 1.3e-06 16 18

HS63 3 2 961.715 5.8e-07 13 16

HS64 3 1 6458.18 2.7e-04 101 619 *i

HS65 3 1 0.953548 5.8e-07 14 16

HS66 3 2 0.518164 2.1e-07 22 34

HS67 3 14 -910.017 1.0e-01 101 625 *i

HS68 4 2 2.62086e-05 6.8e-07 23 25

HS69 4 2 0.00401042 5.5e-08 24 26

HS70 4 1 0.00749846 1.1e-06 61 82

HS71 4 2 17.0141 1.4e-06 16 20

HS72 4 2 727.679 1.7e-07 69 144

HS73 4 3 28.4203 2.0e-08 20 23

HS74 4 5 6112.23 7.9e+04 101 297 *i

HS75 4 5 5431.57 7.0e+03 75 170 *d

HS76 4 3 -2.16186 1.1e-06 14 16

HS77 5 2 0.241503 5.1e-07 14 17

HS78 5 3 -2.9197 4.4e-07 11 13

HS79 5 3 0.0787768 2.3e-07 10 12

HS80 5 3 0.0539498 1.2e-06 11 13

value of ‖r0(w)‖, “#iter” means number of total inner iterations needed, and “#eval”
means number of function evaluations needed.

In summary, we have proposed a new differentiable primal-dual merit function in
this paper. Theorem 2.8 ensures the global convergence of Algorithm LS to an SBKKT
point for a fixed µ and therefore the global convergence of Algorithm IP to a KKT
point of problem (1), while Corollary 3.2 implies the Q-superlinear convergence of
Algorithm IPlocal to a KKT point of problem (1). However, this does not necessarily
imply the superlinear convergence of Algorithm IP, because the Armijo line search
criterion required in the inner iteration (Algorithm LS) may prevent it from choosing
a unit step size even if the iterates are near a KKT point. This phenomenon is known
as the Maratos effect. However, if we adopt a unit step size when the current point
wk (the initial point for the kth inner iteration) satisfies the approximate SBKKT
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condition for sufficiently small µk−1, and wk +∆wk (the first step for the kth inner
iteration) satisfies the approximate SBKKT condition for µk, even when the merit
function value does not satisfy the Armijo rule, then Theorems 2.8 and 3.1 assure that
we can have the global and superlinear convergence of Algorithm IP by appropriately
controlling the parameters µk and γk at the final stage of iterations. The numerical
experiment above adopts this strategy.

We could devise an algorithm for avoiding the Maratos effect explicitly. For this
purpose, we could use a nonmonotone strategy like the primal-dual interior point trust
region method given by Yamashita, Yabe, and Tanabe [22], for example. Since we
think it is another theme, we do not elaborate on a specific exposition of the algorithm
in the present paper. Further research can be expected.

Acknowledgments. We are grateful to anonymous referees for their valuable
suggestions, and Takahito Tanabe for implementing the algorithm.
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Abstract. T -algebras are nonassociative algebras defined by Vinberg in the early 1960s for the
purpose of studying homogeneous cones. Vinberg defined a cone K(A) for each T -algebra A and
proved that every homogeneous cone is isomorphic to one such K(A). We relate each T -algebra A
with a space of linear operators in such a way that K(A) is isomorphic to the cone of positive definite
self-adjoint operators. Together with Vinberg’s result, we conclude that every homogeneous cone is
isomorphic to a “slice” of a cone of positive definite matrices.

Key words. homogeneous cones, T -algebras, positive definite cones

AMS subject classification. 90C25

DOI. S1052623402406765

1. Introduction. Due to the generality of interior-point methods, they have
been successfully applied to a wide class of conic programming problems; one of the
more prominent of these classes is semidefinite programming (SDP), whose underlying
cone is the set of positive semidefinite symmetric matrices.

Positive semidefinite cones are examples of homogeneous cones. A full-dimen-
sional cone K in Rn is homogeneous if the group of automorphisms of the cone acts
transitively on it (i.e., for every x, y ∈ K, there exists a linear automorphism A of K
such that Ax = y). Homogeneous cones were studied by Vinberg [4], who associated
homogeneous cones with certain nonassociative algebras called T -algebras. Through
T -algebras, Vinberg classified all homogeneous self-dual cones.

From the association of homogeneous cones with T -algebras, we show that ho-
mogeneous cones are “slices” of positive definite cones. More precisely, we show that
for some m ≤ n, there exists an injective linear map M : Rn → S

m×m such that
M(K) = S

m×m
++ ∩M(Rn), where Sm×m is the space of m-by-m symmetric matrices

and Sm×m
++ is the cone of positive definite symmetric m-by-m matrices.1

(After the first version of this paper appeared, Faybusovich pointed out that the
same conclusion follows from his work [2]. Indeed, by recognizing the cone K(A)
as a cone of “squares” in the context of [2], it follows from the construction in [2]
that K(A) is a “slice” of a positive definite cone. However, this construction requires

∗Received by the editors April 30, 2002; accepted for publication (in revised form) May 12, 2003;
published electronically November 6, 2003. This research was performed as part of the author’s
Ph.D. study at Cornell University.
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†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, Canada

N2L 3G1 (cbchua@math.uwaterloo.ca).
1The converse is not true. For example, consider the cone K = {(x1, x2, x3)T ∈ R

3 : x1 > 0,

x3 >
√
x21 + x22}. This is a “slice” of the positive definite cone S3×3++ , as can be seen by taking

M : R3 → S
3×3 to be the injective linear map

M : (x1, x2, x3)
T �→


x1 0 0
0 x3 − x1 x2
0 x2 x3 + x1


 .

From Vinberg’s classification of homogeneous cones (see [4]), a three-dimensional homogeneous cone
is linearly isomorphic to either the positive orthant or the second-order cone. Therefore, K is not
homogeneous.

500
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an order n positive definite cone, i.e., a cone of symmetric positive definite n-by-n
matrices. In this paper, our construction may produce a cone of a lower order with
the proper choice of some index set I.)

One consequence of this result is that we can model conic programming problems
over homogeneous cones as SDP problems, which are studied much more thoroughly
than homogeneous cone programming (see, e.g., [1]). However, from a practical point
of view, modeling a conic programming problem over a homogeneous cone as an SDP
may not be the best thing to do. For example, to optimize over an n-dimensional
second-order cone (i.e., Lorentz cone), we can use the standard logarithmic barrier,
which has a complexity value of 2. Modeling it as an SDP would embed the second-
order cone into the cone of positive definite (n − 1)-by-(n − 1) matrices. Thus we
would be using a barrier of complexity value n− 1 instead of 2 if we solve a second-
order programming as an SDP. In fact, Güler and Tuncel [3] showed that the best
barrier parameter for a homogeneous cone is the same as the rank r of the cone,
which is an algebraic property of the cone. In the same paper, a barrier of complex-
ity value r is given. However, the applicability of this barrier in implementations
of interior-point methods for optimization over homogeneous cones depends on the
efficient computability of its gradient and Hessian, which is still not addressed.

This paper is organized as follows. We begin by describing T -algebras as defined
in [4]. We then state the main result in [4] that associates homogeneous cones with
T -algebras. In section 3, we associate T -algebras with spaces of linear operators; in
particular, we define, for each T -algebra, an injective linear map L that maps elements
in the T -algebra to linear operators. The special structure of T -algebras allows us to
derive important properties of L, which is used in the proof of our main theorem. In
the last section, we prove the main theorem: every homogeneous cone is a “slice” of
some cone of positive definite linear operators.

2. T -algebras and homogeneous cones. This section is devoted to the de-
scription of T -algebras and the association of homogeneous cones with T -algebras.

A homogeneous cone K is a full-dimensional convex pointed cone in a finite-
dimensional space such that the group of linear automorphisms of K acts transitively
on it (i.e., for every x, y ∈ K, there exists a linear map A such that Ax = y and
AK = K).

A matrix algebra of rank r is an algebra A =
⊕r

i,j=1Aij such that

AijA�k ⊂
{
Aik if j = �,

{0} if j 
= �.

Denote the dimension of Aij by nij .
If we represent each a ∈ A by the generalized matrix (aij)

r
i,j=1, where aij denotes

the projection of a onto Aij , then the representation of ab is given by the matrix
product (aij)(bij). For example, suppose A is a matrix algebra of rank 2 and a =

a11 + a12 + a21 + a22. It is easy to see that (ab)ij =
∑2
k=1 aikbkj , which corresponds

to the usual matrix multiplication.
An involution of a matrix algebra A is an linear map ∗ of A onto itself such that
1. a∗∗ = a,
2. (ab)∗ = b∗a∗, and
3. A∗

ij ⊂ Aji.
In its matrix representation, an involution corresponds to taking the transpose, i.e.,
(a∗)ij = a∗ji. A consequence of the existence of an involution is that nij = nji.
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Example 2.1 (real matrices). The algebra Rr×r of real r-by-r matrices is a
matrix algebra of rank r. In this matrix algebra, Aij is the subspace of matrices that
are zero outside the (i, j)th entry, and nij = 1. The transposition of matrices is an
involution for the matrix algebra.

Example 2.2 (real vectors). When nij = 0 for all i 
= j, we get the algebra of
real r-vectors, where the multiplication of two vectors is given by their componentwise
product. The involution is the identity map.

Henceforth, A will be a matrix algebra with involution.
Let

T :=
∑
i≤j
Aij

be the subspace of A whose elements are represented by upper-triangular matrices,
and let

H := {a ∈ A : a = a∗}
be the subspace of A whose elements are represented by “symmetric” matrices.

Suppose Aii is isomorphic to the field R of real numbers for each i. We let
ρi : Aii → R denote the isomorphism and ei denote the unit element of Aii. Since
the function f : R → R : x → ρi(ρ

−1
i (x)∗) is a linear automorphism on R, it is the

identity map. Hence a∗ii = aii for all aii ∈ A. The trace of an element a ∈ A is defined
as

tr a :=

r∑
i=1

ρi(aii).

A T -algebra is a matrix algebra A of rank r with involution ∗ that satisfies the
following axioms:

(I) Aii is isomorphic to R.
(II) eiaij = aijej = aij for all aij ∈ Aij .
(III) tr ab = tr ba.
(IV) tr a(bc) = tr(ab)c.
(V) tr a∗a > 0 unless a = 0.
(VI) t(uw) = (tu)w for all t, u, w ∈ T .
(VII) t(uu∗) = (tu)u∗ for all t, u ∈ T .
In a T -algebra A, the element with aii = ei and aij = 0, i 
= j, is the unit element

e of A.
From axiom (V), we see that 〈a, b〉 := tr a∗b is an inner product on A. Under this

inner product, Aij is orthogonal to Ak� unless (i, j) = (k, �).
Let

I := {t ∈ T : ρi(tii) > 0 for 1 ≤ i ≤ r}
be the subgroup of upper-triangular matrices whose diagonal elements are positive,
and let

K(A) := {tt∗ : t ∈ I} ⊂ H.
Vinberg [4] proved the following important result that relates homogeneous cones with
the cones K(A).

Theorem 2.3. A cone K is homogeneous if and only if there exists a T -algebra
A such that K is isomorphic to K(A).
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3. T -algebras and linear operators. Let

V̂ :=

r∑
i=1

Ai1

be the subspace of “vectors.” Each a ∈ A defines a linear operator L̂a : V̂ → V̂ by
v → av. Since A is nonassociative in general, we cannot expect L̂aL̂b = L̂ab to hold in
general, where L̂aL̂b is the composition of L̂a and L̂b. Still, T -algebras have enough
structure to allow us to prove the following useful proposition.

Proposition 3.1. Let L̂ : A → L[V̂, V̂] be as defined above. For every a ∈ A
and t, u ∈ T ,

(i) L̂a∗ = L̂∗
a, where L̂

∗
a denotes the adjoint of L̂a under 〈·, ·〉;

(ii) L̂tL̂u = L̂tu; and
(iii) L̂tL̂t∗ = L̂tt∗ .

Furthermore, L̂a is the zero map if and only if aji = aij = 0 for all i with ni1 
= 0
and all j ≥ i.

Proof. (i) For any u, v ∈ V̂, 〈L̂∗
au, v〉 = 〈u, L̂av〉 = tru∗(av) = tr(u∗a)v =

tr(a∗u)∗v = 〈a∗u, v〉 = 〈L̂a∗u, v〉 by axiom (IV). It follows that L̂∗
a = L̂a∗ .

(ii) By axiom (VI), L̂u∗L̂t∗v = L̂u∗(t∗v) = u∗(t∗v) = (u∗t∗)v = L̂u∗t∗v. This
implies that L̂u∗L̂t∗ = L̂u∗t∗ . Taking

∗ on both sides, we get L̂tL̂u = L̂tu.
(iii) By axiom (VII), L̂tL̂t∗v = L̂t(t

∗v) = t(t∗v) = (tt∗)v = L̂tt∗v. So, L̂tL̂t∗ =
L̂tt∗ .

Suppose that L̂a is the zero map and ni1 
= 0. Then, for any vi1 ∈ Ai1 with
vi1 
= 0, ajivi1 = (L̂avi1)j1 = 0. So, for any j ≥ i,

0 = tr(ajivi1)(ajivi1)
∗

=tr aji(vi1(v
∗
i1a

∗
ji)) by axiom (IV)

= tr((vi1v
∗
i1)a

∗
ji)aji by axioms (III) and (VII)

= tr(vi1v
∗
i1)(a

∗
jiaji) by axiom (IV)

=ρi(vi1v
∗
i1)ρi(a

∗
jiaji),

implying that ρi(a
∗
jiaji) = 0 since ρi(vi1v

∗
i1) 
= 0 when vi1 
= 0. Therefore, we conclude

that aji = 0. Since L̂a∗ = L̂∗
a is also the zero map, the same argument shows that

(a∗)ji = 0, from which we conclude that aij = (a∗ij)
∗ = ((a∗)ji)∗ = 0∗ = 0.

Conversely, suppose that a ∈ A is such that aij = aji = 0 for all i with ni1 
= 0

and all j ≥ i. Let v ∈ V̂ be arbitrary. Consider Lavi1 for each 1 ≤ i ≤ r. Clearly,
Lavi1 = 0 if ni1 = 0. If ni1 
= 0, consider (Lavi1)j1 for each 1 ≤ j ≤ r. If nj1 = 0,
then (Lavi1)j1 ∈ Aj1 =⇒ (Lavi1)j1 = 0. Otherwise, we have either i ≤ j or j ≤ i (or
i = j). In either case, aij = aji = 0 by assumption. Hence, (Lavi1)j1 = ajivi1 = 0.
Consequently, Lavi1 = 0 when ni1 
= 0. Thus, Lav =

∑r
i=1 Lavi1 = 0 for any

v ∈ V̂.
For each i, A(i) :=

∑r
k,l=iAkl is clearly a subalgebra of A. In fact, it is a T -

algebra with involution ∗. Thus, we can define the subspace of “vectors” V(i) in A(i),

and the linear operator L
(i)
a : V(i) → V(i) by v → av for each a ∈ A(i). Note that

A(1) = A, V(1) = V̂, and L(1) = L̂. For each subset I ⊂ {1, . . . , r}, let VI denote the

subspace
∑
i∈I V(i) ⊂ T ∗. Define the map LIa : VI → VI by LIav =

∑
i∈I L

(i)

a(i)v
(i),

where a(i) and v(i) denote projections of a and v onto A(i) and V(i), respectively. By
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observing that (Lav)
(i) = L

(i)

a(i)v
(i), we can easily see that the first three statements

in the above proposition hold for the map LI : A → L[VI ,VI ].
Suppose that I is chosen to satisfy the following condition:

For all 1 ≤ j ≤ r, there exists i ∈ I such that i ≤ j and nji 
= 0.(∗)
Clearly, the choice I = {1, . . . , r} satisfies this condition. Whenever I satisfies (∗), we
call the map LI the real matrix representation of A with respect to I.

Example 3.2 (real matrices (cont’d)). When A is the algebra of real r-by-r
matrices, the choice I = {1} satisfies (∗) since nji = 1 
= 0 for all 1 ≤ i, j ≤ r.
With this choice, VI can be regarded as the space of real r-vectors, and LIa is the map
represented by the matrix a.

Example 3.3 (real vectors (cont’d)). When A is the algebra of real r-vectors,
the only I satisfying (∗) is I = {1, . . . , r} since nji = 0 for all j 
= i.

Suppose that LIa is the zero map. Then, for each i ∈ I, L(i)

a(i) is the zero map.
Now, fix an arbitrary 1 ≤ j ≤ r and choose an i ∈ I, i ≤ j, for which nji 
= 0. By
applying the above proposition to L(i), we conclude that akj = ajk = 0 for all k ≥ j.
Since j is arbitrary, we have a = 0. Thus, LI is injective when I satisfies (∗).

Conversely, suppose that for some 1 ≤ j ≤ r, nji = 0 for all i ∈ I such that i ≤ j.
It follows that LIejv =

∑
i∈I L

(i)

e
(i)
j

v(i) =
∑
i∈I, i≤j L

(i)
ej v

(i) =
∑
i∈I, i≤j ejvji = 0 for

any v ∈ VI . Hence, LI is not injective when I violates (∗).
Thus, we have proven the following proposition.
Proposition 3.4. Let LI : A → L[VI ,VI ] be as defined above. For every a ∈ A

and t, u ∈ T ,
(i) LIa∗ = (LIa)

∗;
(ii) LItL

I
u = LItu (equivalently, L

I |T ∗ is an isomorphism of algebras); and
(iii) LItL

I
t∗ = LItt∗ .

Furthermore, LI is injective if and only if I satisfies (∗).
Henceforth, we will fix an I that satisfies (∗). To simplify notation, we shall drop

the superscript I from LI and VI .
We end this section with two remarks on the map L.
Remark 3.5. By observing that each t ∈ I has a right inverse u ∈ I such that

tu = e, we see that Lt is invertible for any t ∈ I. Since L|T ∗ is an isomorphism of
algebras, t is also invertible with inverse t−1 satisfying Lt−1 = L−1

t . It follows from
L(t∗)−1 = L−1

t∗ = (L∗
t )

−1 = (L−1
t )∗ = (Lt−1)∗ = L(t−1)∗ that (t

∗)−1 = (t−1)∗.
Remark 3.6. It is easy to see that t = e is the only t ∈ I that satisfies

tt∗ = e. Suppose tt∗ = uu∗ for some t, u ∈ I. Then L(t−1u)(t−1u)∗ = Lt−1uL
∗
t−1u =

L−1
t LuL

∗
u(L

−1
t )∗ = L−1

t Luu∗(L−1
t )∗ = L−1

t Ltt∗(L
−1
t )∗ = L−1

t LtL
∗
t (L

−1
t )∗ = Lt−1tL

∗
t−1t

is the identity map, implying that t = u. Hence, the relation a = tt∗ sets up a one-
to-one correspondence between each a ∈ K(A) and t ∈ I.

4. Homogeneous cones and cones of positive definite operators. Before
we proceed to the main theorem, let us apply the result of the previous section to
produce an easy proof of the fact that K(A) is homogeneous.

For each t ∈ I, define the map τ(t) : uu∗ → (tu)(tu)∗. By Remark 3.6, τ(t) is
well defined. τ(t) is clearly a map of K(A) into itself. In fact, by observing that
every u ∈ I has an inverse in I, we see that τ(t) maps K(A) onto itself and {τ(t) :
t ∈ I} acts transitively on K(A). From Proposition 3.4, L(tu)(tu)∗ = LtLuL

∗
uL

∗
t =

LtLuu∗L∗
t , which implies that τ(t) acts linearly on K(A). By extending τ(t) to a

linear automorphism of the subspace H, we can prove the “if” part of Theorem 2.3.
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Theorem 4.1. For each t ∈ I, let τ̄(t) be the extension of τ(t) to the subspace
H. The subgroup of automorphisms {τ̄(t) : t ∈ I} of H is an invariant and transitive
subgroup for the cone K(A). Consequently, K(A) is homogeneous.

Finally, we give the main theorem.
Theorem 4.2. For each a ∈ A, a ∈ K(A) if and only if La is positive definite

and self-adjoint. Consequently, L embeds K(A) into some cone of positive definite
self-adjoint linear operators.

Proof. For the “only if” part, suppose that a = tt∗ ∈ K(A) ⊂ H for some t ∈ I.
Then, by Proposition 3.4, L∗

a = La∗ = La and 〈v, Lav〉 = 〈v, Ltt∗v〉 = 〈v, LtL∗
t v〉 =

〈L∗
t v, L

∗
t v〉 > 0 for all v ∈ V, v 
= 0, since Lt is nonsingular, and so L∗

t v 
= 0.
For the “if” part, we shall proceed by induction on the rank of A.2 If A has rank

1, then A is isomorphic to the algebra of the reals, and every positive definite a can
be written as (

√
ρ1(a1)e1)(

√
ρ1(a1)e1)

∗ with ρ1(a1) > 0. Suppose that A has rank
r > 1, and that the “if” part is true for all T -algebras of rank less than r. Suppose La
is positive definite and self-adjoint. Let Ā :=

∑r−1
i,j=1Aij be a rank r − 1 T -algebra.

Let ā =
∑r−1
i,j=1 aij ∈ Ā and ar =

∑r−1
i=1 air. Let V̄ :=

∑
i∈I
∑r−1
j=1 Aji ⊂ V. The

orthogonal complement of V̄ in V is ¯̄V :=
∑
i∈I Ari. For any v ∈ V, there exist v̄ ∈ V̄

and ¯̄v ∈ ¯̄V such that v = v̄ + ¯̄v; and

Lav =
∑
i∈I

a(i)v(i) =
∑
i∈I

(ā(i) + a(i)
r )v(i) +

∑
i∈I

((a(i)
r )∗ + arr)v

(i)

=
∑
i∈I

ā(i)(v̄)(i) +
∑
i∈I

a(i)
r (¯̄v)(i) +

∑
i∈I

(a(i)
r )∗(v̄)(i) +

∑
i∈I

arr(¯̄v)
(i)

=Lāv̄ + Lar ¯̄v + L∗
ar v̄ + ρr(arr)¯̄v,

where Lāv̄ + Lar ¯̄v ∈ V̄ and L∗
ar v̄ + ρr(arr)¯̄v ∈ ¯̄V. By (∗), both V̄ and ¯̄V have

positive dimensions. So, L̂a is positive definite and self-adjoint only if ρr(arr) > 0
and Lā − ρr(arr)−1LarL

∗
ar is positive definite over V̄. Therefore,

Lρr(arr)ā−ara∗r = ρr(arr)Lā − Lara∗r
= ρr(arr)Lā − LarL∗

ar (by Proposition 3.4(iii))

= ρr(arr)(Lā − ρr(arr)−1LarL
∗
ar )

is positive definite over V̄. It is clearly self-adjoint. Let Ī = I\{r}, which satisfies (∗)
for Ā. Let L̄ be the real matrix representation of Ā with respect to Ī. It is easy to check
that La|V̄ = L̄a for all a ∈ Ā. So, by the induction hypothesis, ρr(arr)ā− ara∗r = tt∗

for some t ∈ I ∩ Ā. Therefore,

(t+ ar + arr)(t+ ar + arr)
∗ = tt∗ + ara

∗
r + a2

rr + ararr + arra
∗
r = ρr(arr)a,

which implies that a = uu∗ with u = (t+ ar + arr)/
√
ρr(arr).

Finally, since L is injective, it is an embedding of K(A) into the cone of positive
definite self-adjoint linear operators over T ∗.

Corollary 4.3. If K is a homogeneous cone in Rn, then there exist an m ≤ n
and an injective linear map M : Rn → S

m×m such that M(K) = S
m×m
++ ∩M(Rn),

2The proof of this part resembles a proof of the Cholesky factorization of symmetric positive
definite matrices. Indeed, in the case where our T -algebra is the algebra of real r-by-r matrices and
L = LI with I = {1}, the proof of this part would be a proof of Cholesky factorization.
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where Sm×m is the space of m-by-m symmetric matrices and Sm×m
++ is the cone of

positive definite symmetric m-by-m matrices.
Proof. By Theorem 2.3, there exists a T -algebra A for which K(A) is isomorphic

to K. This isomorphism can be extended linearly to a linear bijection from R
n

to H, the space of “symmetric” matrices in A. Pick an I that satisfies (∗) for A.
Then the real matrix representation of A with respect to I embeds K(A) into the
cone of positive definite self-adjoint linear operators on VI , which is of dimension
m :=

∑
i∈I
∑
j≥i nji ≤

∑r
i=1

∑
j≥i nji = n. M is then obtained by composing the

bijection from Rn toH with the real matrix representation ofA with respect to I.
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Abstract. Condition numbers for optimization problems in Banach spaces are considered.
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1. Introduction. Condition numbers of a given mathematical problem are mea-
sures of sensitivity of the solutions with respect to small changes in the problem’s data.
Therefore condition numbers depend on the class of (appropriately chosen) perturba-
tions of the given problem, under which solvability persists. The simplest case arises
when each perturbed problem has exactly one solution.

Consider the set D of the data of all perturbed problems and the set S of their
solutions. Assume that both are subsets of normed linear spaces. Denote by m(p) ∈
S the unique solution corresponding to the problem defined by the datum p ∈ D.
Let p∗ ∈ D define the (unperturbed) problem whose condition number we want to
consider. The (absolute) condition number of problem p∗ can be defined by

lim sup
p→p∗

‖m(p)−m(p∗)‖
‖p− p∗‖ ;

see, e.g., [2] for related definitions.
A possibly different (but again standard) definition of condition number is given by

lim sup
(p,q)→(p∗,p∗)

‖m(p)−m(q)‖
‖p− q‖ ,

namely the Lipschitz modulus of the solution mapping m at p∗; see, e.g., [7, p. 43].
It is well known that for many problems of numerical analysis, the distance (ap-

propriately measured) of a given problem to the set of ill-conditioned problems is
proportional to (or bounded by a multiple of) the reciprocal of the condition number;
see [2]. This has interesting implications on computational complexity issues; see [3].
For an abstract version see [1].

A suitable notion of condition number of a matrix leads to the well-known distance
theorem of Eckart and Young [6], whose variational interpretation has been generalized
in [16] to the setting of convex quadratic forms on Banach spaces. It turns out that,
in such a framework, the relevant notion of condition number is any of the previous
two, taken with respect to linear continuous additive perturbations.
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†DIMA, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy (zolezzi@dima.unige.it).

507



508 T. ZOLEZZI

The role the condition number theorem plays in optimization is enforced by the
results of [12] and [13], where conditioning measures are introduced related to the
reciprocal of the distance to infeasibility in the framework of linear programming
problems. In [9] an extension of the distance theorem is obtained for convex processes.

In this paper we consider optimization problems with objective functions defined
on a ball in a Banach space. Motivated by the results of [16] we define condition
numbers of such optimization problems with respect to linear continuous additive
(tilt) perturbations. In the setting of differentiable functions with Lipschitz continuous
gradient, we prove new results about upper and lower estimates of the distance to
ill-conditioning, making use of the reciprocal of the condition number. The relevant
notion of condition number turns out to be the Lipschitz modulus of the arg min map
for the lower estimate and a related quantity for the upper estimate. The definition of
(pseudo-)distance makes use of the Lipschitz constant of the gradients of the objective
functions. In this way we obtain two generalizations of the condition number theorem
in [16], as presented in sections 3 and 4 for free optimization problems. Both results
can be considered as preliminary steps towards condition number theorems for more
general optimization problems. Here we rely on first order optimality conditions in a
crucial way. The two estimates we prove about the distance to ill-conditioning do not
match, due to the technically different notions of (well-)conditioning we employ, even
though the two settings are rather similar.

These partial results show that reasonable definitions of a condition number exist
for optimization problems, with the standard meaning of sensitivity measure, leading
to the geometrical link with the distance to ill-conditioning through versions of a
condition number theorem. (In a sense, we reverse here the approach followed in [12].)

In section 5 we compare our results with those of [16] about optimization of convex
quadratic forms. In section 6 we further enforce the role of the Lipschitz modulus
of the arg min map by pointing out its connection with metric regularity properties
of the inverse multifunction to arg min, as a direct consequence of known results.
This approach does not require smoothness of the objective functions involved and
applies to constrained problems as well. Making use of some results in [5] we obtain a
(weak) version of the condition number theorem in a very general setting, whose (not
necessarily variational) meaning is discussed at the end of the paper.

We remark that links between well-posedness and well-conditioning are obtained
in [15]. Let us note that well-posedness and well-conditioning are often used inter-
changeably as equivalent terms in the literature (contrary to [15] and this paper).

2. Notations and problem setting. Throughout the paper, E is a real Banach
space with dual E∗. The duality pairing is denoted by 〈·, ·〉. B(0, r) is the closed ball
of center 0 and positive radius r. We fix L > 0. Given p ∈ E∗ and

f : B(0, L) ⊂ E → R

we write

fp(x) = f(x)− 〈p, x〉, ‖x‖ ≤ L,(1)

and denote by

m(f, p)(2)

its unique global minimizer on B(0, L) whenever this makes sense. If f is fixed and no
confusion arises we write simplym(p) instead ofm(f, p) in (2). In general, (B(0, L), g)
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denotes the optimization problem of globally minimizing the function g on B(0, L),
and

arg min (B(0, L), g)

denotes the (possibly empty) set of all global minimizers of g on B(0, L).
Let f : B(0, L) ⊂ E → R be such that every fp has exactly one global minimizer

m(p) on B(0, L) for every p sufficiently small. Then three extended real numbers will
be considered as follows:

c1(f) = lim sup
p→0

‖m(p)−m(0)‖
‖p‖ ;(3)

c2(f) = lim sup
(p,q)→(0,0)

‖m(p)−m(q)‖
‖p− q‖ ;

c3(f) = lim sup
p→0

〈p,m(p)−m(0)〉
‖p‖2 .

In (3), c1(f) is a measure of sensitivity of m(p) as compared to m(0), corresponding
to small changes of the data p, having fixed the unperturbed value p = 0. The same
can be said of c2(f), except that now small perturbations q of p = 0 are allowed.

We see that c1(f) and c2(f) represent definitions of condition numbers for the
optimization problems (B(0, L), f) with respect to the class of linear continuous ad-
ditive perturbations defined by fp, p ∈ E∗ sufficiently small. As already remarked,
this is in agreement with general definitions of conditioning.

In (3), c3(f) represents a new measure of sensitivity, based on the pairing between
the relative error [m(p)−m(0)]/‖p‖ and the corresponding data perturbation p/‖p‖.
The introduction of c3(f) is motivated by the results of sections 4 and 5.

We denote by C1,1[B(0, L)] the set of all real-valued functions

f : B(0, L)→ R,

which are Fréchet differentiable at each interior point of B(0, L), and whose gradient
Df can be extended to the closed ball in such a way that it is Lipschitz continuous
on B(0, L). We endow C1,1[B(0, L)] with the pseudodistance

d(f, g) = sup

{‖Df(x)−Dg(x)−Df(y) +Dg(y)‖
‖x− y‖ :(4)

x 
= y, ‖x‖ ≤ L, ‖y‖ ≤ L

}
;

f, g ∈ C1,1[B(0, L)].
We remark that for quadratic functions

f(x) =
1

2
〈Ax, x〉, g(x) =

1

2
〈Bx, x〉

with A,B linear bounded symmetric operators between E and E∗, their pseudodis-
tance (4) is

d(f, g) = ‖A−B‖.
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In this paper we consider two notions of well-conditioned optimization problems
with objective function f . The first requires c2(f) < +∞, while the second requires
0 ≤ c3(f) < +∞. Under suitable regularity assumptions, partially depending on
the notion employed, we shall estimate in each case the distance to ill-conditioning,
making use of the appropriate condition numbers c2(f), c3(f).

3. Estimate from below. In this section we prove a lower bound of the distance
from ill-conditioning of a given well-conditioned optimization problem (B(0, L), f) in
terms of the reciprocal of c2(f) defined in (3).

To this aim we consider the set T1 of all f ∈ C1,1[B(0, L)] such that

arg min (B(0, L), fp) 
= ∅ for every sufficiently small p;(5)

arg min (B(0, L), f) = {0};(6)

p→ arg min (B(0, L), fp) is upper semicontinuous at p = 0.(7)

How small p is in (5) may depend on f . Upper semicontinuity of the arg min multi-
function in (7) is meant with respect to the strong topologies.

If U ⊂ T1 and f ∈ T1 we write

dist (f, U) = inf {d(f, g) : g ∈ U},
where d is given by (4).

Our starting point is the following well-known result.
Lemma 3.1. Let P,Q be real Banach spaces and B a nonempty subset of P . Let

H : B → Q be one-to-one, with a Lipschitz continuous inverse of Lipschitz constant
K. Let G : B → Q be Lipschitz continuous with Lipschitz constant α. If αK < 1,
then

F = H +G : B → Q

is one-to-one, and its inverse function

F−1 : F (B)→ B

is Lipschitz (of constant K/(1− αK)).
The proof of Lemma 3.1 can be obtained from that of [14, Lemma 1.18, p. 14] by

standard modifications.
Denote by W1 the set of all functions f : B(0, L)→ R such that

arg min (B(0, L), fp) is a singleton(8)

for every sufficiently small p ∈ E∗ (depending on f);

c2(f) < +∞.(9)

Then consider

I1 = {g ∈ T1 : g 
∈W1}.
The definition ofW1 (respectively, I1) isolates those objective functions which give rise
to a well-conditioned (respectively, ill-conditioned) optimization problem on B(0, L)
within T1.
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Lemma 3.2. If f : B(0, L)→ R fulfills (8), then

c3(f) ≤ c1(f) ≤ c2(f).(10)

Moreover, if f ∈ T1, the extended real number c2(f) > 0.
Proof. Obviously, c1(f) ≤ c2(f). If p 
= 0,

〈p,m(p)−m(0)〉
‖p‖2 ≤ ‖m(p)−m(0)‖‖p‖ ;

hence (10) follows. Let f ∈ T1. If c2(f) = 0, then c1(f) = 0 as well by (10); hence
‖m(p)‖/‖p‖ → 0 as p → 0. Then ‖m(p)‖ → 0; thus p = Df [m(p)] for sufficiently
small p, whence

‖Df [m(p)]‖
‖m(p)‖ → +∞ as p→ 0.(11)

Since Df(0)=0 by (6), formula (11) contradicts the Lipschitz continuity of Df .
Lemma 3.3. Let f ∈ T1 ∩W1 be such that

Df is one-to-one near 0.(12)

Let g ∈ T1 be such that d(f, g) < 1/c2(f). Then g ∈W1.
Proof. We remark that 1/c2(f) makes sense by Lemma 3.2. We need to prove

that

for every sufficiently small p, gp has a unique global minimizer on B(0, L)(13)

and

c2(g) < +∞.(14)

Proof of (13). Since g ∈ T1, arg min(B(0, L), gp) is nonempty for all sufficiently
small p. Given p ∈ E∗ let

u1, u2 ∈ arg min(B(0, L), gp).

By (6) and (7), if p is sufficiently small, then u1, u2 are interior minimizers of gp;
hence

Dg(u1) = p = Dg(u2).(15)

By (12) and f ∈ T1 ∩W1,

c2(f) = lim sup
(p,q)→(0,0)

‖Df−1(p)−Df−1(q)‖
‖p− q‖ < +∞;

hence

K(δ) = sup

{‖Df−1(p)−Df−1(q)‖
‖p− q‖ : p 
= q, ‖p‖ < δ, ‖q‖ < δ

}
< +∞,

provided δ > 0 is sufficiently small. Since

K(δ)→ c2(f) as δ → 0 and d(f, g) <
1

c2(f)
,
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it follows that d(f, g) < 1/K(δ) for all sufficiently small δ > 0. Of course the Lipschitz
constant of Df −Dg on B(0, δ) is ≤ d(f, g). Moreover, Df is one-to-one on B(0, δ),
with a Lipschitz continuous inverse whose Lipschitz constant is K(δ).

By writing Dg = Dg −Df +Df we are in position to apply Lemma 3.1; hence
Dg is one-to-one on B(0, δ). It follows by (15) and (7) that u1 = u2, whence (13).

Again by Lemma 3.1, Dg−1 is Lipschitz continuous near 0, whence (14).
The following statement, an obvious corollary of Lemma 3.3, is the main result

of this section.
Theorem 3.1. Let f ∈ T1 ∩W1 with Df one-to-one near 0. Then

dist (f, I1) ≥ 1

c2(f)
.(16)

The main information contained in (16) can be interpreted in the following two
ways. If c2(f) is small, then the optimization problem (B(0, L), f) lies at large distance
from ill-conditioning. Equivalently, if (B(0, L), f) is close to ill-conditioning, then its
condition number c2(f) must be proportionally large.

Remark 3.1. If f ∈ T1, then c2(f) > 0 by Lemma 3.2, so that in our setting
the case c2(f) = 0 never occurs, and the corresponding limit case of (16), namely
dist (f, I1) = +∞, is ruled out.

If Df fails to be Lipschitz, then c2(f) = 0 is possible. For example, with E = R
and f(x) = 3x4/3/4 we have m(p) = p3; hence c2(f) = 0.

However, the limit case of an estimate of the form (16) cannot hold for classes of
problems with a non-Lipschitzian gradient of the objective function (whichever defini-
tion of distance is adopted), provided the set of ill-conditioned problems is nonempty.
See [11, p. 30] for pointing out some shortcomings of the definition of condition
number in the limit cases.

Remark 3.2. In the finite-dimensional case (E = RN ) the well-conditioned
problems defined by objective functions f ∈ W1 of class C

2, namely those with
c2(f) < +∞, are characterized in [10, p. 288] by the strictly positive definite charac-
ter of their Hessian matrix at 0. A similar result is true in the Hilbert space setting,
as proved in [4, Theorem 4.1].

4. Estimates from above. In order to obtain an upper bound of the distance
to ill-conditioning in terms of the reciprocal of a suitable condition number, we modify
in this section the definition of well-conditioning as follows.

Denote by T2 the set of all f ∈ C1,1[B(0, L)] such that (5) holds. We fix (any)
δ > 0 and consider the set W2 of those f ∈ T2 such that c3(f) ≥ 0 and

Df is one-to-one on B(0, δ).(17)

Then put

I2 = T2 \W2.

In the following theorem we interpret 1/0 = +∞ and 1/+∞ = 0.
Theorem 4.1. Let f ∈ W2 fulfill (6) and (7). Moreover, let E be finite-

dimensional, or let E be an infinite-dimensional reflexive Banach space with f weakly
sequentially lower semicontinuous. Then

dist (f, I2) ≤ 1

c3(f)
.(18)
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Proof. Only the case c3(f) > 0 needs proof. By (7) and (17), the singleton

m(p) = Df−1(p)

for all p sufficiently small. There exists a sequence qn → 0 in E∗, qn 
= 0, such that

〈qn, Df−1(qn)〉
‖qn‖2 → c3(f).(19)

Let

wn = Df−1(qn),

and consider the linear bounded symmetric operator Gn : E → E∗ given by

Gn(x) =
〈qn, x〉qn
〈qn, wn〉 , x ∈ E.

The above definition of Gn makes sense for every n sufficiently large. Now define for
such n

fn(x) = f(x)− 1
2
〈Gn(x), x〉, x ∈ B(0, L).

If E is finite-dimensional, the continuous function fnp attains its global minimum
value of the compact set B(0, L) for every p. If E is infinite-dimensional, the same
conclusion holds by reflexivity, weak sequential lower semicontinuity of f , and weak
sequential continuity of

x→ 〈Gn(x), x〉 = 〈qn, x〉
2

〈qn, wn〉 .

Hence fn ∈ T2 for every n. We have

Dfn(0) = Df(0) = 0;

moreover,

Dfn(wn) = Df(wn)−Gn(wn) = qn − qn = 0.(20)

If some wn = 0, then

qn = Df(wn) = Df(0) = 0,

which is a contradiction. It follows that wn 
= 0 for every n. Since wn → 0 by (7),
equation (20) implies that Dfn fails to be one-to-one on B(0, δ) for all sufficiently
large n. Thus fn ∈ I2; hence

dist (f, I2) ≤ d(f, fn) = ‖Gn‖ = ‖qn‖2
〈qn, wn〉 .

In the limit as n→ +∞ we get (18) by (19).
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5. Convex quadratic forms. Considerably sharper results are available in the
special case of objective functions

f(x) =
1

2
〈Ax, x〉, x ∈ E,(21)

where A is any linear symmetric bounded nonnegative operator between E and E∗.
Denote by T the set of all quadratic forms (21), and call a convex quadratic form f
well-conditioned iff fp has a unique global minimizer on E for all p and c1(f) < +∞.
Denote by I the set of ill-conditioned forms in T . According to the main result of
[16], if f ∈ T , f given by (21), is well-conditioned, then

dist (f, I) =
1

‖A−1‖ .

This a generalization of the classical Eckart–Young theorem.
Proposition 5.1. Let f be given by (21) and be well-conditioned. Then

c1(f) = c2(f) = c3(f) = ‖A−1‖.
Proof. Well-conditioning implies that A : E → E∗ is an isomorphism by [16,

Proposition 3.1]. Now

c3(f) = lim
δ→0

sup

{ 〈A−1p, p〉
‖p‖2 : 0 < ‖p‖ < δ

}

= lim
δ→0

sup {〈A−1q, q〉 : ‖q‖ = 1} = ‖A−1‖.

Moreover,

c2(f) = lim
δ→0

sup

{‖A−1(p− q)‖
‖p− q‖ : p 
= q, ‖p‖ < δ, ‖q‖ < δ

}
= ‖A−1‖,

and the conclusion is proved by Lemma 3.2 (whose conclusion (10) holds of course in
our case as well).

Proposition 5.1 shows that Theorems 3.1 and 4.1 are extensions of the condition
number theorem in convex quadratic optimization. Work is in progress about con-
dition number theorems for special classes of convex optimization problems, where
better results are available (as we plan to present elsewhere).

6. An approach by metric regularity. In this section we show that the con-
dition number c2(f) is, in a general setting, the modulus of metric regularity of the
inverse multifunction of the arg min map. As a corollary we get a weak form of the
condition number theorem in the finite-dimensional setting, making use of some result
in [5].

The following known definitions (see [5] and [8]) will be needed. We consider two
real Banach spaces P,Q, a set-valued mapping

F : P → Q,

and a point (x0, y0) ∈ P×Q such that y0 ∈ F (x0). The mapping F is called metrically
regular at (x0, y0) if there exists a constant M > 0 such that

dist [x, F−1(y)] ≤M dist [y, F (x)](22)
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for all (x, y) close to (x0, y0). Here distances are taken with respect to the norms of
P,Q; for example,

dist [y, F (x)] = inf {‖y − u‖ : u ∈ F (x)}
(the infimum over the empty set is +∞). The regularity modulus of F at (x0, y0) is
defined by

reg F (x0, y0) = inf {M > 0 : (22) holds }.
The radius of metric regularity of F at (x0, y0) is defined by

rad F (x0, y0)
(23)

= inf {‖G‖ : G ∈ L(P,Q), F +G is not metrically regular at [x0, y0 +G(x0)]},
where L(P,Q) denotes the space of all linear bounded operators acting between

P and Q.
We consider proper functions

f : B(0, L)→ R ∪ {+∞}
such that (8) holds. Then the arg min map corresponding to the optimization prob-
lem (B(0, L), f) assigns to each p ∈ E∗ with ‖p‖ ≤ r sufficiently small the unique
minimizer m(p) = m(f, p). Thus

arg min = m : B(0, r)→ E

with inverse

m−1 : B(0, L) ⊂ E → B(0, r) ⊂ E∗.

Given f fulfilling (8), the problem (B(0, L), f) will be called well-conditioned if c2(f) <
+∞.

The main result of this section characterizes the condition number c2(f) as the
modulus of metric regularity of the inverse to the arg min map corresponding to the
objective function f . We emphasize that no smoothness assumption is required about
f (moreover constraints may be present).

Theorem 6.1. Let f : B(0, L) → R ∪ {+∞} fulfill (6) and (8). If m−1 is
metrically regular at (0, 0), then

c2(f) = regm
−1(0, 0).

Proof. By (8), c2(f) is the Lipschitz modulus of the single-valued map m at 0. By
a known result (see [5, formula (1.4) with F = m−1]), regm−1(0, 0) agrees with the
infimum of those k > 0 which are Lipschitz constants of m at 0. Hence the Lipschitz
modulus of m at 0 agrees with the regularity modulus of m−1 at (0, 0) (because of
(6)), whence the conclusion.

Corollary 6.1. If f fulfills (6) and (8), then (B(0, L), f) is well-conditioned iff
m−1 is metrically regular at (0, 0).

Corollary 6.2. Let f fulfill (6) and (8). If m−1 is metrically regular at (0, 0)
with locally closed graph there, then

radm−1(0, 0) ≥ 1

c2(f)
.
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If, moreover, E is finite-dimensional, then

radm−1(0, 0) =
1

c2(f)
.

Proof. Both conclusions come from [5, Theorem 1.5].
As we see from (23) and Corollary 6.1, radm−1(0, 0) can be considered as a

measure of the distance to ill-conditioning of the optimization problem (B(0, L), f).
Therefore the first conclusion of Corollary 6.2 is one half of the condition number
theorem, similar to Theorem 3.1 under rather different assumptions. The second
conclusion is a form of the condition number theorem in the finite-dimensional setting.
However, the distance to ill-conditioning defined by rad m−1(0, 0) is a not necessarily
variational notion, since adding linear continuous transformations to m−1 does not
correspond in general to perturbing additively the objective function, even in the
setting of sections 3 and 4, where m(p) = Df−1(p) for all sufficiently small p (due to
(12) or (17)).

Results from [5] show that the same notion of distance to ill-conditioning can be
obtained by considering a number of different perturbation classes (not only the class
L(E,E∗) in the definition (23)).

Acknowledgments. Thanks to A. Ioffe, who pointed out the link between met-
ric regularity and the distance theorem of [16], and to A. Dontchev for bringing [4] to
my attention.
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1. Introduction. Consider X a normed vector space, X∗ its topological dual,
and A : X → R

m, C : X → R
l continuous linear operators with m, l ∈ N, m + l ≥ 1.

There exist a1, . . . , am, cm+1, . . . , cm+l ∈ X∗ (uniquely determined) such that Ax =
(〈x, a1〉 , . . . , 〈x, am〉) and Cx = (〈x, cm+1〉 , . . . , 〈x, cm+l〉) for every x ∈ X. We are
interested in the system of linear inequalities and equalities

〈x, ai〉 ≤ bi, 〈x, cj〉 = dj , i ∈ I := {1, . . . ,m}, j ∈ J := {m + 1, . . . ,m + l}.(1.1)

(Of course, I = ∅ if m = 0 and J = ∅ if l = 0.) Considering the cone Rm+ := {y ∈ Rm |
yi ≥ 0 ∀ i ∈ I} and the order ≤ on Rm induced by this cone (i.e., y ≤ y′ if and only
if y′ − y ∈ Rm+ ), the system (1.1) becomes

Ax ≤ b, Cx = d(1.2)

for b = (b1, . . . , bm), d = (dm+1, . . . , dm+l). Denote by F (b, d) the solution set of
(1.2); in this way we get a multifunction F : Rm+l ⇒ X whose domain is domF =
ImA + Rm+ × {0}, where A : X → R

m+l, A(x) := (Ax,Cx). Hoffman showed in his
celebrated paper [4] that for every (b, d) ∈ domF there exists τ > 0 such that

τ · d(x, F (b, d)
) ≤ ‖(Ax− b)+‖+ ‖Cx− d‖ ∀x ∈ X,

where, for γ ∈ R, γ+ := max{0, γ}, while for y ∈ Rm, y+ :=
(
(y1)+, . . . , (ym)+

)
. In

fact, because the space Rm+l can appear as a whole, we are interested in an estimate
of the form

τ · d(x, F (b, d)
) ≤ ‖((Ax− b)+, Cx− d)‖ ∀x ∈ X,(1.3)

where ‖·‖ is a norm on Rm+l; of course, the existence of τ > 0 satisfying (1.3) follows
from Hoffman’s statement because all norms on Rm+l are equivalent.

Remark 1. Let (b, d) ∈ domF ; then there exist x0 ∈ X and b0 ∈ Rm+ such that
b = Ax0+b0 and Cx0 = d. It is obvious that F (b, d) = x0+F (b0, 0), and so (1.3) holds
if and only if (1.3) holds for b replaced by b0 and d replaced by 0. So, when estimating

∗Received by the editors March 5, 2002; accepted for publication (in revised form) June 8, 2003;
published electronically November 6, 2003.
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τ in (1.3) we may take only b ∈ Rm+ . In particular, when A|kerC is surjective one can
take b0 = 0, and so τ is independent on (b, d) ∈ domF = R

m × Im C.
Remark 2. We could take C = 0 because the equality Cx = d may be replaced by

the system of inequalities Cx ≤ d, (−C)x ≤ −d. This is not a very good procedure
because one must change the space Rm+l with the space Rm+l+l; in such a situation
one must decide what norm to choose on the last space. As we shall see later we need
to impose some supplementary conditions on the behavior of the norm ‖(y, z)‖ in the
variables yi with i ∈ I which are not needed for variables zj with j ∈ J ; replacing an
equality by two inequalities, we have to impose such conditions on all the variables of
the norm on Rm+l+l. Another reason is furnished by the preceding remark; if A = 0,
we observe that τ does not depend on d ∈ domF , but the system of inequalities
depends on the elements in the domain of F .

Note that one can assume, at least theoretically, that X is finite-dimensional,
or reflexive. Indeed, considering X̂ := X/ kerA endowed with the quotient norm,

Â : X̂ → R
m+l defined by Âx̂ :=

(
Âx̂, Ĉx̂

)
:= (Ax,Cx) (x̂ being the class x + kerA

of x) and F̂ (b, d) := {x̂ ∈ X̂ | Âx̂ ≤ b, Ĉx̂ = d}, one has, as observed by Ng and

Zheng [11] in the case l = 0, that d
(
x̂, F̂ (b, d)

)
= d

(
x, F (b, d)

)
for every x ∈ X, and

so (1.3) holds if and only if

τ · d(x̂, F̂ (b)
) ≤ ∥∥((Âx̂− b)+, Ĉx̂− d

)∥∥ ∀ x̂ ∈ X̂.

The consideration of equalities in the system (1.2) is inspired by Li’s articles [8],
[9]; in these articles the author is interested by Lipschitz constants for the feasible
multifunction F , as well as for the solution multifunction S of a linear programming
problem whose feasible set is given by (1.2). We say that γ ≥ 0 is a Lipschitz constant
for F at (b, d) ∈ domF if

e (F (b′, d′), F (b, d)) ≤ γ · ‖(b′, d′)− (b, d)‖ ∀ (b′, d′) ∈ Rm+l,

where e(D,E) := supx∈D d(x,E) is the Hausdorff–Pompeiu excess of D over E with
e(∅, E) := 0, the distance d(x,E) from x to E being defined by d(x,E) := inf{‖x− y‖ |
y ∈ E} with d(x, ∅) := +∞. In fact there exists a deep relationship between the
Hoffman and Lipschitz constants of F at (b, d), as we shall see in what follows (see
also Belousov and Andronov’s article [2]).

As the existence of τ > 0 satisfying (1.3) is ensured by Hoffman’s theorem, an
important problem is to give computable estimates of τ , or even formulae for the sharp
τ . Of course, such estimates will depend on the norms on X and Rm+l. Recently, in
the case l = 0 (and so C = 0, d = 0), Azé and Corvellec [1] obtained a formula and
Ng and Zheng [11] obtained an estimate (which in fact is a formula, as we shall see
later on) for the sharp Hoffman constant at (b, d) ∈ domF ,

δb,d := inf
x∈X\F (b,d)

‖((Ax− b)+, Cx− d)‖
d
(
x, F (b, d)

) ,(1.4)

when Rm is endowed with the box norm ‖·‖∞ (the norm on X being arbitrary),
while Belousov and Andronov [2] obtained a formula for the sharp uniform Hoffman
constant

δ = inf{δb,d | (b, d) ∈ domF}(1.5)
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when X = R
k is endowed with the Euclidean norm and R

m is endowed with a
(pseudo)norm ‖·‖ satisfying the condition

‖y‖ ≤ ‖z‖ ∀ y, z ∈ Rm, 0 ≤ y ≤ z.(1.6)

Because not only these pairs of norms are useful, our aim is to give formulae for δb,d
and δ also for other pairs of norms. Note that the estimates for the Lipschitz constant
of Bergthaller and Singer [3] for the inequality system Ax ≤ b are established for
the norm ‖·‖∞ on Rm and an arbitrary norm on X (although the authors say their
method works for the norm ‖·‖p on Rm) while the sharp global Lipschitz constant

established by Li [8], [9] are for C surjective and arbitrary norms on X = R
k and

R
m+l.

In order to obtain such formulae we use a result established in [14].
Since the case A = 0 is trivial, in what follows we assume that A �= 0; in this case

F (b, d) �= X for every (b, d) ∈ Rm+l. (We could even assume that ai �= 0 for every
i ∈ I and cj �= 0 for every j ∈ J .)

2. Preliminary notions and results. Throughout this paper X is a real
normed vector space whose norm is ‖·‖; its topological dual is denoted by X∗ and the
dual norm is denoted by ‖·‖∗. The value of x∗ ∈ X∗ at x ∈ X is denoted, as usual,
by 〈x, x∗〉. The duality mapping of X is the multifunction ΦX : X ⇒ X∗ defined by

ΦX(x) := {x∗ ∈ X∗ | 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2∗};

ΦX(x) is nothing else but the (Fenchel) subdifferential of the function 1
2 ‖·‖2 at x.

Let C ⊂ X be a nonempty closed convex set. For every x ∈ X we set PC(x) :=
{c ∈ C | d(x,C) = ‖x− c‖}. It is known that x ∈ PC(x) if and only if x ∈ C and
ΦX(x− x) ∩N(C, x) �= ∅, where N(C, x) is the normal cone of C at x defined by

N (C, x) := {x∗ ∈ X∗ | 〈c− x, x∗〉 ≤ 0 ∀ c ∈ C}.

It follows that for x ∈ C and u ∈ Φ−1
X

(
N
(
C, x

) ) ∩ SX we have x ∈ PC(x + tu) and
d(x + tu, C) = t for every t ≥ 0; as usual, SX := {u ∈ X | ‖u‖ = 1}. When X is
reflexive PC(x) is nonempty for every x ∈ X. Recall now the following result which
is stated in [14, Prop. 3.5] (see also [15, Thm. 3.10.7]), where, as usual, for the proper
convex function f : X → R, dom f := {x ∈ X | f(x) < ∞} is the domain of f ,
∂f(x) := {x∗ ∈ X∗ | 〈x′ − x, x∗〉 ≤ f(x′) − f(x) ∀x′ ∈ X} is the subdifferential of f
at x ∈ dom f (∂f(x) := ∅ for x ∈ X\dom f), f ′(x, u) := limt→0+ t−1

(
f(x+tu)−f(x)

)
is the directional derivative of f at x ∈ dom f in the direction u ∈ X, and [f ≤ t] :=
{x ∈ X | f(x) ≤ t} and [f = t] := {x ∈ X | f(x) = t} are the sublevel and the level
sets of f at height t ∈ R, respectively; C(A, x) := cl

(
cone(A− x)

)
is the closed conic

hull of A− x for A ⊂ X and x ∈ X.
Proposition 2.1. Let X be a Banach space and f : X → R be a proper lower

semicontinuous convex function. Assume that t ∈ [inf f,∞[ is such that [f ≤ t] �= ∅.
Then

lf (t) := inf
x∈dom f\[f≤t]

f(x)− t

d (x, [f ≤ t])
= d
(
0, ∂f(X \ [f ≤ t])

)
.(2.1)
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Assume now that X is reflexive. Then

lf (t) = inf

{
f ′
(

y,
x− y

‖x− y‖
) ∣∣∣∣ x ∈ dom f \ [f ≤ t], y ∈ P[f≤t](x)

}
= inf

{
f ′(y, u) | y ∈ [f = t], u ∈ SX ∩ Φ−1

X

(
N([f ≤ t], y)

)}
(2.2)

= inf

{
f ′(y, u)

d
(
u, C([f ≤ t], y)

)
∣∣∣∣∣ y ∈ [f = t], u ∈ X \ C([f ≤ t], y)

}
.

Moreover, if t > inf f , then

lf (t) = inf

{
f ′
(

y,
u

‖u‖
) ∣∣∣∣ y ∈ [f = t], u ∈ Φ−1

X

(
∂f(y)

)}
.

When t = 0, the positivity of lf (0) defined above is equivalent to the existence of
a global error bound for the inequality system f(x) ≤ 0. When X is finite-dimensional
and the function f is convex there are many results concerning error bounds (see the
recent papers [7], [5] and the references therein). For X infinite-dimensional the above
result is one of the most general to our knowledge. Lemaire [6, Prop. 7.1], Azé and
Corvellec [1, Thm. 2.2], and Wu and Ye [12] stated formula (2.1) in the present form,
while Ng and Zheng [11, Thm. 3.3] stated it for X a reflexive Banach space and f a
finite-valued continuous convex function.

We mention that throughout this paper the space Rk (k will be m, l, or m + l) is
endowed with an (arbitrary) norm denoted also by ‖ ·‖; when needed, we shall specify
supplementary conditions on ‖ · ‖. We identify the topological dual of the normed
space

(
R
k, ‖·‖) with Rk by the pairing

〈y, µ〉 := y1µ1 + · · ·+ ymµm.

So the dual norm ‖·‖∗ on Rk is defined by ‖µ‖∗ := sup{〈y, µ〉 | ‖y‖ ≤ 1}. The
(positive) dual cone of E ⊂ Rm is E+ := {µ ∈ Rm | 〈y, µ〉 ≥ 0 ∀ y ∈ E}; it is obvious
that (Rm+ )+ = R

m
+ .

It is obvious that δb,d defined in (1.4) is exactly lf (0) for

f : X → R, f(x) := ‖((Ax− b)+, Cx− d)‖ .(2.3)

In order to apply the preceding result we need the convexity of f , which is ensured
by the convexity of the positively homogeneous function

h : Rm+l → R, h(y, z) := ‖(y+, z)‖ .(2.4)

In this sense the next result is useful.
Lemma 2.2. Let h be defined by (2.4). Then the following hold:
(i) h is sublinear if and only if the norm ‖·‖ satisfies the condition

‖(y, z)‖ ≤ ‖(y′, z)‖ ∀ z ∈ Rl, ∀ y, y′ ∈ Rm, 0 ≤ y ≤ y′.(2.5)

(ii) Assume that ‖·‖ satisfies condition (2.5). Then

∂h(0, 0) ⊂ Rm+ × Rl,
∂h(y, z) = {(µ, ζ) ∈ ∂h(0, 0) | 〈y, µ〉+ 〈z, ζ〉 = ‖(y+, z)‖} ∀ y ∈ Rm, ∀ z ∈ Rl.
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Moreover, ∂h(0, 0) ⊂ {(µ, ζ) ∈ Rm+l | ‖(µ, ζ)‖∗ ≤ 1} if and only if

‖(y+, z)‖ ≤ ‖(y, z)‖ ∀ y ∈ Rm, ∀ z ∈ Rl.(2.6)

(iii) Assume that ‖·‖ satisfies conditions (2.5) and (2.6). Then

∂h(0, 0) = {(µ, ζ) ∈ Rm+ × Rl | ‖(µ, ζ)‖∗ ≤ 1}.(2.7)

Moreover, if (µ, ζ) ∈ ∂h(y, z), then 〈y−, µ〉 = 0, and so µi = 0 whenever yi < 0,
where y− := (−y)+. In particular, if (y+, z) �= (0, 0) and (µ, ζ) ∈ ∂h(y, z), then
‖(µ, ζ)‖∗ = 1.

Proof. (i) Assume that ‖·‖ satisfies condition (2.5) and take y, y′ ∈ Rm, z, z′ ∈ Rl.
Then 0 ≤ (y + y′)+ ≤ y+ + y′+, and so

h
(
(y, z) + (y′, z′)

)
= ‖((y + y′)+, z + z′)‖ ≤ ∥∥(y+ + y′+, z + z′

)∥∥
≤ ‖(y+, z)‖+

∥∥(y′+, z′)
∥∥ = h(y, z) + h(y′, z′).

As h is obviously positively homogeneous, h is sublinear. Conversely, assume that h
is sublinear and take y, y′ ∈ Rm with 0 ≤ y ≤ y′ and z ∈ Rl. Then y = y′ + (−v)
for some v ≥ 0, and so h(y, z) ≤ h(y′, z) + h(−v, 0) = h(y′, z). It follows that
‖(y, z)‖ = h(y, z) ≤ h(y′, z) = ‖(y′, z)‖.

(ii) Let ‖·‖ satisfy condition (2.5). Consider (µ, ζ) ∈ ∂h(0, 0). Then for every

y ≥ 0 we have that 〈−y, µ〉 + 〈0, ζ〉 ≤ ‖((−y)+, 0)‖ = 0, and so µ ∈ (Rm+ )+ = R
m
+ .

The formula for ∂h(y, z) for arbitrary y ∈ Rm and z ∈ Rl follows by a well-known
result for sublinear functions (see, for example, [15, Thm. 2.4.14(iii)]).

Assume that (2.6) holds. Then for (µ, ζ) ∈ ∂h(0, 0) and y ∈ Rm, z ∈ Rl we have
that 〈y, µ〉 + 〈z, ζ〉 ≤ ‖(y+, z)‖ ≤ ‖(y, z)‖, and so ‖(µ, ζ)‖∗ ≤ 1. Conversely, assume
that ∂h(0, 0) ⊂ {(µ, ζ) ∈ Rm+l | ‖(µ, ζ)‖∗ ≤ 1} and take y ∈ Rm, z ∈ Rl. Then
h(y, z) = 〈y, µ〉+

〈
z, ζ
〉

for some
(
µ, ζ
) ∈ ∂h(0, 0), and so

‖(y+, z)‖ = h(y, z) ≤ max{〈y, µ〉+ 〈z, ζ〉 | ‖(µ, ζ)‖∗ ≤ 1} = ‖(y, z)‖ .

(iii) Assume that ‖·‖ satisfies (2.5) and (2.6). The inclusion ∂h(0, 0) ⊂ {(µ, ζ) ∈
R
m
+ × Rl | ‖(µ, ζ)‖∗ ≤ 1} is immediate from (i) and (ii). Let µ ∈ Rm+ and ζ ∈ Rl be

such that ‖(µ, ζ)‖∗ ≤ 1. Then for y ∈ Rm and z ∈ Rl we have that 〈y, µ〉 + 〈z, ζ〉 ≤
〈y+, µ〉 + 〈z, ζ〉 ≤ ‖(y+, z)‖ · ‖(µ, ζ)‖∗ ≤ h(y, z), which means that (µ, ζ) ∈ ∂h(0, 0).
Therefore (2.7) holds.

Now let (µ, ζ) ∈ ∂h(y, z) (⊂ ∂h(0, 0)). Then

‖(y+, z)‖ = 〈y, µ〉+ 〈z, ζ〉 = 〈y+ − y−, µ〉+ 〈z, ζ〉 = 〈y+, µ〉 − 〈y−, µ〉+ 〈z, ζ〉
≤ 〈y+, µ〉+ 〈z, ζ〉 ≤ ‖(y+, z)‖ · ‖(µ, ζ)‖∗ ≤ ‖(y+, z)‖ ,

whence 〈y−, µ〉 = 0 and 〈y+, µ〉 + 〈z, ζ〉 = ‖(y+, z)‖. Since ‖(µ, ζ)‖∗ ≤ 1, when
(y+, z) �= 0, from the last equality, we get ‖(µ, ζ)‖∗ = 1.

Note that the norm ‖·‖ on Rm+l satisfies conditions (2.5) and (2.6) if and only if

‖(y+, z)‖ ≤ ‖(y + y′, z)‖ ∀ y ∈ Rm, ∀ y′ ∈ Rm+ , ∀ z ∈ Rl,(2.8)

or, equivalently,

d
(
(0, 0), (y, z) + Rm+ × {0}) = ‖(y+, z)‖ ∀ y ∈ Rm, ∀ z ∈ Rl.(2.9)
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A sufficient condition for (2.5) and (2.6) to hold is

‖(y, z)‖ = ‖(|y|, z)‖ ∀ y ∈ Rm, ∀ z ∈ Rl,(2.10)

where |(y1, . . . , ym)| := (|y1|, . . . , |ym|).
Indeed, if (2.10) holds, then the mapping t �→ ‖(t, y2, . . . , ym, z)‖ from R into R

is an even convex function; hence it attains its infimum at 0 and is nondecreasing on
R+. The same is true for every variable yi. Hence (2.5) holds; (2.6) holds too because
0 ≤ y+ ≤ |y|.

Of course, the norm ‖·‖ on Rm+l satisfies (2.10) whenever the condition below
holds:

‖v‖ = ‖ |v| ‖ ∀ v ∈ Rm+l.(2.11)

Note that the usual norm ‖·‖p on Rm+l (‖v‖p := (
∑m+l
i=1 |vi|p)1/p for p ∈ [1,∞[,

‖v‖∞ := max{|vi| | 1 ≤ i ≤ m + l}) verifies condition (2.11), and so it verifies
conditions (2.5) and (2.6), too. Recall that the dual norm of ‖·‖p is ‖·‖q with q ∈
[1,∞], 1/p + 1/q = 1.

Lemma 2.3. Assume that the norm ‖·‖ on Rm+l satisfies condition (2.10) and
consider Φ := ΦRm+l the duality mapping of Rm+l. Then

(i) the norm ‖·‖∗ on Rm+l satisfies (2.10);
(ii) ∀ (y, z) ∈ Rm+l, ∀ (µ, ζ) ∈ Φ(y, z), ∀ i ∈ I : yiµi ≥ 0;
(iii) ∀ (y, z) ∈ Rm+ ×Rl, ∃ (µ, ζ) ∈ Φ(y, z)∩ (Rm+ ×Rl), ∀ i ∈ I : yi = 0 ⇒ µi = 0.
(iv) Moreover, if the norm ‖·‖ on Rm+l satisfies (2.11), then

∀ (y, z) ∈ Rm+ × Rl, ∃ (µ, ζ) ∈ Φ(y, z) ∩ (Rm+ × Rl),
∀ i ∈ I, ∀ j ∈ J : yi = 0 ⇒ µi = 0, zj = 0 ⇒ ζj = 0.

Proof. (i) Let µ, µ ∈ Rm be such that |µi| = |µi| for every i ∈ I, and ζ ∈ Rl. There
exists (y, z) ∈ Rm+l with ‖(y, z)‖ = 1 such that ‖(µ, ζ)‖∗ =

∑
i∈I yiµi +

∑
j∈J zjζj .

Take yi := yi if µiµi ≥ 0 and yi := −yi if µiµi < 0. Because the norm ‖·‖ satisfies
(2.10) we have that ‖(y, z)‖ = ‖(y, z)‖ = 1. But

∑
i∈I yiµi+

∑
j∈J zjζj =

∑
i∈I yiµi+∑

j∈J zjζj ≤ ‖(y, z)‖ · ‖(µ, ζ)‖∗ = ‖(µ, ζ)‖∗, whence ‖(µ, ζ)‖∗ ≤ ‖(µ, ζ)‖∗. Hence
‖(µ, ζ)‖∗ = ‖(µ, ζ)‖∗, which implies that ‖(µ, ζ)‖∗ = ‖(|µ|, ζ)‖.

(ii) Let (y, z) ∈ R
m+l and (µ, ζ) ∈ Φ(y, z). Then ‖(µ, ζ)‖2∗ = ‖(y, z)‖2 =∑

i∈I yiµi +
∑
j∈J zjζj . Assume that yi0µi0 < 0 for some i0 ∈ I. Taking yi := yi

for i ∈ I \ {i0} and yi0 := −yi0 , we have that ‖(y, z)‖ = ‖(y, z)‖ and so we get the
contradiction

‖(µ, ζ)‖2∗ =
∑
i∈I

yiµi +
∑
j∈J

zjζj <
∑
i∈I

yiµi +
∑
j∈J

zjζj

≤ ‖(y, z)‖ · ‖(µ, ζ)‖∗ = ‖(µ, ζ)‖2∗ .

(iii) Let (y, z) ∈ Rm+ × Rl and take (µ, ζ) ∈ Φ(y, z). Set I0 := {i ∈ I | yi > 0}.
Consider µi := µi for i ∈ I0 and µi := 0 for i ∈ I \ I0. Then µ := (µ1, . . . , µm) ∈ Rm+
and µi = 0 whenever yi = 0. Because |µi| ≤ |µi| for all i ∈ I, by (i) we have that∥∥(µ, ζ)

∥∥
∗ ≤

∥∥(µ, ζ)
∥∥
∗ = ‖(y, z)‖. On the other hand,

∥∥(µ, ζ)
∥∥2

∗ =
∑
i∈I

yiµi +
∑
j∈J

zjζj =
∑
i∈I

yiµi +
∑
j∈J

zjζj ≤ ‖(y, z)‖ · ∥∥(µ, ζ)
∥∥
∗

=
∥∥(µ, ζ)

∥∥
∗ ·
∥∥(µ, ζ)

∥∥
∗ ,
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whence
∥∥(µ, ζ)

∥∥
∗ ≤

∥∥(µ, ζ)
∥∥
∗. Hence

∥∥(µ, ζ)
∥∥
∗ =

∥∥(µ, ζ)
∥∥
∗ = ‖(y, z)‖; from the

equality
∑
i∈I yiµi +

∑
j∈J zjζj =

∑
i∈I yiµi +

∑
j∈J zjζj we get (µ, ζ) ∈ Φ(y, z).

(iv) In the proof of (iii) we consider also J0 := {j ∈ J | zj �= 0} and take ζj := ζj
for j ∈ J0 and ζj := 0 for j ∈ J \ J0. Proceeding as in the proof of (iii) we obtain
that (µ, ζ) ∈ Φ(y, z).

Take ‖·‖ = ‖·‖p with p ∈ [1,∞] and (y, z) ∈ Rm+l with (y+, z) �= (0, 0). Then for
p = 1,

∂h(y, z) =
{
(µ, ζ) ∈ [0, 1]m × [−1, 1]l | yi < 0 ⇒ µi = 0,

yi > 0 ⇒ µi = 1, zj �= 0 ⇒ ζj = sgn zj
}
,

where sgn α := α/ |α| for α ∈ R \ {0}, sgn 0 := 0; for 1 < p < ∞,

∂h(y, z) =
{
‖(y+, z)‖1−pp

(
(y1)

p−1
+ , . . . , (ym)p−1

+ , |z1|p−1
sgn z1, . . . , |zl|p−1

sgn zl
)}

,

and for p = ∞,

∂h(y, z) =

{
(µ, ζ) ∈ Rm+ × Rl

∣∣∣∣∣
∑
i∈I

µi +
∑
j∈J

|ζj | = 1, yi < ‖(y+, z)‖∞ ⇒ µi = 0,

|zj | < ‖(y+, z)‖∞ ⇒ ζj = 0, zjζj ≥ 0 ∀ j ∈ J

}
.(2.12)

As noted in the introduction, there are strong relationships between the Hoffman
and Lipschitz constants for the multifunction F . The next result was observed in [13].

Lemma 2.4. Consider the multifunction Γ : X ⇒ Y , x0 ∈ dom Γ, and γ ∈ [0,∞[,
where (Y, ‖ · ‖) is another normed vector space. Then

d
(
y,Γ(x0)

) ≤ γd
(
x0,Γ

−1(y)
) ∀y ∈ Y(2.13)

if and only if

e
(
Γ(x),Γ(x0)

) ≤ γ ‖x− x0‖ ∀x ∈ X.(2.14)

Condition (2.13) means that the multifunction Γ has a global error bound at x0

as introduced by Li and Singer [10].
Note that for the multifunction F : Rm+l ⇒ X defined in the introduction we

have that F−1(x) = (Ax,Cx) + Rm+ × {0}, and so relation (2.13) becomes

d
(
x, F (b, d)

) ≤ γd
(
(b, d), (Ax,Cx) + Rm+ × {0}) .

But

d
(
(b, d), (Ax,Cx) + Rm+ × {0}) = d

(
(0, 0), (Ax− b, Cx− d) + Rm+ × {0})

≤ ‖((Ax− b)+, Cx− d)‖ ,

with equality if ‖·‖ satisfies conditions (2.5) and (2.6) (or, equivalently, (2.9)).
Corollary 2.5. Let (b, d) ∈ domF . If

e (F (b′, d′), F (b, d)) ≤ γ ‖(b′, d′)− (b, d)‖ ∀ (b′, d′) ∈ domF,
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then

d
(
x, F (b, d)

) ≤ γ ‖((Ax− b)+, Cx− d)‖ ∀x ∈ X.

Moreover, if the norm ‖·‖ on Rm+l satisfies conditions (2.5) and (2.6), then the con-
verse holds.

Proof. Just note that in (2.14) one can take only x ∈ dom Γ. Then apply the
preceding lemma and the above discussion.

In fact, the preceding corollary is valid when A is replaced by an arbitrary function
f : X → R

m (or even defined on a subset of X). In such a case Corollary 2.5 (for
l = 0) was established by Belousov and Andronov [2] with the norm ‖·‖ replaced by
a function g : Rm → R+ satisfying similar conditions to (2.5) and (2.6).

3. Extensions of the Belousov–Andronov formula. Throughout this sec-
tion X is a reflexive Banach space; of course, ΦX∗ = (ΦX)

−1
in this case.

Let A : X → R
m, C : X → R

l, b ∈ Rm, d ∈ Rl, and F : Rm+l ⇒ X be as in the
introduction. The adjoint C∗ of C is given by C∗ζ =

∑
j∈J ζjcj , and similarly A∗.

For K ∈ P(I) := {L | L ⊂ I} we set C∅ := {0} and

CK := cone{ai | i ∈ K} =

{∑
i∈K

µiai

∣∣∣∣∣ µi ≥ 0 ∀ i ∈ K

}

when K �= ∅. For u ∈ X and K ∈ P(I) we consider the element ηuK ∈ Rm having the
components (ηuK)i := (〈u, ai〉)+ for i ∈ K and (ηuK)i := 0 for i ∈ I \K. If u ∈ SX and
ΦX(u) ∩ CK �= ∅, then (ηuK)i > 0 for some i ∈ K; indeed, taking x∗ ∈ ΦX(u) ∩ CK
we have that 1 = 〈u, x∗〉 =

∑
i∈K µi 〈u, ai〉 with µi ≥ 0. Let (b, d) ∈ domF be fixed

and consider x ∈ F (b, d); then Ib(x) := {i ∈ I | 〈x, ai〉 = bi} ∈ P(I) and the normal
cone of F (b, d) at x is

N
(
F (b, d), x

)
=




∑
i∈Ib(x)

µiai +
∑
j∈J

ζjcj

∣∣∣∣∣∣ µi ∈ R+ ∀ i ∈ Ib(x), ζj ∈ R ∀ j ∈ J




= CIb(x) + Im C∗.(3.1)

Theorem 3.1. Assume that the norm ‖·‖ on Rm+l satisfies condition (2.5).
Then for every (b, d) ∈ domF

δb,d = inf {‖(ηuK , Cu)‖ | K ∈ Ib,d, u ∈ SX , ΦX(u) ∩ (CK + Im C∗) �= ∅} ,(3.2)

where Ib,d := {Ib(x) | x ∈ F (b, d)}, and
δ = inf {‖(ηuK , Cu)‖ | K ∈ P(I), u ∈ SX , ΦX(u) ∩ (CK + Im C∗) �= ∅} ,(3.3)

both infima being attained when X is finite-dimensional.
Proof. Let (b, d) ∈ domF be fixed. Consider the function f defined by (2.3); by

Lemma 2.2(i), f is convex. Using relation (2.2) in Proposition 2.1, we obtain that

δb,d = inf
{
f ′(x, u) | x ∈ F (b, d), u ∈ SX ∩ Φ−1

X

(
N(F (b, d), x)

)}
= inf

{
f ′(x, u) | x ∈ F (b, d), u ∈ SX ∩ Φ−1

X

(
CIb(x) + Im C∗)} .

But for x ∈ F (b, d) and u ∈ X we have that f ′(x, u) = limt→0+ t−1‖((A(x+ tu)− b)+,
tCu)‖. For i ∈ Ib(x) and t > 0 we have that (〈x + tu, ai〉 − bi)+ = t (〈u, ai〉)+ =
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t
(
ηuIb(x)

)
i
. Because 〈x, ai〉 − bi < 0 for i ∈ I \ Ib(x), there exists ε > 0 such that

〈x + tu, ai〉 − bi < 0 for all i ∈ I \ Ib(x) and t ∈ ]0, ε]. Hence, for such i and t we have
that (〈x + tu, ai〉 − bi)+ = 0 = t

(
ηuIb(x)

)
i
. It follows that

(
A(x + tu)− b

)
+

= t · ηuIb(x)
for t ∈ ]0, ε], whence f ′(x, u) =

∥∥(ηuIb(x), Cu)
∥∥. From the above expression of δb,d we

obtain (3.2).
Taking into consideration that (3.2) holds for every (b, d) ∈ domF , the inequality

≥ holds in (3.3). Consider K ∈ P(I) and u ∈ SX such that ΦX(u)∩(CK+Im C∗) �= ∅.
Fix an x ∈ X and take bi := 〈x, ai〉 for i ∈ K, bi := 〈x, ai〉+1 for i ∈ I\K, and d := Cx.
It is obvious that K = Ib(x) for b := (b1, . . . , bm). Then ‖(ηuK , Cu)‖ ≥ δb,d ≥ δ.
Therefore (3.3) holds.

Now assume dim X < ∞. Let (b, d) ∈ domF be fixed and consider
(∥∥(ηun

Kn
, Cun)

∥∥)
→ δb,d with Kn ∈ Ib,d and un ∈ SX such that ΦX(un)∩ (CKn + Im C∗) �= ∅ for every
n. Since Ib,d is finite and dimX < ∞ we may assume that Kn = K for every n and
(un) → u ∈ SX . Because the graph of ΦX is closed and CK + Im C∗ is also closed we
have that ΦX(u) ∩ (CK + Im C∗) �= ∅. The definition of ηun

K shows that (ηun

K ) → ηuK ,
and so δb,d = ‖(ηuK , Cu)‖. Hence the infimum in (3.2) is attained. A similar argument
shows that the infimum in (3.3) is also attained.

The formula (3.3) was stated by Belousov and Andronov [2] for l = 0, for X = R
k

endowed with the Euclidean norm, and for the norm on Rm replaced by a pseudonorm
verifying condition (1.6).

4. Extensions of Ng–Zheng and Azé–Corvellec formulae. In this section
we are interested in estimates or formulae for δb,d of types similar to those established
by Ng and Zheng [11] or Azé and Corvellec [1]. Taking into consideration Corollary 2.5,
these estimates are related to those of Bergthaller and Singer [3]. Using formula (2.1)
for the function f defined by relation (2.3) we obtain the following result, where, as
above, Ax = (Ax,Cx).

Theorem 4.1. Assume that the norm ‖·‖ on Rm+l satisfies conditions (2.5) and
(2.6). Then for every (b, d) ∈ domF one has

δb,d = inf{‖x∗‖∗ | ∃x ∈ X : ((Ax− b)+, Cx− d) �= 0, x∗ ∈ A∗ (∂h(Ax− (b, d)))}
(4.1)

= inf{‖A∗µ + C∗ζ‖∗ | ∃x ∈ X : ((Ax− b)+, Cx− d) �= 0,
(4.2)

(µ, ζ) ∈ ∂h(Ax− b, Cx− d)}
= inf

{ ‖A∗µ + C∗ζ‖∗ | x ∈ X, (µ, ζ) ∈ Rm+ × Rl, ‖(µ, ζ)‖∗ = 1,

〈Ax− b, µ〉+ 〈Cx− d, ζ〉 = ‖((Ax− b)+, Cx− d)‖ > 0
}
.

Moreover, if X is a reflexive Banach space, then

δb,d = inf{‖A∗µ + C∗ζ‖∗ | x ∈ X, (µ, ζ) ∈ Rm+ × Rl, 〈(Ax− b)−, µ〉 = 0,

〈Ax− b, µ〉+ 〈Cx− d, ζ〉 = ‖((Ax− b)+, Cx− d)‖ > 0}.(4.3)

Proof. We apply Proposition 2.1 for f defined by (2.3) and t = 0. Then f(x) =
h(Ax − (b, d)) for every x ∈ X. Since h is a continuous sublinear function by
Lemma 2.2(i), we have that f is a continuous convex function, and so ∂f(x) =
A∗(∂h(Ax − (b, d))

)
for x ∈ X. But A∗(µ, ζ) = A∗µ + C∗ζ, and so the first part

of the conclusion follows applying again Lemma 2.2.
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Since for x ∈ X and (µ, ζ) ∈ Rm+×Rl with 〈Ax− b, µ〉+〈Cx− d, ζ〉 = ‖((Ax−b)+,
Cx−d)‖ and ‖(µ, ζ)‖∗ = 1 we have that 〈(Ax− b)+, µ〉+ 〈Cx− d, ζ〉 = 〈Ax− b, µ〉+
〈Cx− d, ζ〉 and 〈(Ax− b)−, µ〉 = 0, the inequality ≥ in (4.3) is obvious.

Assume that X is reflexive. Let x ∈ X and (µ, ζ) ∈ R
m
+ × Rl be such that

〈(Ax− b)+, µ〉+〈Cx− d, ζ〉 = 〈Ax− b, µ〉+〈Cx− d, ζ〉 = ‖((Ax− b)+, Cx− d)‖ > 0.
Of course, x /∈ F (b, d). Consider x ∈ F (b, d) such that d (x, F (b, d)) = ‖x− x‖.
Because Ax ≤ b and µ ≥ 0, we have that

‖((Ax− b)+, Cx− d)‖ = 〈Ax− b, µ〉+ 〈Cx− d, ζ〉 ≤ 〈Ax−Ax, µ〉+ 〈Cx− Cx, ζ〉
= 〈x− x,A∗µ + C∗ζ〉 ≤ ‖x− x‖ · ‖A∗µ + C∗ζ‖ ,

and so δb,d ≤ ‖A∗µ + C∗ζ‖. The conclusion follows.
In order to obtain other formulae or estimates for δb,d let us introduce other

notation. We shall deal with pairs (K,L) and triples (K,L+, L−) of sets with K ⊂ I
and L,L+, L− ⊂ J ; we assume always that L+ ∩ L− = ∅. By (K,L) ⊂ (K ′, L′) and
(K,L+, L−) ⊂ (K ′, L′+, L′−) we mean K ⊂ K ′, L ⊂ L′ and K ⊂ K ′, L+ ⊂ L′+,
L− ⊂ L′−, respectively. For such pairs and triples we consider the compact sets

(4.4)

MK,L :=
{
(µ, ζ) ∈ Rm+ × Rl | ‖(µ, ζ)‖∗=1, i ∈ I \K ⇒ µi = 0, j ∈ J \ L ⇒ ζj = 0

}
,

MK,L+,L− :=
{
(µ, ζ) ∈ MK,L+∪L− | j ∈ L+ ⇒ ζj ≥ 0, j ∈ L− ⇒ ζj ≤ 0

}
(4.5)

and the numbers

τK,L := min {‖A∗µ + C∗ζ‖∗ | (µ, ζ) ∈ MK,L} ,(4.6)

τK,L+,L− := min
{‖A∗µ + C∗ζ‖∗ | (µ, ζ) ∈ MK,L+,L−

}
.(4.7)

It is obvious that τK,L ≥ τK′,L′ if (K,L) ⊂ (K ′, L′) and τK,L+,L− ≥ τK′,L′+,L′− if
(K,L+, L−) ⊂ (K ′, L′+, L′−). Because MK,L =

⋃{
MK,L+,L− | L = L+ ∪ L−} ,

τK,L = min
{
τK,L+,L− | L = L+ ∪ L−} .(4.8)

Inspired by the notions introduced by Ng and Zheng in [11], we consider the
classes of regular pairs and regular triples

R(I, J) := {(K,L) | (K,L) ⊂ (I, J), K ∪ L �= ∅, τK,L > 0},
R′(I, J) := {(K,L+, L−) | (K,L+ ∪ L−) ⊂ (I, J), K ∪ L+ ∪ L− �= ∅, τK,L+,L− > 0}.

Since R(I, J) and R′(I, J) are nonempty (as A �= 0) and finite, we have that

ρ := min{τK,L | (K,L) ∈ R(I, J)} ∈ ]0,∞[,(4.9)

ρ′ := min{τK,L+,L− | (K,L+, L−) ∈ R′(I, J)} ∈ ]0,∞[.(4.10)

Taking into consideration (4.8) we have that ρ ≥ ρ′. We shall see below that ρ = ρ′,
but this is not obvious because we could have (K,L+, L−) ∈ R′(I, J) with (K,L+ ∪
L−) /∈ R(I, J).

We say that the pair (K,L) ⊂ (I, J) is full if lin ({ai | i ∈ K} ∪ {cj | j ∈ L}) =
ImA∗; we denote by Rf (I, J) the class of full regular pairs. Similarly, the triple
(K,L+, L−) is full if (K,L+ ∪ L−) is full, and we denote by R′

f (I, J) the class of
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full regular triples. The notation R(I), R(J), Rf (I), Rf (J) is now self-explanatory.
Consider also

L(I, J) :=
{
(K,L) |(K,L) ⊂ (I, J), {ai | i ∈ K}∪{cj |j ∈ L} is linearly independent

}
,

L′(I, J) :={(K,L+, L−) | (K,L+ ∪ L−) ∈ L(I, J)},

and similarly L(I), L(J), Lf (I, J), L′
f (I, J), Lf (I), Lf (J); so K ∈ Lf (I) if and only

if {ai | i ∈ K} is a basis for Im A∗. It is obvious that τK,L > 0 if and only if L ∈ L(J),
τK,∅ > 0, and CK ∩ lin{cj | j ∈ L} = {0}. In particular L(I, J) ⊂ R(I, J).

Lemma 4.2. For every (K,L) ∈ R(I, J) there exists (K ′, L′) ∈ Rf (I, J) such
that (K,L) ⊂ (K ′, L′); similarly, for any (K,L) ∈ L(I, J) there exists (K ′, L′) ∈
Lf (I, J) such that (K,L) ⊂ (K ′, L′), and for every (K,L+, L−) ∈ R′(I, J) there
exists (K,L′+, L′−) ∈ R′

f (I, J) such that (K,L+, L−) ⊂ (K,L′+, L′−). In particular,
any maximal regular pair and any maximal regular triple (with respect to inclusion)
is full.

Proof. Indeed, let (K,L) ∈ R(I, J). Assume that Z0 := lin({ai | i ∈ K} ∪
{cj | j ∈ L}) �= ImA∗. Then there exists i′ ∈ I \ K such that ai′ /∈ Z0 or j′ ∈
J \ K such that cj′ /∈ Z0. Consider the first case, the second one being treated
similarly. It follows that (K ′, L) ∈ R(I, J), where K ′ := K ∪ {i′}; otherwise 0 =∑
i∈I µiai +

∑
j∈J ζjcj for some (µ, ζ) ∈ MK′,L. If µi′ = 0, we get the contradiction

0 = τK,L, because (µ, ζ) ∈ MK,L in this case; if µi′ �= 0, we get the contradiction
ai′ ∈ Z0. Thus, there exists (K1, L1) ∈ R(I, J) such that (K,L) ⊂ (K1, L1) and
Z0 ⊂ Z1 := lin ({ai | i ∈ K1} ∪ {cj | j ∈ L1}) with Z0 �= Z1. Continuing in this way
we obtain a pair (Kh, Lh) ∈ Rf (I, J) with (K,L) ⊂ (Kh, Lh) in a finite number of
steps. The proof for triples is similar.

When (K,L) ∈ L(I, J), just complete {ai | i ∈ K} ∪ {cj | j ∈ L} to a basis of Y
with elements of {ai | i ∈ I} ∪ {cj | j ∈ J}.

Another result in the same spirit, but with a more involved proof, is the following.
Lemma 4.3. Let (K,L) ∈ R(I, J). Then there exists K0 ⊂ K such that

(K0, L) ∈ L(I, J) and τK0,L = τK,L. Similarly, if (K,L+, L−) ∈ R′(I, J), then there
exists (K0, L

+
0 , L−

0 ) ⊂ (K,L+, L−) such that (K0, L
+
0 , L−

0 ) ∈ L′(I, J) and τK0,L
+
0 ,L

−
0

=

τK,L+,L− . In particular, if 0 /∈ co{ai | i ∈ K} for some ∅ �= K ⊂ I, then there exists
K0 ∈ L(K) such that d (0, co{ai | i ∈ K}) = d (0, co{ai | i ∈ K0}).

Proof. Let (K,L) ∈ R(I, J); as observed above, L ∈ L(J). Consider

I := {K ′ ⊂ K | τK′,L = τK,L}

and take K0 ∈ I such that cardK0 ≤ cardK ′ for every K ′ ∈ I. If K0 = ∅, then
(K0, L) ∈ L(I, J).

Let K0 �= ∅ and take (η, ξ) ∈ MK0,L such that τK0,L = ‖x∗‖ where x∗ = A∗η +
C∗ξ. By the choice of K0 we have that ηi > 0 for every i ∈ K0. Assuming that
(K0, L) /∈ L(I, J), there exists (λ, ν) ∈ Rm+l\{(0, 0)} such that 0 = A∗λ+C∗ν, λi = 0
for i ∈ I \K0, and νj = 0 for j ∈ J \L. There exists some t ∈ R such that ηi+ tλi ≥ 0
for all i ∈ K0 and ηi0 + tλi0 = 0 for some i0 ∈ K0. Let K ′

0 := K0 \ {i0} ⊂ K0. On the
one hand we have that τK′

0,L
≥ τK0,L and (η′, ξ′) := (η, ξ) + t(λ, ν) ∈ MK′

0,L
. On the

other hand x∗ = A∗(η + tλ) +C∗(ξ + tν) = A∗η′ +C∗ξ′, and so τK,L = ‖x∗‖ ≥ τK′
0,L

.
Hence (K ′

0, L) ∈ I, contradicting the choice of K0. Therefore (K0, L) ∈ L(I, J).
The proof for the case when (K,L+, L−) ∈ R′(I, J) is similar. Consider

IJ := {(K ′, L′+, L′−) | (K ′, L′+, L′−) ⊂ (K,L+, L−) : τK′,L′+,L′− = τK,L+,L−}
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and take (K0, L
+
0 , L−

0 ) ∈ IJ such that card(K0∪L+
0 ∪L−

0 ) ≤ card(K ′∪L′+∪L′−) for
every (K ′, L′+, L′−) ∈ IJ . Let (η, ξ) ∈ MK0,L

+
0 ,L

−
0

be such that τK0,L
+
0 ,L

−
0

= ‖x∗‖,
where x∗ = A∗η + C∗ξ. Then ηi > 0 for i ∈ K0, ζj > 0 for j ∈ L+

0 , and ζj < 0 for
j ∈ L−

0 . As above, assuming that (K0, L
+
0 , L−

0 ) /∈ L′(I, J) we get a contradiction with
the choice of (K0, L

+
0 , L−

0 ).
Taking l = 0 and ‖·‖ = ‖·‖∞ on Rm one obtains the last conclusion.
The last part of the above lemma was obtained by Azé and Corvellec [1, Lem. 3.1].

From Lemmas 4.2 and 4.3 and relation (4.8) applied for (K,L) ∈ L(I, J) we get
immediately the following corollary.

Corollary 4.4. The following relations hold:

ρ = min {τK,L | (K,L) maximal in R(I, J)}
= min{τK,L | (K,L) ∈ Rf (I, J)}
= min{τK,L | (K,L) ∈ L(I, J)}
= min{τK,L | (K,L) ∈ Lf (I, J)},

ρ′ = min
{
τK,L+,L− | (K,L+, L−) maximal in R′(I, J)

}
= min{τK,L+,L− | (K,L+, L−) ∈ R′

f (I, J)}
= min{τK,L+,L− | (K,L+, L−) ∈ L′(I, J)}
= min{τK,L+,L− | (K,L+, L−) ∈ L′

f (I, J)},
and ρ = ρ′.

When the norm on Rm+l is ‖·‖∞ we can also extend the notion of peak set
introduced by Ng and Zheng [11]. So, we say that (K,L+, L−) is a peak triple at
(b, d) ∈ domF if there exists x ∈ X such that s := f(x) = ‖((Ax− b)+, Cx− d)‖∞ >
0 and 〈x, ai〉 − bi = s for i ∈ K, 〈x, cj〉 − dj = s for j ∈ L+, 〈x, cj〉 − dj = −s for
j ∈ L−, 〈x, ai〉−bi < s for i ∈ I \K, |〈x, cj〉 − dj | < s for j ∈ J \(L+∪L−). Of course,
K ∪ L+ ∪ L− �= ∅ if (K,L+, L−) is a peak triple. Because f(x) > 0 = inf f , we have
that 0 /∈ ∂f(x); since ∂f(x) = {A∗µ + C∗ζ | (µ, ζ) ∈ MK,L+,L−} (see relation (2.12)),
we have that (K,L+, L−) ∈ R′(I, J) in this case. Denote by Pb,d(I, J) the class of
peak triples and by Fb,d(I, J) (resp., Mb,d(I, J)) the class of full (resp., maximal)
peak triples at (b, d).

Theorem 4.5. Let Rm+l be endowed with the box norm ‖·‖∞ and (b, d) ∈ domF .
Then

δb,d = min{τK,L+,L− | (K,L+, L−) ∈Mb,d(I, J)}(4.11)

= min{τK,L+,L− | (K,L+, L−) ∈ Fb,d(I, J)}(4.12)

= min{τK,L+,L− | L′(I, J) " (K,L+, L−) ⊂ (K ′, L′+, L′−) ∈ Pb,d(I, J)}.(4.13)

Proof. By relation (4.2) of Theorem 4.1 and relation (2.12) we have δb,d =
min{τK,L+,L− | (K,L+, L−) ∈ Pb,d(I, J)}, and so δb,d is less than or equal to the
two quantities appearing in (4.11) and (4.12). Let us show that for any peak triple
(K,L+, L−) there exists (K ′, L′+, L′−) ∈ Fb,d(I, J) such that (K,L+, L−) ⊂ (K ′, L′+,
L′−). Fix (K,L+, L−) ∈ Pb,d(I, J) and consider (K0, L

+
0 , L−

0 ) ∈ Pb,d(I, J) such that
(K,L+, L−) ⊂ (K0, L

+
0 , L−

0 ) and card(K0 ∪ L+
0 ∪ L−

0 ) ≥ card(K ′ ∪ L′+ ∪ L′−) for
any (K ′, L′+, L′−) ∈ Pb,d(I, J) with (K,L+, L−) ⊂ (K ′, L′+, L′−); the existence of
(K0, L

+
0 , L−

0 ) is ensured by the finiteness of the class of peak triples. It is obvious
that (K0, L

+
0 , L−

0 ) is in Mb,d(I, J), and so equality holds in (4.11). Assume that
(K0, L

+
0 , L−

0 ) /∈ Fb,d(I, J), and so Z0 := lin
({ai | i ∈ K0} ∪ {cj | j ∈ L+

0 ∪ L−
0 }
) �=
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ImA∗. Hence there exists i′ ∈ I \ K0 or j′ ∈ J \ (L+
0 ∪ L−

0 ) such that ai′ /∈ Z0

or cj′ /∈ Z0. It follows that there exists x′ ∈ X such that 〈x′, ai〉 = 0 for i ∈ K0,
〈x′, cj〉 = 0 for j ∈ L+

0 ∪ L−
0 , and 〈x′, ai′〉 = 1 or 〈x′, cj′〉 = 1. Taking x0 ∈ X,

which corresponds to (K0, L
+
0 , L−

0 ), we have that 〈x0 + tx′, ai〉 − bi = s0 := f(x0) for
i ∈ K0, 〈x0 + tx′, cj〉 − dj = s0 for j ∈ L+

0 , and 〈x0 + tx′, cj〉 − dj = −s0 for j ∈ L−
0 ,

for every t ∈ R. Moreover, 〈x0, ai〉− bi < s0 for i ∈ I \K0, and |〈x0, cj〉 − dj | < s0 for
j ∈ J \ L0. Take the greatest t0 > 0 such that 〈x0 + tx′, ai〉 − bi ≤ s0 for i ∈ I \K0,
and |〈x0 + tx′, cj〉 − dj | ≤ s0 for j ∈ J \ (L+

0 ∪ L−
0 ). Then at least one of these

inequalities becomes an equality. Let x1 := x0 + t0x
′; then s1 := f(x1) = f(x0),

K1 := {i ∈ I | 〈x1, ai〉 − bi = s1} ⊃ K0, L+
1 := {j ∈ J | 〈x, cj〉 − dj = s1} ⊃ L+

0 ,
L−

1 := {j ∈ J | 〈x, cj〉− dj = −s1} ⊃ L−
0 , and at least one of these inclusions is strict.

Because, obviously, (K1, L
+
1 , L−

1 ) is a peak triple, we have a contradiction. Therefore
(K0, L

+
0 , L−

0 ) ∈ Fb,d(I, J). Hence the equality holds in (4.12), too.
For (4.13) just use Lemma 4.3.
The proof above shows that Mb,d(I, J) ⊂ Fb,d(I, J) ⊂ Pb,d(I, J). When l = 0 the

sets J , L, L+, L− are empty, and so we omit them in the above notation. So we write
MK , τK , Pb(I), Fb(I), and Mb(I) instead of MK,L, . . . ,Mb,d(I, J); we also write δb
instead of δb,d. In this case (l = 0) relation (4.13) is proved by Azé and Corvellec in
[1, Thm. 3.1], while (4.12) strengthens Theorem 4.4 in [11], where it is shown that
δb ≥ min{τK | K ∈ Fb(I)}.

Unfortunately, for an arbitrary norm ‖·‖ on Rm+l (however, satisfying conditions
(2.5) and (2.6)) we have only the formulae for δb,d which are provided by Theorem 4.1.
In the next result we provide an estimate for δb,d in the general case. This estimate
practically follows from (the proof of) Li’s Theorem 3.4 in [8].

Proposition 4.6. Assume that X is a reflexive Banach space. Then

δb,d ≥ max
L∈Lf (J)

αLb,d,(4.14)

where

αLb,d := min{τK,L | x ∈ F (b, d), K ⊂ Ib(x), (K,L) ∈ L(I, J)}.

Proof. We use Corollary 2.5. Fix L ∈ Lf (J). We consider (b′, d′) ∈ domF and
x′ ∈ F (b′, d′) \ F (b, d). Let x ∈ F (b, d) be such that ‖x′ − x‖ = d (x′, F (b, d)). Then
ΦX(x′− x)∩N (F (b, d), x) �= ∅; let x∗ be an element of this set. Using formula (3.1),
the set

Mx∗ :=
{
(η, ξ) ∈ Rm+ × Rl | x∗ = A∗η + C∗ξ, ηi > 0 ⇒ i ∈ Ib(x)

}
is nonempty. Of course (η, ξ) �= (0, 0) for (η, ξ) ∈ Mx∗ ; this is due to the fact that
x′ �= x, and so x∗ �= 0. Proceeding as in the proof of Lemma 3.1 in [8], there exist
(µ, ζ) ∈ Mx∗ and K ⊂ Ib(x) such that (K,L) ∈ L(I, J) and µi = 0 for i ∈ I \ K,
ζj = 0 for j ∈ J \ L. Indeed, for (η, ξ) ∈ Mx∗ let Kη,ξ := {i ∈ I | ηi > 0}. Of
course, Kη,ξ ⊂ Ib(x). Let (µ, ζ) ∈ Mx∗ be such that cardK ≤ cardKη,ξ for every
(η, ξ) ∈ Mx∗ , where K := Kµ,ζ . Let λ ∈ Rm be such that λi �= 0 ⇒ i ∈ K and
u∗ := A∗λ ∈ Im C∗, i.e., u∗ = C∗ν for some ν ∈ Rl. Assume that λi0 �= 0 for some
i0 ∈ K; we (may) even assume that λi0 > 0. Taking t := min{λ−1

i µi | λi > 0},
we have that (µ′, ζ ′) := (µ, ζ) − t(λ,−ν) ∈ Mx∗ and cardKµ′,ζ′ < cardK. Hence
K ∈ L(I) and lin{ai | i ∈ K} ∩ Im C∗ = {0}. Since x∗ −A∗µ ∈ Im C∗ and L ∈ Lf (J)
we may assume that ζj �= 0 ⇒ j ∈ L. Then (µ, ζ) is the desired element of Mx∗ .
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It follows that (µ, ζ) := ‖(µ, ζ)‖−1
∗ (µ, ζ) ∈ MK,L. Because x∗ ∈ ΦX(x′ − x) and

〈Ax, µ〉 = 〈b, µ〉, we have that

‖x∗‖∗ · ‖x′ − x‖=〈x′ − x, x∗〉=〈Ax′ −Ax, µ〉+〈Cx′ − Cx, ζ〉≤〈b′ − b, µ〉+〈d′ − d, ζ〉
≤‖(b′, d′)− (b, d)‖ · ‖(µ, ζ)‖∗ ,

whence

αLb,d · d (x′, F (b, d)) ≤ ∥∥A∗µ + C∗ζ
∥∥
∗ · ‖x′ − x‖ = ‖(µ, ζ)‖−1

∗ · ‖x∗‖∗ · ‖x′ − x‖
≤ ‖(b′, d′)− (b, d)‖ .

Hence

αLb,d · e (F (b′, d′), F (b, d)) ≤ ‖(b′, d′)− (b, d)‖ ∀ (b′, d′) ∈ domF.(4.15)

The conclusion follows using Corollary 2.5.
When l = 0, the norm on Rm is ‖·‖∞, and b ∈ domF (we omit the second

component in this case), then the constant C defined in relation (1.31) of Bergthaller
and Singer’s paper [3] is nothing else but α−1

b ; we omit d (= 0) and L (= J = ∅) in this
case. As proven by Azé and Corvellec in their Example 3.1 from [1] one can have strict
inequality in (4.14). The inequality may be strict also in the case m = 0. Consider
X := R, l = 2, and C : R → R

2 defined by Cx := (x, x). Consider the Euclidean

norm on R and R2. Then δ0,0 = min{‖Cx‖ | |x| = 1} =
√

2, while α
{1}
0,0 = α

{2}
0,0 = 1.

5. Estimates for the global Hoffman constant. In this section we are inter-
ested in formulae and/or estimates for the Hoffman constant δ of F . The first result
is based on Proposition 4.6.

Proposition 5.1. Assume that X is a reflexive Banach space and the norm ‖·‖
on Rm+l satisfies the conditions (2.5) and (2.6). Then

δ ≥ max
L∈Lf (J)

min
(K,L)∈L(I,J)

τK,L.(5.1)

Moreover, if the norm ‖·‖ on Rm+l satisfies condition (2.10) and {cj | j ∈ J} is
linearly independent, then

δ = min{τK,J | (K,J) ∈ L(I, J)}.
Proof. Let L ∈ Lf (J) and (b, d) ∈ domF . From the expression of αLb,d defined

in Proposition 4.6, we have that αLb,d ≥ αL := min{τK,L | (K,L) ∈ L(I, J)}. Using

Proposition 4.6, we have that δ = inf{δb,d | (b, d) ∈ domF} ≥ max{αL | L ∈ Lf (J)}.
Hence (5.1) holds.

Assume now that the norm ‖·‖ on Rm+l satisfies condition (2.10) and {cj | j ∈ J}
is linearly independent. Take K ⊂ I such that (K,J) ∈ L(I, J) and (µ, ζ) ∈ MK,J .
Applying Lemma 2.3(iii) for the duality mapping on (Rm+l, ‖·‖∗), there exists (u, v) ∈
R
m
+ × Rl such that ‖(u, v)‖ = 〈u, µ〉 + 〈v, ζ〉 = 1 and ui = 0 whenever µi = 0. Since

{ai | i ∈ K} ∪ {cj | j ∈ J} is linearly independent, there exists x ∈ X such that
〈x, ai〉 = ui for every i ∈ K and 〈x, cj〉 = vj for every j ∈ J . Consider bi := 0 for
i ∈ K and bi := max{〈x, ai〉 + 1, 0} for i ∈ I \K. Then b := (b1, . . . , bm) ∈ Rm+ and
((Ax− b)+, Cx) = (u, v) �= (0, 0). Since 〈Ax− b, µ〉+ 〈Cx, ζ〉 = ‖((Ax− b)+, Cx)‖ >
0, by Theorem 4.1, we have that δ ≤ δb,0 ≤ ‖A∗µ + C∗ζ‖∗, and so δ ≤ τK,J . The
conclusion follows.
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In fact the condition that X is a reflexive Banach space in the statement of the
preceding proposition is not essential because, as mentioned in the introduction, we
can suppose that X is finite-dimensional.

The above expression of δ when {cj | j ∈ J} is linearly independent is obtained
by Li in relation (5.10) of [8] for the norm ‖·‖ on Rm+l satisfying condition (2.11);
note that Li’s proof is very different. Note also that the inequality in (5.1) can be
strict if {cj | j ∈ J} is not linearly independent, as the example given at the end of
the preceding section shows.

Taking into consideration Corollary 4.4 we have that δ ≥ ρ (where ρ is defined by
relation (4.9)); this inequality can be strict even if {cj | j ∈ J} is linearly independent,
as shown by Li in [8, Prop. 5.1]. Using Corollary 4.4 and the preceding proposition,
in the case l = 0 there are several formulae for δ.

Corollary 5.2. Assume that the norm ‖·‖ on Rm satisfies condition (2.10).
Then

δ = min{τK | K ∈ R(I)} = min{τK | K ∈ Rf (I)} = min{τK | K is maximal in R(I)}
= min{τK | K ∈ L(I)} = min{τK | K ∈ Lf (I)}.

Proposition 5.1 can be used for deriving a formula for δ established by Belousov
and Andronov [2] when the spaces are endowed with Euclidean norms. Assume
that X is a Hilbert space and ∅ �= K ⊂ I; by GK we denote the Gram matrix
(〈ai, ai′〉)(i,i′)∈K×K . When (K,L) ⊂ (I, J), the Gram matrix GK,L is defined simi-

larly. Moreover, for y ∈ RK , y > 0 means that yi > 0 for every i ∈ K.
Corollary 5.3. Assume that X is a Hilbert space, {cj | j ∈ J} is linearly

independent, and Rm+l is endowed with the Euclidean norm ‖·‖2. Then

δ =
√

λ,

where λ is the smallest among all eigenvalues of Gram matrices MK,J which corre-
spond to eigenvectors (y, z) ∈ RK × RJ with y > 0 for K ⊂ I such that (K,J) ∈
L(I, J).

Proof. Let (K,J) ∈ L(I, J) be such that λ ∈ R is an eigenvalue corresponding
to the eigenvector (y, z) ∈ RK × RJ with y > 0. We may assume that ‖(y, z)‖2 = 1.
Consider µ ∈ Rm such that µi := yi for i ∈ K, µi := 0 for i ∈ I \K, and ζ := z ∈ Rl.
Then

‖A∗µ + C∗ζ‖2 =
〈
(y, z),MK,J(y, z)T

〉
=
〈
(y, z), λ(y, z)T

〉
= λ,(5.2)

whence τK,J ≤ √
λ. Because in our case the second part of Proposition 5.1 ap-

plies, we obtain that δ ≤
√

λ. Let us prove now the reverse inequality. Using again
Proposition 5.1, there exists K ⊂ I such that (K,J) ∈ L(I, J) and δ = τK,J . By
the definition of τK,J , there exists (µ, ζ) ∈ MK,J such that τK,J = ‖A∗µ + C∗ζ‖.
Taking K0 := {i ∈ K | µi > 0}, we have that (µ, ζ) ∈ MK0,J . It follows that
τK,J = τK0,J . Replacing eventually K by K0, we may assume that µi > 0 for ev-
ery i ∈ K. Let D := {(y, z) ∈ RK × RJ | y > 0}, φ, ψ : D → R be defined by

φ(y, z) := 1
2

〈
(y, z),MK,J(y, z)T

〉
, and ψ(y, z) := 1

2 ‖(y, z)‖2. It is obvious that D is
an open set, φ, ψ are C1 functions, and ∇φ(y, z) = MK,J(y, z)T , ∇ψ(y, z) = (y, z)T .
Let yi := µi for i ∈ K and z := ζ. It follows that (y, z) is an optimal solution of the
minimization problem: min φ(y, z) subject to ψ(y, z) = 1

2 . Since ∇ψ(y, z) is onto,
there exists λ ∈ R such that

0 = ∇ (φ− λψ) (y, z) = MK,J(y, z)T − λ(y, z)T ,(5.3)
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which means that (y, z) is an eigenvector of MK,J and λ is an eigenvalue which

corresponds to (y, z). From (5.3) and (5.2) we obtain that δ2 = λ, and so δ ≥
√

λ.
The proof is complete.

6. Concluding remarks. For deriving the formulae and estimates for the sharp
Hoffman constant we used results on global error bounds for convex inequality sys-
tems. A similar approach was used by Azé and Corvellec [1] and Ng and Zheng
[11].

• We established a formula for the sharp Hoffman constant δb,d at (b, d) ∈ domF
and a formula for the global sharp Hoffman constant δ in the spirit of those established
by Belousov and Andronov [2]; taking l = 0 and X = R

k endowed with the Euclidean
norm, the formula for δ reduces to that given in [2].

• We showed that the Hoffman constant found by Ng and Zheng is in fact the
sharp Hoffman constant.

• We showed that the sharp Hoffman constant established by Li [8] is valid for
more general norms on Rm+l; a similar formula for the sharp Hoffman constant at
(b, d) ∈ domF is furnished. Also, using Li’s formula, we deduced a formula for the
sharp Hoffman constant by using eigenvalues of Gram matrices in the case when all
spaces are Hilbert spaces; this reduces to the Belousov and Andronov formula when
C = 0.

• We gave properties and characterized several types of monotonicity for norms
on Rm+l.

Acknowledgments. We thank the referees for their attentive reading of the
manuscript and for their remarks, which improved the presentation of the paper. The
current shorter proof of Lemma 4.3 is based on an idea of one of the referees.
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[13] C. Zălinescu, A nonlinear extension of Hoffman’s error bounds for linear inequalities, Math.
Oper. Res., 28 (2003), pp. 524–532.
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Abstract. In this paper a new sequential Lagrange multiplier condition characterizing opti-
mality without a constraint qualification for an abstract nonsmooth convex program is presented
in terms of the subdifferentials and the ε-subdifferentials. A sequential condition involving only
the subdifferentials, but at nearby points to the minimizer for constraints, is also derived. For a
smooth convex program, the sequential condition yields a limiting Kuhn–Tucker condition at nearby
points without a constraint qualification. It is shown how the sequential conditions are related to the
standard Lagrange multiplier condition. Applications to semidefinite programs, semi-infinite pro-
grams, and semiconvex programs are given. Several numerical examples are discussed to illustrate
the significance of the sequential conditions.

Key words. ε-subdifferential, sequential ε-subgradient optimality conditions, necessary and
sufficient conditions
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1. Introduction. Consider the convex programming model problem

(P) Minimize f(x)

subject to g(x) ∈ −S,
where X is a reflexive Banach space, Z is a locally convex (Hausdorff) space, S
is a closed convex cone in Z, which does not necessarily have nonempty interior,
f : X → R is a continuous convex function, and g : X → Z is a continuous and
S-convex function. It is well known that for the convex programming problem (P)
the Lagrange multiplier condition that

(∃λ ∈ S+) 0 ∈ ∂f(a) + ∂(λg)(a), λg(a) = 0,(1)

is sufficient for optimality. However, this condition requires a constraint qualification
to completely characterize optimality. The constraint qualifications do not always
hold for finite-dimensional convex programs and frequently fail for infinite-dimensional
convex programs. Over the years a great deal of attention has been focused on the
characterizations of optimality which avoid a constraint qualification. As a result,
various modified Lagrange multiplier conditions without a constraint qualification
have been given in the literature (see [2, 3, 13, 17] and the references therein). More

∗Received by the editors November 11, 2002; accepted for publication (in revised form) June 17,
2003; published electronically November 6, 2003.

http://www.siam.org/journals/siopt/14-2/41769.html
†Department of Applied Mathematics, University of New South Wales, Sydney 2052, Australia

(jeya@maths.unsw.edu.au).
‡Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea

(gmlee@pknu.ac.kr). The work of this author was partially carried out while he was visiting the
University of New South Wales.

§Department of Mathematics-Informatics, Pedagogical Institute of Ho Chi Minh City, HCM City,
Vietnam. The work of this author was carried out while he was at the Pukyong National University,
Korea, and was supported by a KOSEF-APEC Postdoctoral Fellowship.

534



SEQUENTIAL OPTIMALITY CONDITIONS FOR CONVEX PROGRAMS 535

recently, Thibault [20] gave an elegant sequential form of the Lagrange multiplier
condition for (P) characterizing optimality without a constraint qualification in the
case where S is a closed convex normal cone. The sequential condition involving
the subdifferentials at nearby points to a minimizer was derived using the sequential
subdifferential calculus of convex functions (see [1, 10, 20, 21]).

The aim of this paper is threefold: First, we establish a new sequential form of the
Lagrange multiplier condition that is expressed at the minimizer rather than at nearby
points. This is achieved by employing both the subdifferential and the ε-subdifferential
[7, 8, 9] for deriving the sequential condition. The key to the derivation is the simple
description of the epigraph of a conjugate function in terms of the ε-subdifferentials
and the direct application of the Hahn–Banach separation theorem [11]. Second, we
show how a sequential Lagrange multiplier condition involving only the subdifferen-
tials at nearby points to a minimizer can be derived from the new sequential form.
We derive such a condition as an application of the Brondsted–Rockafellar theorem
[4, 20], which paves the way for describing an ε-subgradient at a point in terms of
the subgradients at nearby points. These results show in particular that the absence
of a constraint qualification for a smooth convex program means that the Lagrange
multipliers are weakened to satisfy the Kuhn–Tucker conditions in the limit by a se-
quence of Lagrange multipliers at nearby points for constraints. Third, we show how
our sequential condition is related to the Lagrange multiplier condition (1) under a
constraint qualification. We establish that the new sequential condition collapses to
the Lagrange multiplier condition (1) under a simple, but more general, closed cone
constraint qualification which is implied by well-known constraint qualifications such
as the generalized Slater condition [15, 16] or the Robinson regularity condition [17].

The rest of the paper is organized as follows. Section 2 explains some basic results
on convex sets and functions and points out important properties of conjugate func-
tions and ε-subdifferentials that will be used later in the paper. Section 3 presents
sequential Lagrange multiplier conditions for the convex programming model problem
(P). Section 4 describes a simple closed cone condition as a constraint qualification
which ensures that the Lagrange multiplier condition (1) holds. Finally, section 5 de-
rives sequential Lagrange multiplier conditions for semidefinite programs, semi-infinite
programs, and semiconvex programs and illustrates the significance of the sequential
conditions by numerical examples. The main results are presented in reflexive Banach
spaces X in order to avoid the use of nets.

2. Preliminaries: Conjugacy and ε-subdifferentials. Let us first recall
some notation and preliminary results which will be used throughout the paper. In
what follows we will always assume that the feasible set A := g−1(−S) = {x ∈ X |
g(x) ∈ −S} is nonempty. The continuous dual space of X will be denoted X ′ and
will be endowed with the weak* topology. For a set D ⊂ X, the closure and con-
vex hull of D will be denoted clD and coD, respectively. The support function σD
is defined by σD(u) = supx∈D u(x), and the cone generated by D will be denoted
coneD :=

⋃
α≥0 αD. The core of D is defined by

core D = {d ∈ D | (∀x ∈ X)(∃ε > 0)(∀λ ∈ [−ε, ε]) d+ λx ∈ D}.
The (positive) polar of the cone S ⊆ Z is the cone S+ = {θ ∈ Z ′ | θ(k) ≥ 0 ∀k ∈ S}.
Let f : X → R ∪ {+∞} be a proper lower semicontinuous convex function. Then the
conjugate function f∗ : X ′ → R ∪ {+∞} is defined by

f∗(v) = sup{v(x)− f(x) | x ∈ dom f},
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where the domain of f , dom f , is given by

dom f = {x ∈ X | f(x) < +∞}.
The epigraph of f, epi f , is defined by

epi f = {(x, r) ∈ X × R | x ∈ dom f, f(x) ≤ r}.
Recall that, for ε ≥ 0, the ε-subdifferential of f at a ∈ dom f is defined as the
nonempty weak* closed convex set

∂εf(a) = {v ∈ X ′ | f(x)− f(a) ≥ v(x− a)− ε ∀x ∈ dom f}.
For a detailed discussion on the ε-subdifferential and its properties, see [7, 8, 9]. Note
that

⋂
ε>0 ∂εf(a) = ∂f(a), where the latter set denotes the usual convex subdiffer-

ential of f at a. If f̃(x) = f(x) − k, x ∈ X, k ∈ R, then epi f̃∗ = epi f∗ + (0, k).
The following proposition, which describes the relationship between the epigraph of
a conjugate function and the ε-subdifferential and which plays a key role in deriving
the main results, was recently given in [13]. For the sake of completeness we give a
short proof here.

Proposition 2.1. Let f : X → R ∪ {+∞} be a lower semicontinuous (proper)
convex function and let a ∈ dom f . Then

epi f∗ =
⋃
ε≥0

{(v, ε+ v(a)− f(a)) : v ∈ ∂εf(a)}.(2)

Proof. Let (u, r) ∈ epi f∗. Then f∗(u) ≤ r. From the definition of conjugate
function, for each x ∈ X, f∗(u) ≥ u(x)− f(x); thus, for each u ∈ X, u(x)− f(x) ≤ r.
Let ε0 = r + f(a)− u(a) ≥ 0. So, r = ε0 − f(a) + u(a). Now, for each x ∈ X,

f(x)− f(a) ≥ u(x)− r − f(a) = u(x− a)− ε0;
thus, u ∈ ∂ε0f(a). Hence,

epi f∗ ⊂ K :=
⋃
ε≥0

{(v, ε+ v(a)− f(a)) : v ∈ ∂εf(a)}.

Conversely, let (u, r) ∈ K. Then there exists ε0 ≥ 0 such that u ∈ ∂ε0f(a) and
r = −f(a) + u(a) + ε0. This gives us f∗(u) + f(a) − u(a) ≤ ε0, which means that
f∗(u) ≤ ε0 + u(a)− f(a); thus, f∗(u) ≤ r and so, (u,r) ∈ epi f∗.

The mapping g : X → Z is called S-convex if for every u, v ∈ X and every
t ∈ [0, 1],

g(tu+ (1− t)v)− tg(u)− (1− t)g(v) ∈ −S.
For a continuous S-convex mapping g, it is easy to show that the set⋃

λ∈S+

epi (λg)∗

is a convex cone [15]. We conclude this section by recalling a version of the Brondsted–
Rockafellar theorem which was established in [20].

Proposition 2.2 (Brondsted–Rockafellar Theorem [4, 20]). Let X be a Banach
space and let f : X → R ∪ {+∞} be a proper lower semicontinuous convex function.
Then for any real number ε > 0 and any x∗ ∈ ∂εf(x̄) there exist xε ∈ X, x∗ε ∈ ∂f(xε)
such that

‖xε − x̄‖ ≤
√
ε, ‖x∗ε − x∗‖ ≤

√
ε, and |f(xε)− x∗ε (xε − x̄)− f(x̄)| ≤ 2ε.



SEQUENTIAL OPTIMALITY CONDITIONS FOR CONVEX PROGRAMS 537

3. Sequential Lagrange multiplier conditions. In this section, we present,
without any constraint qualification, a necessary and sufficient optimality condition
for (P) in the form of a sequential Lagrange multiplier rule expressed in terms of the
subdifferentials and the ε-subdifferentials of the functions involved at the minimizer.
We then derive corresponding conditions characterizing optimality involving only sub-
differentials at nearby points for constraint functions. We begin by establishing a dual
condition characterizing the feasibility of the problem (P). This is then used to derive
the sequential condition. For convenience, we shall denote composition of mappings
by juxtaposition, i.e., λ ◦ g as λg, where λ ∈ Z ′ and g : X → Z.

Lemma 3.1. Let g : X → Z be a continuous and S-convex mapping. Then
g−1(−S) �= ∅ if and only if (0,−1) /∈ cl (⋃λ∈S+ epi(λg)∗

)
.

Proof. Let λ ∈ S+ and let x∗ ∈ X ′. Since −λg(x) ≥ 0 for all x ∈ g−1(−S), we
have

(λg)∗(x∗) = supx∈X [x
∗(x)− λg(x)]

≥ supx∈A[x∗(x)− λg(x)]
≥ supx∈A x∗(x) = σA(x∗),

where A = g−1(−S). This inequality, together with the fact that epi σA is weak*
closed, gives us that

cl

( ⋃
λ∈S+

epi (λg)∗
)
⊂ epi σA.

If g−1(−S) �= ∅, then clearly (0,−1) /∈ epi σA, and so from the above inclusion
(0,−1) /∈ cl (⋃λ∈S+ epi (λg)∗

)
.

Conversely if (0,−1) /∈ cl (⋃λ∈S+ epi (λg)∗
)
, then by the Hahn–Banach separa-

tion theorem [11] there is (x, α) ∈ X × R, (x, α) �= (0, 0) such that −α < 0 and

v(x) + γα ≥ 0 ∀(v, γ) ∈ cl
( ⋃
λ∈S+

epi (λg)∗
)
.

Let x̄ = x
α . Then we have

v(−x̄)− γ ≤ 0 ∀(v, γ) ∈ cl
( ⋃
λ∈S+

epi (λg)∗
)
.

So, for each λ ∈ S+ and for each v ∈ dom (λg)∗, v(−x̄) − (λg)∗(v) ≤ 0. Since λg is
continuous,

(λg)(−x̄) = (λg)∗∗(−x̄) = sup
v
[v(−x̄)− (λg)∗(v)] ≤ 0.

This implies that g(−x̄) ∈ −S, and hence g−1(−S) �= ∅.
The corresponding result to Lemma 3.1 in the case of real-valued functions g was

used in [12] to study dual characterizations of the containment of a convex set in
another convex set. We now derive the sequential necessary and sufficient condition
for optimality for (P). Note that the weak∗ convergence of the sequence {wn} of X ′

to w will be denoted by wn →∗ w.
Theorem 3.1. For the convex program (P), let a ∈ A. Then the point a is a

minimizer of (P) if and only if there exist u ∈ ∂f(a), {εn} ⊂ R+, {λn} ⊂ S+, and
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{vn} ⊂ X ′ such that vn ∈ ∂εn(λng)(a), u + vn →∗ 0, λng(a) → 0, and εn → 0 as
n→∞.

Proof. We first note that a ∈ A is a minimizer of (P) if and only if there exists
u ∈ ∂f(a) such that u(x) ≥ u(a) for each x ∈ g−1(−S). We now show that this
condition is equivalent to the statement that there exists u ∈ ∂f(a) such that

( −u,−u(a) ) ∈ cl
( ⋃
λ∈S+

epi (λg)∗
)
.(3)

Indeed, if (3) holds, then there exist {µn} ⊂ S+, {un} ⊂ X ′, and {rn} ⊂ R such
that un →∗ −u, rn → −u(a), and (µng)∗(un) ≤ rn for each n. Then, for each
x ∈ g−1(−S), un(x) ≤ rn + µng(x) ≤ rn. Letting n→∞, we get −u(x) ≤ −u(a).

Conversely, assume that there exists u ∈ ∂f(a) such that u(x) ≥ u(a) for each
x ∈ g−1(−S). Suppose to the contrary that (−u,−u(a)) /∈ cl

(⋃
λ∈S+ epi (λg)∗

)
.

By Lemma 3.1, (0,−1) /∈ cl (⋃λ∈S+ epi (λg)∗
)
, since g−1(−S) �= ∅. Therefore,

B ∩
(
cl

( ⋃
λ∈S+

epi (λg)∗
))

= ∅,

where

B := {δ(−u,−u(a)) + (1− δ)(0,−1) ∈ X ′ × R | δ ∈ [0, 1]}
is the segment connecting the points (−u,−u(a)) and (0,−1). Otherwise, there is
δ ∈ (0, 1) such that

δ(−u,−u(a)) + (1− δ)(0,−1) ∈ cl
( ⋃
λ∈S+

epi (λg)∗
)
;

thus, (−δu,−δu(a)− (1− δ)) ∈ cl (⋃λ∈S+ epi(λg)∗
)
.

Also {0} ×R+ ⊂ cl
(⋃

λ∈S+ epi(λg)∗
)
, since 0 ∈ S+ and epi(0g)∗ = {0} ×R+. So

we have

(−δu,−δu(a)) = (−δu,−δu(a)− (1− δ)) + (0, 1− δ) ∈ cl
( ⋃
λ∈S+

epi (λg)∗
)
,

which implies that

(−u,−u(a)) = 1

δ
(−δu,−δu(a)) ∈ cl

( ⋃
λ∈S+

epi (λg)∗
)
,

a contradiction. Now, by the Hahn–Banach separation theorem, there is (x, β) ∈
X × R, (x, β) �= (0, 0), such that

[δ(−u,−u(a)) + (1− δ)(0,−1)](x, β) < 0 ∀δ ∈ [0, 1]
and

v(x) + γβ ≥ 0 ∀(v, γ) ∈ cl
( ⋃
λ∈S+

epi (λg)∗
)
.
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By letting δ = 0 we get β > 0, and by letting δ = 1 we obtain u(x)+u(a)β > 0; thus,
u(−xβ ) < u(a). On the other hand, for each λ ∈ S+,

v

(−x
β

)
− γ ≤ 0 ∀(v, γ) ∈ epi (λg)∗.

This gives us

v

(−x
β

)
− (λg)∗(v) ≤ 0 ∀v ∈ dom (λg)∗.

Hence, for each λ ∈ S+,

(λg)

(−x
β

)
= (λg)∗∗

(−x
β

)
= sup

v

[
v

(−x
β

)
− (λg)∗(v)

]
≤ 0.

From this we deduce that −x
β ∈ g−1(−S). This is a contradiction, as u(−xβ ) < u(a).

Now (2) shows that (3) is equivalent to the condition that

(−u,−u(a)) ∈ cl

 ⋃
λ∈S+

⋃
ε≥0

{(
w, w(a) + ε− λg(a)) | w ∈ ∂ελg(a)}


 .(4)

From (4), we see that there exist {εn} ⊂ R+ , {λn} ⊂ S+, and vn ∈ ∂εn(λng)(a) such
that

(−u,−u(a)) = lim
n

(vn, vn(a) + εn − λng(a)).

Hence

u = − lim
n
vn, u ∈ ∂f(a),(5)

−u(a) = lim
n
[vn(a) + εn − λng(a)].(6)

From (5) and (6), we obtain

lim
n
vn(a) = −u(a) = lim

n
[vn(a) + εn − λng(a)],

which implies that 0 = limn[εn−λng(a)]. Since εn ≥ 0 and −λng(a) ≥ 0 for all n ∈ N,
limn εn = 0 and limn λng(a) = 0. Therefore, if a is a minimizer of (P), then there
exist u ∈ ∂f(a), {εn} ⊂ R+, {λn} ⊂ S+, and {vn} ⊂ X ′ such that vn ∈ ∂εn(λng)(a),
u+ vn →∗ 0, λng(a)→ 0, and εn → 0 as n→∞.

Conversely, if this sequential condition holds, then

−u(a) = lim
n
vn(a) = lim

n
[vn(a) + εn − λng(a)].

This, together with the condition that vn →∗ −u as n → ∞, gives us (4), which in
turn implies that a is a minimizer of (P).

The following example illustrates that the ε-subdifferentials in the description of
the sequential Lagrange multiplier condition in Theorem 3.1 are essential and they
cannot be replaced by the subdifferentials for the constraint functions.
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Example 3.1. Consider the problem

Minimize x

subject to (x2 + y2)
1
2 − y ≤ 0.

Let f : R2 → R and g : R2 → R be given by f(x, y) = x, g(x, y) = (x2 + y2)
1
2 − y,

(x, y) ∈ R2, S = R+. The feasible set is A = {(x, y) | x = 0, y ≥ 0}, a = (0, 1) is a
minimizer, and ∂f(a) = {(1, 0)}. Observe that the Slater condition does not hold and
that for any λ > 0 and ε > 0,

∂ε(λg)(a) = {(v1, v2) | v21 + (v2 + λ)2 ≤ λ2, v2 ≥ −ε}.
For each n ∈ N, if we take εn = 1

n , λn =
1
2 (n +

2
n ) + 1, and vn = (−1 − 1

n ,− 1
n ),

then vn ∈ ∂εn(λng)(a), u + vn → 0, εn → 0, and λng(a) = 0. Hence the sequential
Lagrange multiplier condition holds. It is also worth noting that for each λ ∈ R+, we
have ∂(λg)(a) = {(0, 0)}; hence,

−u = (−1, 0) �∈ cl

 ⋃
λ∈R+

∂(λg)(a)


 .

We now derive from Theorem 3.1 a sequential condition similar to the one in
Thibault [20] solely in terms of the subdifferentials of the functions involved.

Theorem 3.2. For the convex program (P), let a ∈ A. Then the point a is a min-
imizer of (P) if and only if there exist u ∈ ∂f(a), {λn} ⊂ S+, {xn} ⊂ X, and {vn} ⊂
X ′such that vn ∈ ∂(λng)(xn), u + vn →∗ 0, ‖xn − a‖ → 0, and λng(xn) → 0 as
n→∞.

Proof. Suppose that a is a minimizer of (P). By Theorem 3.1 there exist u ∈
∂f(a), {λn} ⊂ S+, {εn} ⊂ R+, and wn ∈ ∂εn(λng)(a) such that u+wn →∗ 0, λng(a)→
0, and εn → 0 as n → ∞. Since wn ∈ ∂εn(λng)(a), it follows from Proposition 2.2
that there exist xn ∈ X and vn ∈ ∂(λng)(xn) satisfying
‖xn − a‖ ≤ √εn, ‖wn − vn‖ ≤ √εn, |λng(xn)− vn(xn − a)− λng(a)| ≤ 2εn.

Since εn → 0, we have ‖xn − a‖ → 0, ‖wn − vn‖ → 0. This implies that u+ vn →∗ 0
and vn(xn − a)→ 0; hence λng(xn)→ 0.

Conversely, suppose that there exist u ∈ ∂f(a), {λn} ⊂ S+, {xn} ⊂ X, and vn ∈
∂(λng)(xn) such that u + vn →∗ 0, ‖xn − a‖ → 0, and λng(xn) → 0 as n → ∞. On
one hand, since vn ∈ ∂(λng)(xn), we have (λng)∗(vn) = vn(xn)− λng(xn). So,

(vn, vn(xn)− λng(xn)) ∈ epi (λng)∗.(7)

On the other hand, since ‖xn − a‖ → 0, vn →∗ −u, and λng(xn)→ 0 as n→∞, we
get

lim
n
[vn(xn)− λng(xn)] = −u(a).

Combining this with (7) we get

(−u, − u(a)) ∈ cl
( ⋃
λ∈S+

epi (λg)∗
)
,
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which proves that a is a minimizer of (P).
Corollary 3.1. For the convex program (P), assume further that f and g are

Fréchet differentiable on X and that a ∈ A. Then the point a is a minimizer of (P) if
and only if there exist {λn} ⊂ S+ and {xn} ⊂ X such that ∇f(a)+∇(λng)(xn)→ 0,
‖xn − a‖ → 0, and λng(xn)→ 0 as n→∞.

Proof. The conclusion follows from the previous theorem as in this case ∂(λng)(xn)
= {∇(λng)(xn)} and ∂f(a) = {∇f(a)}.

The following simple example illustrates the significance of the sequential La-
grange multiplier condition for differentiable convex programs.

Example 3.2. Consider the problem

Minimize −x
subject to [max{0, x}]2 ≤ 0.

Let f(x) := −x, g(x) := [max{0, x}]2. Then the feasible set is A = (−∞, 0], and
a = 0 is a minimizer. Let {λn} ⊂ R+ be any sequence such that λn > 0 for all n and
λn → +∞, and let xn := 1

2λn
. Then

∇f(a) + lim
n→∞∇(λng)(xn) = −1 + lim

n→∞
2

2λn
λn = 0, and

lim
n→∞λng(xn) = lim

n→∞λn
1

(2λn)2
= 0.

Hence, {λn} is a sequential Lagrange multiplier for the problem at the minimizer
a = 0. However, the Kuhn–Tucker condition for the problem does not hold at a.

4. A simple constraint qualification. In this section we derive the Lagrange
multiplier condition (1) under a general closed cone constraint qualification which
requires that the convex cone

⋃
λ∈S+ epi(λg)∗ is weak* closed. This constraint qual-

ification holds under the Robinson regularity condition, that is, 0 ∈ core (g(X) + S)
(see [17]), in the case where Z is a Banach space, or the generalized Slater condition
that int S is nonempty and −g(x0) ∈ int S (see [15]). Let us first see the relationship
between the Lagrange multiplier condition and the convex cone

⋃
λ∈S+ epi(λg)∗.

Lemma 4.1. For the problem (P), let a ∈ g−1(−S). Then the following statements
are equivalent:

(i) (∃ u ∈ ∂f(a)) (−u,−u(a)) ∈ ⋃λ∈S+ epi(λg)∗

(ii) (∃λ ∈ S+) 0 ∈ ∂f(a) + ∂(λg)(a) and λg(a) = 0.
Proof. (ii) ⇒ (i) Assume that (ii) holds. Then there exist u ∈ ∂f(a) and

λ ∈ S+ such that −u ∈ ∂(λg)(a) and λg(a) = 0. So, (λg)∗(−u) ≤ −u(a), and
(−u,−u(a)) ∈ epi (λg)∗. Hence (i) holds.

(i)⇒ (ii) If (i) holds, then there exist u ∈ ∂f(a) and λ ∈ S+ such that (−u,−u(a))
∈ epi (λg)∗. Since epi (λg)∗ can be expressed in the form

epi (λg)∗ =
⋃
ε≥0

{(w, w(a) + ε− λg(a)) | w ∈ ∂ε(λg)(a)} ,

we deduce that −u ∈ ∂ε(λg)(a) and −u(a) = −u(a)+ ε−λg(a) for some ε ≥ 0. Since
a ∈ A and λ ∈ S+, the last equality gives λg(a) = ε = 0. Thus −u ∈ ∂(λg)(a), and
so we have 0 ∈ ∂f(a) + ∂(λg)(a) and (ii) holds.
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Theorem 4.1. For the program (P), assume that the closed cone constraint
qualification holds and that a ∈ A. Then a is a minimizer of (P) if and only if there
exists λ ∈ S+ such that 0 ∈ ∂f(a) + ∂(λg)(a) and λg(a) = 0.

Proof. Since the convex cone
⋃
λ∈S+ epi(λg)∗ is weak* closed, it follows from the

first part of the proof of Theorem 3.1 (see (3)) that a is a minimizer of (P) if and only
if there exists u ∈ ∂f(a) such that (−u,−u(a)) ∈ ⋃λ∈S+ epi (λg)∗. Applying Lemma
4.1 we obtain the desired conclusion.

5. Applications and examples. In this section we apply the results in section 3
to some special classes of problems such as the classes of convex semidefinite programs
[22] and convex semi-infinite programs [6, 13]. We also extend the main results to
semiconvex programs [18].

5.1. Semidefinite programs. Consider the convex semidefinite programming
model problem

(SDP) Minimize f(x)

subject to F0 +

m∑
i=1

xiFi � 0,

where f : Rm → R is a convex function, and for i = 0, 1, . . . ,m, Fi ∈ Sn, the space of
(n× n) symmetric matrices. The space Sn is partially ordered by the Löwner order;
that is, forM,N ∈ Sn,M � N if and only ifM−N is positive semidefinite. The inner
product in Sn is defined by (M,N) = Tr[MN ], where Tr[·] is the trace operation. Let
S := {M ∈ Sn | M � 0}. Then

S+ = {θ ∈ Sn | (θ, Z) ≥ 0 ∀Z ∈ S} = S.

Let F (x) := F0 +
∑m
i=1 xiFi, F̂ (x) =

∑m
i=1 xiFi, x = (x1, . . . , xm) ∈ Rm. Then F̂

is a linear operator from R
m to Sn and its dual is defined by F̂

∗(Z) = (Tr[F1Z], . . . ,
Tr[FmZ]) for any Z ∈ Sn. Clearly, A := {x ∈ Rm | F (x) ∈ S} is the feasible set of
(SDP).

There are classes of semidefinite programs where well-known constraint qualifica-
tions fail (see [19, 22]). So it is of interest to examine sequential Lagrange multiplier
conditions for (SDP) without a constraint qualification. Here we obtain such a con-
dition as an easy consequence of Theorem 3.1.

Theorem 5.1. For the problem (SDP), let a ∈ A. Then the point a is a minimizer
of (SDP) if and only if there exist u ∈ ∂f(a) and a sequence {Zk} ⊂ S such that

u− F̂ ∗(Zk)→ 0 and Tr[ZkF (a)]→ 0 as k →∞.
Proof. Observe that F is affine and that for each ε ≥ 0 and for each Z ∈

S, ∂ε(ZF )(x) = F̂
∗(Z). The conclusion follows from Theorem 3.1 by setting g(x) =

−F (x).
When f(x) = cTx, for some fixed c ∈ Rm, the previous asymptotic optimality

condition reduces to the following simple form given in [19]: There exists {Zk} ⊂ S
such that F̂ ∗(Zk) → c and Tr[ZkF (a)] → 0 as k → ∞. For (SDP), the closed cone
constraint qualification reduces to the condition that the cone

D :=
⋃

(Z, δ)∈S×R+

(
−F̂ ∗(Z), Tr[ZF0] + δ

)
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is closed. Under this condition, the following Lagrange multiplier rule holds (see [14]):

F̂ ∗(Z) ∈ ∂f(a) and Tr(ZF (a)) = 0.

The example below shows that for a semidefinite program the sequential Lagrange
multiplier condition holds, whereas the nonasymptotic Lagrange multiplier condition
fails to hold at the minimizer.

Example 5.1. Consider the problem

Minimize x1 + |x2|

subject to


 0 x1 0
x1 x2 + 1 0
0 0 1


 � 0.

Let f(x1, x2) := x1 + |x2| and let

F0 :=


 0 0 0
0 1 0
0 0 1


 , F1 :=


 0 1 0
1 0 0
0 0 0


 , F2 :=


 0 0 0
0 1 0
0 0 0


 ,

and F (x) := F0 + x1F1 + x2F2, x = (x1, x2) ∈ R2. The feasible set of the problem is
A = {x ∈ R2 | F (x) � 0} = {(0, x2) ∈ R2 | x2 ≥ −1} and a = (0, 0) is a minimizer.
Define Ẑ := {Zn}, where

Zn =



n 1

2 0
1
2

1
n 0

0 0 0


 .

Clearly, ∂f(0, 0) = {(1, ξ) | ξ ∈ [−1, 1]}, Zn � 0 for all n ∈ N, and Tr[ZnF0] =
1
n , Tr[ZnF1] = 1, Tr[ZnF2] =

1
n . Thus

lim
n→∞ F̂

∗Zn = lim
n→∞(Tr[ZnF1],Tr[ZnF2]) = lim

n→∞

(
1,
1

n

)
= (1, 0) ∈ ∂f(0, 0),

and limn→∞Tr[ZnF (a)] = limn→∞Tr[ZnF0] = 0. Hence Ẑ is a sequential Lagrange
multiplier for the problem at a = (0, 0). It is easy to see that the generalized Slater
constraint qualification does not hold for this problem.

5.2. Semi-infinite programs. Consider the following convex semi-infinite pro-
gramming model problem

(SIP) Minimize f(x)

subject to gi(x) ≤ 0, i ∈ I,

where X = Rn, I is an index set with cardinality possibly infinite, and f, gi : X →
R, i ∈ I, are convex functions. Let Z =

∏
I R denote the product space with the

product topology. Then Z ′ is the generalized finite sequence space consisting of all
functionals v : I → R with finite support (see [13]). Let S =

∏
I R+; then the

(positive) dual cone S+ of the cone S is

Λ := {λ = (λi) ∈ Z ′ | λi ≥ 0 ∀ i ∈ I, λi = 0 for all but a finite number of i ∈ I}.
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Define g := (gi). Then g : X → Z is continuous and S-convex and the problem (SIP)
can be rewritten in the form of (P). The next lemma is useful in deriving sequential
Lagrange multiplier conditions for (SIP).

Lemma 5.1. Let X = Rn and let gi : X → R, i ∈ I be convex functions. Then⋃
λ∈Λ

⋃
ε≥0

{(v, v(a) + ε− λg(a)) | v ∈ ∂ε(λg)(a)}

= co cone


 ⋃

i∈I

⋃
ε≥0

{(vi, vi(a) + ε− gi(a)) | vi ∈ ∂εgi(a)}

 .

Proof. Let

C :=
⋃
λ∈Λ

⋃
ε≥0

{(v, v(a) + ε− λg(a)) | v ∈ ∂ε(λg)(a)} .

Then

(u, α) ∈ C ⇐⇒

 ∃λ = (λi) ∈ Λ, ∃ε ≥ 0 such that
u ∈ ∂ε(λg)(a) = ∂ε(

∑
i λigi)(a)

α = v(a) + ε− λg(a)


 .

By Theorem 2.1 in [7], there exist εi ≥ 0 with
∑
i εi = ε and vi ∈ ∂εi(λigi)(a) such

that u =
∑
i vi, and

α =
∑
i

vi(a) +
∑
i

εi −
∑
i

λigi(a) =
∑
λi>0

λi[v
′
i(a) + ε

′
i − gi(a)].

Let v′i =
vi
λi
and ε′i =

εi
λi
for i with λi > 0. Then it is easy to see that v

′
i ∈ ∂ε′igi(a).

Hence, (u, α) ∈ C if and only if

u =
∑
λi>0

λiv
′
i and α =

∑
λi>0

λi[v
′
i(a) + ε

′
i − gi(a)]

or, equivalently,

(u, α) ∈ co cone

 ⋃

i∈I

⋃
ε≥0

{(vi, vi(a) + ε− gi(a)) | vi ∈ ∂εgi(a)}

 .

Theorem 5.2. For the problem (SIP), let a ∈ A. Then the following statements
are equivalent:

(i) a is a minimizer of (SIP).
(ii) There exists u ∈ ∂f(a) such that

(−u,−u(a)) ∈ cl

co cone⋃

i∈I

⋃
ε≥0

{(vi, vi(a) + ε− gi(a)) | vi ∈ ∂εgi(a)}

 .

(iii) There exist u ∈ ∂f(a), {λk} ⊂ Λ, {εk} ⊂ R+, and {vk} ⊂ Rn such that
vk ∈ ∂εk(λkg)(a), u+ vk →∗ 0, λkg(a)→ 0, and εk → 0 as k →∞.

(iv) There exist u ∈ ∂f(a), {xk} ⊂ X, {λk} ⊂ Λ, and {vk} ⊂ R
n such that

vk ∈ ∂(λkg)(xk), u+ vk →∗ 0, ‖xk − a‖ → 0, and λkg(xk)→ 0 as k →∞.
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Proof. The equivalence between (i) and (iii) (between (i) and (iv)) is a direct
consequence of Theorem 3.1 (Theorem 3.2, respectively) while the equivalence between
(i) and (ii) follows from Lemma 5.1 and (2).

For the corresponding dual characterizations of set containments involving semi-
infinite convex constraints, see [12]. The following example illustrates the significance
of the sequential Lagrange multipliers for semi-infinite programming problems.

Example 5.2. Consider the problem

Minimize x2 + y
subject to x ≤ 0

y ≤ 0,
x
i − y ≤ 0, i = 3, 4, 5, . . . .

Let f(x, y) := x2 + y, g1(x, y) := x, g2(x, y) := y, gi(x, y) =
x
i − y for all i =

3, 4, 5, . . . , and let g := (gi)i∈N. The feasible set of the problem is

A = {(x, y) | gi(x, y) ≤ 0 ∀i ∈ N} = {(x, y) ∈ R2 | x ≤ 0, y = 0}
and a = (0, 0) is a minimizer of the problem. Note that ∂f(0, 0) = {(0, 1)} and that
there is no (x0, y0) ∈ R2 satisfying gi(x0, y0) < 0 for all i ∈ N. Then for each εn ≥ 0,

∂εn(λ̄ng)(a) = λ
n
1 (1, 0) + λ

n
2 (0, 1) +

∑
i≥3

λni

(
1

i
,−1

)
.

Consequently,

vn = (v
n
1 , v

n
2 ) ∈ ∂εn(λ̄ng)(a) ⇐⇒

{
vn1 = λ

n
1 +

∑
i≥3 λ

n
i

1
i ,

vn2 = λ
n
2 −

∑
i≥3 λ

n
i .

Let us take λ̄1 = λ̄2 = (0, 0, . . . , 0, . . . ), λ̄n = (0, 0, . . . , 0, 1 +
1
n , 0, . . . ), n ≥ 3, where

the only nonzero component 1 + 1
n is at the nth position. Then for each {εn} ⊂

R+, εn → 0,

vn ∈ ∂εn(λ̄ng)(0, 0) ⇐⇒ vn =

(
1 + 1

n

n
,−1− 1

n

)
.

Hence −vn → (0, 1) ∈ ∂f(0, 0). Clearly, λ̄ng(a) = 0 for all n ∈ N.
5.3. Semiconvex programs. We now see that the approach developed in the

previous sections can easily be extended to a larger class of nonsmooth problems
with convex constraints. Let us now assume that f : X → R is locally Lipschitz
and a ∈ X. The function f is said to be semiconvex at a (see [18]) if, for any
u ∈ ∂cf(a), u(x − a) ≥ 0 implies that f(x) ≥ f(a), where ∂cf(a) stands for the
Clarke subdifferential [5] of f at a. Observe that the fractional functions of the form

f(x) = p(x)
q(x) , where p, q are locally Lipschitz, p ≥ 0, convex, and q > 0 and concave,

satisfy the semiconvexity property. Moreover, the notion of semiconvexity collapses
to the notion of pseudoconvexity when f is continuously Fréchet differentiable.

Theorem 5.3. For the problem (P), assume that f is locally Lipschitz and semi-
convex at a point a ∈ A and g is continuous and S-convex. Then a is a minimizer
for (P) if and only if there exist u ∈ ∂cf(a), {εn} ⊂ R+, {λn} ⊂ S+, and {vn} ⊂
X ′ such that vn ∈ ∂εn(λng)(a)), u + vn →∗ 0, λng(a) → 0, and εn → 0 as n → ∞.
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Moreover, if the closed cone constraint qualification holds, then a is a minimizer for
(P) if and only if there is λ ∈ S+ such that 0 ∈ ∂cf(a) + ∂(λg)(a) and λg(a) = 0.

Proof. Since f is locally Lipschitz, it follows from a theorem of Clarke (see [5], p.
52) that if a is a minimizer of f over A, then 0 ∈ ∂cf(a)+NA(a), where NA(a) is the
Clarke normal cone at a which coincides with the normal cone of A at a in the sense
of convex analysis since A is closed and convex. This means that if the point a is a
minimizer for (P), then there exists u ∈ ∂cf(a) such that

x ∈ A =⇒ u(x− a) ≥ 0.
Under the semiconvexity of f , this is also a sufficient condition for optimality. In
other words, a is a minimizer of (P) if and only if there exists u ∈ ∂cf(a) such that

x ∈ g−1(−S)⇒ u(x) ≥ u(a).
The rest of the proof follows by using the same argument as in the proofs of Theorems
3.1 and 4.1 and so is omitted here.
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Abstract. We introduce stochastic optimization problems involving stochastic dominance con-
straints. We develop necessary and sufficient conditions of optimality and duality theory for these
models and show that the Lagrange multipliers corresponding to dominance constraints are concave
nondecreasing utility functions. The models and results are illustrated on a portfolio optimization
problem.
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1. Introduction. The relation of stochastic dominance is a fundamental concept
of decision theory and economics (see [11, 12, 26, 33]). A random variableX dominates
another random variable Y in the second order, which we write as X �(2) Y , if
E[u(X)] ≥ E[u(Y )] for every concave nondecreasing function u(·), for which these
expected values are finite. We refer the reader to the monograph [20] for a modern
view on the stochastic dominance relation and other comparison methods for random
outcomes.

The main objective of this paper is to introduce a new stochastic optimization
model involving dominance relations as constraints and to analyze its properties.
We concentrate on the second-order dominance constraints, as they are the most
important from the theoretical point of view. Further we extend our analysis to
dominance relations of higher orders.

A basic model of stochastic optimization can be formulated as follows:

max
z∈Z

E[ϕ(z, ω)].(1.1)

In this formulation ω denotes an elementary event in a probability space (Ω,F , P ),
z is a decision vector in an appropriate space Z, and ϕ : Z ×Ω → R. The set Z ⊂ Z
is defined either explicitly, or via some constraints that may involve the elementary
event ω and must hold with some prescribed probability.

The first stochastic optimization models with expected values were introduced in
[1, 6]. Mathematical theory of expectation models involving two-stage and multistage
decisions has been developed in [37, 38] and in [30, 31, 32]. A comprehensive treatment
of the theory and numerical methods for expectation models can be found in [3].

Models involving constraints on probability were introduced [5, 18, 24]. The book
[25] discusses in detail the theory and numerical methods for linear models with one
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probabilistic constraint on finitely many inequalities.
Another way to look at problem (1.1) is to consider the set C of random variables

X such that, for some z ∈ Z, one has X(ω) ≤ ϕ(z, ω) a.s. Then we can write the
model as

max
X∈C

E[X].

Von Neumann and Morgenstern, in their book [36], introduced the expected utility hy-
pothesis: for every rational decision maker there exists a utility function u(·) such that
she prefers outcome X over outcome Y if and only if E[u(X)] > E[u(Y )]. Therefore
the decision maker solves the following optimization problem:

max
X∈C

E[u(X)].

In practice, however, it is almost impossible to elicit the utility function of a decision
maker explicitly. Additional difficulties arise when there is a group of decision makers
with different utility functions who have to come to a consensus.

In some applications a reference outcome Y in L1(Ω,F , P ) is available. It may
have the form Y (ω) = ϕ(z̄, ω), ω ∈ Ω, for some policy z̄. Our intention is to have the
new outcome, X, preferable over Y . Therefore, we introduce the following optimiza-
tion problem:

max f(X)(1.2)

subject to X �(2) Y,(1.3)

X ∈ C.(1.4)

Here Y is a random variable in L1(Ω,F , P ), the set C ⊂ L1(Ω,F , P ) is convex and
closed, and f : C → R is a concave continuous functional. Constraint (1.3) guarantees
that for any decision maker, whose utility function u(·) is concave and nondecreasing,
the solution X of the problem will satisfy the relation E[u(X)] ≥ E[u(Y )].

Another class of models that recently attracted much attention are mean-risk
models. In our notation they take the form

max
X∈C

{
E[X]− λρ(X)

}
.

In this problem λ > 0 and ρ(·) is a risk functional which depends on the entire
distribution of X and assigns to it a scalar measure of its variability. For example,
the expected shortfall below the mean,

ρ(X) = E
[
(E[X]−X)+

]
,

may be used as the risk functional. Here (X)+ = max(0, X). Mean-risk models are
also closely related to stochastic dominance relations. If we use an appropriate risk
measure ρ and the parameter λ is within a certain range, then the optimal outcome X̂
is not stochastically dominated by any other feasible outcome (see [21, 22, 23]). Other
stochastic optimization models involving general risk functionals were considered by
[35, 13, 27, 29].

Our model (1.2)–(1.4) is a new way to formulate a stochastic optimization prob-
lem.
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Example 1. Let R1, . . . , RN ∈ L1(Ω,F , P ) be random returns of assets 1, . . . , N .
Our aim is to invest our capital in these assets in order to obtain some desirable
characteristics of the total return on the investment. Denoting by z1, . . . , zN the
fractions of the initial capital invested in assets 1, . . . , N , we can easily derive the
formula for the total return:

X = R1z1 + · · ·+RNzN .

Let Z = {z ∈ RN : z1 + · · · + zN = 1, zn ≥ 0, n = 1, . . . , N} be the set of possible
asset allocations. Clearly, the set C of portfolio returns is just the convex hull of
R1, . . . , RN . The problem of maximizing

f(X) = EX

in C has a trivial and meaningless solution: invest everything in asset(s) having the
highest expected return. Our model (1.2)–(1.4) approaches the problem of selecting
the most preferred portfolio in a new way: we have some reference random return Y
and require our outcome to dominate Y . For example, the reference return may be
the return of an existing portfolio or a market index. In this way we guarantee that
no risk-averse decision maker will prefer Y over the optimal solution of (1.2)–(1.4).
We thus provide an alternative approach to mean-risk portfolio models (see, e.g.,
[16, 17, 34]).

Problem (1.2)–(1.4) is interesting from the mathematical point of view. It involves
a new form of constraint which has not been explored in the stochastic optimization
theory. Our analysis will shed more light on the place of this model in the general
optimization theory.

Moreover, our model is relevant for economics. We show that the Lagrange multi-
plier associated with the dominance constraint can be identified with a certain concave
and nondecreasing utility function.

In section 2 we formally define the stochastic dominance relations and analyze
properties of the set defined by this relation. In section 3 we consider equivalent
formulations of dominance-constrained optimization problems. Section 4 is devoted
to the derivation of necessary and sufficient conditions of optimality. In section 5 we
formulate duality relations.

In sections 6 and 7 we extend our theory to multiple dominance constraints and
to dominance constraints of higher orders. Finally, we provide a numerical illustration
in section 8.

2. The dominance constraint. Consider a random variable X ∈ L1(Ω,F , P )
and its distribution function

F (X; η) = P [X ≤ η] for η ∈ R.

Define the function F2(X; ·) as

F2(X; η) =

∫ η

−∞
F (X;α) dα for η ∈ R.(2.1)

As an integral of a nondecreasing function, it is a convex function of η.
Furthermore, for X ∈ Lm(Ω,F , P ) we can define recursively the functions

Fk(X; η) =

∫ η

−∞
Fk−1(X;α) dα for η ∈ R, k = 3, . . . ,m+ 1.(2.2)
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They are also convex and nondecreasing functions of the second argument.
Definition 2.1. We say that a random variable X ∈ Lk−1(Ω,F , P ) dominates

in the kth order another random variable Y ∈ Lk−1(Ω,F , P ) if

Fk(X; η) ≤ Fk(Y ; η) for all η ∈ R.(2.3)

We shall denote relation (2.3) as

X �(k) Y(2.4)

and the set of X satisfying this relation as

Ak(Y ) = {X ∈ Lk−1(Ω,F , P ) : X �(k) Y }.(2.5)

For every k the stochastic dominance relation “�(k)” introduces a partial order

among random variables in Lk−1(Ω,F , P ) (see, e.g., [19] and the references therein).
Partial orders appear in abstract optimization problems when the values of the objec-
tive operator are elements of a topological vector space (see, e.g., [15]). It is usually
assumed that the partial order is generated by a convex cone. The stochastic domi-
nance orders in Lk(Ω,F , P ) are not generated by cones in this space, as we shall see
in Proposition 2.4.

By definition, the kth-order dominance implies the (k + 1)st-order dominance if
the random variables in question are in Lk.

Most important is the second-order dominance relation, because of its connections
with risk-averse preferences, as described below (see also [9, 14]).

Changing the order of integration in (2.1) we get (see, e.g., [21])

F2(X; η) = E[(η −X)+].(2.6)

Therefore, an equivalent representation of the second-order stochastic dominance re-
lation is

E[(η −X)+] ≤ E[(η − Y )+] for all η ∈ R.(2.7)

Let us consider the set U of concave nondecreasing functions u : R→ R satisfying the
following linear growth condition:

lim
t→−∞u(t)/t <∞.(2.8)

For every random variable X ∈ L1(Ω,F , P ) and for every u ∈ U the quantity

E[u(X)] =

∫
u(X(ω)) dP (ω)

is well-defined and finite.
Proposition 2.2. For each X,Y ∈ L1(Ω,F , P ) the relation X �(2) Y is equiv-

alent to

E[u(X)] ≥ E[u(Y )] for all u ∈ U .(2.9)

Proof. Suppose that X �(2) Y . It follows from (2.7) that for every function of
form

uN (x) = cN −
N∑
i=1

αi(ηi − x)+,(2.10)
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where αi ≥ 0, i = 1, . . . , N , we have
E[uN (X)] ≥ E[uN (Y )].(2.11)

Let u ∈ U . We shall construct a sequence of functions {uN} of the form (2.10).
For an integer M we introduce 2M2 + 1 discretization points

ηi = i/M, −M2 ≤ i ≤M2,

and we define

cM = u(M),

αi =



u(ηi)−u(ηi−1)

ηi−ηi−1
for i = M2,

u(ηi)−u(ηi−1)
ηi−ηi−1

− u(ηi+1)−u(ηi)
ηi+1−ηi for i = M2 − 1,M2 − 2, . . . ,−M2 + 1,

u(ηi)− u(ηi − 1)− u(ηi+1)−u(ηi)
ηi+1−ηi for i = −M2.

By construction, the function

uM (x) = cM −
M2∑

i=−M2

αi(ηi − x)+

is a piecewise linear approximation of u(·) with nodes (ηi, u(ηi)), i = −M2, . . . ,M2.
It is elementary to see that

lim
M→∞

E[uM (X)] = E[u(X)] for all X ∈ L1(Ω,F , P ).

Therefore (2.11) implies (2.9). On the other hand, if (2.9) is true, then it is true for
particular functions u(x) = −(η − x)+. In view of (2.7), this implies that X �(2)

Y .
Let us now analyze the structure of the set

A2(Y ) = {X ∈ L1(Ω,F , P ) : X �(2) Y }.
Recall that the recession cone of a convex set A in a vector space S is defined as the
set A∞ = {H ∈ S : A+ τH ⊂ A for all τ ≥ 0}.

Proposition 2.3. For every Y ∈ L1(Ω,F , P ) the set A2(Y ) is convex and
closed. Furthermore, its recession cone has the form

A∞
2 (Y ) = {H ∈ L1(Ω,F , P ) : H ≥ 0 a.s.}.

Proof. Let us consider the equivalent representation (2.7) of the stochastic dom-
inance constraint. For every η ∈ R the functional X → E[(η − X)+] is convex and
continuous in L1(Ω,F , P ) as a composition of the “max” function and the expectation
operator. Consequently, the set A2(Y ) is convex and closed.

If H ≥ 0 a.s., then the distribution functions satisfy the inequality F (Y +τH; ·) ≤
F (Y ; ·) for all τ ≥ 0. Thus, F2(Y + τH; ·) ≤ F2(Y ; ·) for all τ ≥ 0. Consequently, H
belongs to the recession cone of A2(Y ).

Suppose that H ∈ A∞
2 (Y ) and P [H < 0] > 0. By the definition of the recession

cone,

F2(Y + τH; η) ≤ F2(Y ; η) for all η ∈ R and τ ≥ 0.(2.12)
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We shall show that this is impossible. Since P [H < 0] > 0, there exists ε > 0 such
that δ := P [H ≤ −ε] > 0. For every η ∈ R and every τ > 0 we have

F2(Y + τH; η) = E[(η − Y − τH)+]

≥ P [H ≤ −ε]E[(η − Y − τH)+ |H ≤ −ε]

≥ δE[(η − Y + τε)+ |H ≤ −ε].

For any η we can find τ0 > 0 such that E[(η − Y + τ0ε)+ |H ≤ −ε] > 0. The
last displayed expression is a convex function of τ , and it is increasing for τ > τ0.
Therefore

lim
τ→∞F2(Y + τH; η) ≥ δ lim

τ→∞E[(η − Y + τε)+ |H ≤ −ε] =∞,

which contradicts (2.12). Thus H �∈ A∞
2 (Y ).

The set A2(Y ) is not a cone pointed at Y unless the reference outcome is deter-
ministic.

Proposition 2.4. A2(Y ) = Y +A∞
2 (Y ) if and only if Y is constant a.s.

Proof. If Y is constant a.s., thenX ∈ A2(Y ) implies F2(X;E[Y ]) ≤ F2(Y ;E[Y ]) =
0. Thus X ≥ E[Y ] a.s., which means that X − Y ≥ 0 a.s. By Proposition 2.3, the
direction X − Y is an element of A∞

2 (Y ).
Let us now consider the case when P [Y �= EY ] > 0. We shall construct a direction

H such that Y + τH ∈ A2(Y ) for all τ ∈ [0, 1], but H �∈ A∞
2 (Y ). Let Y ′ = E[Y ] a.s.

Clearly, Y ′ ∈ A2(Y ). DefineH = Y ′−Y . By the convexity of A2(Y ), Y +τH ∈ A2(Y )
for all τ ∈ [0, 1]. We have P [H < 0] = P [Y > E[Y ]] > 0. If follows from Proposition
2.3 that H �∈ A∞

2 (Y ). Therefore A2(Y ) is not a cone.

3. The optimization problem. To overcome serious technical difficulties as-
sociated with the dominance constraint we shall consider a relaxed version of problem
(1.2)–(1.4), in which the dominance relation (2.7) is enforced on an interval [a, b]:

max f(X)(3.1)

subject to E[(η −X)+] ≤ E[(η − Y )+] for all η ∈ [a, b],(3.2)

X ∈ C.(3.3)

Clearly, if all X ∈ C have uniformly bounded distributions, (3.2) is equivalent to
(1.3) for appropriately chosen a and b. However, if the distributions are not uniformly
bounded, (3.2) is a relaxation of (1.3).

Constraint (3.2) involves a nonsmooth operator from the space L1(Ω,F , P ) to
the space of continuous functions on [a, b]. Another way to formulate the problem is
to introduce a decision vector S : [a, b]×Ω → R to represent the shortfall. We obtain
the problem:

max f(X)(3.4)

subject to X(ω) + S(η, ω) ≥ η, for a.a. (η, ω) ∈ [a, b]×Ω,(3.5)

E[S(η, ω)] ≤ E[(η − Y )+] for all η ∈ [a, b],(3.6)

S(η, ω) ≥ 0, for a.a. (η, ω) ∈ [a, b]×Ω,(3.7)

X ∈ C.(3.8)

The abbreviation “a.a.” is understood as “almost all with respect to the product of
the Lebesgue measure on [a, b] and the probability measure P on Ω.” To complete the
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definition of (3.4)–(3.8) we need to specify the space Σ of functions, from which S is
to be selected. We assume that Σ is the space of all S such that S(·, ω) is continuous
for P -almost all ω and S(η, ·) is integrable for all η ∈ [a, b].

Proposition 3.1. (i) For every optimal solution X̂ of (3.1)–(3.3), the pair
(X̂, Ŝ), with Ŝ(η, ω) = max(0, η − X̂(ω)), is an optimal solution of (3.4)–(3.7).

(ii) For every optimal solution (X̂, Ŝ) of (3.4)–(3.8) the point X̂ is an optimal
solution of (3.1)–(3.3).

The equivalence of the two formulations is evident and the proof is omitted.
If the reference point Y has a discrete distribution with finitely many realizations,

both formulations simplify substantially.
Proposition 3.2. Assume that Y has a discrete distribution with realizations

yi, i = 1, . . . ,m, where a ≤ yi ≤ b for all i. Then inequalities (3.2) are equivalent to

E[(yi −X)+] ≤ E[(yi − Y )+], i = 1, . . . ,m.(3.9)

Proof. With no loss of generality we may assume that y1 < y2 < · · · < ym. It is
sufficient to prove that (3.9) imply that

F2(X; η) ≤ F2(Y ; η) for all η ∈ R.

The function F2(Y ; ·) is piecewise linear and has break points at yi, i = 1, . . . ,m. Let
us consider three cases, depending on the value of η.

Case 1. If η ≤ y1, we have

0 ≤ F2(X; η) ≤ F2(X; y1) ≤ F2(Y ; y1) = 0.

Therefore the required relation holds as an equality.
Case 2. Let η ∈ [yi, yi+1] for some i. Since, for any X, the function F2(X; ·) is

convex, inequalities (3.9) for i and i+ 1 imply that for all η ∈ [yi, yi+1] one has

F2(X; η) ≤ λF2(X; yi) + (1− λ)F2(X; yi+1)

≤ λF2(Y ; yi) + (1− λ)F2(Y ; yi+1) = F2(Y ; η),

where λ = (yi+1 − η)/(yi+1 − yi).
Case 3. For η > ym we have

F2(Y ; η) = F2(Y ; ym) + η − ym

≥ F2(X; ym) +

∫ η

ym

F (X;α) dα = F2(X; η),

as required.
If the entire space Ω has finitely many elementary events ω1, . . . , ωm, formulation

(3.4)–(3.8) simplifies even further. Let pk = P [{ωk}], vi = E[(yi − Y )+], and xk =
X(ωk), sik = S(yi, ωk). Then the following finite system of linear inequalities is
equivalent to (3.5)–(3.7):

xk + sik ≥ yi, i = 1, . . . ,m, k = 1, . . . ,m,(3.10)
m∑
k=1

pksik ≤ vi, i = 1, . . . ,m,(3.11)

sik ≥ 0, i = 1, . . . ,m, k = 1, . . . ,m.(3.12)

This formulation can be used for numerical solution of dominance-constrained prob-
lems, as shown in section 8.
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4. Optimality. We start from a specific form of constraint qualification for dom-
inance constraints.

Definition 4.1. Problem (3.1)–(3.3) satisfies the uniform dominance condition
if there exists a point X̃ ∈ C such that

inf
η∈[a,b]

{
F2(Y ; η)− F2(X̃; η)

}
> 0.

We define the set U1 of functions u(·) satisfying the following conditions:
u(·) is concave and nondecreasing;
u(t) = 0 for all t ≥ b;

u(t) = u(a) + c(t− a), with some c > 0, for all t ≤ a.

Clearly, U1 ⊂ U . It is also evident that U1 is a convex cone.
Let us define the Lagrangian of (3.1)–(3.3), L : C × U1 → R, as follows:

L(X,u) = f(X) + E[u(X)]− E[u(Y )].(4.1)

It is well-defined, because for every u in U1 and every X ∈ L1(Ω,F , P ) the expected
value E[u(X)] exists and is finite.

Theorem 4.2. Assume that the uniform dominance condition is satisfied. If X̂
is an optimal solution of (3.1)–(3.3), then there exists a function û ∈ U1 such that

L(X̂, û) = max
X∈C

L(X, û)(4.2)

and

E[û(X̂)] = E[û(Y )].(4.3)

Conversely, if for some function û ∈ U1 an optimal solution X̂ of (4.2) satisfies (3.2)
and (4.3), then X̂ is an optimal solution of (3.1)–(3.3).

Proof. Let us rewrite (3.1)–(3.3) in the general form:

max f(X)

subject to G(X) ∈ K,

X ∈ C,

where G : L1(Ω,F , P )→ C([a, b]) is defined as

G(X)(η) := F2(Y ; η)− F2(X; η), η ∈ [a, b].

The set K is the cone of nonnegative functions in C([a, b]). The operator G is concave
with respect to the cone K; that is, for any X1, X2 in L1(Ω,F , P ) and all λ ∈ [0, 1],

G(λX1 + (1− λ)X2)− [λG(X1) + (1− λ)G(x2)] ∈ K.

By the Riesz representation theorem, the space dual to C([a, b]) is the space rca([a, b])
of regular countably additive measures on [a, b] having finite variation (see, e.g., [8]).
We introduce the Lagrangian Λ : C × rca([a, b])→ R,

Λ(X,µ) = f(X) +

∫ b

a

G(X)(η) dµ(η).(4.4)
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Let us observe that the uniform dominance condition implies that the following gen-
eralized Slater condition is satisfied:

G(X̃) ∈ intK.

Moreover, X̃ ∈ C. By [4, Prop. 2.106], this is equivalent to the regularity condition:

0 ∈ int[G(C)−K].

Therefore we can use the necessary conditions of optimality in abstract spaces (see,
e.g., [4, Thm. 3.4]). We conclude that there exists a nonnegative measure µ̂ ∈
rca([a, b]) such that

Λ(X̂, µ̂) = max
X∈C

Λ(X, µ̂)(4.5)

and ∫ b

a

[F2(Y ; η)− F2(X̂; η)] dµ̂(η) = 0.(4.6)

We shall transform these conditions to (4.2)–(4.3).
Every measure µ on [a, b] can be extended to the whole real line by assigning

measure 0 to Borel sets not intersecting [a, b]. Let us chooseM > 0 such that −M < a.
By changing the order of integration we obtain∫ b

a

F2(X; η) dµ(η) =

∫ b

−M
F2(X; η) dµ(η)

=

∫ b

−M

∫ η

−M
F (X; t) dt dµ(η) + F2(X;−M)µ([a, b])

=

∫ b

−M

∫ b

t

dµ(η)F (X; t) dt+ F2(X;−M)µ([a, b])

=

∫ b

−M
µ([t, b])F (X; t) dt+ F2(X;−M)µ([a, b]).(4.7)

A function u : R→ R can be associated with every nonnegative measure µ as follows:

u(t) =


−

∫ b

t

µ([τ, b]) dτ, t < b,

0, t ≥ b.

Since µ ≥ 0, the function µ([·, b]) is nonnegative and nonincreasing, which implies
that u(·) is nondecreasing and concave. We can rewrite (4.7) as∫ b

a

F2(X; η) dµ(η) =

∫ b

−M
F (X; t) du(t) + F2(X;−M)µ([a, b]).

Since u(·) is absolutely continuous and F (X; ·) is monotone, we can integrate by parts
to obtain∫ b

−M
F (X; t) du(t) = −F (X;−M)u(−M)−

∫ b

−M
u(t) dF (X; t)

= −P [X ≤ −M ]u(−M)− E[u(X)] + E
[
u(X)1l{X≤−M}

]
.
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Putting together the last two equations we get

∫ b

a

F2(X; η) dµ(η) =− E[u(X)]− P [X ≤ −M ]u(−M)

+ E
[
u(X)1l{X≤−M}

]
+ F2(X;−M)µ([a, b]).

(4.8)

Let M →∞. Since E|X| <∞ and |u(t)| grows linearly as t→ −∞, we get

lim
M→∞

E

[
u(X)1l{X≤−M}

]
= 0.

By the monotonicity of u,

|u(−M)|P [X ≤ −M ] ≤ E
[
|u(X)|1l{X≤−M}

]
→ 0 as M →∞.

Consequently, (4.8) becomes

∫ b

a

F2(X; η) dµ(η) = −E[u(X)].(4.9)

In this way we have established a correspondence between nonnegative measures in
rca([a, b]) and functions in U1. Thus, the measure µ̂ corresponds to a function û ∈ U1,
condition (4.5) implies (4.2), and condition (4.6) implies (4.3).

Let us now prove the converse. If u ∈ U1, then the left derivative of u,

u′
−(t) = lim

τ↑t
[u(t)− u(τ)]/(t− τ),

is well-defined, nonincreasing, and continuous from the left. By Theorem 12.4 of [2],
after an obvious adaptation, there exists a unique regular nonnegative measure µ
satisfying

µ([t, b]) = u′
−(t).

Thus the correspondence between nonnegative measures in rca([a, b]) and functions
in U1 is a bijection and formula (4.9) is always valid. Therefore, the maximizer X̂ of
(4.2) is also the maximizer of Λ(X, µ̂), where µ̂ is derived from û in the way described
above. It follows from sufficient conditions of optimality (see, e.g., [4, Prop. 3.3]) that
if X̂ satisfies (3.2) and (4.3), then it is optimal for (3.1)–(3.3).

Remark 1. It is known (see, e.g., [4, Thm. 3.6]) that the set of Lagrange multipliers
µ̂ corresponding to the Lagrangian Λ is convex, bounded, and weakly∗ closed in the
dual space rca([a, b]). Moreover, the same set of Lagrange multipliers corresponds to
every optimal solution of (3.1)–(3.3). Therefore, the set Û of functions in U1 satisfying
(4.2)–(4.3) is convex, bounded, and weakly∗ closed in the following sense: if a sequence
of functions uk ∈ Û and u ∈ U1 are such that

lim
k→∞

E[uk(X)] = E[u(X)] for all X ∈ L1(Ω,F , P ),

then u ∈ Û . The set Û is the same for all optimal solutions of (3.1)–(3.3). These
statements are derived by the application of the key equation (4.9).
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5. Duality. For every function u ∈ U1 the problem

max
X∈C

{
f(X) + E[u(X)]− E[u(Y )]

}
(5.1)

is a Lagrangian relaxation of problem (3.1)–(3.3). Its optimal value

D(u) = sup
X∈C

L(X,u)

is always greater than or equal to the optimal value of (3.1)–(3.3). Indeed, any feasible
solution X of (3.1)–(3.3) is feasible for (5.1), and the dominance relation (3.2) implies
that E[u(X)] ≥ E[u(Y )].

We define the dual problem as

min
u∈U1

D(u).(5.2)

The set U1 is a closed convex cone in C([a, b]) and D(·) is a convex functional, so (5.2)
is a convex optimization problem. Employing general duality relations in convex
programming (see [10, Thm. 2.1 and Chap. 3] and [4, Thm. 2.165]) we obtain the
following result.

Theorem 5.1. Assume that the uniform dominance condition is satisfied and
problem (3.1)–(3.3) has an optimal solution. Then problem (5.2) has an optimal solu-
tion and the optimal values of both problems coincide. Furthermore, the set of optimal
solutions of (5.2) is the set of functions û ∈ U1 satisfying (4.2)–(4.3) for an optimal
solution X̂ of (3.1)–(3.3).

If Y has a discrete distribution with finitely many realizations y1 < y2 < · · · < ym,
then the proof of Proposition 3.2 can also be used to show that the uniform dominance
condition is equivalent to

F2(X̃; yi) < F2(Y ; yi) for all yi ∈ [a, b].(5.3)

Since F2(Y ; y1) = 0, the uniform dominance condition cannot be satisfied unless
a > y1.

The constraint qualification condition simplifies when all distributions are finite.
Then the functions F2(X; yi), i = 1, . . . ,m, which appear at the left-hand side of
(3.9), are convex polyhedral functions of the realizations xi, i = 1, . . . ,m. Therefore,
the dominance constraint is equivalent to a system of finitely many linear constraints.
Consequently, in the discrete case, Theorems 4.2 and 5.1 are true under the following
constraint qualification condition: there exists X̃ ∈ relintC such that

F2(X̃; yi) ≤ F2(Y ; yi) for all yi ∈ [a, b].

In this case we do not need to impose restrictions on a. In particular, we may have an
interval [a, b] covering all possible realizations yi of the reference outcome. A sufficient
condition for the existence of a nonempty relative interior of C is provided in [4, Thm.
2.197].

Moreover, the measure µ̂ is concentrated on the points yi, i = 1, . . . ,m. The
utility function û(·) is concave, nondecreasing, piecewise linear, and has break points
y1, . . . , ym. Denoting by µi the Lagrange multipliers associated with (3.9), we obtain
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the following representation of û(·):

û(t) = 0, t ≥ ym,

û(t) = û(yi) + (t− yi)

m∑
j=i

µj , t ∈ [yi−1, yi], i = m,m− 1, . . . , 2,

û(t) = û(y1) + (t− y1)

m∑
j=1

µj , t < y1.

Equivalently,

û(t) = −
N∑
i=1

µi(yi − t)+,

which is a special case of (2.10).

6. Multiple dominance constraints. Let us now consider a problem with
multiple dominance constraints introduced by several reference outcomes:

max f(X)(6.1)

subject to E[(η −X)+] ≤ E[(η − Yj)+] for all η ∈ [a, b], j = 1, . . . , J,(6.2)

X ∈ C.(6.3)

Here C ⊂ L1(Ω,F , P ) and Yj ∈ L1(Ω,F , P ), j = 1, . . . , J . Denote by UJ1 the
Cartesian product of J copies of U1. We define the Lagrangian L : C × UJ1 → R,

L(X,u) = f(X) + E
J∑
j=1

[uj(X)− uj(Yj)].(6.4)

We define the dual functional D : UJ1 → R,

D(u) = sup
X∈C

L(X,u),

and the dual problem,

min
u∈UJ

1

D(u).(6.5)

The uniform dominance condition takes on the following form: there exists X̃ ∈
L1(Ω,F , P ) such that

inf
η∈[a,b]

{
F2(Yj ; η)− F2(X̃; η)

}
> 0, j = 1, . . . , J.(6.6)

Theorem 6.1. Assume that condition (6.6) is satisfied. If X̂ is an optimal
solution of (6.1)–(6.3), then there exists a function û ∈ UJ1 such that

L(X̂, û) = max
X∈C

L(X, û)(6.7)
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and

E[ûj(X̂)] = E[ûj(Yj)], j = 1, . . . , J.(6.8)

Conversely, if for some function û ∈ UJ1 an optimal solution X̂ of (6.7) satisfies the
dominance constraints (6.2) and (6.8), then X̂ is an optimal solution of (6.1)–(6.3).

The proof follows the same line of argument as the proof of Theorem 4.2. Simi-
larly, we have the duality theorem.

Theorem 6.2. Assume that condition (6.6) is satisfied and problem (6.1)–(6.3)
has a solution. Then problem (6.5) has a solution and optimal values of both problems
coincide. Moreover, the set of optimal solutions of (6.5) is the set of functions u ∈ UJ1
satisfying (6.7)–(6.8) for an optimal solution X̂ of (6.1)–(6.3).

7. Extension to higher order dominance. Our analysis extends to opti-
mization problems involving higher order dominance constraints: problems of form
(1.2)–(1.4) with (1.3) replaced by

X �(k) Y,

where k > 2. We assume that C ⊂ Lk−1(Ω,F , P ) and that Y ∈ Lk−1(Ω,F , P ), so
that the kth-order dominance relation is well-defined.

Similarly to section 4 we focus on the problem in which the dominance constraint
is enforced on an interval [a, b]:

max f(X)(7.1)

subject to Fk(X; η) ≤ Fk(Y ; η) for all η ∈ [a, b],(7.2)

X ∈ C.(7.3)

The set Uk−1 of utility functions, which will play the role of Lagrange multipliers,
contains all functions u : R→ R, for which there exists a nonnegative, nonincreasing,
left-continuous, and bounded function ϕ : [a, b]→ R such that

u(k−1)(t) = (−1)kϕ(t) for a.a. t ∈ [a, b],
u(k−1)(t) = (−1)kϕ(a) for t < a,
u(t) = 0 for t ≥ b,
u(i)(b) = 0, i = 1, . . . , k − 2.

The symbol u(i) denotes the ith derivative of u and “a.a.” means “almost all with
respect to the Lebesgue measure.” It is evident that

lim
t→−∞

|u(t)|
|t|k−1

<∞.

The uniform dominance condition has the following form: there exists a point
X̃ ∈ C such that

inf
η∈[a,b]

{
Fk(Y ; η)− Fk(X̃; η)

}
> 0.(7.4)

Let us define the Lagrangian of (7.1)–(7.3), L : C × Uk−1 → R, as follows:

L(X,u) = f(X) + E[u(X)]− E[u(Y )].(7.5)
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Since |u(t)| grows at the rate |t|k−1, when t → −∞ and X ∈ Lk−1(Ω,F , P ), the
Lagrangian is well-defined.

Theorem 7.1. Assume that the uniform dominance condition (7.4) is satisfied.
If X̂ is an optimal solution of (7.1)–(7.3), then there exists a function û ∈ Uk−1 such
that

L(X̂, û) = max
X∈C

L(X, û)(7.6)

and

E[û(X̂)] = E[û(Y )].(7.7)

Conversely, if for some function û ∈ Uk−1 an optimal solution X̂ of (7.6) satisfies
(7.2) and (7.7), then X̂ is an optimal solution of (7.1)–(7.3).

Proof. We can formulate (7.1)–(7.3) as an optimization problem in Banach spaces,
as in the proof of Theorem 4.2. We introduce the Lagrangian Λ : C× rca([a, b])→ R,

Λ(X,µ) = f(X) +

∫ b

a

[Fk(Y ; η)− Fk(X; η)] dµ(η).(7.8)

Using necessary conditions of optimality, as in the proof of Theorem 4.2, we conclude
that there exists a nonnegative measure µ̂ ∈ rca([a, b]) such that

Λ(X̂, µ̂) = max
X∈C

Λ(X, µ̂)(7.9)

and ∫ b

a

[Fk(Y ; η)− Fk(X̂; η)] dµ̂(η) = 0.(7.10)

We extend the measure µ to the whole real line by assigning measure 0 to Borel sets
not intersecting [a, b]. Using (2.2) and changing the order of integration in (7.8) we
obtain ∫ b

a

Fk(X; η) dµ(η) =

∫ b

−∞
µ([t, b])Fk−1(X; t) dt.(7.11)

Define the function u ∈ Uk−1 as follows:

u(t) = 0, t ≥ b,
u(i)(b) = 0, i = 1, . . . , k − 2,

u(k−1)(t) = (−1)kµ([t, b]) for a.a. t ≤ b.

Since µ ≥ 0, the function u(·) is nondecreasing and concave. We can rewrite (7.11) as∫ b

a

Fk(X; η) dµ(η) = (−1)k
∫ b

−∞
Fk(X; t) du(k−1)(t).(7.12)

The (k−1)st derivative of u is monotone and Fk(X; ·) is obtained by integrating k−1
times the monotone function F (X; ·) (cf. (2.2)). Therefore, we can integrate (7.12)
by parts k − 1 times and get

(−1)k
∫ b

−∞
Fk(X; t) du(k−1)(t) = −

∫ b

−∞
u(t) dF (X; t) = −E[u(X)].
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All constants disappear, because the functions Fi(X; ·) vanish at −∞ and u(k−i)(b) =
0, i = 1, . . . , k. Substituting the last relation into (7.12) we obtain

∫ b

a

Fk(X; η) dµ(η) = −E[u(X)].(7.13)

Thus, the measure µ̂ corresponds to a function û ∈ Uk−1, condition (7.9) implies (7.6),
and condition (7.10) implies (7.7).

The reverse argument is similar. For every function u ∈ Uk−1 we define the
measure µ as

µ([t, b]) = (−1)ku(k−1)
− (t),

where u
(k−1)
− is the left derivative of u(k−2). Then we use (7.13) similarly to the proof

of Theorem 4.2.
Duality relations and optimality conditions for multiple constraints are analogous

to the case of second-order dominance. The only difference is that the utility functions
which play the role of multipliers have to be taken from the family Uk−1.

8. Numerical illustration. To illustrate the features of the new models in-
troduced in this paper, we consider the portfolio problem of Example 1. Table 8.1
contains historical data of returns of eight assets (N = 8) in 22 years. The assets
are widely used indexes: U.S. three-month treasury bills, U.S. long-term government
bonds, S&P 500, Willshire 5000, NASDAQ, Lehmann Brothers corporate bond index,
EAFE foreign stock index, and gold. We use the returns in successive years as equally
probable realizations.

We have chosen the reference random return Y as the return of the equally

Table 8.1
Asset returns (in %).

Year Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8

1 7.5 -5.8 -14.8 -18.5 -30.2 2.3 -14.9 67.7
2 8.4 2 -26.5 -28.4 -33.8 0.2 -23.2 72.2
3 6.1 5.6 37.1 38.5 31.8 12.3 35.4 -24
4 5.2 17.5 23.6 26.6 28 15.6 2.5 -4
5 5.5 0.2 -7.4 -2.6 9.3 3 18.1 20
6 7.7 -1.8 6.4 9.3 14.6 1.2 32.6 29.5
7 10.9 -2.2 18.4 25.6 30.7 2.3 4.8 21.2
8 12.7 -5.3 32.3 33.7 36.7 3.1 22.6 29.6
9 15.6 0.3 -5.1 -3.7 -1 7.3 -2.3 -31.2
10 11.7 46.5 21.5 18.7 21.3 31.1 -1.9 8.4
11 9.2 -1.5 22.4 23.5 21.7 8 23.7 -12.8
12 10.3 15.9 6.1 3 -9.7 15 7.4 -17.5
13 8 36.6 31.6 32.6 33.3 21.3 56.2 0.6
14 6.3 30.9 18.6 16.1 8.6 15.6 69.4 21.6
15 6.1 -7.5 5.2 2.3 -4.1 2.3 24.6 24.4
16 7.1 8.6 16.5 17.9 16.5 7.6 28.3 -13.9
17 8.7 21.2 31.6 29.2 20.4 14.2 10.5 -2.3
18 8 5.4 -3.2 -6.2 -17 8.3 -23.4 -7.8
19 5.7 19.3 30.4 34.2 59.4 16.1 12.1 -4.2
20 3.6 7.9 7.6 9 17.4 7.6 -12.2 -7.4
21 3.1 21.7 10 11.3 16.2 11 32.6 14.6
22 4.5 -11.1 1.2 -0.1 -3.2 -3.5 7.8 -1
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weighted portfolio z̄ = [1/N 1/N . . . 1/N ]. The return realizations are

yk =
1

N

N∑
n=1

rnk, k = 1, . . . ,m,

where m = 22, and rnk denotes the return of asset n in year k. The probabilities of
these realizations are pk = 1/m, k = 1, . . . ,m. The expected return of the reference
portfolio is equal to 10.6%.

Our objective is to maximize the expected return of the portfolio, under the
condition that its return dominates the reference return Y in the second order.

Problem (3.1)–(3.3), with f(X) = E[X], owing to the transformation (3.10)–
(3.12), can be formulated as the following linear programming problem:

max

m∑
k=1

N∑
n=1

pkrnkzn

subject to

N∑
n=1

rnkzn + sik ≥ yi, i = 1, . . . ,m, k = 1, . . . ,m,

m∑
k=1

pksik ≤ vi, i = 1, . . . ,m,

sik ≥ 0, i = 1, . . . ,m, k = 1, . . . ,m,

N∑
n=1

zn = 1,

zn ≥ 0, n = 1, . . . , N.

The optimal portfolio has the form

ẑ = [0, 0, 0.068036, 0.188003, 0, 0.391376, 0.230924, 0.121661].

The expected return of this portfolio is 11.0%. It is slightly above the reference return
and is much below the maximum expected return of a single asset, which is 14.1%
(for Asset 7). This difference is due to the dominance constraint, which reflects risk
aversion.

The shortfall functions F2(X; ·) and F2(Y ; ·) appearing in the dominance con-
straints are illustrated in Figure 8.1. As we can see, the dominance constraint is
active at several target values. The optimal measure µ̂ has the following atoms:

µ̂({−4.49%}) = 1.44366,
µ̂({−3.64%}) = 0.59416,
µ̂({−0.84%}) = 0.48158,
µ̂({23.39%}) = 0.42786.

The corresponding utility function û appearing in the necessary conditions of opti-
mality and duality relations is shown in Figure 8.2. It should be stressed that û is
the Lagrange multiplier; that is, the optimal solution of the problem maximizes also
the sum of the expected return and the expected value of û. As we can see, negative
returns are heavily penalized by this multiplier.
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Fig. 8.3. The optimal utility function for dominating the S&P 500 index.

Our second example uses daily returns of the S&P 500 index as the reference
outcome and creates a portfolio that dominates this reference outcome and has the
highest expected return. As an illustration we used 248 daily returns from the year
2001 of the index and of 719 stocks from our database. The optimal portfolio is
composed of only 7 stocks with weights 10.98%, 7.08%, 21.79%, 13.19%, 36.51%,
4.41%, 6.04%, respectively. It has the expected return of 0.64%, as compared to the
expected return of −0.0359% of the S&P 500 index. The optimal utility function is
shown in Figure 8.3.

The portfolio optimization problem is explored in much detail in our follow-up
paper [7]. We also present there a specialized numerical method for solving such
problems.

We want to stress that although our examples are drawn from the area of finance,
our models and theoretical results are general.
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Abstract. We examine the local convergence properties of pattern search methods, comple-
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show that the step-length control parameter which appears in the definition of pattern search al-
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1. Introduction. Pattern search methods are a class of direct search methods
for solving nonlinear optimization problems. In a series of papers [16, 11, 12, 13, 14] we
established the global convergence properties of pattern search for both constrained
and unconstrained problems. In this paper, we consider the local convergence prop-
erties of pattern search and revisit the global convergence properties in light of these
new results.

For simplicity, our discussion will focus on the case of unconstrained minimization:

min
x∈Rn

f(x),

where f : Rn → R. Results similar to those we present here can also be derived for
the general case of bound and linear constraints [12, 13]. However, the underlying
ideas are simpler to explain for the unconstrained case.

∗Received by the editors June 26, 2000; accepted for publication (in revised form) March 9, 2003;
published electronically November 6, 2003. The U.S. Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribution, or allow others to do so, for
U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/siopt/14-2/37449.html
†Industrial Engineering and Management Sciences, Northwestern University and Mathematics and

Computer Science Division, Argonne National Laboratory, Argonne, IL 60439–4844 (dolan@mcs.anl.
gov). This author’s research was supported by the National Science Foundation under grant CCR–
9734044 while the author was in residence at the College of William & Mary; by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under contract W-31-109-Eng-38;
and by the National Science Foundation (Challenges in Computational Science) grant CDA-9726385
and (Information Technology Research) grant CCR-0082807.

‡Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, VA
23187–8795 (buckaroo@math.wm.edu). This author’s research was supported by the National Aero-
nautics and Space Administration under NASA contract NAS1–97046 while the author was in resi-
dence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Lan-
gley Research Center, Hampton, VA and by the Computer Science Research Institute at Sandia
National Laboratories.

§Department of Computer Science, College of William & Mary, P.O. Box 8795, Williamsburg, VA
23187–8795 (va@cs.wm.edu). This author’s research was supported by the National Science Founda-
tion under grant CCR–9734044, by the National Aeronautics and Space Administration under NASA
contract NAS1–97046 while the author was in residence at the Institute for Computer Applications
in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA, and by the
Computer Science Research Institute at Sandia National Laboratories.

567



568 E. D. DOLAN, R. M. LEWIS, AND V. TORCZON

We first show how the pattern size parameter, which plays a central role in the
definition of pattern search methods and tacitly serves as a step-length control mech-
anism, also provides a reliable asymptotic measure of first-order stationarity. This
gives an analytical justification for the traditional use of the pattern size parameter
as a stopping criterion. We also establish a local convergence result concerning the
behavior of the sequence of iterates produced by a pattern search algorithm in the
neighborhood of an isolated local minimizer x∗. These analytical results are illustrated
with some simple numerical experiments on quadratic objectives.

What is interesting about the analysis presented here is that we can establish local
convergence properties despite the fact that direct search methods do not employ
an explicit representation of the gradient of the objective and, as a consequence,
cannot enforce a notion of sufficient decrease. We proved global convergence results
for pattern search by showing that all iterates lie on a rational lattice. It is this
restriction on the form of the steps that allows us to relax the notion of sufficient
decrease and yet still prove global convergence. Pattern search may accept any point
on the current integer lattice so long as it produces simple decrease on the value of
the objective function at the current iterate. However, key to the global analysis is
the notion of having searched in a sufficient number of directions from the current
iterate to guarantee that we have not overlooked a potential direction of descent. It
is only after searching over a sufficient set of directions that we are allowed to reduce
the current step-length control parameter—which has the effect of refining the lattice
over which we are searching.

This notion of sufficient local information at iterations at which we reduce the
step-length control parameter allows us to show that the pattern size, as measured
by the step-length control parameter, provides a reliable asymptotic measure of first-
order stationarity. This analytical result is gratifying since it vindicates the long-
standing use of the step-length control parameter as a stopping criterion for direct
search methods (see, for instance, section 4 of [8]). The result on the correlation of
the step-length control parameter and stationarity then enables us to study the local
convergence properties of pattern search.

Notation. We use L(x0) to denote the set { x | f(x) ≤ f(x0) }. We use ∂ to
denote the boundary of a given set. It is assumed, unless otherwise noted, that
all norms are Euclidean vector norms or the associated operator norm. Given x
and r > 0, we denote by B(x, r) the open ball of radius r centered at x so that
B(x, r) = { y | ‖ y − x ‖ < r }. We also acknowledge an abuse of notation that is
nonetheless convenient: if y is a vector and A is a matrix, we use the notation y ∈ A
to mean that the vector y is contained in the set of columns of the matrix A.

2. Pattern search. We first review the elements of pattern search that play
a role in our local analysis. There are rigorous formal definitions of pattern search
[16, 11], several features of which we will recall shortly. However, pattern search can
perhaps be most quickly understood with the following simple example of a pattern
search algorithm. At iteration k, we have an iterate xk ∈ Rn and a step-length
control parameter ∆k > 0. Let ej , j = 1, . . . , n, be the standard unit basis vectors.
For the purposes of this example, we represent the set of directions that we will use
for the search as the set D ≡ {di}2ni=1 ≡ {e1, . . . , en,−e1, . . . ,−en}, though, as we
discuss shortly, many other choices are possible. We now have several algorithmic
options open to us. We consider the simple opportunistic strategy, which is to look
successively at the points x+ = xk +∆kdi, i ∈ {1, . . . , 2n}, until either we find an x+

for which f(x+) < f(xk) or we exhaust all 2n possibilities. Figure 2.1 illustrates the
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∆k︷ ︸︸ ︷
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❜
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Fig. 2.1. A simple instance of a pattern in R2.

pattern of points among which we search for x+ when n = 2.

If we find no x+ such that f(x+) < f(xk), then we call the iteration unsuccessful ;
otherwise, we consider the iteration successful since we have found a new iterate that
produces decrease on f at xk. When the iteration is unsuccessful, we set xk+1 = xk
and are required to reduce ∆k (typically, by a half) before continuing; otherwise, for
a successful iteration, we set xk+1 = x+ and leave the step-length control parameter
alone; i.e., ∆k+1 = ∆k (though the analysis also allows us to increase ∆k if the
iteration is a success). We repeat this process until some suitable stopping criterion
is satisfied.

Note that overall our requirements on the outcome of the search at each iteration
are light: if after searching over all the points defined by ∆kdi, i = 1, . . . , 2n, we fail
to find a point x+ = xk +∆kdi that reduces the value of f at xk, then we must try
again with a smaller value of ∆k. Otherwise, we accept as our new iterate the first
point in the pattern that produces decrease. In the latter case, we may choose to
increase ∆k. In either case, we are free to make changes to the set of search directions
D to be used in the next iteration, though we leave D unchanged in the example given
previously. In general, changes to either the step-length control parameter or the set
of search directions are subject to certain algebraic conditions, outlined fully in [11].

A distinguishing characteristic of pattern search methods is that they sample the
function over a predefined pattern of points, all of which lie on a rational lattice. By
enforcing structure on the form of the points in the pattern, as well as some simple
rules on both the outcome of the search and the subsequent updates, standard global
convergence results can be obtained [16, 11].

There remains the question of what constitutes an acceptable set of search di-
rections. A pattern must form a positive spanning set for Rn [5]. A set of vectors
{a1, . . . , ap} positively spans Rn if any vector x ∈ Rn can be written as a nonnegative
linear combination of the vectors in the set; i.e.,

x = α1a1 + · · ·+ αpap, αi ≥ 0 ∀i.

The set {a1, . . . , ap} is called positively dependent if one of the ai’s is a nonnegative
combination of the others; otherwise, the set is positively independent. A positive basis
is a positively independent set whose positive span is Rn.

It is straightforward to verify that the set of vectors {e1, . . . , en,−e1, . . . ,−en}
we used to define the pattern for our simple example is a positive spanning set.

2.1. Prior results. Before proceeding to our local convergence results, we recall
the following proposition from [11], which we state here without proof.
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Proposition 2.1. Given any set {a1, . . . , ar} that positively spans Rn, ai �= 0
for i = 1, . . . , r, there exists c2.1 > 0 such that for all x ∈ Rn, we can find an ai for
which

xTai ≥ c2.1‖ x ‖ ‖ ai ‖.
Note that this is a purely geometric property of positive spanning sets.

2.2. Some formal definitions. We also need to recall some notation regarding
both the pattern and the form of the search. For the details, we refer the reader to
[16, 11].

We have noted already that the pattern must form a positive spanning set for
R
n. In fact, we represent the pattern using two components, a basis matrix and a

generating matrix.
The basis matrix can be any nonsingular matrix B ∈ Rn×n.
The generating matrix is an integral matrix Ck ∈ Zn×pk , where pk > n + 1. We

require Ck to contain a minimum of n+ 2 columns because the minimum number of
vectors in a positive spanning set is n + 1 [5]; for convenience, we require a column
of zeros to denote the zero step. We further partition the generating matrix to reveal
the positive basis that guarantees that the pattern positively spans Rn. We call the
columns associated with the positive basis the core pattern, which we denote Γk; any
remaining columns in the positive spanning set are denoted Lk:

Ck = [ Γk Lk 0 ].(2.1)

We further require that Γk ∈ Γ, where Γ comprises a finite set of integral matrices,
the columns of which form a positive basis for Rn.

A pattern is then represented by the columns of the matrix Pk = BCk. For con-
venience, we use the partition of the generating matrix Ck given in (2.1) to partition
Pk as follows:

Pk = BCk = [ BΓk BLk 0 ].

To tie this notation back to the example that introduces section 2, we note that
B = I, Γk = [ I −I ], and Lk ≡ ∅. Since the choices of Γk and Lk are fixed in our
example, Pk ≡ [ I −I 0 ] for all k.

Now, given the step-length control parameter ∆k ∈ R, ∆k > 0, we define a trial
step sik to be any vector of the form sik = ∆kBcik, where cik is a column of Ck.

In Figure 2.2 we state the general form of a pattern search method for uncon-
strained minimization.

We have remarkable latitude in our choice of the step sk. For the global conver-
gence analysis to hold, we only need to satisfy the hypotheses on the outcome of the
unconstrained exploratory moves given in Figure 2.3.

A few comments on these hypotheses are in order. The first hypothesis is straight-
forward: the step returned must be a column in the current pattern matrix Pk, scaled
by the current value of the step-length control parameter ∆k. This condition ensures
that the steps we consider remain on the rational lattice; arbitrary steps are not
allowed.

For our purposes, the second hypothesis is the more interesting one. Notice that
in Figure 2.2, a successful iteration of pattern search requires only that the step sk
produces simple decrease; i.e., f(xk + sk) < f(xk). Thus, any nonzero step defined
by a column of ∆kPk that satisfies the condition f(xk+ sk) < f(xk) may be returned
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Let x0 ∈ Rn and ∆0 > 0 be given.
For k = 0, 1, . . . , until convergence do:

1. Compute f(xk).
2. Determine a step sk using an unconstrained exploratory moves algorithm.
3. If f(xk + sk) < f(xk), then xk+1 = xk + sk. Otherwise, xk+1 = xk.
4. Update Ck and ∆k.

Fig. 2.2. Generalized pattern search for unconstrained minimization.

1. sk ∈ ∆kPk.
2. If min { f(xk + y) | y ∈ ∆kBΓk } < f(xk), then f(xk + sk) < f(xk).

Fig. 2.3. Hypotheses on the outcome of the unconstrained exploratory moves.

1. If all f(xk + sk) ≥ f(xk), then ∆k+1 = θ∆k, where θ ∈ (0, 1).
2. If any f(xk + sk) < f(xk), then ∆k+1 = λk∆k, where λk ≥ 1.

Fig. 2.4. Basic rules for updating ∆k.

by the exploratory moves since it immediately satisfies both of the hypotheses given
in Figure 2.3—even if we do not explicitly find min { f(xk + y) | y ∈ ∆kBΓk }.

The second hypothesis in Figure 2.3 ensures that we have sufficient information
about the local behavior of f to declare an iteration unsuccessful, accept the zero step
sk = 0 (so that xk+1 ≡ xk), and reduce ∆k to continue the search with smaller steps
at the next iteration. The second hypothesis implicitly decrees that we may return
the zero step, and thus reduce ∆k, only when we have looked at all the steps defined
by the core pattern; i.e., all steps of the form y ∈ ∆kBΓk.

The core pattern BΓk must be a positive basis. This means that even though we
do not have an explicit representation of ∇f(xk) (assuming that f is differentiable),
the geometric property of positive spanning sets captured in Proposition 2.1 gives us
a positive lower bound, which is independent of k, on the angle between −∇f(xk)
(assuming it is nonzero) and some ai in the positive spanning set. At any given iter-
ation, we do not know for which ai this lower bound holds. However, this guaranteed
lower bound, when combined with the second hypothesis in Figure 2.3, ensures that
at the end of an unsuccessful iteration, we have significant information about the local
behavior of f at xk. Furthermore, the quality of our local information improves as
we reduce ∆k.

Finally, we make a brief comment on the basic rules for updating ∆k, which are
given in Figure 2.4. We also must impose additional conditions on the choice of θ and
λk to ensure that Theorem 3.2 from [16] holds. Rather than detail these conditions
here, since they are outlined fully in [16] (other options are discussed in [10]), we
note the two essential consequences. First, if our choices for θ and λk ensure that
Theorem 3.2 from [16] holds, then all the iterates lie on a translated integer lattice.
Second, the rules for updating ∆k ensure that ∆k is reduced after any unsuccessful
iteration since θ ∈ (0, 1). The latter means that after any unsuccessful iteration,
pattern search refines the lattice of points over which the search resumes.

We can capitalize on the structure of pattern search refinement to construct local
convergence results. The subsequence of unsuccessful iterates, which is what interests
us here, is well-defined: they are the iterates at which we must reduce ∆k to ensure
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that the search can make further progress. We reduce ∆k only after we have sufficient
local information about the behavior of f to justify this action: we have considered
all the steps defined by the columns of ∆kΓk, and none of them has produced descent
on f at xk. We presently use this fact to assess stationarity.

3. Measuring first-order stationarity. The following theorem shows that the
step-length control parameter ∆k, when small enough, provides a reasonable measure
of first-order stationarity at an unsuccessful iterate. For simplicity, we assume that
∇f(x) is Lipschitz continuous. For the reader interested in greater generality, we note
that a similar result can be proven under the assumption of uniform continuity.

Theorem 3.1. Suppose that for some ρ > 0, ∇f(x) is Lipschitz continuous, with
Lipschitz constant K, on the open neighborhood Ω = ∪x∈L(x0) B(x, ρ) of L(x0). Then
there exist δ3.1 > 0 and c3.1 > 0 for which the following holds. If xk is an unsuccessful
iterate and ∆k < δ3.1, then

‖ ∇f(xk) ‖ ≤ c3.1∆k.

Proof. Let r = 1
2 min{1, ρ}. If x ∈ L(x0), then the ball B(x, r) is contained in Ω.

We are interested in steps of the form s = ∆kBcik, where cik is a column of the core
matrix Γk. Since Γk ∈ Γ and Γ is finite, ‖s‖ ≤ ∆k ‖B ‖Γ∗, where Γ∗ is the maximum
norm of any column of the matrices in the set Γ. Set δ3.1 = r/(‖B ‖ Γ∗).

By the definition of pattern search, for any Γk ∈ Γ the set { s | s ∈ ∆kBΓk }
forms a positive basis for Rn. Thus Proposition 2.1 assures us of the existence of a
step s for which

−∇f(xk)
T s ≥ c2.1‖ ∇f(xk) ‖ ‖ s ‖.(3.1)

Since iteration k is unsuccessful, it follows that

f(xk + s)− f(xk) ≥ 0 ∀s ∈ ∆kBΓk.

Since we assume ∆k < δ3.1, (xk + s) ∈ B(xk, r) ⊂ Ω, and we can apply the mean
value theorem. In addition, using (3.1) and the Cauchy–Schwarz inequality, for some
ξ in the line segment connecting xk and xk + s we have

0 ≤ f(xk + s)− f(xk)

= ∇f(xk)
T s+ (∇f(ξ)−∇f(xk))

T
s

≤ −c2.1‖ ∇f(xk) ‖ ‖ s ‖+ ‖ ∇f(ξ)−∇f(xk) ‖ ‖ s ‖,

where s is the step for which (3.1) holds. Thus

c2.1‖ ∇f(xk) ‖ ≤ ‖ ∇f(ξ)−∇f(xk) ‖.

Again, since B(xk, r) ⊂ Ω, the Lipschitz continuity of ∇f(x) gives us

c2.1‖ ∇f(xk) ‖ ≤ K ‖ ξ − xk ‖ ≤ K ‖ s ‖ ≤ K∆k ‖B ‖ Γ∗.

Therefore,

‖ ∇f(xk) ‖ ≤ c3.1∆k,

with c3.1 = K ‖B ‖ Γ∗/c2.1.
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Theorem 3.1 gives a theoretical justification for a traditional stopping criterion
for pattern search methods. In the long literature on direct search methods, one
frequently encounters the suggestion that a direct search method be terminated when
some measure of the step size first falls below a value deemed suitably small [8, 4, 2].
In the case of pattern search, Theorem 3.1 vindicates this intuition. At unsuccessful
iterations, the step size in pattern search (as measured by ∆k) provides a bound on
first-order stationarity. At the same time, it is after the unsuccessful iterations that
∆k is decreased. Thus, decrease in ∆k provides a simple measure of progress which
can be used reliably to test for convergence. We discuss further the use of ∆k to
measure progress when we present some numerical examples in section 5.

A similar relation between ∆k and constrained stationarity in the case of pat-
tern search for bound constrained problems is explicitly used in the pattern search
augmented Lagrangian algorithm in [14]. The result plays a critical role in allow-
ing successive inexact minimization of an augmented Lagrangian without an explicit
estimate of the gradient. A relation similar to Theorem 3.1 for linearly constrained
pattern search appears in [13].

The global convergence analysis of pattern search in [16] says that if L(x0) is
compact, then lim infk→∞∆k = 0 and lim infk→∞ ‖ ∇f(xk) ‖ = 0. The former re-
sult and Theorem 3.1 allow us to sharpen the latter result. Let the set U represent
a subsequence of unsuccessful iterates for which limk→∞,k∈U ∆k = 0 (such a sub-
sequence exists since lim infk→∞∆k = 0). Then Theorem 3.1 says that we have
limk→∞,k∈U ‖ ∇f(xk) ‖ = 0.

The general result lim infk→∞ ‖ ∇f(xk) ‖ = 0 for pattern search leaves open the
possibility that ‖ ∇f(xk) ‖ does not converge. In [1], Audet shows that this actually
can occur by constructing a pattern search algorithm and an objective function for
which {xk} has infinitely many limit points, one of which is not a stationary point of
the objective. However, in his example, the subsequence of iterates converging to the
nonstationary point of the objective function are all successful iterates. Theorem 3.1
reassures us that in practice we need not worry about convergence to nonstationary
points. If we stop the algorithm at the first unsuccessful iterate for which ∆k < ∆∗
for some suitably small stopping tolerance ∆∗, then Theorem 3.1 says that we may
reasonably expect ‖ ∇f(xk) ‖ to be small.
4. Local convergence. We now consider the local convergence of pattern search

methods. We begin with a collection of hypotheses and definitions we will need.
The first condition is a mild hypothesis on the generating matrices Ck that allows

us to bound the size of the steps {sk}.
Hypothesis 0. The columns of the generating matrices Ck =

[
c1k · · · cpkk

]
remain

bounded in norm; i.e., there exists C0 > 0 such that for all k, C0 >
∥∥ cik

∥∥, for all
i = 1, . . . , pk. Thus, there exists a constant c0 > 0 such that any step sk satisfies

‖ sk ‖ ≤ c0∆k.

We also impose the following condition on the step-length control parameter ∆k.
Hypothesis 1. There exists N for which ∆k is monotonically nonincreasing for

all k ≥ N .
Note that this is a condition we can explicitly enforce by not allowing increases

in ∆k after some iteration N ; ∆k can stay the same or decrease.
The local convergence results are concerned with the behavior of pattern search in

a neighborhood of an isolated local minimizer x∗. We make the following assumptions
about the behavior of f in a neighborhood of x∗.
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Hypothesis 2. We assume the existence of an open ball B(x∗, r), r > 0, for
which f(x) is twice continuously differentiable on B(x∗, r), ∇2f(x) is positive definite
on B(x∗, r), ∇f(x∗) = 0, and lower and upper bounds σmin and σmax on the singular
values of ∇2f(x) on B(x∗, r) exist. We further assume σmin > 0.

We then define

κ = σmax/σmin.(4.1)

We also define

η = r/(‖B ‖ Γ∗ + 1).(4.2)

This choice ensures that if ‖ xk − x∗ ‖ < η and ∆k < η, then for any step s ∈ ∆kBΓk
we have ‖ (xk + s)− x∗ ‖ < r.

Our first result relates ∆k to ‖ xk − x∗ ‖ at unsuccessful iterates.
Proposition 4.1. Under Hypothesis 2, there exists c4.1 > 0 for which the fol-

lowing holds. If xk is an unsuccessful iterate, ∆k < η, and ‖ xk − x∗ ‖ < η (where η
is as in (4.2)), then

‖ xk − x∗ ‖ ≤ c4.1∆k.

Proof. Proposition 2.1 assures us of the existence of a step s ∈ ∆kBΓk for which

−∇f(xk)
T s ≥ c2.1‖ ∇f(xk) ‖ ‖ s ‖.(4.3)

If iteration k is unsuccessful, it follows that

f(xk + s)− f(xk) ≥ 0 ∀s ∈ ∆kBΓk.

Because ∆k < η, we know that (xk + s) ∈ B(x∗, r), where f is differentiable, and we
can apply the mean value theorem. In addition, using (4.3) and the Cauchy–Schwarz
inequality, for some ξ in the line segment connecting xk and xk + s we have

0 ≤ f(xk + s)− f(xk) ≤ −c2.1‖ ∇f(xk) ‖ ‖ s ‖+ ‖ ∇f(ξ)−∇f(xk) ‖ ‖ s ‖,
where s is the step for which (4.3) holds. Thus

c2.1‖ ∇f(xk) ‖ ≤ ‖ ∇f(ξ)−∇f(xk) ‖.(4.4)

By the integral form of the mean value theorem,

‖ ∇f(ξ)−∇f(xk) ‖ =
∥∥∥∥
∫ 1

0

[ ∇2f(xk + t(ξ − xk))(ξ − xk)
]
dt

∥∥∥∥
≤ σmax‖ ξ − xk ‖ ≤ σmax ∆k ‖B ‖ Γ∗.

Meanwhile, since ∇f(x∗) = 0, we have

‖ ∇f(xk) ‖ = ‖ ∇f(xk)−∇f(x∗) ‖(4.5)

=

∥∥∥∥
∫ 1

0

[ ∇2f(x∗ + t(xk − x∗))(xk − x∗)
]
dt

∥∥∥∥ ≥ σmin‖ xk − x∗ ‖.

Combining (4.4) and (4.5) yields

c2.1 σmin ‖ xk − x∗ ‖ ≤ c2.1 ‖ ∇f(xk) ‖ ≤ σmax ‖B ‖ Γ∗ ∆k.
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Setting c4.1 = (σmax ‖B ‖ Γ∗)/(c2.1 σmin) completes the proof.
Next we have the following elementary result concerning the level sets of f near

an isolated local minimizer x∗.
Proposition 4.2. Under Hypothesis 2, if x, y ∈ B(x∗, η) and f(x) ≤ f(y), then

‖ x− x∗ ‖ ≤ κ
1
2 ‖ y − x∗ ‖,(4.6)

where κ is as defined in (4.1).
Proof. Suppose x, y ∈ B(x∗, η) and f(x) ≤ f(y). From Taylor’s theorem with

remainder and the fact that ∇f(x∗) = 0, we have

f(y) = f(x∗) +
1

2
(y − x∗)T∇2f(ξ)(y − x∗),

f(x) = f(x∗) +
1

2
(x− x∗)T∇2f(ω)(x− x∗)

for ξ and ω on the line segments connecting x∗ with y and x, respectively. Since
f(x) ≤ f(y), we obtain

0 ≤ f(y)− f(x) =
1

2
(y − x∗)T∇2f(ξ)(y − x∗)− 1

2
(x− x∗)T∇2f(ω)(x− x∗),

whence

0 ≤ σmax‖ y − x∗ ‖2 − σmin‖ x− x∗ ‖2,
and thus (4.6).

We use the previous proposition to show that if we start sufficiently close to
x∗ with a sufficiently small step-length control parameter ∆k and we have stopped
allowing increases in ∆k (Hypothesis 1), then pattern search will not move away from
a neighborhood of x∗.

Proposition 4.3. Under Hypotheses 0, 1, and 2, there exist δ4.3 > 0 and ε4.3 >
0 for which the following holds. For k ≥ N , where N is as defined in Hypothesis 1, if
xk is an iterate for which ∆k < δ4.3 and ‖ xk − x∗ ‖ < ε4.3, then for all ( ≥ k,

‖ x� − x∗ ‖ < η,

where η is as in (4.2).
Proof. Choose δ4.3 and ε4.3 to satisfy

δ4.3 <
η

2c0
,

ε4.3 <
1

2
κ− 1

2 η,

where the constant c0 comes from Hypothesis 0 and the definition of κ appears as
(4.1). Observe that the definition of κ means that for any choice of η > 0,

1

2
κ− 1

2 η ≤ η

2
.

The proof is by induction. First consider xk+1 = xk + sk. Hypothesis 0 gives us
‖ xk+1 − xk ‖ = ‖ sk ‖ ≤ c0∆k. We have, a priori,

‖ xk+1 − x∗ ‖ ≤ ‖ xk+1 − xk ‖+ ‖ xk − x∗ ‖ < c0∆k + ε4.3 < η.
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Now consider any ( ≥ k + 1, and suppose

‖ x� − x∗ ‖ < η.

Then

‖ x�+1 − x∗ ‖ ≤ ‖ x�+1 − x� ‖+ ‖ x� − x∗ ‖.(4.7)

Hypothesis 1 assures us that ∆� ≤ ∆k for ( ≥ k, so

‖ x�+1 − x� ‖ ≤ c0∆� ≤ c0∆k.

Meanwhile, by the induction hypothesis, x� ∈ B(x∗, η). Since f(x�) ≤ f(xk) as well,
Proposition 4.2 and the assumption ‖ xk − x∗ ‖ < ε4.3 say that

‖ x� − x∗ ‖ ≤ κ
1
2 ‖ xk − x∗ ‖ < κ

1
2 ε4.3.

Thus (4.7) yields

‖ x�+1 − x∗ ‖ < c0∆k + κ
1
2 ε4.3 < η.

An immediate consequence of Proposition 4.3 is the following, which is simply a
localized version of Theorem 3.3 from [16].

Proposition 4.4. Suppose Hypotheses 0–2 hold. Let δ4.3 > 0 and ε4.3 > 0 be
as in Proposition 4.3. If for some k ≥ N , where N is as defined in Hypothesis 1, we
have ∆k < δ4.3 and ‖ xk − x∗ ‖ < ε4.3, then limj→∞∆j = 0.

Proof. The proof proceeds by contradiction. Suppose limj→∞∆j �= 0. Then ∆j

has some minimum value ∆min > 0, which implies that after some iteration k we have
an infinite number of successful iterations. From Proposition 4.3 and Hypothesis 0,
we see that all possible iterates after k remain in a bounded set. As discussed in
section 2.2, the structure of pattern search algorithms is such that all possible iterates
must lie on a translated integer lattice that depends on ∆min. The intersection of
a bounded set with a translated integer lattice is finite. So if we do not reduce ∆j

beyond ∆min, there is only a finite number of points that we can consider that remain
in the bounded set. Thus, if there is an infinite number of successful iterations, there
must exist at least one point x̂ in the lattice for which xj = x̂ for more than one value
of j. This leads to a contradiction because we can have a successful iteration and avoid
decreasing ∆j only if f(xj) < f(xj−1). Therefore, we must have limj→∞∆j = 0.

This argument is analogous to the basic reasoning found in the proof of Theo-
rem 3.3 in [16], in which it is shown that lim infk→+∞∆k = 0 under the assumption
that L(x0) is compact.

Putting the pieces together, we obtain the following local convergence result. It
says that if at some iteration the entire set of trial points is sufficiently close to a
local minimizer x∗ satisfying Hypothesis 2, then the sequence of subsequent iterates
will converge to x∗. We use the suggestive notation xk + ∆kPk to represent the set
of all possible trial points at iteration k,

{
xk +∆kBcik | i = 1, . . . , pk

}
, where B is

the basis matrix and cik is a column of the generating matrix Ck.

Theorem 4.5. Given a pattern search algorithm satisfying Hypotheses 0–1, let
N be as in Hypothesis 1. Suppose Hypothesis 2 holds and that, in particular, x∗ is a
point satisfying Hypothesis 2.
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Then there exist ρ > 0 and c4.5 > 0 for which the following hold. Suppose that
at some iteration K, K ≥ N , we have xK + ∆KPK ⊂ B(x∗, ρ). Let K̄ be the first
unsuccessful iteration after K. Then for all k > K̄,

‖ xk − x∗ ‖ ≤ c4.5∆m(k),(4.8)

where m(k) is the last unsuccessful iteration preceding or including k. As a conse-
quence, we have limk→∞ xk = x∗.

Proof. We begin by noting that the integrality of the generating matrix Ck guar-
antees that for all k,

min
i∈{1,...,(pk−1)}

∥∥ cik
∥∥ ≥ 1.(4.9)

The bound in (4.9) excludes the last column of Ck, which allows the zero step. We
also know that for all k ≥ 0 any trial step sik ∈ ∆kPk satisfies∥∥ sik

∥∥ = ∆k

∥∥Bcik
∥∥ ≥ ∆kσn(B)

∥∥ cik
∥∥ ,(4.10)

where σn(B) denotes the smallest singular value of the basis matrix B.
Our assumption that xK + ∆KPK ⊂ B(x∗, ρ) means that for any siK ∈ ∆KPK

we have ∥∥ siK
∥∥ < 2ρ.(4.11)

Combining (4.9), (4.10), and (4.11), we obtain

∆K <
2ρ

σn(B)
∥∥ ciK

∥∥ ≤ 2ρ

σn(B)

for all i ∈ {1, . . . , (pK − 1)}. The assumption that xK +∆KPK ⊂ B(x∗, ρ) also yields

‖ xK − x∗ ‖ < ρ.

Thus we can choose ρ > 0 to be so small that if xK +∆KPK ⊂ B(x∗, ρ), then

∆K < min{η, δ4.3} and ‖ xK − x∗ ‖ < min{η, ε4.3},

where η is as in (4.2) and δ4.3, ε4.3 are as in Proposition 4.3. Proposition 4.3 then
gives us

‖ xk − x∗ ‖ < η ∀k ≥ K.(4.12)

By assumption, K̄ is the first unsuccessful iteration after K. We now consider
two cases.

First, for all unsuccessful iterates xk with k ≥ K̄, Proposition 4.1 gives us

‖ xk − x∗ ‖ ≤ c4.1∆k.(4.13)

Since xk is an unsuccessful iterate and ∆k has not yet been reduced, k = m(k); and
we can restate (4.13) as

‖ xm(k) − x∗ ‖ ≤ c4.1∆m(k) ∀k ≥ K̄.(4.14)
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Second, for all successful iterations k > K̄, we have f(xk) < f(xm(k)). Since
k > K̄ ≥ K, (4.12) assures us that xk, xm(k) ∈ B(x∗, η). It then follows from Propo-
sition 4.2 that

‖ xk − x∗ ‖ ≤ κ
1
2 ‖ xm(k) − x∗ ‖,(4.15)

where κ is as in (4.1).

Together (4.14) and (4.15) imply that for all k > K̄, (4.8) holds with c4.5 = κ
1
2 c4.1

since the definition of κ in (4.1) ensures that κ
1
2 ≥ 1.

Finally, since Proposition 4.4 says ∆k → 0, it follows that limk→∞ xk = x∗.
This theorem complements Theorem 3.7 of [16], where it is shown, under different

hypotheses and a more stringent criterion for accepting a step, that ‖ ∇f(xk) ‖ → 0.
The trade-off is that while here we relax the criterion for accepting a step, Hypothesis 2
places stronger assumptions on f than those used in [16], where all that is assumed
about f is that it is continuously differentiable on a neighborhood of L(x0).

Theorem 4.5 is similar to local convergence results for other minimization algo-
rithms. The standard convergence results for Newton’s method and quasi-Newton
methods (with exact gradients) say that if we start sufficiently close to a point x∗ sat-
isfying Hypothesis 2, then the sequence of subsequent iterates will converge to x∗ [15].
Our result is even more like the local convergence results for minimization with finite-
difference estimates of the gradient, with which pattern search can be aptly com-
pared. Theorem 5.1 in [3], an example of such a result, requires the points from
whose objective values the finite-difference estimate of the gradients is constructed to
lie sufficiently close to x∗. Our requirement that the entire pattern be close to x∗ is
similar.

Theorem 4.5 says that for the subsequence of unsuccessful iterates, the rate of
convergence is R-linear. Theorem 4.5 says nothing about what may happen at the
successful iterations nor how many such iterations there may be between unsuccessful
iterations. The obstruction to sharpening the rate of convergence result is that we
do not know a priori how much improvement we obtain in f(x) at the successful
iterations. We have a sort of multistep R-linear rate of convergence but one for which
we do not know and, as our numerical tests reported in section 5.3 suggest, cannot
predict the number of intervening steps. For want of an existing term for this notion
of convergence, we call it desultory R-linear convergence.

More positively, Theorem 4.5 suggests how one can “accelerate” the local conver-
gence of pattern search algorithms. One only need rename the formerly unsuccessful
iterates successful iterates and drop the formerly successful iterates from discussion.
Then, mirabile dictu, this simple modification makes the successful iterates an R-
linearly convergent sequence.

All joking aside, this suggestion is based on the observation that we can rewrite
pattern search algorithms to have an inner iteration/outer iteration structure. The
outer iterations consist of those iterates at which we reduce ∆k because no more local
reduction in f can be found using the current pattern ∆kPk. The inner iterations
comprise those iterates which identify simple decrease for some sk ∈ ∆kPk. Theo-
rem 4.5 allows us to say something about the asymptotic behavior of such “outer”
iterations in pattern search.

In that sense, our results are similar to the local convergence for, say, steepest
descent with a line search strategy. In steepest descent, the line search is an inner
iteration that may require multiple evaluations of the objective in order to generate
the ostensible next iterate. In this way both pattern search and steepest descent
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generate R-linearly convergent sequences. However, we do not see a way to say
anything, asymptotically, about the behavior of the pattern search “inner” iterations.
By contrast, one can bound, asymptotically, the number of steps required for the
inner iterations of steepest descent devoted to the exercise of a line search strategy,
since in the worst case one builds a quadratic model of the objective along the search
direction. Once again, for the pattern search analysis the gap lies in the lack of both
an explicit estimate of the gradient and a local model of f with which to work. Faster
local convergence seems to require better local models.

We close by noting that the only other local convergence result for pattern search
similar to Theorem 4.5 of which we are aware is due to Yu [18]. The result is restricted
to positive definite quadratic functions (though the extension to nonlinear objectives
is straightforward). The fact that f is a quadratic figures explicitly in the derivation
of a result similar to (4.8).

5. Numerical results. We now present some numerical experiments that illus-
trate the practical implications of our convergence analysis. The first round of testing,
summarized in section 5.2, supports the analysis; the second round, summarized in
section 5.3, shows its limitations. The numerical results regarding the effectiveness
of ∆k as a measure of stationarity, reported in section 5.2, summarize some of the
numerical results reported in [6]. The second round of results, given in section 5.3,
was generated using the implementation of pattern search from [6].

5.1. The testing environment. Full details of the numerical experiments can
be found in [6]. The tests we report here were done with randomly generated quadratic
functions. This is a reasonable choice, since we are interested in the local convergence
behavior of pattern search, and any function that is twice continuously differentiable
looks like a convex quadratic in the neighborhood of an isolated local minimizer.
The quadratics tested were of the form f(x) = xTAx + c, where A = HTH and
H ∈ R(n+2)×n is a matrix with entries that are normal random variates with means
of zero and standard deviations of one. The absence of a linear term may be thought
of as shifting the quadratic so that the solution lies at the origin, which simplifies our
calculations of ‖ xk − x∗ ‖. The constant term c is not interesting for the purposes
of the optimization but provides a useful tag for identifying individual functions. For
the testing in [6], 2 ≤ n ≤ 5; we show a result for n = 5.

In addition to randomly generating the entries of the matrix H, we also randomly
generated ∆0 and the entries of the vector x0. The entries for the starting point x0

were also normal random variates with means of zero and standard deviations of one.
The choice for ∆0 was an exponential variate with a mean of one. Since the starting
points are randomly generated, the absence of a linear term in the quadratic should
not unduly influence the outcome of the searches.

The software described in [6] was written in C++ to make use of C++ classes, a
convenient way to establish the key features of pattern search and then easily derive
specific variants. Several of these variants were implemented and tested, as described
in [6]. We show results using HJSearch, an implementation of the classical pattern
search algorithm of Hooke and Jeeves [8]; CompassSearch, the pattern search algo-
rithm described in section 2; and NLessSearch, a pattern search algorithm that takes
advantage of the fact that a minimal positive basis requires only n+1 vectors [11], as
opposed to the 2n coordinate vectors used in most traditional pattern search methods,
including compass search and Hooke and Jeeves.
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Table 5.1
HJSearch in five variables.

∆k ‖ ∇f(xk) ‖ | f(xk)− f(x∗) | ‖ xk − x∗ ‖
0 .696226813823902 3.718628968450993 3.96639084353257 2.396301558944381
0 .348113406911951 1.370661155865317 0 .44618879006458 0 .698389592313846
0 .174056703455976 0 .993386770046628 0 .19091214014793 0 .450386903073632
0.0 87028351727988 0 .236893510661273 0.0 1477525409286 0 .153943970082610
0.0 43514175863994 0 .314026005456998 0.0 1421309666224 0 .119315177505950
0.0 21757087931997 0 .131650296045321 0.00 223337373949 0.0 34002609804365
0.0 10878543965999 0.0 42526372212693 0.000 28996796577 0.0 15791910616849
0.00 5439271982999 0.0 32921235371376 0.000 18078437086 0.0 14678346820778
0.00 2719635991500 0.0 12854930063180 0.000 14567060113 0.0 16582990396810
0.00 1359817995750 0.00 5667414556147 0.0000 1023084696 0.00 3757596625046
0.000 679908997875 0.00 4101406209192 0.00000 429756349 0.00 2612852810391
0.000 339954498938 0.00 1396318029208 0.000000 50775161 0.000 854609846084
0.000 169977249469 0.000 833651146770 0.000000 49903818 0.000 985750547712
0.0000 84988624734 0.000 563050121378 0.0000000 2356890 0.0000 74244150774
0.0000 42494312367 0.000 112117511534 0.00000000 325088 0.0000 43510325021
0.0000 21247156184 0.0000 97664692564 0.00000000 266601 0.0000 32689236837
0.0000 10623578092 0.0000 35578092711 0.000000000 26108 0.0000 13878637584
0.00000 5311789046 0.0000 10624256256 0.000000000 15362 0.0000 17458315183

5.2. Measuring stationarity. The first question we ask is, how effective is
∆k as a measure of stationarity? Not too surprisingly, the results of our tests showed
that ∆k is a reliable measure of progress toward a solution. Furthermore, our numbers
make quite clear the R-linear convergence of the subsequence of unsuccessful iterates.

After any unsuccessful iteration, a pattern search method is required to reduce
∆k. We used the standard reduction factor of 1

2 so that after an unsuccessful iteration,
∆k+1 = 1

2∆k. Before proceeding to the next iteration, we recorded the value of ∆k,
‖∇f(xk)‖, |f(xk)−f(x∗) |, and ‖xk−x∗ ‖ (though since we knew x∗ ≡ 0, we simply
had to compute ‖ xk ‖). Representative results from one particular test are given in
Table 5.1.

The point of the results we report in Table 5.1 is not to demand close scrutiny
of each entry but rather to demonstrate the trends in each of the four quantities
measured. We clearly see the R-linear behavior the analysis tells us to expect: by the
time we halve ∆k, we have roughly halved the error in the solution.

We report here the results from only one experiment, but they are representative
of results from ten thousand runs over multiple quadratics, in multiple dimensions,
from multiple starting points, with multiple choices of ∆0, using four different pattern
search methods [6]. We found that across all these tests, ∆k gave us a consistent
measure of the accuracy of the solution. Further, these results conform both with a
long-standing recommendation for a stopping criterion (see [8]) as well as with our
observations when applying pattern search algorithms to general (i.e., nonquadratic)
functions.

One practical benefit of using ∆k as a measure of stationarity is that it is already
present in pattern search algorithms; no additional computation is required. Another
good reason for using ∆k as a measure of stationarity is that it is largely insusceptible
to numerical error. Since pattern search methods often are recommended when the
evaluations of the objective function are subject to numerical “noise,” the fact that
∆k will not be affected by numerical noise in the computed values of the objective
function suggests that ∆k provides a particularly suitable stopping criterion. One last
observation to be made about the practical utility of ∆k as a measure of stationarity is
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that pattern searches require only ranking, or order, information to drive the search—
no numeric values for the objective are necessary [11]. In such a setting, ∆k is a feasible
measure of progress, whereas measures based on the numeric values of the objective
function are not.

We close with the observation that the conditioning of the Hessian does play a
role in the progress of the search, as is true for steepest descent. For the example
in Table 5.1 this is not an issue since the smallest singular value for the Hessian
is 0.4661 and the condition number of the Hessian is 37.5767. However, in limited
tests, we parameterized the Hessian of a two-dimensional quadratic to control the
condition number of A. As the Hessian became increasingly less well-conditioned,
the number of iterations between each unsuccessful iteration grew; however, we still
saw the same trends evident in Table 5.1. The effect the conditioning of the Hessian
has on our experimental results should not be surprising since the constant c4.1 in
Proposition 4.1 explicitly depends on σmin; as σmin → 0, c4.1 → ∞. For a similar
observation regarding the connection between conditioning and the performance of
steepest descent with finite-difference gradients, see [3].

5.3. How many successful iterates? Theorem 4.5 says that the subsequence
of unsuccessful iterates converges R-linearly once we are in a neighborhood of a so-
lution. A natural question to then ask is, how many iterations occur in practice
between each iterate included in this subsequence? If a reasonable a priori bound for
the number of intervening iterations could be derived, then we could establish the rate
of convergence for the entire sequence of iterates. Since we could see no analytical
approach to answering this question, as discussed at the end of section 4, we decided
to conduct some numerical studies. As it happens, our experiments shed little light
on the question. We give only a few specific results in Figures 5.1–5.2.

In all instances, we terminate the search when ∆k+1 < 2 × 10−8. Along the
horizontal axis, we list the number of unsuccessful iterations; i.e., the number of times
we halve ∆k before it is less than the stopping tolerance. Each bar then represents
the number of successful iterations that preceded an unsuccessful iteration plus the
(single) unsuccessful iteration so that summing all the entries gives us the total number
of iterations for the search.

Notice that for the three algorithms we tested the scale on the vertical axes varies
considerably. For NLessSearch, the number of successful iterations preceding an
unsuccessful iteration can be considerably higher than, say, for HJSearch, but over all
of our tests, the results are mixed. We cannot predict how many successful iterations
may precede an unsuccessful iteration, nor does there seem to be any particular trend.
However, a few useful observations emerged.

One trend that can be seen in Figures 5.1–5.2 is the apparent superiority, in
terms of the total number of iterations required to satisfy our stopping criterion,
of the algorithm of Hooke and Jeeves when applied to quadratic functions. This is
consistent with the results in [6]. As yet we can offer no analytical explanation for this
behavior, but it seems that the “pattern step” in the Hooke and Jeeves algorithm,
which captures some limited history of prior successes and potentially enables a much
longer trial step than allowed by the core pattern, helps the overall progress of the
search.

Another point is illustrated by the example shown in Figure 5.2. The poor scaling
of the graphs in Figure 5.2, a consequence of the relatively huge number of iterations
taken before the first reduction in ∆, precludes close examination—but that under-
scores the point we wish to make.
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Fig. 5.1. NLessSearch (left), CompassSearch (middle), and HJSearch (right) in eight variables.
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Fig. 5.2. NLessSearch (left), CompassSearch (middle), and HJSearch (right) in four variables.

The relatively huge number of successful iterations taken before ∆k is ever reduced
is due to the small initial value of ∆0. For our experiments, the value of ∆0 was drawn
randomly. In this example it is so small (0.001128116614106) that initially there is
a long sequence of successful iterations, but progress is remarkably slow because we
start with such a small choice of ∆0 that all the trial steps are quite short. After the
first reduction in ∆, the number of iterations between each subsequent reduction in
∆ demonstrates the same unpredictable behavior we see in the graphs in Figure 5.1.

This suggests two conjectures. The first is that in general it is best to start the
search with a relatively large value of ∆0. This is consistent with pattern search/direct
search lore (e.g., see the discussion found in [17] on choosing the size of the initial
simplex). The second conjecture is that there is merit to allowing ∆k to increase so as
to recover from an inappropriate choice of ∆0. While the analyses in [16, 11] support
such a specification for pattern search algorithms, most analyses require ∆k to be
monotonically nonincreasing. Furthermore, we are aware of only two publicly available
implementations of pattern search methods [7, 9] that allow ∆k to increase. Even the
analysis we present here assumes that eventually ∆k is monotonically nonincreasing.
The practical compromise, implicit in Hypothesis 1, is that we allow increases in
∆k only up to some finite number of iterations, after which we require ∆k to be
nonincreasing. This allows for some initial adjustments in the step-length control
parameter if the first few iterations of the search suggest that the choice of ∆0 may
have been too conservative. However, if we disable any further increases in ∆k once
k ≥ N , then we preserve the global and local convergence properties presented in
sections 3 and 4.

6. Conclusion. The results given here round out the convergence analysis of
pattern search. The analysis and numerical experiments reported here show that
∆k can be used as a reliable stopping criterion. Moreover, these tests show that the
correlations predicted by Theorems 3.1 and 4.5 between ∆k, ‖∇f(xk)‖, and ‖xk−x∗‖
are manifest in practice. These results vindicate the intuition of the early developers
of direct search methods.
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1. Introduction. For the study of best approximation problems with a finite
system of inequality constraints in RN (or in Hilbert spaces), the strong CHIP (the
strong conical hull intersection property) and other constraint qualification concepts
have played important roles in dual reformulation of the best approximation problems.
See, e.g., [6, 7, 13, 14, 15, 22, 23, 26, 27]. In this paper these concepts are extended and
studied in connection with more general systems. The system (of convex inequalities)
that we will focus on is

(CIS) gi(x) ≤ 0, i ∈ I,
where I is an index set (finite or otherwise), x ∈ X, each gi is a real continuous convex
function on X, and X is a Banach space (say, over the real field R, but later we will
also consider the case when X is over the complex field C).

In what follows we always assume that the solution set S of the system (CIS) is
nonempty, i.e.,

S := {x ∈ X : gi(x) ≤ 0 for all i ∈ I} �= ∅.(1.1)

Let G(·) denote the sup-function [18] of {gi}:
G(x) := sup

i∈I
gi(x) for all x ∈ X.

Then S is also the solution set of the convex inequality

(SCIS) G(x) ≤ 0.
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In this paper we assume throughout that

G(x) < +∞ for all x ∈ X(1.2)

and that G is continuous on X. These blanket assumptions are automatically sat-
isfied if {gi : i ∈ I} is locally uniformly bounded. Moreover, the continuity of G
automatically follows from (1.2) if X is of finite dimension.

Let C be a closed convex subset of X and let K consist of all x ∈ C satisfying
the system (CIS). For a subset Z of X, we use PZ to denote the projection operator
defined by

PZ(x) = {y ∈ Z : ‖x− y‖ = dZ(x)},
where dZ(x) denotes the distance from x to Z.

Recently, studies have been done on establishing the dual formulation of the
best approximation problem in the setting of real Hilbert spaces; see [6, 7, 13, 14,
15, 26, 27] for finite systems of linear inequalities and [22, 23] for finite systems of
nonlinear inequalities. However, there are many problems in Banach spaces (over
R or C) that have infinitely many convex constraints. One typical example is the
problem of best restricted range approximations in C(Q), the space of all continuous
complex-valued functions defined on a compact metric space Q; see [21, 33, 34, 35, 36,
37]; this problem can be reformulated as an approximation problem with constraints
defined by an infinite system of convex inequalities. This motivates us to consider the
following question: Can the results on the dual formulation of the best constrained
approximation in Hilbert spaces for finite systems be extended to infinite systems in
general Banach spaces? We shall study the relationships between the basic constraint
qualification (BCQ) and the CHIP in Banach spaces (over R or C) in section 3. As
applications, we establish some results on the unconstrained reformulation of best
approximations with infinitely many constraints in Hilbert spaces. This is done in
section 4, where we begin with a general result (applicable to both real and complex
Hilbert spaces) relating the BCQ and the dual formulation of the best approximation
problem. Our result, on the complex Hilbert space X, is in a very general setting:
{Ωi : i ∈ I} is a family of closed convex subsets of C, {hi : i ∈ I} ⊆ X \ {0}, C is a
closed convex subset of X, and Ĉi := {x ∈ X : 〈hi, x〉 ∈ Ωi}. Theorem 4.2 shows that
the family {C, Ĉi : i ∈ I} has the strong CHIP if and only if a dual formulation in
terms of the projections PC and P(∩i∈I Ĉi)∩C holds. It is worth noting in particular that

{Ωi} is not necessarily explicitly given by (CIS) at the outset. Another application
of our results is given in section 5, where several characterizations of best restricted
range approximations in C(Q) are given for a class of quite general constraints.

To end this section, we describe some basic notation, most of which is standard
(cf. [8, 18]). In particular, for a set Z in X (or in Rn), the interior (resp., closure,
convex hull, convex cone hull, linear hull, negative polar, boundary) of Z is defined
by intZ (resp., Z, convZ, coneZ, spanZ, Z�, bd Z); the normal cone of Z at z0
is denoted by NZ(z0) and defined by NZ(z0) = (Z − z0)

�. Let extZ denote the
set of all extreme points of Z and let R− denote the subset of R consisting of all
nonpositive real numbers. For a proper extended real-valued convex function on X,
the subdifferential of f at x ∈ X is denoted by ∂f(x) and defined by

∂f(x) = {z∗ ∈ X∗ : f(x) + 〈z∗, y − x〉 ≤ f(y) for all y ∈ X},
where 〈z∗, x〉 denotes the value of a functional z∗ in X∗ at x ∈ Z, i.e., 〈z∗, x〉 = z∗(x).
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Remark 1.1. (a) Let f be a continuous convex function f on X and x ∈ X with
f(x) = 0. It is easy to see that cone

(
∂f(x)

) ⊆ Nf−1(R−)(x) and that the equality
holds if f is an affine function or if x is not a minimizer of f ; see [8, Corollary 1,
p. 56].

(b) The directional derivative of the function f at x in the direction d is denoted
by f ′

+(x, d):

f ′
+(x, d) := lim

t→0+

f(x+ td)− f(x)

t
.(1.3)

We recall [8, Proposition 2.2.7] (see also [28]) that

∂f(x) = {z∗ ∈ X∗ : 〈z∗, d〉 ≤ f ′
+(x, d) for all d ∈ X}(1.4)

and

f ′
+(x, d) = max{〈z∗, d〉 : z∗ ∈ ∂f(x)}.(1.5)

2. Preliminaries. Let {Ai : i ∈ J} be a family of subsets of X. The set∑
i∈J Ai is defined by

∑
i∈J

Ai =

{ {∑
i∈J0

ai : ai ∈ Ai, J0 ⊆ J being finite
}

if J �= ∅,
{0} if J = ∅.(2.1)

Consider (CIS) as before with the solution set denoted by S. For x ∈ X, let I(x)
denote the set of all active indices i : I(x) = {i ∈ I : gi(x) = G(x) = 0}. Following
[17, 24], we define

N ′(x) :=
∑

i∈I(x)

cone
(
∂gi(x)

)
, x ∈ X.(2.2)

Note that, by (2.1), N ′(x) = cone (
⋃

i∈I(x) ∂gi(x)) if I(x) �= ∅ and N ′(x) = {0} if

I(x) = ∅.
In the remainder of this paper, we let K := C ∩ S, where S denotes the solution

set of (CIS). The following concepts are well known in the case when I is finite or X
is of finite dimension; see, e.g., [24, 22, 23].

Definition 2.1. Let x ∈ K. The system (CIS) is said to satisfy the BCQ relative
to C at x if

NK(x) = NC(x) +N ′(x).(2.3)

Remark 2.1. (CIS) satisfies the BCQ at each x ∈ C ∩ intS because (2.3) holds
trivially in this case.

The following concept of the strong CHIP is due to [13, 14] in the case when I is
finite and plays an important role in optimization theory; see, e.g., [1, 2, 9, 12, 32].

Definition 2.2. Let {Ci : i ∈ I} be a collection of closed convex subsets of X
and x ∈ ⋂i∈I Ci. The collection is said to have the strong CHIP at x if

N⋂
i∈I

Ci
(x) =

∑
i∈I

NCi(x).(2.4)
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Remark 2.2. (a) If gi(x) < 0, then x ∈ int (g−1
i (R−)) and Ng−1

i
(R−)(x) = {0}.

Hence ∑
i∈I(x)

Ng−1
i

(R−)(x) =
∑
i∈I

Ng−1
i

(R−)(x).

(b) Let x ∈ C ∩ bd S. Then

The system (CIS) satisfies BCQ relative to C at x
=⇒ {C, g−1

i (R−) : i ∈ I} has the strong CHIP at x.

(c) Let x ∈ C ∩ bd S and suppose that, for each i ∈ I(x), either gi is affine or
there exists xi ∈ C such that gi(xi) < 0 (so cone

(
∂gi(x)

)
= Ng−1

i
(R−)(x) by Remark

1.1). Then

The system (CIS) satisfies BCQ relative to C at x
⇐⇒ {C, g−1

i (R−) : i ∈ I} has the strong CHIP at x.

(This assertion is of course trivial when x ∈ C ∩ intS.)
(d) When each gi is affine, {g−1

i (R−) : i ∈ I} has the strong CHIP at x auto-
matically if I is finite. However, this is not necessarily true if I is infinite; see [24,
Example 1].

Definition 2.3. We say that the system (CIS) satisfies the Slater condition on
C if there exists a point x̄ ∈ C such that G(x̄) < 0. In this case, x̄ is called a Slater
point of (CIS) on C.

The following theorem, which is known (cf. [18, 24]) in the special case when X
is of finite dimension, will play a key role in section 5.

Theorem 2.1. Assume that I is a compact metric space and that the function
i �→ gi(x) is upper semicontinuous on I at each x ∈ X. Let C be a nonempty closed
convex subset of X such that spanC is of finite dimension. Suppose that there exists
a Slater point x̄ of (CIS) on C. Then the system (CIS) satisfies the BCQ relative to
C at every point x ∈ K.
Proof. As the result is trivial if x ∈ C ∩ intS, we may assume that x ∈ C ∩ bd S.

We divide the proof into two steps. First we show that

NC(x) + ∂G(x) ⊆ NC(x) +N ′(x) for all x ∈ C ∩ bd S.(2.5)

Let G̃ and g̃i, respectively, denote the restrictions of G and gi on spanC, where i ∈ I.
Then

G̃(z) = sup
i∈I

g̃i(z) for all z ∈ spanC.(2.6)

By assumptions and [18, Theorem 4.4.2, p. 267] (see also [24, Theorem 3.1]), for any
x ∈ C ∩ bd S, we have that

∂G̃(x) = conv


 ⋃

i∈I(x)

∂g̃i(x)


 .(2.7)

For any y∗ ∈ ∂G(x), y∗ can be viewed as an element of ∂G̃(x). Thus, by (2.7), there
exist ỹ∗j ∈ ∂g̃ij (x), λj ≥ 0, ij ∈ I(x), j = 1, 2, . . . ,m, such that

∑m
j=1 λj = 1 and

〈y∗, z〉 =
〈

m∑
j=1

λj ỹ
∗
j , z

〉
for all z ∈ spanC.(2.8)
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Noting

〈ỹ∗j , z〉 ≤ g̃′ij+(x, z) = g′ij+(x, z) for all z ∈ spanC,(2.9)

and making use of the Hahn–Banach extension theorem, there exists y∗j ∈ X∗ satis-
fying

〈y∗j , z〉 = 〈ỹ∗j , z〉 for all z ∈ spanC(2.10)

and such that 〈y∗j , z〉 ≤ g′ij+(x, z) holds for all z in X. This implies that y∗j ∈ ∂gij (x).
Let y∗0 = y∗ −∑m

j=1 λjy
∗
j . Then, by (2.8) and (2.10), one has

〈y∗0 , z〉 =
〈
y∗ −

m∑
j=1

λjy
∗
j , z

〉
= 0 for all z ∈ C − x,

in particular, y∗0 ∈ NC(x). This implies that y∗ = y∗0 +
∑m

j=1 λjy
∗
j ∈ NC(x) +

cone (
⋃

i∈I(x) ∂gi(x)); hence (2.5) is established.

Next, by the assumed Slater condition, it follows from [14, Proposition 2.3] (the
proof given there is valid for an arbitrary Banach space although it was stated for
Hilbert spaces) that {C, S} has the strong CHIP at every point x ∈ C ∩ bd S:

NK(x) = NC(x) +NS(x) for all x ∈ C ∩ bdS.(2.11)

Since G(x̄) < 0, Remark 1.1(a) implies

NS(x) = cone
(
∂G(x)

)
for all x ∈ C ∩ bdS.

Then, by (2.11) and (2.5),

NK(x) = NC(x) + cone
(
∂G(x)

)
= NC(x) +N ′(x).

Thus Theorem 2.1 is proved.
In the remainder of this paper, we will assume that X is a Banach space over

the complex field C or the real field R. When X is a Banach space over the complex
field C, let XR denote the corresponding real Banach space by restricting the scalar
multiplication to the reals. In this case, for any subset Z of X and z0 ∈ X, one has
two different versions for normal cones:

ÑZ(z0) = {z∗ ∈ X∗
R : 〈z∗, x− z0〉 ≤ 0 for all x ∈ X},(2.12)

NZ(z0) = {z∗ ∈ X∗ : Re 〈z∗, x− z0〉 ≤ 0 for all x ∈ X}.(2.13)

Likewise, if f is a proper convex function on X and x ∈ X, then one can define

∂̃f(x) = {z∗ ∈ X∗
R : f(x) + 〈z∗, y − x〉 ≤ f(y) for all y ∈ X},(2.14)

∂f(x) = {z∗ ∈ X∗ : f(x) + Re 〈z∗, y − x〉 ≤ f(y) for all y ∈ X}.(2.15)

Finally in addition to (2.2), one can define Ñ ′(x) in the above manner. In view of the
Bohnenblust–Sobczyk theorem (x∗ �→ Rex∗ is a real-isometry from X∗ onto X∗

R; cf.
[39, p. 192]), such distinctions are immaterial; for example, regarding Definition 2.1,
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the system (CIS) in X satisfies the BCQ relative to C at x in the sense of (2.3) if and
only if it does in XR. Thus, the results in this section, such as Theorem 2.1, can be
applied to spaces over C.

We now introduce some new concepts. Recall that K := C ∩ S, where S denotes
the solution set of (CIS). The index set I is not assumed to have any topological
structure.

Definition 2.4. Let x ∈ K. An element d ∈ X is called
(a) a linearized feasible direction of (CIS) at x if

Re 〈z∗, d〉 ≤ 0 for all z∗ ∈
⋃

i∈I(x)

ext ∂gi(x);(2.16)

(b) a sequentially feasible direction of K at x if there exist a sequence dk → d and
a sequence of positive real numbers δk → 0 such that {x+ δkdk} ⊆ K.
Remark 2.3. When I is finite and each gi is differentiable at x, the definition

of a linearized feasible direction of (CIS) at x in a real space X coincides with the
corresponding definition introduced in [25, 38]; see also [22].

Let LFD(x) (resp., SFD(x)) denote the set of all d satisfying (a) (resp., (b))
in Definition 2.4. Note that LFD(x) is a closed convex cone (so it contains the
origin) while SFD(x) is a closed cone (but not necessarily convex). Note also that
LFD(x) = X if I(x) = ∅.

Definition 2.5. Let x ∈ K. Let KS(x) and KL(x) be defined, respectively, by

KS(x) =
(
x+ conv(SFD(x)

)⋂
C(2.17)

and

KL(x) = (x+ LFD(x))
⋂

C.(2.18)

Note that the two sets are closed convex sets. We have the following well-known
inclusion relationship.

Proposition 2.1. Let x ∈ C ∩ S. Then SFD(x) ⊆ LFD(x) and

K ⊆ KS(x) ⊆ KL(x).(2.19)

Let x0 ∈ K and suppose that I(x0) �= ∅. In the study of the system (CIS), it
would be useful to consider the following associated (linearized) system on X:

Re 〈z∗, x− x0〉 ≤ 0, z∗ ∈
⋃

i∈I(x0)

ext ∂gi(x0).(2.20)

Let

Ŝz∗(x0) := {x ∈ X : Re 〈z∗, x− x0〉 ≤ 0} for all z∗ ∈
⋃

i∈I(x0)

ext ∂gi(x0)

and

Ŝ(x0) :=
⋂
Ŝz∗(x0) : z

∗ ∈
⋃

i∈I(x0)

ext ∂gi(x0)


 .(2.21)
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Moreover, we define Ŝ(x0) = X if I(x0) = ∅. Then
x0 + LDF(x0) = Ŝ(x0) and KL(x0) = Ŝ(x0) ∩ C,(2.22)

whether or not I(x0) �= ∅. For our convenience we state the following elementary
lemma. We omit its proof as it is straightforward.

Lemma 2.1. Let z∗ ∈ X∗, x0 ∈ X, and let ϕ : X → R be defined by

ϕ(x) = Re 〈z∗, x− x0〉 for all x ∈ X.
Then ∂ϕ(x0) = z∗. Consequently, N ′(x0) defined by (2.2) with respect to the system
(CIS) coincides with the corresponding one with respect to the system (2.20).

Recall that the duality map J from X to 2X
∗
is defined by

J(x) := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖}.(2.23)

In fact, J(x) = ∂φ(x), where φ(x) := 1
2‖x‖2. Thus a Banach space X is smooth if

and only if for each x ∈ X the duality map is single-valued.
The following proposition will be useful later. This result was established in-

dependently by Deutsch [10] and Rubenstein [29] (see also [3]). We thank the two
anonymous referees for their helpful comments. One of the referees kindly suggested
the above references as well as the formulation of Corollary 4.3.

Proposition 2.2. Let Z be a closed convex set in X. Then for any x ∈ X, z0 ∈
PZ(x) if and only if z0 ∈ Z and there exists x∗ ∈ J(x−z0) such that Re 〈x∗, z−z0〉 ≤ 0
for any z ∈ Z; that is, J(x − z0) ∩ NZ(z0) �= ∅. In particular, when X is smooth,
z0 ∈ PZ(x) if and only if z0 ∈ Z and J(x− z0) ∈ NZ(z0).

3. Best constrained approximations in Banach spaces. Before proving the
main theorem of this section we recall two lemmas. These two lemmas were stated
in the Hilbert space setting in [22, 23]. The proof given in [22, Theorem 3.1] for the
first lemma is valid for Banach spaces, while the proof of the second lemma given in
[23, Lemma 3.1] for Hilbert space will need to be modified to suit our purpose here.

Lemma 3.1. Let K be a nonempty closed convex subset of X, and let x0 ∈ K.
Then, for any x ∈ X, we have

x0 ∈ PK(x)⇐⇒ x0 ∈ PKS(x0)(x).(3.1)

Lemma 3.2. Suppose that X is reflexive and smooth. Let C be a closed convex set,
let x0 ∈ C, and let T1, T2 be closed convex cones in X. Then the following statements
are equivalent:

(i) C ∩ (x0 + T1) ⊆ C ∩ (x0 + T2).
(ii) x0 ∈ PC∩(x0+T1)(x) whenever x ∈ X and x0 ∈ PC∩(x0+T2)(x).
Proof. We modify the proof that is given in [23] for the special case when X is

a Hilbert space. Since X is assumed smooth, the map x �→ J(x) is a (single-valued)
weak∗-continuous map from X to X∗.

Suppose that (i) does not hold; take x̄ ∈ C ∩ (x0 +T1) such that x̄ /∈ x0 +T2. Let
x0+e ∈ Px0+T2(x̄), where e ∈ T2. Denote h = x̄− (x0+e). Then, by Proposition 2.2,

〈J(h), (x0 + z)− (x0 + e)〉 ≤ 0 for all z ∈ T2.

Therefore,

〈J(h), e〉 = 0,(3.2)
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and Px0+T2(xt) = x0 for each t > 0, where xt := x0 + th. By (ii), it follows that

PC∩(x0+T1)(xt) = x0.(3.3)

Let x̄t = (xt− x̄)/t for t > 0. Then x̄t = (1− 1/t)h− e/t and limt→+∞ x̄t = h; hence,

lim
t→+∞〈J(x̄t)− J(h), h+ e〉 = 0.(3.4)

Consequently, by (3.2) and (3.4),

‖x̄t‖2 = 〈J(x̄t), x̄t〉
= 〈J(x̄t), h〉 − 〈J(x̄t)− J(h), (h+ e)/t〉 − 〈J(h), (h+ e)/t〉
≤ ‖x̄t‖ · ‖h‖+ |〈J(x̄t)− J(h), (h+ e)〉|/t− ‖h‖2/t
< ‖x̄t‖ · ‖h‖,

and so ‖xt−x̄‖ < t‖h‖ for t > 1 large enough. Since x̄ ∈ C∩(x0+T1), this contradicts
(3.3). The proof is complete.
Remark 3.1. The result of Lemma 3.2 characterizes the smoothness of X (among

reflexive Banach spaces). Indeed, suppose that there exists a unit vector x0 ∈ X such

that J(x0) contains two distinct elements x∗1, x
∗
2. Write x∗0 =

x∗
1+x∗

2

2 , x∗3 = 2
3x

∗
1+

1
3x

∗
2,

and define

T1 = {x ∈ X : 〈x∗3, x〉 ≥ 0}, T2 = {x ∈ X : 〈x∗0, x〉 ≥ 0}.
Then x0+T1 �⊆ x0+T2 although, for each x ∈ X, x0 ∈ Px0+T2(x) =⇒ x0 ∈ Px0+T1(x).
In fact, if x0 ∈ Px0+T2

(x), then, by Proposition 2.2, there exists x∗ ∈ J(x − x0)
such that 〈x∗, z〉 ≤ 0 for all z ∈ T2. This implies that x∗ = −‖x − x0‖x∗0; hence
〈x∗0, x0 − x〉 = ‖x− x0‖. Consequently, 〈x∗i , x0 − x〉 = ‖x− x0‖ for i = 1, 2, 3. Thus,
for each z ∈ T1,

‖x− (x0 + z)‖ ≥ 〈x∗3, x0 + z − x〉 ≥ 〈x∗3, x0 − x〉 = ‖x− x0‖;
hence x0 ∈ Px0+T1

(x), as claimed.
Let Z∗ be a subset of X∗ and Z ⊆ X. Let z∗|Z denote the restriction of z∗ on Z;

i.e., z∗|Z is viewed as a functional defined on Z instead of X. Set

Z∗|Z = {z∗|Z : z∗ ∈ Z∗}.(3.5)

Recall that K := C ∩ S, where S denotes the solution set of (CIS). Let x0 ∈ K,
and let Ŝ(x0) and Ŝz∗ be defined as in (2.21). By Remark 2.2(c) (applied to the
system (2.20) in place of (CIS)), we have the following equivalence:

The system (2.20) satisfies the BCQ relative to C at x0 if and only if
(3.6)

the family {C, Ŝz∗(x0) : z
∗ ∈ ⋃i∈I(x0)

ext ∂gi(x0)} has the strong CHIP at x0.

Thus one has (ii)⇐⇒(ii∗) in the following theorem.
Theorem 3.1. Let x0 ∈ K. Consider the following statements:
(i) the system (CIS) satisfies the BCQ relative to C at x0;
(ii) KS(x0) = KL(x0), and the family {C, Ŝz∗(x0) : z∗ ∈ ⋃i∈I(x0)

ext ∂gi(x0)}
has the strong CHIP at x0;

(ii∗) KS(x0) = KL(x0), and the system (2.20) satisfies the BCQ relative to C at
x0;
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(iii) for each x ∈ X, x0 ∈ PK(x) if and only if

J(x− x0) ∩
(
NC(x0) +N ′(x0)

) �= ∅;(3.7)

(iv) for each x ∈ X, x0 ∈ PK(x) if and only if

J(x− x0)|C−x0
∩ (NC(x0)|C−x0 +N ′(x0)|C−x0

) �= ∅.(3.8)

Then the following implications hold:
(1) (i)=⇒(iii)=⇒(iv); (ii)⇐⇒(ii∗)=⇒(iii)=⇒(iv);
(2) (i)⇐⇒(ii)=⇒(iii)=⇒(iv) if X is reflexive;
(3) (i)⇐⇒(ii)⇐⇒(iii)=⇒(iv) if X is both reflexive and smooth.
Proof. The results are trivial when x0 ∈ C∩intS since each of (i)–(iv) in Theorem

3.1 holds automatically. Hence we assume that x0 ∈ C ∩ bdS.
(1) Suppose that (i) holds. Then (3.7) can be rewritten as J(x−x0)∩NK(x0) �= ∅;

hence (iii) holds by Proposition 2.2. Therefore (i)=⇒(iii). Thus assuming that (ii∗)
holds, and applying this implication to the system (2.20) in place of (CIS), one has,
for each x ∈ X,

x0 ∈ PC∩Ŝ(x0)
(x)⇐⇒ J(x− x0)

⋂
(NC(x0) +N ′(x0)) �= ∅(3.9)

(see Lemma 2.1). Consequently, by (2.22),

x0 ∈ PKL(x0)(x)⇐⇒ J(x− x0)
⋂

(NC(x0) +N ′(x0)) �= ∅.(3.10)

Further, by (3.1) and the assumption KS(x0) = KL(x0) in (ii), we have that, for each
x ∈ X,

x0 ∈ PK(x)⇐⇒ x0 ∈ PKL(x0)(x).(3.11)

Therefore, combining (3.10) and (3.11), we have established that (ii)⇐⇒(ii∗)=⇒(iii).
Since (3.7) implies (3.8), to prove that (iii) implies (iv), it suffices to show

that if (3.8) holds, then x0 ∈ PK(x). By (3.8) and NC(x0)|C−x0
+ N ′(x0)|C−x0

⊆
NK(x0)|C−x0

, we obtain that there exists x∗ ∈ J(x− x0) such that

Re 〈x∗, x′ − x0〉 ≤ 0 for all x′ ∈ K.(3.12)

Hence, for any x′ ∈ K, we have that

‖x∗‖ · ‖x− x0‖ = Re 〈x∗, x− x0〉 ≤ Re 〈x∗, x− x′〉 ≤ ‖x∗‖ · ‖x− x′‖.

This shows that x0 ∈ PK(x), as required. Therefore (iii)=⇒(iv).
(2) Suppose that (3) is valid, and that X is reflexive. Then, by a known result in

Banach space theory (cf. [16, p. 186]), there exists an equivalent norm on X such that
X is smooth under the new norm. Then (3) implies that (i) and (ii) are equivalent.
Other implications in (2) have already been proved in (1).

(3) By statement (1), we only need to show that (iii) implies (i) and (ii∗). Suppose
that (iii) holds. Let z∗ ∈ NK(x0). By the reflexivity ofX, there exists x̄ ∈ X such that
〈z∗, x̄〉 = ‖z∗‖‖x̄‖ = ‖z∗‖2. Let x = x̄+ x0. Then z

∗ = J(x− x0) by the smoothness,
and x0 ∈ PK(x) by Proposition 2.2. It follows from (iii) that z∗ ∈ NC(x0) +N ′(x0).
This shows that NK(x0) ⊆ NC(x0) +N ′(x0) and so (i) holds. Therefore (iii)=⇒(i).
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To prove (iii)=⇒(ii∗), noting from (2.19) that K ⊆ KS(x0) ⊆ KL(x0), we have,
for each x ∈ X,

x0 ∈ PKL(x0)(x) =⇒ x0 ∈ PKS(x0)(x) =⇒ x0 ∈ PK(x).(3.13)

Conversely, let x0 ∈ PK(x). Then, by (iii), J(x − x0) ∈ NC(x0) + N ′(x0). By
(2.22) and (2.16), one has N ′(x0) ⊆ NKL(x0)(x0). Since KL(x0) ⊆ C, it follows that
J(x− x0) ∈ NKL(x0)(x0). Consequently, by Proposition 2.2, x0 ∈ PKL(x0)(x). Hence,
we have proved that, for each x ∈ X,

x0 ∈ PKS(x0)(x)⇐⇒ x0 ∈ PKL(x0)(x)⇐⇒ x0 ∈ PK(x).(3.14)

It follows from Lemma 3.2 that KS(x0) = KL(x0). Furthermore, by (3.14) and (iii),
we obtain that x0 ∈ PKL(x0)(x)⇐⇒ J(x−x0) ∈ NC(x0)+N ′(x0). Applying the just
proved implication (iii)=⇒(i), we see that the system (2.20) satisfies the BCQ relative
to C at x0. This completes the proof of (iii)=⇒(ii∗).
Remark 3.2. The proof given for Theorem 3.1 is valid even if I(x0) = ∅.
Remark 3.3. Example 3.1 (a) and (b) below show that neither the condition that

X is smooth nor the condition that X is reflexive can be dropped for the implication
(iii)=⇒(i) in Theorem 3.1.
Example 3.1 (cf. [24, Example 1]). (a) Let X be the Banach space R2 endowed

with the l1 norm defined as follows:

‖x‖ = |t1|+ |t2| for all x = (t1, t2) ∈ R2.(3.15)

Let C = X, I = {1, 2, . . . }, and define

gi(x) = t1 +
1

i
t2 for all x = (t1, t2) ∈ R2, i ∈ I.

Then, for any x = (t1, t2) ∈ R2,

G(x) := sup
i∈I

gi(x) =

{
t1 if t2 ≤ 0,
t1 + t2 if t2 ≥ 0;

in particular, G is continuous. Furthermore,

K := C ∩ S = S = {x = (t1, t2) ∈ X : t1 ≤ 0, t1 + t2 ≤ 0}.

Take x0 = (0, 0). Then

NK(x0) = {(t1, t2) ∈ R2 : 0 ≤ t2 ≤ t1},

N ′(x0) = {(t1, t2) ∈ R2 : 0 < t2 ≤ t1} ∪ {(0, 0)}.

Hence, the system (CIS) does not satisfy the BCQ relative to C at x0. On the other
hand, for any x = (t1, t2) ∈ X, from (3.15), x0 ∈ PK(x) if and only if x lies in the
first quadrant W of R2. Moreover, one has

J(x− x0) =




[−1, 1]× sgn t2 if x = (0, t2) �= 0,
sgn t1 × [−1, 1] if x = (t1, 0) �= 0,(
sgn t1, sgn t2

)
if x = (t1, t2), t1 �= 0, t2 �= 0,
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where sgn t denotes the sign of t. Hence (3.7) holds if and only if x ∈ W . Thus, (iii)
of Theorem 3.1 holds.

(b) Let X be any nonreflexive Banach space. By the well-known James theorem
(cf. [19]; see also [31, Corollary 2.4, p. 99]), there exists a nonzero functional x∗0 ∈ X∗

such that it does not attain its norm on the unit ball of X. Set C = {x ∈ X :
〈x, x∗0〉 ≤ 2}, I = {0, 1, . . . }. Define

g0(x) = −〈x, x∗0〉, x ∈ X,
and

gi(x) = 〈x, x∗0〉 −
1

i
, x ∈ X, i = 1, 2, . . . .

Then

K = C ∩ S = {x ∈ X : 〈x, x∗0〉 = 0}.
Taking x0 = 0, we have that I(x0) = {0} and that

NK(x0) = {x∗ ∈ X∗ : 〈x, x∗〉 = 0 for all x ∈ K} = span {x∗0},

NC(x0) = 0, N ′(x0) = cone
(
∂g0(x0)

)
= {−λx∗0 : λ ≥ 0}.(3.16)

In particular,

NC(x0) +N ′(x0) �= NK(x0),

and hence the system

gi(x) ≤ 0, i = 0, 1, 2, . . . ,

does not satisfy the BCQ relative to C at x0. Moreover, by our choice of x∗0 and
(3.16), it is easy to see that (3.7) holds if and only if x− x0 = 0. Recalling from [31,
p. 100] that PK(z) �= ∅ implies z ∈ K, it follows that (iii) holds.
Remark 3.4. When I is finite and gi is both convex and differentiable for each

i ∈ I, the equivalence of (i) and (ii) in Theorem 3.1 was established in [22] for Hilbert
spaces. Theorem 3.1 is new even in the case when C = X = R

n. Two new features
here are worth noting: I is not necessarily finite and gi is not necessarily smooth.
Moreover, our treatments are in the general Banach space setting.

4. Best constrained approximation in Hilbert spaces. Throughout this
section, let X denote a Hilbert space (over R or C). Let C be a closed convex subset
of X and let K be the set of x ∈ C that satisfies (CIS). Since X is a Hilbert space,
X∗ = X. In particular, (2.15) can be redefined as

∂f(x) = {z ∈ X : f(x) + Re 〈z, y − x〉 ≤ f(y) for all y ∈ X}.
Similarly, NZ(z0) = {y ∈ X : Re 〈y, z − z0〉 ≤ 0 for all z ∈ Z}.

Dual formulation of the constrained best approximation problem in Hilbert spaces
has been extensively investigated for finite systems of linear inequality constraints,
e.g., [6, 7, 13, 14, 15, 26, 27], and for that of nonlinear inequalities, e.g., [22, 23]. In
this section, we will establish similar results for infinite systems of convex inequalities.
The first main result is as follows. Notation is as in the preceding sections (see (2.17),
(2.18), and (2.21) in particular).
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Theorem 4.1. Let x0 ∈ K. Then the following statements are equivalent:
(i) the system (CIS) satisfies the BCQ relative to C at x0;
(ii) KS(x0) = KL(x0) and the family {C, Ŝz∗(x0) : z∗ ∈ ⋃i∈I(x0)

ext ∂gi(x0)}
has the strong CHIP at x0;

(iii) for any x ∈ X, PK(x) = x0 if and only if there exists a finite (possibly
empty) set I0 ⊆ I(x0) such that PC(x −

∑
i∈I0 λihi) = x0 for some λi ≥ 0

and hi ∈ ∂gi(x0) with each i ∈ I0.
Proof. By Theorem 3.1, it suffices to show that (3.7) holds if and only if there

exists a finite set I0 ⊆ I(x0) such that PC(x −
∑

i∈I0 λihi) = x0 for some λi ≥ 0
and hi ∈ ∂gi(x0) with each i ∈ I0. In view of the definition of N ′(x0) and since
J(x − x0) = x − x0 in a Hilbert space, J(x − x0) ∈ NC(x0) + N ′(x0) if and only if
there exist a finite set I0 ⊆ I(x0), λi ≥ 0, and hi ∈ ∂gi(x0) such that

x−
∑
i∈I0

λihi − x0 ∈ NC(x0).(4.1)

By Proposition 2.2, (4.1) holds if and only if PC(x −
∑

i∈I0 λihi) = x0. Thus the
result is clear.

Corollary 4.1. Consider the system (CIS) as before but suppose that, for each
i ∈ I, gi is an affine function defined by

gi(x) = Re 〈hi, x〉 − bi for all x ∈ X,(4.2)

where {hi : i ∈ I} ⊂ X \ {0} and {bi} ⊆ R. Let Ci ⊆ X be defined by

Ci = {x ∈ X : Re 〈hi, x〉 ≤ bi}.(4.3)

Let C be a closed convex set in X and let x0 ∈ C
⋂(⋂

i∈I Ci

)
. Then the following

statements are equivalent:
(i) the family {C, Ci : i ∈ I} has the strong CHIP at x0;
(ii) for any x ∈ X, PK(x) = x0 if and only if there exists a finite (possibly empty)
set I0 ⊆ I(x0) such that PC(x−

∑
i∈I0 λihi) = x0 for some λi ≥ 0 with each

i ∈ I0.
More generally, let C be a closed convex set in X, {hi : i ∈ I} ⊂ X \ {0}, and let

{Ωi : i ∈ I} be a family of nonempty closed convex subsets of the scalar field. Define

Ĉi = {x ∈ X : 〈hi, x〉 ∈ Ωi}, i ∈ I,(4.4)

and

K̂ = C
⋂(⋂

i∈I
Ĉi

)
.(4.5)

Let x0 ∈ K̂, and define

Î(x0) := {i ∈ I : 〈hi, x0〉 ∈ bdΩi}.
For convenience, we shall write h̃i(·) for the function 〈hi, ·〉 on X, and h0

i for the scalar
〈hi, x0〉. Then we have the following perturbation theorem.

Theorem 4.2. Let X be a Hilbert space (over C or R), and let x0 ∈ K̂. Then
the following statements are equivalent:

(i) the collection of convex sets {C, Ĉi : i ∈ I} has the strong CHIP at x0;
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(ii) for any x ∈ X, PK̂(x) = x0 if and only if there exists a finite (possibly empty)

set I0 ⊆ Î(x0) such that PC(x −
∑

i∈I0 αihi) = x0 for some αi ∈ NΩi(h
0
i )

with each i ∈ I0.
Proof. We may assume that X is over C (the case when X is over R is similar).

For each i ∈ I, let Fi(·) be any (real-valued) convex function on C such that

Ωi = {x ∈ C : Fi(x) ≤ 0}(4.6)

(see (4.9) below, for example). Then we have that

∂(Fi ◦ h̃i)(x0) = {αhi : α ∈ ∂Fi(h
0
i )}.(4.7)

In fact, it is easy to verify that the set on the right-hand side of (4.7) is contained
in the set on the left-hand side. Conversely, let x∗ ∈ ∂(Fi ◦ h̃i)(x0) : Re 〈x∗, x −
x0〉 ≤ (Fi ◦ h̃i)(x) − (Fi ◦ h̃i)(x0) for all x ∈ X. Treating the corresponding real
space XR as in section 2, it follows that the real part Rex∗ ∈ ∂̃(Fi ◦ h̃i)(x0), where
Rex∗ : x �→ Re 〈x∗, x〉. Thus, by [23, Proposition 2.3], there exists α ∈ ∂Fi(h

0
i ) such

that

Re 〈x∗, x〉 = Re α〈hi, x〉 for all x ∈ X.(4.8)

This implies that x∗ = αhi; hence (4.7) is proved.
Define

ĝi(x) = dΩi(〈hi, x〉) for all x ∈ X, i ∈ I,(4.9)

where dΩi(·) denotes the distance function from the set Ωi. Note that ĝ
−1
i (R−) = Ĉi.

Also, by (4.7) and [18, Example 3.3, p. 259], we get

∂ĝi(x0) = {αhi : α ∈ NΩi
(h0

i ), |α| ≤ 1}.(4.10)

Consequently, by Theorem 4.1, (ii) holds if and only if the following system on X,

ĝi(x) ≤ 0, i ∈ I,(4.11)

satisfies the BCQ relative to C at x0, that is,

N
C∩
(
∩i∈I ĝ

−1
i

(R−)
)(x0) = NC(x0)+

∑
i∈Î(x0)

cone
(
∂ĝi(x0)

)
= NC(x0)+

∑
i∈I

cone
(
∂ĝi(x0)

)
,

where the last equality holds because, for each i ∈ I \ Î(x0), one has NΩi
(h0

i ) = 0 (and

hence, by (4.10), that ∂ĝi(x0) = 0). Note also that NĈi
(x0) = 0 for each i ∈ I \ Î(x0).

Thus, to complete the proof, it suffices, by (4.10), to prove that

NĈi
(x0) = {αhi : α ∈ NΩi(h

0
i )} for all i ∈ Î(x0).(4.12)

Let i ∈ Î(x0) and divide the case in two: intΩi �= ∅ and intΩi = ∅. In the first
case, take a convex function Fi on C such that Ωi = {z ∈ C : Fi(z) ≤ 0} and
intΩi = {z ∈ C : Fi(z) < 0} (e.g., Fi(·) = q̂i(· − ẑi) − 1, where q̂i denotes the
Minkowski functional (cf. [30, p. 24]) of the set Ωi − ẑi for some ẑi ∈ intΩi). Then,
by Remark 1.1(a),

NΩi
(h0

i ) = cone
(
∂Fi(h

0
i )
)
.(4.13)
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Similarly, note that Ĉi = {x ∈ X : (Fi ◦ h̃i)(x) ≤ 0} and that x0 is not a minimizer
of the convex function Fi ◦ h̃i on X; again, by Remark 1.1, we have that

NĈi
(x0) = cone

(
∂(Fi ◦ h̃i)(x0)

)
.(4.14)

Hence, by (4.7), (4.13), and (4.14), (4.12) holds. It remains to consider the second
case: Ωi is of empty interior. Then the convex set Ωi in C must be of one dimension
and hence can be expressed as the intersection of at most four real half-spaces in
C (e.g., a bounded closed line-segment in R2 is the intersection of four half-spaces).
Thus there are affine functionals, say F̂j , j = 1, . . . ,m with m ≤ 4, such that Ωi =⋂m

j=1 F̂
−1
j (R−). Write f̂j for the function F̂j ◦ h̃i (j = 1, . . . ,m) and denote J0 :=

{j : f̂j(x0) = 0, j = 1, . . . ,m} = {j : F̂j(h
0
i ) = 0, j = 1, . . . ,m}. Then by Remark

1.1(a) we have that, for each j ∈ J0,

NF̂−1
j

(R−)(h
0
i ) = cone

(
∂F̂j(h

0
i )
)

(4.15)

and

Nf̂−1
j

(R−)(x0) = cone
(
∂f̂j(x0)

)
.(4.16)

In addition, it is clear that Ĉi =
⋂m

j=1 f̂
−1
j (R−). It follows from Remark 2.2(d) and

(4.16) that

NĈi
(x0) =

m∑
j=1

Nf̂−1
j

(R−)(x0) =
∑
j∈J0

cone
(
∂f̂j(x0)

)
.(4.17)

Similarly, we also have that

NΩi
(h0

i ) =
∑
j∈J0

cone
(
∂F̂j(h

0
i )
)
.(4.18)

Thus, by (4.7), (4.17), and (4.18), we get

NĈi
(x0) =

∑
j∈J0

{αhi : α ∈ cone
(
∂F̂j(h

0
i )
)} = {αhi : α ∈ NΩi(h

0
i )},(4.19)

and so (4.12) holds. The proof is complete.
Let gi be defined by

gi(x) = 〈hi, x〉 − bi for all x ∈ X,(4.20)

where {hi : i ∈ I} ⊂ X \ {0} and {bi} ⊆ C, and let S̃ =
⋂

i∈I Si, where

Si = {x ∈ X : 〈hi, x〉 = bi}, i ∈ I.(4.21)

Applying Theorem 4.2 to the case when Ωi = {bi} for each i, we have the following
corollary.

Corollary 4.2. Let X be a Hilbert space over R (resp., C) and let x0 ∈ C ∩ S̃.
Then the following statements are equivalent:

(i) {C, Si : i ∈ I} has the strong CHIP at x0;
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(ii) for each x ∈ X, PC∩S̃(x) = x0 if and only if there exists a finite (possibly
empty) set I0 ⊆ I(x0) such that PC(x −

∑
i∈I0 λihi) = x0 for some λi ∈ R

(resp., C) with each i ∈ I0.
Remark 4.1. In the case when I is finite, each of (i) and (ii) of Corollary 4.2 is

equivalent to the condition (cf. [11, 13, 14]) that
(i∗) {C,∩i∈ISi} has the strong CHIP at x0.

This is no longer true if I is infinite, as shown by the following example.
Example 4.1. Let X be the (real or complex) Hilbert space l2 consisting of all

infinite (real or complex) sequences (xi) satisfying
∑∞

i=1 |xi|2 < ∞. Let C be the
closed unit ball of X. Let I = {2, 3, . . . }, and define

gi(x) = xi for all x = (x1, x2, . . . ) ∈ X, i ∈ I.
Then S̃ = {(x1, 0, . . . ) : x1 ∈ R}. Let x0 = 0. Since intC ∩ S̃ �= ∅, {C, S̃} has the
strong CHIP at x0. However, since NSi(x0) = {x = (x1, x2, . . . ) ∈ X : xj = 0, j �= i}
for each i ∈ I, ∑i∈I NSi

(x0) is not closed, and hence {C, Si : i ∈ I} does not have
the strong CHIP at x0. By Corollary 4.2, (ii) of Corollary 4.2 does not hold.
Remark 4.2. Note that intC ∩ (∩i∈ISi) �= ∅ in Example 4.1. Thus Proposition

2.3(2) of [14] is not longer true if the index set I is infinite. Moreover, it is easy to
verify that C itself is the only extremal subset of C containing C∩S̃. Consequently the
extremal subset Cb of C introduced in [15, Definition 4.1] is equal to C. Therefore the
perturbation results in [15, Theorem 4.5] cannot be extended directly to the infinite
case.
Remark 4.3. Results in this section have been presented as local ones; namely,

we characterize conditions that hold at a single point x0 of the set C ∩ (∩i∈ISi). It
is simple but sometimes desirable to describe the global analogue of the local results.
For example, corresponding to Corollary 4.2, we have the following.

Corollary 4.3. Let X be a Hilbert space. We write S̃ for ∩i∈ISi. Then the
following statements are equivalent:

(i) {C, Si : i ∈ I} has the strong CHIP at each point of the intersection C ∩ S̃;
(ii) for each x ∈ X, there exist a finite (possibly empty) set Ix of I and scalars

λi such that

PC∩S̃(x) = PC

(
x−

∑
i∈Ix

λihi

)
.

Remark 4.4. By considering the whole space X in place of the unit ball in
Example 4.1, we have a family {Si : i ∈ I} of polyhedra (in fact, maximal subspaces)
which does not have the strong CHIP. In Example 4.2, we exhibit an infinite collection
of polyhedra that has the strong CHIP.
Example 4.2. Let X be the real Hilbert space l2 and let I = {1, 2, . . . }. Define,

for each i ∈ I,
Ci = {x = (xn) ∈ X : xi ≤ 1}.

Let C = ∩i∈ICi. Then {Ci : i ∈ I} has the strong CHIP at each point x of C.
Indeed, since x = (xn) ∈ l2, there exists an N ∈ N such that |xn| ≤ 1/2 for all n ≥ N .
Let U denote the ball with center x and radius 1/2. Then U ⊂ ∩i≥NCi. This shows
that x ∈ int (∩i≥NCi) and hence that N∩i≥NCi(x) = 0. Since

NC(x) = N∩i≤NCi(x) +N∩i≥NCi(x)
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and {C1, C2, . . . , CN} has the strong CHIP, we have

NC(x) =

N∑
i=1

NCi(x) =

∞∑
i=1

NCi(x).

5. Best constrained approximation in C(Q). Let C(Q) denote the Banach
space of all complex-valued continuous functions on a compact metric space Q en-
dowed with the uniform norm:

‖f‖ = max
t∈Q
|f(t)| for all f ∈ C(Q).

Let P be a finite-dimensional subspace of C(Q), and let {Ωt : t ∈ Q} be a family of
nonempty closed convex sets in the complex plane C. For brevity, we write {Ωt} for
{Ωt : t ∈ Q}. Set

PΩ = {p ∈ P : p(t) ∈ Ωt for all t ∈ Q}.(5.1)

The problem considered here is that of finding an element p∗ ∈ PΩ for f ∈ C(Q) such
that

‖f − p∗‖ = inf
p∈PΩ

‖f − p‖(5.2)

(such p∗ is called a best restricted range approximation to f from P with respect to
{Ωt}). This problem was first presented and formulated by Smirnov and Smirnov
in [33, 34]; their approach followed the standard path for the corresponding issue in
the real-valued continuous function space theory (see, for example, [5, 20] and the
relevant references therein). In [34], while it was pointed out that this problem for
the general class of restrictions was quite difficult, they took up the special case when
each Ωt is a disk in C. Later, in [35, 36, 37], a more general case was considered in
that the family {Ωt} was assumed to have the following properties:

(i) there exists an element p0 ∈ P satisfying p0(t) ∈ intΩt for each t ∈ Q (such
an element p0 of P will be called an interior point with respect to P and
{Ωt});

(ii) Ωt is a strictly convex set with “smooth” boundary for each t ∈ Q;
(iii) the set-valued map t �→ Ωt is continuous with respect to the Hausdorff metric.
It was pointed out in [21] that (i) and (iii) imply that there exists a function F

on the product space C×Q with the following properties:
(C1) F (·, t) is convex on C for each t ∈ Q;
(C2) bdΩt = {z ∈ C : F (z, t) = 0} for all t ∈ Q;
(C3) intΩt = {z ∈ C : F (z, t) < 0} for all t ∈ Q;
(C4) F is continuous on C×Q.
This observation led the first author of the present paper to study, in [21], a more

general setting in that a function with properties (C1)–(C4) is given, Ωt := {z ∈ C :
F (z, t) ≤ 0}, and an interior point (in the above sense) exists. Thus (ii) and (iii) need
not be satisfied.

For the remainder of this section, let P be a finite-dimensional subspace of C(Q),
let Q be a compact metric space, and let {Ωt : t ∈ Q} be a family of nonempty
closed convex subsets of C satisfying the following:

(D1) the set-valued function t �→ Ωt is lower semicontinuous on Q;
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(D2) there exists p0 ∈ P such that

0 ∈ int


⋂

t∈Q

(
Ωt − p0(t))


(5.3)

(such an element p0 of P will be called a strong interior point with respect to P and
{Ωt}).

The following remarks show in particular that the present setting is more general
than that of [21] (and [33, 34, 35, 36, 37]).
Remark 5.1. (a) In the case when (C1)–(C4) are satisfied, the map t �→ Ωt is

both upper (in the sense of Kuratowski; see [24, p. 37]) and lower semicontinuous on
Q. In fact, the upper semicontinuity is trivial while the lower semicontinuity holds
because for any t0 ∈ Q and x0 ∈ intΩt0 there exists an open neighborhood V (t0) of
t0 such that x0 ∈ intΩt for all t ∈ V (t0).

(b) One can prove that properties (C1)–(C4) imply that p0 ∈ P is a strong interior
point if and only if supt∈Q F (p0(t), t) < 0. Hence, in this case, p0 ∈ P is an interior
point if and only if it is a strong interior point.

(c) For a family {Ωt} satisfying (D1) and (D2), there exist many functions F (·, ·)
on C × Q with properties (C1)–(C3). One such function which is given below has
additional properties that will be useful for us. Let t ∈ Q and p0 ∈ P be such that
(5.3) holds. Define F̂ : C×Q→ R by

F̂ (z, t) = q̂t(z − p0(t))− 1,(5.4)

where q̂t denotes the Minkowski functional (cf. [30, p. 24]) of the closed convex set Ω̂t

in C defined by

Ω̂t = Ωt − p0(t);(5.5)

thus q̂t(z) = inf{λ > 0 : z ∈ λΩ̂t}. It is easy to verify that F̂ does have the properties
(C1)–(C3) stated for F . On the other hand, there are many examples for which
(C1)–(C3) are satisfied but without any associated function F with the properties
(C1)–(C4).

Before giving the main theorem of this section, we need some preliminary results.
Lemma 5.1. For each t ∈ Q, let qt be defined by

qt(z) := q̂t(z − p0(t)) for all z ∈ C;(5.6)

that is, qt(·) = F̂ (·, t) + 1. Then
(i) there exists a constant γ > 0 such that

|qt(z)− qt(z
′)| ≤ γ|z − z′| for all t ∈ Q, z, z′ ∈ C;(5.7)

(ii) for each z ∈ C, the function t �→ qt(z) is upper semicontinuous.
Proof. (i) By (D2), there exists a ball B(0, δ) in C with center 0 and radius δ > 0

such that

B(0, δ) ⊆ Ω̂t for all t ∈ Q.(5.8)

By the definition of Minkowski functionals (cf. [30, p. 24]), it follows that

q̂t(z) ≤ 1

δ
‖z‖ for all t ∈ Q, z ∈ C.(5.9)

Hence, by the subadditivity of q̂t and (5.6), (5.7) holds with γ := 1
δ .
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(ii) Let z ∈ C and t0 ∈ Q. We have to show that lim supt→t0 q̂t(z) ≤ q̂t0(z). Take
a sequence (tn) → t0 such that limtn→t0 q̂tn(z) = l for some l ∈ R. It suffices to
show that l ≤ q̂t0(z). To this end, let ε > 0. Then, by the definition of Minkowski
functionals, z ∈ (q̂t0(z) + ε) Ω̂t0 . Let λ = q̂t0(z) + ε. Then z

λ ∈ Ω̂t0 . By the lower
semicontinuity, considering subsequences if necessary, we may assume that there exists
(zn) → z

λ with zn ∈ Ω̂tn for each n; we may assume further that |zn − z
λ | ≤ ε

λγ for

each n. Then it follows from (i) that

q̂tn

( z
λ

)
= q̂tn

( z
λ

)
− q̂tn(zn) + q̂tn(zn) ≤ γ

∣∣∣ z
λ
− zn

∣∣∣+ 1 ≤ 1 +
ε

λ
,(5.10)

and so q̂tn(z) ≤ ε + q̂t0(z) + ε. Since ε > 0 is arbitrary, letting ε → 0, we have
l ≤ q̂t0(z), as required.

Let P, p0, and {Ωt : t ∈ Q} be given with the properties (D1) and (D2). A key
step to establishing our main result in this section is to apply Theorem 2.1 to (CIS)
with I = Q, X = C(Q), and gt, where gt : C(Q)→ R defined by

gt(u) = qt(u(t))− 1 for all u ∈ C(Q), t ∈ Q.(5.11)

Note, by (5.4) and (5.6), that

gt(u) = q̂t(u(t)− p0(t))− 1 = F̂ (u(t), t) for all t ∈ Q, u ∈ C(Q).(5.12)

Thus, each gt is a continuous convex function on C(Q). Let Ŝ denote the solution set
of the following system of inequalities:

gt(·) ≤ 0, t ∈ Q.(5.13)

Then Ŝ is nonempty, since p0 is a Slater point for (5.13) as gt(p0) = −1 for each
t ∈ Q. Note also that, by definition,

Ŝ = {u ∈ C(Q) : u(t) ∈ Ωt for all t ∈ Q}.(5.14)

Let Ĝ denote the sup-function of {gt : t ∈ Q}:
Ĝ(u) = sup

t∈Q
gt(u).(5.15)

In a lemma below, we will show that Ĝ is continuous and that, for each u ∈ C(Q),
the function t �→ gt(u) is upper semicontinuous on Q. Granting these and applying
Theorem 2.1, we immediately obtain the following proposition.

Proposition 5.1. Let P be a finite-dimensional subspace of C(Q), p0 ∈ P, and
let {Ωt : t ∈ Q} be a family of closed convex subsets of C such that (D1) and (D2)
are satisfied. Then the system (5.13) satisfies the BCQ relative to P at any point p
of P ∩ Ŝ.

For each t ∈ Q, et denotes the point-valued functional on C(Q) defined by

〈et, u〉 = u(t) for all u ∈ C(Q).(5.16)

Lemma 5.2. The function Ĝ and the set {gt : t ∈ Q} defined above have the
following properties:

(i) for each u ∈ C(Q), the function t �→ gt(u) is upper semicontinuous;
(ii) the sup-function Ĝ(·) = supt∈Q gt(·) is continuous;
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(iii) for each u ∈ C(Q), t ∈ Q,
∂gt(u) = {α et ∈ C(Q)∗ : α ∈ ∂qt(u(t))}.(5.17)

Proof. (i) Let u ∈ C(Q) and let t0 ∈ Q. By (5.7),

gt(u) = [qt(u(t))− qt(u(t0))] + qt(u(t0))− 1 ≤ γ|u(t)− u(t0)|+ qt(u(t0))− 1.

Then, by Lemma 5.1(ii), we have that

lim sup
t→t0

gt(u) ≤ lim sup
t→t0

[qt(u(t0))− 1] = qt0(u(t0))− 1 = gt0(u).(5.18)

Thus (i) is proved.
(ii) This follows from the inequalities

|Ĝ(u)− Ĝ(v)| ≤ sup
t∈Q
|gt(u)− gt(v)| ≤ sup

t∈Q
|qt(u(t))− qt(v(t))| ≤ γ‖u− v‖(5.19)

for any u, v ∈ C(Q), where the last inequality holds because of (5.7).
(iii) It is easy to check that ∂gt(u) contains the set on the right-hand side of

(5.17). To show the reverse inclusion, let u∗ ∈ ∂gt(u). Then u∗ ∈ C(Q)∗ and there
exists a complex Radon measure µ with bounded variation on Q such that

〈u∗, v〉 =
∫
Q

v dµ for all v ∈ C(Q)(5.20)

(cf. [39, p. 350]). Write Qt = Q \ {t} and µ = µR + iµI , where µR, µI are real Radon
measures on Q. Let Ei ⊆ Qt, i = 1, 2, be such that E1 ∪E2 = Qt, E1 ∩E2 = ∅, µR is
nonnegative on E1, and µR is nonpositive on E2. Then |µR|(Qt) = µR(E1)−µR(E2).
For any ε > 0, let Fi ⊆ Ei, i = 1, 2, be closed and satisfy |µR|(Ei \ Fi) <

ε
4 , i = 1, 2.

By Urysohn’s lemma, there exists a real continuous function w onQ satisfying ‖w‖ ≤ 1
and

w(s) =




1, s ∈ F1,
−1, s ∈ F2,
0, s = t.

Define v = w + u. Since w = 0 at t, gt(w + u) = gt(u), and hence

0 = gt(v)− gt(u) ≥ Re 〈u∗, v − u〉 = Re

∫
Q

(v − u) dµ =

∫
Q

(v − u) dµR.

This implies that

µR(F1)− µR(F2) <
ε

2
.(5.21)

Consequently,

|µR|(Qt) = µR(E1)− µR(E2) ≤ µR(F1)− µR(F2) +
ε

2
< ε.(5.22)

Hence, |µR|(Qt) = 0. Similarly, we have |µI |(Qt) = 0. Therefore µ must be a point-
measure and hence u∗ = α et with some α ∈ C. Since u∗ ∈ ∂gt(u), α ∈ ∂qt(u(t)) and
(5.17) is proved.
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Let F (·, ·) be any fixed function on C×Q satisfying (C1)–(C3). Let f ∈ C(Q), p∗ ∈
PΩ. Following [21, 33, 34], define

M(f) = {t ∈ Q : |f(t)| = ‖f‖}, B(p∗) = {t ∈ Q : p∗(t) ∈ bdΩt},(5.23)

σ(t) = f(t)− p∗(t) for all t ∈ Q,(5.24)

and, for each t ∈ B(p∗), let −τ(t) denote the subdifferential of the convex function
F (·, t) at p∗(t), that is,

τ(t) = −∂F (·, t)|p∗(t) for all t ∈ B(p∗).(5.25)

Thus σ(t) ∈ C and τ(t) ⊆ C. Note that

B(p∗) = {t ∈ Q : gt(p
∗) = Ĝ(p∗) = 0};(5.26)

that is, B(p∗) is exactly the active index set for p∗ with respect to the system (5.13).
Furthermore, assume that P has dimension n and is spanned by, say, φ1, φ2, . . . , φn.
For each t ∈ Q, by abuse of notation, let c(t) ⊆ Cn be defined by

c(t) = (φ1(t), . . . , φn(t))τ(t);

more precisely,

c(t) = {(ηφ1(t), . . . , ηφn(t)) : η ∈ τ(t)}.

Similarly, we define d(t) ∈ Cn by

d(t) = (φ1(t), . . . , φn(t))σ(t).

Define

U = U1

⋃
U2,

where

U1 = {d(t) : t ∈M(f − p∗)} and U2 =
⋃

t∈B(p∗)

c(t).

Note that, by continuity and compactness, U1 is compact. Furthermore, we have the
following lemma. We assume that F in (5.25) is the function F given in (5.4).

Lemma 5.3. U is compact in Cn.
Proof. Note first that t ∈ B(p∗) if and only if qt(p

∗(t)) = 1, where qt is given by
(5.6). Let {tk} ⊆ B(p∗) be a convergent sequence with limit t0. By Lemma 5.2(i), we
have that

qt0(p
∗(t0)) ≥ lim sup

k
qtk(p

∗(tk)) = 1.(5.27)

Since p∗(t0) ∈ Ωt0 , it follows that qt0(p
∗(t0)) = 1. Hence t0 ∈ B(p∗) and B(p∗) is

closed. By assumption,

F (z, t) = qt(z)− 1 for all z ∈ C, t ∈ Q.(5.28)
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Then, by Lemma 5.1(i), one can show (as in [21, Theorem 3.1]) that U2 is compact
and so is U .

Now we are ready to give the main theorem of this section, which gives char-
acterizations of the best restricted range approximation in C(Q). The properties
stated in (ii)–(iv) are standard and well known in approximation theory; see, e.g.,
[4, 5, 20]. Note that, by Remark 1.1, for any function F (·, ·) on C × Q satisfying
(C1)–(C3), we have that

cone ∂F (·, t)|p∗(t) = NΩt
(p∗(t)) for all t ∈ B(p∗).(5.29)

Theorem 5.1. Let f ∈ C(Q), p∗ ∈ PΩ. Then the following four statements are
equivalent:

(i) p∗ is a best restricted range approximation to f from P with respect to {Ωt};
(ii)

(5.30)

max

{
max

t∈M(f−p∗)
Re
(
p(t)σ(t)

)
, max
t∈B(p∗)

max
τ∈τ(t)

Re
(
p(t)τ

)} ≥ 0 for all p ∈ P;

(iii) the origin of the space Cn belongs to the convex hull of the set U ;
(iv) there exist sets {t1, . . . , tk} ⊆M(f−p∗), {t′1, . . . , t′m} ⊆ B(p∗), τ ′j ∈ τ(t′j), i =

1, . . . ,m (1+m ≤ k+m ≤ 2n+1), and positive constants λ1, . . . , λk, λ
′
1, . . . , λ

′
m

such that the following condition holds:

k∑
i=1

λip(ti)σ(ti) +

m∑
j=1

λ′jp(t
′
j)τ

′
j = 0 for all p ∈ P.(5.31)

Proof. Since the result is trivial in the case when f ∈ PΩ, we assume that f �= p∗.
By (5.29), we may assume, without loss of generality, that F in (5.25) is simply the
function given by (5.28). Let t ∈ B(p∗) and η ∈ τ(t). Then qt(p

∗(t)) = 1; hence

−η ∈ ∂qt(p∗(t)) and − Re
(
p0(t)− p∗(t)

)
η ≤ qt(p0(t))− qt(p

∗(t)) = −1.(5.32)

Therefore, the case when k = 0 will not occur in (5.31) because otherwise (5.31) would
entail that

m∑
j=1

λ′j(p0 − p∗)(t′j)τ ′j = 0(5.33)

(with p replaced by p0 − p∗ as P is a vector subspace) and (5.33) contradicts (5.32)
(applied to t = t′j and η = τ ′j) as each λ′j > 0. Thus (iii)⇐⇒(iv) by Carathéodory’s
theorem (cf. [4] and [30, p. 73]). Also, since P is spanned by φ1, . . . , φn, it is easy to
verify that (ii) does not hold if and only if there exists z = (γ1, . . . , γn) ∈ Cn such that
Re 〈u, z〉 < 0 for all u ∈ U . Thus, as U is compact by Lemma 5.3, (ii)⇐⇒(iii) by the
linear inequality theorem (see [4]). To show that (i)⇐⇒(iv), note that PΩ = P ∩ Ŝ,
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where Ŝ denotes the solution set of the convex inequality system in C(Q) defined
by (5.13). By Proposition 5.1, this system satisfies the BCQ relative to P at p∗.
By the implication (i)=⇒(iv) in Theorem 3.1 and the fact that P is a vector subspace
containing p∗ (so NP(p∗)|P = 0), the following statements are equivalent:

(i∗) p∗ is a best approximation to f from P ∩ Ŝ;
(iv∗) J(f − p∗)|P

⋂
N ′(p∗)|P �= ∅.

Since (i) and (i∗) are the same, it remains to show (iv)⇐⇒(iv∗).
(iv)=⇒(iv∗). Suppose that (iv) holds. Without loss of generality, assume that∑k

i=1 λi = 1 in (5.31). Then
∑k

i=1 λiσ(ti)eti ∈ J(f − p∗). By (5.17) and (5.32), each
−τ ′jet′

j
∈ ∂gt′

j
(p∗) and so, by (5.26),

∑m
j=1 λ

′
j

( − τ ′jet′
j

) ∈ N ′(p∗). Therefore (5.31)

implies (iv∗).
(iv∗)=⇒(iv). Suppose that (iv∗) holds. Then there exist v∗ ∈ J(f − p∗), w∗

j ∈
∂gt′

j
(p∗), and λ′j > 0, j = 1, 2, . . . ,m, with each t′j ∈ B(p∗) such that

〈v∗, p〉 =
m∑
j=1

λ′j〈w∗
j , p〉 for all p ∈ P.(5.34)

Set u∗ = v∗/‖v∗‖. Applying [31, Lemma 1.3, p. 169] to the real linear span of P∪{f},
there exist a positive integer l (with 1 ≤ l ≤ 2n + 2), l extreme points u∗1, . . . , u

∗
l of

the unit ball Σ∗ of C(Q)∗, and positive constants βi, i = 1, 2, . . . , l, with
∑l

i=1 βi = 1
such that

〈u∗, p〉 =
l∑

i=1

βi〈u∗i , p〉 for all p ∈ P ∪ {f}.(5.35)

By a well-known representation of the extreme points of Σ∗ (cf. [31, p. 69]), there
exist some αi ∈ C with |αi| = 1 and ti ∈ Q such that

u∗i = αieti , i = 1, 2, . . . , l.(5.36)

By the definition of u∗, ‖u∗‖ = 1 and 〈u∗, f − p∗〉 = ‖f − p∗‖; hence, by (5.35),
ti ∈ M(f − p∗) and αi = (f − p∗)(ti)/‖f − p∗‖. Furthermore, by (5.17), for each j,
there exists α′

j ∈ ∂qt′j (p∗(t′j)) such that w∗
j = α′

jet′
j
. Therefore, (5.34) becomes

l∑
i=1

β′
iσ(ti)〈eti , p〉 =

m∑
j=1

λ′jα
′
j〈et′j , p〉 for all p ∈ P,(5.37)

where β′
i = ‖v∗‖βi/‖f − p∗‖ for each i = 1, . . . , l. This implies that (iii) holds and so

(iv) holds by (iii)⇐⇒(iv). The proof is complete.
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1. Introduction. Given an optimization problem

(P) Inf c′x such that x ∈ F,

where c ∈ Rn and F is a nonempty closed convex set in Rn, and given x ∈ F , the
positive polar of the cone of feasible directions at x, D (F, x)

0
allows us to check (see

Proposition 3.1) whether
(Q1) x is the unique feasible solution (i.e., F = {x}),
(Q2) x is an optimal solution of (P), and
(Q3) x is a strongly unique solution of (P) (i.e., there exists k > 0 such that

c′x ≥ c′x + k ‖x− x‖ for all x ∈ F ).

Moreover, D (F, x)
0

also provides a sufficient condition for
(Q4) x ∈ extrF (the set of extreme points of F ).
In linear optimization, F is represented through a certain linear inequality system

σ = {a′tx ≥ bt, t ∈ T}, where T is an arbitrary (possibly infinite) index set, a. : T →
R
n, and b. : T → R. Then (P) is a linear programming (LP) problem if |T | <∞ and

a linear semi-infinite programming (LSIP) problem otherwise.

Although there exist known formulae that express D (F, x)
0

in terms of certain
convex cones associated with σ, these expressions are frequently too complex in prac-
tical situations in order to obtain a useful description of D (F, x)

0
allowing us to

determine whether x satisfies properties (Q1)–(Q4) or not (see the discussion in sec-
tion 3). There are two alternative issues in order to check these properties.

The first approach consists of determining the largest class of linear systems for
which D (F, x)

0
= A (x) for all x ∈ F , where A (x) is the convex conical hull of

{at, t ∈ T (x)}, with T (x) := {t ∈ T | a′tx = bt}. The last two sets are called the set
of active constraints and the set of active indices at x, respectively, whereas A (x)
is the active cone at x. The computation of A (x) requires the calculation of all the
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zeros of the slack function at x, a′tx− bt, followed by the formation of the nonnegative
linear combinations of the set of active constraints, but this is usually easier than the
calculation of D (F, x)

0
by means of the mentioned formulae.

The second approach consists of replacing the set of active constraints by another
related set being able to give a sensible answer to questions (Q1)–(Q4). This is the
main purpose of this paper.

The paper is organized as follows. In section 3 we review the role played by
D (F, x)

0
and A (x) in linear optimization. Section 4 introduces a family of extended

constraints sets depending on a positive parameter. Finally, section 5 analyzes the
existing relationships between three different sets of extended constraints and provides
conditions for the convex conical hulls of these sets to coincide with D (F, x)

0
.

2. Preliminaries. Given a nonempty set X of a certain Euclidean space, by
aff X, spanX, convX, coneX, and dimX we denote the affine hull, the linear hull,
the convex hull, the convex conical hull, and the dimension of aff X, respectively.
Moreover, we define cone ∅ = {0n} . We denote by X0 the positive polar of a given
convex cone X and by X⊥ the orthogonal subspace to a given linear subspace X. From
the topological side, intX, clX, and bdX represent the interior, the closure, and the
boundary of X, respectively. The null-vector, the open unit ball, and the canonical
basis in Rn will be denoted by 0n, Bn, and {e1, . . . , en}, respectively. Finally, limr

should be interpreted as limr→∞.
Throughout the paper we shall consider a given linear optimization problem (P)

with feasible set F ⊂ Rn described by means of σ = {a′tx ≥ bt, t ∈ T}. The optimal
set of (P) (possibly empty even though the problem has a finite value) will be denoted
by F ∗. If different systems arise in the same context, they will be distinguished by
subscripts, and the same subscripts will distinguish the associated elements.

x ∈ Rn is a strong Slater (SS) point for σ if there exists ε > 0 such that a′tx ≥ bt+ε
for all t ∈ T . In such a case a′tx > bt for all t ∈ T ; i.e., x is a Slater point for σ. If
T is a compact Hausdorff space and the functions a. and b. are continuous, then σ is
said to be continuous. In particular, any ordinary inequality system (i.e., such that
|T | < ∞) is continuous if we consider T equipped with the discrete topology. Any
Slater point is an SS point for a continuous system.

If there exists an SS point for σ, we say that σ is SS. Analogously, if there exists
a positive lower (upper) bound for {‖at‖ , t ∈ T}, then we say that σ is LB (UB,
respectively). These three properties are related as follows.

Proposition 2.1. The following statements are true:
(i) If σ is SS and UB, then dimF = n.
(ii) If dimF = n and σ is LB, then σ is SS.
(iii) If σ is LB and UB, then σ is SS if and only if dimF = n.
Proof. (i) Let x ∈ Rn, ε > 0, and µ > 0 such that a′tx ≥ bt + ε and ‖at‖ ≤ µ for

all t ∈ T . Given x ∈ x + εµ−1Bn, we can write x = x + εµ−1u, with ‖u‖ < 1. Then
we have

a′tx = a′tx + εµ−1 (a′tu) ≥ bt + ε− εµ−1 |a′tu| ≥ bt

for all t ∈ T so that x ∈ F . Hence x ∈ intF .
(ii) Let x ∈ Rn, ε > 0, and η > 0 such that x + ε clBn ⊂ F and ‖at‖ > η for all

t ∈ T . Given t ∈ T , we have a′t(x−ε ‖at‖−1
at) ≥ bt so that a′tx ≥ bt+ε ‖at‖ > bt+εη.

Hence x is an SS point for σ.
(iii) It is a straightforward consequence of (i) and (ii).
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We associate with σ the so-called second moment cone, N = cone{( atbt ), t ∈ T},
and the characteristic cone, K = N + cone{( 0n−1 )}. The well-known nonhomogeneous
Farkas lemma establishes that, given a ∈ Rn and b ∈ R, a′x ≥ b for all x ∈ F if and
only if ( ab ) ∈ clK. Thus, clK is the same for all the linear representations of F .

3. Active constraints: A review. The following result collects those tests for
questions (Q1)–(Q4) which are based upon D(F, x)0 := {z ∈ Rn | y′z ≥ 0 for all y ∈
D(F, x)}, where y ∈ D (F, x) if and only if there exists ε > 0 such that x + εy ∈ F .

Proposition 3.1. Given x ∈ F , the following statements hold:
(i) F = {x} if and only if 0n ∈ intD (F, x)

0
.

(ii) x ∈ F ∗ if and only if c ∈ D (F, x)
0
.

(iii) x is a strongly unique solution of (P) if and only if c ∈ intD (F, x)
0
.

(iv) If dimD (F, x)
0

= n, then x ∈ extrF.

Proof. (i) F = {x} if and only if D (F, x) = {0n}, i.e., if and only if D (F, x)
0

=

R
n, which is also equivalent to 0n ∈ intD (F, x)

0
.

(ii) x ∈ F ∗ if and only if c′ (x− x) ≥ 0 for all x ∈ F ; i.e., c ∈ D (F, x)
0
.

(iii) It is a part of Theorem 3.1 in [3] (extending the LP version due to Mangasarian
[7]).

(iv) According to statement (iii), if z ∈ intD (F, x)
0
, then x turns out to be the

unique optimal solution of Inf z′x such that x ∈ F so that {x} is an exposed face of
F and x ∈ extrF .

In order to apply Proposition 3.1 in practical situations it is necessary to express
D (F, x)

0
in terms of the coefficients of σ. Actually, given x ∈ F , we have

D (F, x)
0

=

{
a ∈ Rn |

(
a
a′x

)
∈ clN

}
=

{
a ∈ Rn |

(
a
a′x

)
∈ clK

}
(3.1)

(see Theorem 5.2 and Exercise 5.3 in [2]), but the complex expressions of clN and clK
(which involve the calculation of limits of sequences of nonnegative linear combinations
of certain subsets of Rn+1) make (3.1) seldom useful in practice.

In general, given x ∈ F , D (F, x) ⊂ A (x)
0

so that clA (x) ⊂ D (F, x)
0
, but the

reverse inclusion can fail. Fortunately, there exists a large class of linear semi-infinite
systems for which D (F, x)

0
= A (x) for all x ∈ F . These systems are called locally

Farkas–Minkowski (LFM). In [8] it has been proved that σ is LFM if and only if every
linear inequality a′x ≥ b which is a consequence of such σ (i.e., a′x ≥ b for all x ∈ F ),
and such that a′x = b is a supporting hyperplane to F , is also the consequence of a
finite subsystem of σ. This property holds, in particular, if either σ is continuous and
has a Slater point or D (F, x) = A (x)

0
for all x ∈ F (the last property always holds

if |T | < ∞). In the last case, σ is said to be locally polyhedral (LOP). This class of
systems captures the most relevant properties of the ordinary linear systems (see [1]).

Corollary 3.2. If σ is LFM and x ∈ F , then the following statements hold:
(i) F = {x} if and only if 0n ∈ intA (x).

(ii) x is an optimal solution of (P) if and only if c ∈ A (x).

(iii) x is a strongly unique solution of (P) if and only if c ∈ intA (x).

(iv) If dimA (x) = n, then x ∈ extrF . The converse statement holds if σ is
LOP.

Proof. (i), (ii), and (iii) and the direct statement in (iv) are reformulations of
the corresponding statements in Proposition 3.1. The converse statement in (iv) is
Theorem 4.3 in [1].
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Remark 1. The optimality condition (ii) in Corollary 3.2, c ∈ A (x), is known
as the KKT condition in linear optimization. This is always a sufficient condition
for x ∈ F to be an optimal solution of (P). If σ is not LFM, there exists x ∈ F

and z ∈ D (F, x)
0 \A (x) so that x is an optimal solution for Inf z′x such thatx ∈ F ,

whereas the KKT condition fails at x (by Proposition 3.1, part (ii)). This means that
σ is LFM if and only if the KKT condition characterizes the optimality of the feasible
solutions for every possible linear optimization problem with constraint system σ.
Thus the LFM property can be seen as the weakest global constraint qualification in
linear optimization.

Remark 2. The uniqueness condition (i) in Corollary 3.2 can be reformulated
in terms of 0n ∈ int conv {at, t ∈ T (x)}. In fact, assume that 0n ∈ intA (x). If
ε clBn ⊂ A (x) for a certain ε > 0, and u ∈ Rn satisfies ‖u‖ = 1, then there exists
α > 0 such that αεu ∈ conv {at, t ∈ T (x)}. Taking, in particular, as u the elements of
the canonical basis of Rn and their opposite vectors, there will exist positive scalars
µi and δi such that µiei,−δiei ∈ conv {at, t ∈ T (x)}, i = 1, . . . , n, and we get

0n ∈ int conv {µiei, i = 1, . . . , n;−δiei, i = 1, . . . , n}
⊂ int conv {at, t ∈ T (x)} .(3.2)

Next we show that the so-called Haar’s condition, 0n ∈ conv {at, t ∈ T (x)}, which
is obviously weaker than (3.2), is either sufficient or necessary for the uniqueness of
x, provided that σ belongs to certain classes of linear semi-infinite systems arising in
approximation problems.

Proposition 3.3. Given x ∈ F such that T (x) �= ∅, the following statements
hold:

(i) If F = {x} and σ is either LFM or continuous, then 0n ∈ conv {at, t ∈ T (x)}.
(ii) If 0n ∈ conv {at, t ∈ T (x)} and {at, t ∈ S} is linearly independent for every

set S ⊂ T (x) such that |S| ≤ n, then F = {x}.
Proof. (i) Assume that F = {x}. If σ is LFM, then the statement is a straightfor-

ward consequence of Remark 2. So we assume that σ is continuous. If σ contains the
trivial inequality, 0′nx ≥ 0, this inequality is active at x so that 0n ∈ {at, t ∈ T (x)}
and the conclusion is straightforward. Therefore, we shall assume that σ is contin-
uous and it does not contain the trivial inequality, and Corollary 5.9.1 in [2] entails
T (x) �= ∅. Next we apply Theorem 7.2 in [2] to conclude the inconsistency of the
system {a′ty > 0, t ∈ T (x)}, and this is equivalent to 0n ∈ conv {at, t ∈ T (x)} by
Theorem 3.2 in [2] (Gordan’s alternative theorem).

(ii) Assume that 0n ∈ conv {at, t ∈ T (x)}. According to Carathéodory’s theorem,
there exists a set S ⊂ T (x) and positive scalars λt, t ∈ S, such that 0n =

∑
t∈S λtat,∑

t∈S λt = 1, and {at, t ∈ S} is affinely independent. The linear dependence of
{at, t ∈ S} entails (recalling the hypothesis) |S| ≥ n + 1, and the equality holds due
to the linear independence of {( at1 ), t ∈ S}. Then the linear system{∑

t∈S
λt

(
at
1

)
=

(
0n
1

)}
(3.3)

has a square regular coefficient matrix. Since the unique solution of (3.3) is a positive
vector of Rn+1 (with components λt, t ∈ S), the same will happen if we replace the
right-hand side vector ( 0n

1 ) by an arbitrary vector ( a1 ) such that a ∈ εBn, where ε is
a sufficiently small positive scalar. Then

εBn ⊂ conv {at, t ∈ S} ⊂ conv {at, t ∈ T (x)}
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so that

0n ∈ int conv {at, t ∈ T (x)} ⊂ intA (x) ⊂ intD (F, x)
0

and F = {x} by Proposition 3.1, part (i).
Now let us consider the following problem which arises in functional approxi-

mation: Given a compact Hausdorff space T , three functions f, g, h ∈ C (T ), where
g and h are positive on T , and a polynomial of degree less than n, p (t) such that
−g (t) ≤ p (t)− f (t) ≤ h (t) for all t ∈ T , decide whether there exists another polyno-
mial satisfying the same conditions. Writing p (t) =

∑n
i=1 xit

i−1, the problem consists
of determining whether x is the unique solution of the linear semi-infinite system{

f (t)− g (t) ≤
n∑
i=1

xit
i−1 ≤ f (t) + h (t) , t ∈ T

}
.(3.4)

The following result is Theorem 2.1 in [5], which extends a unicity theorem of
Guerra and Jiménez [4] for the system in (3.4).

Corollary 3.4. Let σ be a continuous system, and let x ∈ F such that T (x) �= ∅
and {at, t ∈ S} is linearly independent for all S ⊂ T (x) such that |S| ≤ n. Then the
following statements are equivalent to each other:

(i) F = {x}.
(ii) There exists S ⊂ T (x), with |S| = n + 1, such that {a′tx > 0, t ∈ S} is

inconsistent.
(iii) 0n ∈ conv {at, t ∈ T (x)}.
Proof. (i)⇐⇒(iii) follows from Proposition 3.3, and (ii)⇐⇒(iii) follows from Gor-

dan’s alternative theorem (Theorem 3.2 in [2]) and Carathéodory’s theorem.
Example 1. Consider the system σ = {t1x1 + t2x2 ≥ t3, t ∈ T}, where

T =


t ∈ R3 |

∥∥∥∥∥∥

 t1 − 1

t2
t3 + 1



∥∥∥∥∥∥ ≤ 1


 ∪




 −1

0
0




 .

Obviously, σ is a continuous system with

clK = cone


±


 1

0
0


 ,±


 0

1
0


 ,


 0

0
−1






so that F = {02}. Observe that t ∈ T (02) if and only if t3 = (t1, t2) 02 = 0 so that
the isolated index in T , (−1, 0, 0)

′
, is active at 02. In order to obtain the remain-

ing elements of T (02) we replace t3 = 0 in
∥∥(t1 − 1, t2, t3 + 1)

′∥∥ ≤ 1, which yields

(t1 − 1)
2

+ t22 ≤ 0, i.e., t1 = 1 and t2 = 0. Consequently,

T (02) =


±


 1

0
0




 ,

with {at, t ∈ T (02)} linearly dependent. It can be easily seen that the statements
(i) and (iii) in Corollary 3.4 hold, but (ii) fails (as well as the linear independence
assumption). Observe also that

A (02) = span

{(
1
0

)}
� D (F, 02)

0
= R

2

so that σ is not LFM, and four statements in Corollary 3.2 fail at 02.
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4. γ-active constraints. Given x ∈ F and γ > 0, we define the set of γ -active
constraints at x as

W (x, γ) := {at | t ∈ T and a′ty = bt for a certain y ∈ x + γBn} .

In other words, if at �= 0n, then at ∈ W (x, γ) if and only if a′tx < bt + γ ‖at‖.
Obviously, {at, t ∈ T (x)} ⊂ W (x, γ). Moreover, if x ∈ intF there will exist γ0 > 0
sufficiently small such that W (x, γ) \ {0n} = ∅ for all γ such that 0 < γ < γ0.

Lemma 4.1. Given x ∈ bdF , the following statements hold:
(i) W (x, γ) contains at least a nonzero vector for all γ > 0.
(ii) If T (x) = ∅, then W (x, γ) is an infinite set for all γ > 0.
(iii) If |T | <∞, then W (x, γ) = {at, t ∈ T (x)} for γ > 0 sufficiently small.
Proof. (i) Given an arbitrary z ∈ (x + γBn) \F , there exists s ∈ T such that

a′sz < bs. Since a′sx ≥ bs there must exist y ∈ [x, z[ ⊂ x + γBn such that a′sy = bs.
Then 0n �= as ∈W (x, γ) .

(ii) Let T (x) = ∅, and assume that W (x, γ) \ {0n} = {at, t ∈ S}, with |S| <∞.
Then we have

0 < ε := min

{
a′tx− bt
‖at‖ | t ∈ S

}
< γ.

Hence at = 0n for all at ∈W (x, ε). This contradicts (i).
(iii) Assume |T | <∞. By (ii), T (x) �= ∅. If either T (x) = T or {at, t ∈ T\T (x)} =

{0n}, then

W (x, γ) = {at, t ∈ T (x)}(4.1)

for all γ > 0. Otherwise, (4.1) holds for all γ > 0 such that

γ < min

{
a′tx− bt
‖at‖ | at �= 0n, t ∈ T\T (x)

}
.

Next we show that the γ-active constraints at x allow us to check the feasibilty
of given points of the ball x + γBn and of given directions at x.

Lemma 4.2. Let x ∈ F and y ∈ x + γBn, γ > 0. Then y ∈ F if and only if
a′ty ≥ bt for all at ∈W (x, γ).

Proof. In order to prove the nontrivial part of the statement, assume y /∈ F . Then
there exists s ∈ T such that a′sy < bs. Since a′sx ≥ bs, there will exist z ∈ [x, y[ ⊂
x + γBn such that a′sz = bs. Then as ∈W (x, γ), and we get a contradiction.

Lemma 4.3. Let x ∈ F and d ∈ Rn. The following statements are true:
(i) If for a certain γ > 0 we have a′td ≥ 0 for all at ∈W (x, γ), then d ∈ D (F, x).

So D (F, x)
0 ⊂ cl coneW (x, γ) for all γ > 0.

(ii) If d ∈ D (F, x) and |T | < ∞, then there exists some γ0 > 0 such that

a′td ≥ 0 for all at ∈ W (x, γ) and all positive γ < γ0. In such a case, D (F, x)
0

=
coneW (x, γ).

Proof. (i) Assume that for some γ > 0, one has a′td ≥ 0 for all at ∈ W (x, γ).
We can assume ‖d‖ = 1. Taking an arbitrary ε such that 0 < ε < γ, we have
x + εd ∈ x + γBn and a′t (x + εd) = a′tx + εa′td ≥ bt for all at ∈ W (x, γ) so that
x + εd ∈ F by Lemma 4.2. Hence d ∈ D (F, x).

Since [coneW (x, γ)]
0 ⊂ D (F, x), we have D (F, x)

0 ⊂ cl coneW (x, γ).
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(ii) If x ∈ intF , the statement is true if γ0 > 0 is such that W (x, γ0) \ {0n} = ∅.
Let γ0 > 0 such that W (x, γ) = {at, t ∈ T (x)} for all γ > 0 such that 0 < γ < γ0

(recall statement (iii) in Lemma 4.1). Under the assumptions,

D (F, x) = A (x)
0

= {d ∈ Rn | a′td ≥ 0 for all at ∈W (x, γ)} .
Finally, observe that σ is LFM (since |T | <∞) so that

coneW (x, γ) = A (x) = D (F, x)
0
.

Example 2. Consider σ1 = {x1 − tx2 ≥ 0, t ∈ T1}, where T1 = [1,+∞[, x =
(1, 0)

′
, and d = (−1, 0)

′
. It can be easily realized that

F1 =
{
x ∈ R2 | x1 − x2 ≥ 0,−x2 ≥ 0

}
so that x ∈ F1 and d ∈ D (F1, x) =

{
z ∈ R2 | z2 ≤ 0

}
. Nevertheless, a′td = −1 for all

t ∈ T1. Hence, the converse of statement (i) in Lemma 4.3 is not true. On the other

hand, since D (F1, x)
0

= cone{( 0−1 )} and

W1 (x, γ) =




{(
1
−t

)
| t ≥ 1

}
ifγ ≥ 1√

2
,{(

1
−t

)
| t >

√
γ−2 − 1

}
if 0 < γ < 1√

2
,

we have D (F1, x)
0 ∩ coneW1 (x, γ) = {02} for all γ > 0, and statement (ii) fails

for infinite systems. This example also shows that it is not possible to replace
cl coneW (x, γ) by just coneW (x, γ) in statement (i).

We consider now the LOP system obtained by aggregating the inequality −x2 ≥ 0
to σ1; i.e., let σ2 = {a′tx ≥ bt, t ∈ T2}, with T2 = T1 ∪ {0}, a0 = ( 0−1 ), and b0 = 0.

Obviously, x = (1, 0)
′ ∈ F2 = F1 and W2 (x, γ) = W1 (x, γ) ∪ {a0} so that

D (F2, x)
0

= D (F1, x)
0
� coneW2 (x, γ) .

Hence, statement (ii) fails even for LOP systems.
Proposition 4.4. Given x ∈ F and γ > 0, the following statements hold:
(i) If F = {x}, then 0n ∈ int coneW (x, γ).
(ii) If x ∈ F ∗, then c ∈ cl coneW (x, γ).
(iii) If x is a strongly unique solution of (P), then c ∈ int coneW (x, γ).
(iv) If x ∈ extrF , then dim coneW (x, γ) = n.

Proof. Lemma 4.3, part (i), stated D (F, x)
0 ⊂ cl coneW (x, γ) for all γ > 0.

Then

intD (F, x)
0 ⊂ int cl coneW (x, γ) = int coneW (x, γ)

for all γ > 0. Now statements (i), (ii), and (iii) follow straightforwardly from Propo-
sition 3.1, parts (i), (ii), and (iii), respectively.

(iv) Assume that dim coneW (x, γ) < n. Let d ∈ Rn, d �= 0n, such that d ∈
[spanW (x, γ)]

⊥
, i.e., a′td = 0 for all at ∈ W (x, γ). Then ±d ∈ D (F, x), again by

Lemma 4.3, part (i), so that x /∈ extrF .
The sets of γ-active constraints are too large in order to guarantee the converse

statements in Proposition 4.4 separately. Next we show that all these sets together
provide sufficient conditions for (Q1)–(Q4) in LP (but not in LSIP).
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Proposition 4.5. Let x ∈ F and |T | <∞. The following statements hold:
(i) If 0n ∈ int coneW (x, γ) for all γ > 0, then F = {x}.
(ii) If c ∈ cl coneW (x, γ) for all γ > 0, then x ∈ F ∗.
(iii) If c ∈ int coneW (x, γ) for all γ > 0, then x is a strongly unique solution of

(P).
(iv) If dim coneW (x, γ) = n for all γ > 0, then x ∈ extrF.
Proof. (i) Assume that F �= {x}, and let d ∈ D (F, x). According to Lemma

4.3, part (ii), there exists γ > 0 such that d′z ≥ 0 for all z ∈ convW (x, γ). Then
0n /∈ int coneW (x, γ).

The proofs of statements (ii)–(iv) are based upon Lemma 4.1, part (iii). In fact,
let γ > 0 such that W (x, γ) = {at, t ∈ T (x)}. Since coneW (x, γ) = A (x) is closed,
the conclusion follows from Corollary 3.2.

The next example shows that it is not possible to replace in Proposition 4.5 the
finiteness of σ by the (weaker) LOP property.

Example 3. Let σ0 = {x2 ≤ 1; tx1 + x2 ≤ 1, t ∈ N}, let σ1 = σ0 ∪ {x1 ≤ 0}, and
observe that σ1 is LOP. Obviously, 02 ∈ F1 = ]−∞, 0]× ]−∞, 1] and 02 /∈ extrF1 even
though dim coneW1 (02, γ) = 2 for all γ > 0. Consider also σ2 = σ1∪{x1 ≥ 0, x2 ≥ 0},
which is also LOP, with F2 = {0} × [0, 1]. We have 02 ∈ int coneW2 (02, γ) for all
γ > 0, but F2 �= {02}. Finally, taking c = (0,−1)

′
, we have c ∈ int coneW2 (02, γ) for

all γ > 0, although 02 /∈ F ∗
2 =

{
(0, 1)

′}
.

We have seen that each set W (x, γ), γ > 0, is too large for our purpose of
giving a sensible answer to the questions (Q1)–(Q4). An alternative choice could be⋂
γ>0 W (x, γ), but this set is too small, since⋂

γ>0

W (x, γ) = {at, t ∈ T (x)}(4.2)

can be empty even when x ∈ bdF . In fact, if at ∈
⋂
γ>0 W (x, γ), then at ∈

W
(
x, k−1

)
for all k ∈ N. Let yk ∈ x+ k−1Bn such that a′ty

k = bt. Then limk y
k = x

and a′tx = bt; i.e., t ∈ T (x).

5. Extended active constraints. We discuss in this section three different sets
of extended active constraints at x ∈ F which are motivated and defined as follows:

(a) We can replace N or K in (3.1) by the simpler (and smaller) set, D = {( atbt ),
t ∈ T}. This suggests the following definition:

D (x) :=

{
a ∈ Rn |

(
a
a′x

)
∈ clD

}
.(5.1)

(b) We can replace in (4.2) each set of γ-active constraints, W (x, γ), by its closure,
obtaining the set

W (x) :=
⋂
γ>0

clW (x, γ) .

Since {W (x, γ) | γ > 0} is a contractive family of nonempty sets, when γ ↘ 0, it is
possible to write

W (x) = lim
k
W (x, γk)(5.2)

(limit in the Painlevé–Kuratowski sense) for any arbitrary sequence of positive real
numbers, {γk}∞k=1, such that limk γk = 0.
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(c) Finally, we can take the set of active constraints at x ∈ F of a suitable
representation of F . According to Theorem 5.12 in [2], if G is the set of accumulation
points of {∥∥∥∥

(
at
bt

)∥∥∥∥
−1(

at
bt

)
|
(

at
bt

)
�= 0n, t ∈ T

}
,

then σ∪{a′x ≥ b, ( ab ) ∈ G} is another representation of F which is LFM if dimF = n.
Therefore, we consider the set

G (x) :=

{
a ∈ Rn |

(
a
a′x

)
∈ D ∪G

}
.(5.3)

Proposition 5.1. If x ∈ bdF and σ is UB, then W (x) �= ∅.
Proof. Let {γk}∞k=1 be a sequence of positive scalars such that limk γk = 0. By

Lemma 4.1, part (i), there exists atk ∈ W (x, γk), k = 1, 2, . . . . Since {atk}∞k=1 is
bounded, we can assume limk atk = a ∈ Rn. Then, recalling (5.2), a ∈W (x).

Now we show that D (x) and W (x) are essentially the same set.

Lemma 5.2. For any fixed x ∈ F , one has D (x) \ {0n} ⊂ W (x) ⊂ D (x).
Moreover, if σ is LB, then 0n /∈ D (x) (and so W (x) = D (x)).

Proof. Let a ∈ D (x), a �= 0n. We shall prove that a ∈W (x).

According to (5.1), there exists {tk}∞k=1, sequence contained in T , such that

lim
k

(
atk
btk

)
=

(
a
a′x

)
.(5.4)

The scalar product of both members of (5.4) by ( x−1 ) gives limk

(
a′tkx− btk

)
= 0,

with βk := a′tkx − btk ≥ 0 for all k ∈ N. Since limk atk = a �= 0n (again from (5.4)),
we can assume atk �= 0n for all k ∈ N.

Let yk := x − βk ‖atk‖−2
atk , k = 1, 2, . . . . Since a′tky

k = a′tkx − βk = btk , and

‖yk − x‖ = βk

‖atk‖
< βk+k−1

‖atk‖
, we have atk ∈W (x, βk+k−1

‖atk‖
) for all k ∈ N.

Since limk
βk+k−1

‖atk‖
= 0 we get, from (5.2), a = limk atk ∈W (x).

Conversely, assume a ∈ W (x). Let {tk}∞k=1 be a sequence in T such that atk ∈
W
(
x, k−1

)
for all k ∈ N and limk atk = a. Then, for each k ∈ N, we can take

yk ∈ x + k−1Bn such that a′tky
k = btk . Since limk y

k = x, we have

lim
k
btk = lim

k
a′tky

k = a′x.

Then ( a
a′x ) ∈ clD and, recalling (5.1), we get a ∈ D (x).

Finally, if 0n ∈ D (x), there exists a sequence in T , say {tk}∞k=1, such that

limk(
atk
btk

) = 0n+1 and σ cannot be LB. Hence, if σ is LB, W (x) = D (x).

Example 4. Let n = 1 and σ =
{
t−1x ≥ −t−1, t ∈ N}. Since W (0, γ) = ∅ for all

γ such that 0 < γ < 1, W (0) = ∅. Nevertheless, 02 ∈ clD so that D (0) = {0}.
Lemma 5.3. Given x ∈ F , one has R+ [D (x) \ {0n}] ⊂ R+ [G (x) \ {0n}]. Fur-

ther, if σ is LB and UB, then R+D (x) = R+G (x).

Proof. Given a ∈ D (x), a �= 0n, two cases are possible (according to (5.1)).

If ( a
a′x ) ∈ D, we have a ∈ G (x) (recall (5.3)).
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Otherwise, ( a
a′x ) ∈ (clD)\D, and there exists {tk}∞k=1, sequence in T , such that

(
atk
btk

) �= ( a
a′x ), for all k ∈ N, and

lim
k

(
atk
btk

)
=

(
a
a′x

)
.(5.5)

From (5.5) and limk atk = a �= 0n, we can assert that no subsequence of {( atkbtk )}∞k=1

tends to 0n+1. Let ε > 0 such that ‖( atkbtk )‖ > ε for all k ∈ N. Since 0 < ‖( atkbtk )‖−1 <

ε−1 for all k ∈ N, we can assume without loss of generality the existence of a scalar µ
such that

lim
k

∥∥∥∥
(

atk
btk

)∥∥∥∥
−1

= µ ≥ 0.(5.6)

From (5.5) and (5.6) we get

µ

(
a
a′x

)
= lim

k

∥∥∥∥
(

atk
btk

)∥∥∥∥
−1(

atk
btk

)
.(5.7)

Since the right-hand side vector in (5.7) is unitary, we obtain µ > 0. Two cases
are possible in (5.7).

If there exists k ∈ N such that

µ

(
a
a′x

)
=

∥∥∥∥
(

atk
btk

)∥∥∥∥
−1(

atk
btk

)
,(5.8)

then a′tkx− btk = 0, i.e., tk ∈ T (x), and so atk ∈ G (x). Then from (5.8) we get

a = µ−1

∥∥∥∥
(

atk
btk

)∥∥∥∥
−1

atk ∈ R+ [G (x) \ {0n}] .

Alternatively, if (5.8) fails for each k ∈ N, from (5.7) we get µ( a
a′x ) ∈ G so that

µa ∈ G (x), and we get again a ∈ R+ [G (x) \ {0n}].
Now we assume that σ is LB and UB. In such a case we have shown in Lemma 5.2

that 0n /∈ D (x). In the same way, 0n+1 /∈ D ∪G so that 0n /∈ G (x). Hence R+D (x)
⊂ R+G (x). It remains to prove the reverse inclusion.

Given a ∈ G (x), two cases can arise (again from (5.3)).
If ( a

a′x ) ∈ D, then ( a
a′x ) ∈ clD and so a ∈ D (x).

Thus we can assume that ( a
a′x ) ∈ G. Then there exists a sequence in T , {tk}∞k=1,

such that 0n+1 �= (
atk
btk

) �= ( a
a′x ), for all k ∈ N, and

lim
k

∥∥∥∥
(

atk
btk

)∥∥∥∥
−1(

atk
btk

)
=

(
a
a′x

)
.(5.9)

Let M1 > 0 such that ‖at‖ > M1 for all t ∈ T .
On the other hand, from (5.9), we get

lim
k

∥∥∥∥
(

atk
btk

)∥∥∥∥
−1

atk = a �= 0n(5.10)

so that the sequence in (5.10) is bounded, and there exists M2 > 0 such that

‖( atkbtk )‖−1‖atk‖ < M2 for all k ∈ N.
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Since ‖( atkbtk )‖−1 < M2

M1
, we can assume without loss of generality the existence of

δ such that limk ‖( atkbtk )‖−1 = δ ≥ 0. From (5.10) and the UB property of σ we get

δ > 0. Hence (5.9) yields(
δ−1a(
δ−1a

)′
x

)
= lim

k

(
atk
btk

)
∈ clD

so that δ−1a ∈ D (x) and a ∈ R+D (x).
Concerning the boundedness assumptions in Lemma 5.3, Example 4 (where G(0)=

∅ and D(0) = {0}) shows that the inclusion R+D(x) ⊂ R+G(x) can fail if σ is UB
but not LB. Similarly, the system (in R) {tx ≥ −t−1, t ∈ N} is LB (but not UB),
G(0) = {1}, and D(0) = ∅. Hence both the LB and the UB properties are necessary
for the equation R+D(x) = R+G(x).

We can now establish the main result in this paper.
Proposition 5.4. Given x ∈ F , the following statements hold:
(i) A (x) ⊂ coneW (x) = coneD (x) ⊂ coneG (x) ⊂ D (F, x)

0
.

(ii) If σ is LFM, the five cones in (i) coincide.

(iii) If dimF = n, then coneG (x) = D (F, x)
0
.

(iv) If σ is UB and SS, then

coneD (x) = coneG (x) = D (F, x)
0
.(5.11)

(v) If D is closed, then A (x) = coneW (x) = coneD (x).
(vi) If σ is continuous and LB, then A(x) = coneW (x) = coneD(x) = coneG(x).
Proof. (i) From (4.2), {at, t ∈ T (x)} ⊂ W (x) so that A (x) ⊂ coneW (x). On

the other hand, from Lemmas 5.2 and 5.3 we obtain coneW (x) = coneD (x) ⊂
coneG (x). Finally, the inclusion coneG (x) ⊂ D (F, x)

0
is the consequence of the

definition of G (x) as the set of active constraints of a certain linear representation of
F , σ1 = σ ∪ {a′x ≥ b, ( ab ) ∈ G}, taking into account the known relationship between
the active cone and the positive polar of the cone of feasible directions at any feasible
point.

(ii) It is a straightforward consequence of (i) and the equation A (x) = D (F, x)
0

for LFM systems.
(iii) If dimF = n, then σ1 is an LFM representation of F (Theorem 5.12 in [2])

so that coneG (x) = A1 (x) = D (F, x)
0

.

(iv) If σ is UB and SS, then coneD (x) = D (F, x)
0

by Lemma 3.3 in [6], and the
conclusion follows from (i).

(v) Under the assumption,

D (x) =

{
a ∈ Rn | ∃t ∈ T such that

(
a
a′x

)
=

(
at
bt

)}
= {at, t ∈ T (x)}

so that coneD (x) = A (x).
(vi) It follows from (v) and Lemma 5.3.
The non-LFM system σ0 in Example 3 shows that we may have coneD (x) �

coneG (x) even though the full dimensional assumption in (iii) is fulfilled. In fact, it

can be easily realized that T (02) = ∅, G0 =
{

(−1, 0, 0)
′}

, coneG0 (02) = D (F, 02)
0

=

cone
{

(−1, 0)
′}

, D0 =
{

(t,−1,−1)
′
, t = 0, 1, . . .

}
, and A0 (02) = coneW0 (02) =

coneD0 (02) = {02}. Hence the assumption “σ is UB” in statement (iii) is not super-
fluous.
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Now let us consider again the pathological Example 1. It can be easily realized
that W (02) = D (02) = G (02) = {±( 1

0 )} so that

A (02) = coneW (02) = coneD (02) = coneG (02)

= span

{(
1
0

)}
�= R

2 = D (F, 02)
0
.

This example shows that (5.11) may fail even though σ satisfies the LB and the
UB properties. The following result is an immediate consequence of Proposition 5.4.

Corollary 5.5. Let x ∈ F , and let U (x) be one of the three sets of extended
active constraints (W (x), D (x), or G (x)). Then the following statements hold:

(i) If 0n ∈ int coneU (x), then F = {x}.
(ii) If c ∈ coneU (x), then x is an optimal solution of (P).
(iii) If c ∈ int coneU (x), then x is a strongly unique solution of (P).
(iv) If dim coneU (x) = n, then x ∈ extrF.

The converse statements of (i)–(iii) are true if coneU (x) = D (F, x)
0
(sufficient

conditions are given in Proposition 5.4). Example 1 shows again the necessity of these
assumptions. Taking x = 02 and c = (0, 1)

′
, we observe that the converse statements

of (i)–(iv) fail for the three sets of extended active constraints. In fact, σ is not LFM,

since D (F, 02)
0

= {02}0 = R
2 �= A (02) .

Finally, observe that, for general systems, Proposition 4.4 and Corollary 5.5 can
be seen as providing necessary conditions and sufficient conditions for (Q1)–(Q4),
based upon different sets of extended active constraints.
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Abstract. For a lower semicontinuous function f on a Banach space X, we study the existence
of a positive scalar µ such that the distance function dS associated with the solution set S of f(x) ≤ 0
satisfies

dS(x) ≤ µmax{f(x), 0}

for each point x in a neighborhood of some point x0 inX with f(x) < ε for some 0 < ε ≤ +∞.We give
several sufficient conditions for this in terms of an abstract subdifferential and the Dini derivatives
of f . In a Hilbert space we further present some second-order conditions. We also establish the
corresponding results for a system of inequalities, equalities, and an abstract constraint set.

Key words. error bounds, existence of solutions, inequality systems, lower Dini derivatives,
abstract subdifferentials, first-order conditions, second-order conditions
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1. Introduction. Let (X, d ) be a metric space. For a proper and lower semicon-
tinuous (l.s.c.) function f : X → (−∞,∞], denote the solution set of the inequality
system f(x) ≤ 0 by

S := {x ∈ X : f(x) ≤ 0}
and the distance from a point x ∈ X to the set S by

dS(x) := inf{d(x, s) : s ∈ S}
if S is nonempty. By convention, dS(x) = +∞ if S is empty.

Let T be a nonempty subset of X and let γ be a positive scalar. We say that the
inequality system f(x) ≤ 0 has an error bound of the pair (S, T ) with exponent γ if
the set S is nonempty and there exists a scalar µ > 0 such that

dS(x) ≤ µ[f(x)+]
γ for all x ∈ T,

where f(x)+ := max{f(x), 0}. For the case γ = 1, if

T = f−1(0, ε) := {x ∈ X : 0 < f(x) < ε}
for some 0 < ε < +∞ (ε = +∞), we simply say that the system f(x) ≤ 0 (or the set
S) has a local (global ) error bound ; if

T = B(x0, δ) := {x ∈ X : d(x, x0) < δ}
for some x0 ∈ S and 0 < δ, the set S is said to be metrically regular at x0.

∗Received by the editors August 12, 2002; accepted for publication (in revised form) May 29,
2003; published electronically December 19, 2003.

http://www.siam.org/journals/siopt/14-3/41298.html
†Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W

3P4 (ziliwu@email.com, janeye@math.uvic.ca). The research of the second author was supported by
an NSERC grant.

621



622 ZILI WU AND JANE J. YE

Error bounds have important applications in sensitivity analysis of mathematical
programming and in convergence analysis of some algorithms. In his seminal paper
[8], Hoffman showed that a linear inequality system has a global error bound. For
nonlinear inequality systems, the existence of error bounds usually requires some
conditions. Most earlier results about error bounds are related to a continuous or
convex system on Rn. The reader is referred to the recent survey papers [11, 14] and
the references therein for a summary of the theory and applications of error bounds.

Recently Ng and Zheng [15, 16] andWu and Ye [21, 22] studied l.s.c. inequality sys-
tems and presented several sufficient conditions for error bounds in terms of the lower
Dini derivative and an abstract subdifferential. These results are mainly established
for the case T = f−1(0, ε) (0 < ε ≤ +∞). The first purpose of this paper is to extend
and develop the above first-order conditions to the case T = B(x0, δ) ∩ f−1(0, ε),
where x0 ∈ X, 0 < ε ≤ +∞ and 0 < δ ≤ +∞. We do not assume that x0 lies in
the solution set S nor that δ is +∞. However, our results are applicable to the cases
x0 ∈ S and δ = +∞; that is, they serve as sufficient conditions not only for regularity
(when x0 ∈ S) but also for error bounds (when δ = +∞). The second purpose is
to present a second-order sufficient condition for the existence of error bounds with
exponents 1/2 in a Hilbert space from which we can further obtain sufficient condi-
tions for nonconvex quadratic systems. Our third purpose is to specify the first-order
and second-order conditions for the following system of inequalities, equalities, and
an abstract set:

gi(x) ≤ 0 for all i ∈ I := {1, . . . ,m},
hj(x) = 0 for all j ∈ J := {1, . . . , n},

x ∈ C,

where gi and |hj | are l.s.c. and C is a nonempty closed subset of X.
It is worth pointing out that, unlike other error bound results, the nonemptiness

of the solution set of an inequality system in ours comes as a conclusion instead of an
assumption. Therefore, we can also use them as sufficient conditions for the existence
of its solutions.

Apart from the above notation, the following concepts on nonsmooth analysis
also are needed in this paper (see, e.g., [3, 4, 17]):

Let X be a normed linear space, let x and v be in X, and let f : X → (−∞,+∞]
be finite at x.

• The lower Dini derivative of f at x in the direction v is

f−(x; v) := lim inf
u→v
t→0+

f(x+ tu)− f(x)

t
.

• The upper Dini derivative of f at x in the direction v is

f+(x; v) := lim sup
u→v
t→0+

f(x+ tu)− f(x)

t
.

• The Clarke derivative of f at x in the direction v is

f◦(x; v) := lim sup
y→x
t→0+

f(y + tv)− f(y)

t
.
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• The Clarke subdifferential of f at x is

∂◦f(x) := {ξ ∈ X∗ : 〈ξ, v〉 ≤ f◦(x; v) for all v ∈ X}.

When X is a Hilbert space, we say that a vector ξ ∈ X is a proximal subgradient
of f at x provided that there exist positive scalars M and δ such that

f(y) ≥ f(x) + 〈ξ, y − x〉 −M‖y − x‖2 for all y ∈ B(x, δ).

The set of all such ξ, denoted by ∂πf(x), is referred to as the proximal subdifferential
of f at x.

For each ξ ∈ ∂πf(x), we define the following second-order subderivatives:

d2
Lf(x|ξ)(u) := lim inf

t→0+

f(x+ tu)− f(x)− t〈ξ, u〉
t2

,

d2
−f(x|ξ)(u) := lim inf

v→u
t→0+

f(x+ tv)− f(x)− t〈ξ, v〉
t2

,

d2
+f(x|ξ)(u) := lim sup

v→u
t→0+

f(x+ tv)− f(x)− t〈ξ, v〉
t2

.

Usually, for u ∈ X and ξ ∈ ∂πf(x), we have

d2
−f(x|ξ)(u) ≤ d2

Lf(x|ξ)(u) ≤ d2
+f(x|ξ)(u).

If f is a C2 function with its first-order and second-order derivatives at x denoted by
∇f(x) and ∇2f(x), respectively, then, since ∂πf(x) = {∇f(x)}, these second-order
subderivatives coincide with each other and satisfy

d2
Lf(x|∇f(x))(u) = d2

−f(x|∇f(x))(u) = d2
+f(x|∇f(x))(u) =

1

2
〈∇2f(x)u, u〉.

For other second-order subderivatives, the reader is referred to [7, 17] and the refer-
ences therein.

For a nonempty set C in a normed linear space X, ψC denotes the indicator
function associated with the set C defined as below:

ψC(x) =

{
0 if x ∈ C,
+∞ otherwise.

2. Sufficient conditions in terms of subdifferentials. We recall the concept
of an abstract subdifferential introduced in [21].

Definition 2.1. Let X be a Banach space, and let f : X → (−∞,+∞] be
l.s.c. at x ∈ X with f(x) < +∞. A subset of X∗, denoted by ∂ωf(x), is called a
∂ω-subdifferential of f at x if it has the following properties:

(ω1) ∂ωg(x) = ∂ωf(x) if g = f near x.
(ω2) 0 ∈ ∂ωf(x) when f attains a local minimum at x.

(ω3) ∂ωf(x) ⊆ LB
∗
if f is convex and Lipschitz of L near x.

(ω4) If g : X → (−∞,+∞] is Lipschitz near x, then for each ξ ∈ ∂ω(f +g)(x) and
each δ > 0 there exist x1, x2 ∈ B(x, δ) such that

−δ < f(x1)−f(x) < δ, −δ < g(x2)−g(x) < δ, and ξ ∈ ∂ωf(x1)+∂ωg(x2)+δB
∗,
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where B∗ is the open unit ball in X∗ and B
∗
is its closure.

As indicated in [21], ∂ω-subdifferentials include the Clarke subdifferential and
the Michel–Penot subdifferential in a Banach space, the Fréchet subdifferential in an
Asplund space, the proximal subdifferential in a Hilbert space, and the lower Dini
subdifferential in Rn. Thus these subdifferentials can be taken as ∂ω-subdifferentials
in our main result of this section below whose proof is based on Ioffe’s technique [9].

Theorem 2.2. Let X be a Banach space and let f : X → (−∞,+∞] be l.s.c.
Suppose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ < +∞, and 0 < ε ≤ δ/(2µ), the
set B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and

‖ξ‖∗ ≥ µ−1 for all ξ ∈ ∂ωf(x) and each x ∈ B(x0, δ) ∩ f−1(0, ε).

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(−∞, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ δ/(2µ) can be replaced with 0 < ε ≤
+∞.

Proof. Obviously it suffices to prove that

dS(x) ≤ µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(−∞, ε)

since this together with the nonemptiness of the set B(x0, δ/2) ∩ f−1(−∞, ε) implies
the nonemptiness of S.

Suppose that there were u ∈ B(x0, δ/2)∩ f−1(−∞, ε) such that dS(u) > µf(u)+.
Then u �∈ S and hence 0 < f(u) < ε. In addition, we can choose t > 1 and α > 0 such
that

dS(u) > tµf(u) := γ and

{
max{γ, ‖u− x0‖} ≤ δ

2+α for 0 < ε ≤ δ/(2µ);

‖u− x0‖ ≤ δ
2+α for x0 ∈ S and 0 < ε ≤ +∞.

(1)
Thus f(u)+ = f(u) = γ(tµ)−1 and hence

f(u)+ ≤ inf
v∈X

f(v)+ + γ(tµ)−1.

Note that the function f(·)+ is l.s.c. and bounded below. Applying Ekeland’s
variational principle [5] to f(·)+ with σ = γ(tµ)−1 and λ = γ, we find x ∈ X satisfying

f(x)+ ≤ f(u)+,(2)

‖x− u‖ ≤ γ,(3)

f(v)+ + (tµ)−1h(v) ≥ f(x)+ for all v ∈ X,(4)

where h(v) := ‖v − x‖. It follows from (1), (2), and (3) that 0 < f(x) < ε.
On the other hand, (4) implies that the function f(v)+ + (tµ)−1h(v) attains its

minimum on X at x. Hence, by property (ω2) in Definition 2.1,

0 ∈ ∂ω[f(x)+ + (tµ)−1h(x)].(5)

Since f is l.s.c. and 0 < f(x), there exists δ1 > 0 such that

0 < f(y) for all y ∈ B(x, δ1).
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Thus, by property (ω1) in Definition 2.1 and (5),

0 ∈ ∂ω(f + (tµ)−1h)(x).(6)

Let ε1 := min{f(x), (1−t−1)µ−1, δ1, ε−f(u), αδ(2+α)−1} > 0. Then by property
(ω4) in Definition 2.1 and (6) there exist x1 and x2 both in B(x, ε1) such that

f(x)− ε1 < f(x1) < f(x) + ε1

and

0 ∈ ∂ωf(x1) + ∂ω((tµ)
−1h)(x2) + ε1B

∗.

These inequalities with (2) mean that x1 ∈ B(x, ε1) ∩ f−1(0, ε). The inclusion, by
property (ω3) in Definition 2.1, implies that there exists ξ ∈ ∂ωf(x1) such that

‖ξ‖∗ < (tµ)−1 + ε1 ≤ (tµ)−1 + (1− t−1)µ−1 = µ−1,

which contradicts the assumption since x1 ∈ f−1(0, ε) and, by the triangle inequality
and (1),

‖x1 − x0‖ ≤ ‖x1 − x‖+ ‖x− u‖+ ‖u− x0‖ < ε1 + γ +
δ

2 + α

≤
{

αδ
2+α + 2δ

2+α = δ for 0 < ε ≤ δ/(2µ);
(1+α)δ
2+α + dS(u) ≤ (1+α)δ

2+α + ‖u− x0‖ ≤ δ for x0 ∈ S and 0 < ε ≤ +∞.

Remark 2.1. Note that the nonemptiness of S in Theorem 2.2 is a natural re-
sult of the inequality for error bounds and the nonemptiness of the set B(x0, δ/2) ∩
f−1(−∞, ε). It is worth comparing Theorem 2.2 with [22, Theorem 4], in which the
nonemptiness of S can follow from an existence theorem of minimum in [18]. When
f is regular, f−(x; v) = f◦(x; v) holds for each x ∈ X and v ∈ X. The condition
that f−(x;hx) ≤ −µ−1 for some µ > 0, each x ∈ f−1(0, ε), and corresponding hx
in [22, Theorem 4] turns into f◦(x;hx) ≤ −µ−1, which implies that ‖ξ‖∗ ≥ µ−1 for
each ξ ∈ ∂◦f(x). So the corresponding result of [22, Theorem 4] can be obtained
from Theorem 2.2 by taking δ = +∞ and ∂ω = ∂◦. Hence Theorem 2.2 provides a
weaker condition for the existence of solutions for an inequality system than that in
[22, Theorem 4].

Theorem 2.2 is an extension of [21, Theorem 3.1] in that B(x0, δ)∩ f−1(0, ε), not
just B(x0, δ) or f−1(0, ε), can be taken as a test set T. In particular, for the case
where the test set T = f−1(0, ε), Theorem 2.2 is a refinement of [21, Theorem 3.1],
in which the nonemptiness of S is a part of the assumption, not of the conclusion. In
addition, the inequality dS(x) ≤ µf(x)+ in [21, Theorem 3.1] holds only for all x ∈ X
with f(x) < ε/2 instead of for all x ∈ X with f(x) < ε, as in Theorem 2.2. We thank
Dr. Qiji Jim Zhu for his help in the proof of this improvement.

For an l.s.c. function f on a Hilbert space X, the limiting subdifferential ∂Lf(x)
of f at x ∈ domf is a set defined by

∂Lf(x) := {w- lim ξi : ξi ∈ ∂πf(xi), xi → x, f(xi)→ f(x)}.

That is, ∂Lf(x) consists of all vectors, each of which is the weak limit (that is what
w-lim ξi signifies) of a weak convergent sequence {ξi}, where ξi ∈ ∂πf(xi) with xi → x
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and f(xi) → f(x). It is easy to check that the limiting subdifferential satisfies (ω1)–
(ω3) in Definition 2.1. In addition, if at least one of functions f and g is Lipschitz
near x, then

∂L(f + g)(x) ⊆ ∂Lf(x) + ∂Lg(x)

[4, Proposition 10.1, p. 62]; that is, the sum rule holds. So the limiting subdifferential
is a ∂ω-subdifferential and Theorem 2.2 is applicable to it. The following is a version
of Theorem 2.2 with ∂ω = ∂L and f replaced with f + ψC .

Corollary 2.3. Let X be a Hilbert space, let C be a closed subset of X, and let
fi : X → R be locally Lipschitz continuous for each i ∈ I. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ < +∞, and 0 < ε ≤ δ/(2µ), the
set C ∩B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and

‖ξ‖∗ ≥ µ−1 for all ξ ∈ co{∂Lfi(x) : i ∈ I(x)}+NL
C (x) for all x ∈ C∩B(x0, δ)∩f−1(0, ε),

where coA denotes the convex hull of a set A and NL
C (x) := ∂LψC(x). Then S :=

{x ∈ C : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C ∩B
(
x0,

δ

2

)
∩ f−1(−∞, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ δ/(2µ) can be replaced with 0 < ε ≤
+∞.

Proof. For each ξ ∈ ∂Lf(x), by the conclusion in [4, Problem 11.17, p. 65] and
the sum rule, there exist γi ≥ 0 (i ∈ I(x)) with

∑
i∈I(x) γi = 1 such that

ξ ∈ ∂L


 ∑
i∈I(x)

γifi


 (x) ⊆ co{∂Lfi(x) : i ∈ I(x)}.

Hence applying Theorem 2.2 to ∂ω = ∂L with f replaced with f + ψC completes the
proof.

Next we use Theorem 2.2 to prove a result about the regularity of a set at a point.
Theorem 2.4. Let X be a separable Hilbert space, C a closed subset of X, and

x0 ∈ C. Suppose that g : X → Rm and h : X → Rn are Lipschitz near x0 and

f(x) = max
i, j
{gi(x), |hj(x)|}.

If the constraint qualification

0 ≤ γ ∈ Rm, γi[gi(x0)− f(x0)] = 0, i ∈ I

λ ∈ Rn, λj [|hj(x0)| − f(x0)] = 0, j ∈ J

0 ∈ ∂L[〈γ, g〉+ 〈λ, h〉](x0) +NL
C (x0)


⇒ γ = 0 and λ = 0

(where NL
C (x0) := ∂LψC(x0)) is satisfied at x0, then there exist 0 < δ < +∞ and

0 < µ < +∞ such that

‖ξ‖ ≥ µ−1 for all ξ ∈ ∂π(f + ψC)(x) and each x ∈ C ∩B(x0, δ) ∩ f−1(0,+∞).
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Moreover, if the set C ∩B(x0, δ/2) ∩ f−1[0, ε) is nonempty for some 0 < ε ≤ δ/(2µ),
then the set S := {x ∈ C : g(x) ≤ 0, h(x) = 0} is nonempty and

dS(x) ≤ µf(x) for all x ∈ C ∩B
(
x0,

δ

2

)
∩ f−1(0, ε).

In particular, if x0 ∈ S, then S is metrically regular at x0. If x0 lies in the interior
of C, then the above conclusions hold in every Hilbert space X.

Proof. Suppose that there did not exist 0 < δ < +∞ and 0 < µ < +∞ such that

‖ξ‖ ≥ µ−1 for all ξ ∈ ∂π(f + ψC)(x) and each x ∈ C ∩B(x0, δ) ∩ f−1(0,+∞).

Then there would exist sequences

C � xk → x0, f(xk) > 0, ξk ∈ ∂π(f + ψC)(xk), ‖ξk‖ → 0.

If x0 is in the interior of C, then ξk ∈ ∂πf(xk) and ‖ξk‖ → 0 imply that 0 ∈
∂Lf(x0). Thus there exist 0 ≤ γ ∈ Rm and λ ∈ Rn such that

γi[gi(x0)− f(x0)] = 0 for i ∈ I,(7)

λj [|hj(x0)| − f(x0)] = 0 for j ∈ J,(8)
m∑
i=1

γi +

n∑
j=1

|λj | = 1,(9)

0 ∈ ∂L[〈γ, g〉+ 〈λ, h〉](x0)

(see [4, Problem 1.11.17, p. 65]), which contradicts the assumption.
If x0 is not in the interior of C, then since f is Lipschitz near xk when k is large

enough, by [4, Theorem 1.8.3, p. 56], there exist yk → x0, C � zk → x0, ηk ∈ ∂πf(yk),
and ζk ∈ ∂πψC(zk) such that f(yk) > 0 and

ξk ∈ ηk + ζk +B

(
x0,

1

k

)
.(10)

Since ∂πf(yk) ⊆ ∂Lf(yk), for k large enough so that yk enters some prescribed neigh-
borhood of x0 on which f is Lipschitz, there exist 0 ≤ γk ∈ Rm and λk ∈ Rn such
that

γki [gi(yk)− f(yk)] = 0 for i ∈ I,

λkj [|hj(yk)| − f(yk)] = 0 for j ∈ J,
m∑
i=1

γki +

n∑
j=1

|λkj | = 1,

ηk ∈ ∂L[〈γk, g〉+ 〈λk, h〉](yk).

By extracting convergent subsequences of {γk} and {λk} (we do not relabel them)
and taking the limit of (γk, λk), we obtain a nonzero (γ, λ) ∈ Rm × Rn satisfying
(7)–(9).

Note that

∂L[〈γk, g〉+ 〈λk, h〉](yk) ⊆ ∂◦[〈γk, g〉+ 〈λk, h〉](yk)
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and the set on the right-hand side is contained in a ball of the form LB∗ (for some
positive L) which is weak* compact when k is large enough. There is a weakly
convergent subsequence of {ηk} (without relabeling) corresponding to (γk, λk) whose
weak limit lies in

∂L[〈γ, g〉+ 〈λ, h〉](x0)

since X is a separable Hilbert space (see [4, Problem 1.11.21, p. 66]).
In addition, corresponding to ηk, by (10), the sequence {ζk} contains a weakly

convergent subsequence with its limit belonging to NL
C (x0). Therefore we have

0 ∈ ∂L[〈γ, g〉+ 〈λ, h〉](x0) +NL
C (x0),

but (γ, λ) is nonzero. This is again a contradiction.
The rest follows immediately from the conclusion shown above and from Theo-

rem 2.2.
Remark 2.2. Theorem 2.4 is a refinement of [4, Theorem 3.8, p. 131] in that x0

may not be in S and an abstract constraint set is allowed. In a general Banach space,
one relevant result about metrical regularity in terms of Clarke subdifferentials can be
found in [3, Theorem 6.6.1]. However, in Hilbert space where limiting subdifferential
is applicable, our constraint qualification is weaker than that in [3, Theorem 6.6.1].

If x0 ∈ S, g1, . . . , gm, h1, h2, . . . , hn are all C
1 functions and C = X, the constraint

qualification in Theorem 2.4 is equivalent to the Mangasarian–Fromovitz constraint
qualification in mathematical programming. In particular, if

∇g1(x0), . . . ,∇gm(x0),∇h1(x0), . . . ,∇hn(x0)

are linearly independent, then the Mangasarian–Fromovitz constraint qualification is
satisfied at x0.

Example 2.1. For x ∈ R3, let

f1(x) := ax1 + g1(x2, x3), f2(x) = bx2 + g2(x3), f3(x) = cx3,

where a, b, and c are nonzero constants while g1 and g2 are locally Lipschitz con-
tinuous. Since, for any point x0 ∈ R3, ∇f1(x0),∇f2(x0),∇f3(x0) are linearly in-
dependent, by Theorem 2.4, the system S = {x ∈ R3 : f(x) ≤ 0} with f(x) :=
max{f1(x), f2(x), f3(x)} is metrically regular at any x0 ∈ S.

Note that for an l.s.c. convex function f on a Banach space X the Clarke subdif-
ferential of f at x ∈ X reduces to the subdifferential of f at x in the sense of convex
analysis given by

∂f(x) := {ξ ∈ X∗ : 〈ξ, y − x〉 ≤ f(y)− f(x) for all y ∈ X}.

It has been shown in [22] that for a convex inequality system a global error bound
exists iff a local error bound does, and many first-order sufficient conditions for the
existence of error bounds become necessary as well. In the following result, we use
∂f(x) to develop the sufficient condition stated in Theorem 2.2 into a necessary one
for a convex system.

Theorem 2.5. Let X be a Banach space, let f : X → (−∞,+∞] be l.s.c. and
convex, and let S := {x ∈ X : f(x) ≤ 0}. Then for some x0 ∈ X and 0 < µ < +∞
the following are equivalent:
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(i) For some 0 < δ ≤ +∞, each 0 < ε ≤ δ/(2µ), and each δ′ ∈ (0, δ) the set
B(x0, δ

′) ∩ f−1(−∞, ε) is nonempty and

‖ξ‖∗ ≥ µ−1 for all ξ ∈ ∂f(x) and each x ∈ B(x0, δ) ∩ f−1(0, ε).

(ii) For some 0 < δ ≤ +∞, each 0 < ε ≤ δ/(2µ), and each δ′ ∈ (0, δ) the set
B(x0, δ

′) ∩ f−1(−∞, ε) is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ B(x0, δ) ∩ f−1(−∞, ε).

In particular, if x0 ∈ S, then (i) and (ii) are equivalent to each other with “each
0 < ε ≤ δ/(2µ)” in both replaced by “some 0 < ε ≤ +∞.”

Proof. (i) ⇒ (ii) This is immediate from Theorem 2.2 by taking ∂ωf(x) = ∂f(x).
(ii) ⇒ (i) Let x ∈ B(x0, δ) ∩ f−1(0, ε). Then dS(x) > 0 and for any ξ ∈ ∂f(x) we

have

‖ξ‖∗ · ‖y − x‖ ≥ −〈ξ, y − x〉 ≥ −[f(y)− f(x)] ≥ f(x) for all y ∈ S.

This implies ‖ξ‖∗ · dS(x) ≥ f(x), from which we have

‖ξ‖∗ ≥ f(x)

dS(x)
≥ µ−1.

Therefore the desired inequality follows.

3. Second-order conditions. In mathematical programming, it is known that
a second-order sufficient condition implies strict local minimum of order 2. This idea
can be applied to error bounds. For a nonnegative function f : Rn → R, consider
the inequality system S = {x ∈ Rn : f(x) ≤ 0}. If x0 ∈ S, f is twice continuously
differentiable near x0, and there exist µ > 0 and δ > 0 such that

〈∇2f(x′)u, u〉 ≥ µ−1 for each unit vector u ∈ Rn and x′ ∈ B(x0, δ),(11)

then for each x ∈ B(x0, δ), by the Taylor expansion, there exists x′ ∈ [x0, x] such that

f(x) =
1

2
〈∇2f(x′)(x− x0), x− x0〉,

which along with (11) implies that

f(x) ≥ 1

2µ
‖x− x0‖2.

Thus

d2
S(x) ≤ 2µf+(x) for all x ∈ B(x0, δ).

Note that under the above assumption, S must be a singleton. In studying weak
sharp minima, several authors, including Bonnans and Ioffe [1, 2] and Ward [20]
have extended the above result to include the case where f is not twice continuously
differentiable and the solution set S is not a singleton by using certain second-order
subderivatives. In the following main result in this section, we present a second-order
sufficient condition for the existence of error bound with exponent 1/2. Note that if f
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is nonnegative and twice continuously differentiable, then our second-order condition
in Theorem 3.1 amounts to

〈∇2f(x)ux, ux〉 ≤ −4µ−1 for some unit vector ux ∈ X and each x �∈ S.

Hence, unlike the second-order condition of type (11), which requires certain convexity,
our second-order condition is suitable for nonconvex systems.

Theorem 3.1. Let X be a Hilbert space and let f : X → (−∞,+∞] be l.s.c. Sup-
pose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ, and 0 < ε ≤ (2µ)−1(δ/2)2, the set
B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and that, for each x ∈ B(x0, δ)∩ f−1(0, ε), one
of the following is satisfied for each ξ ∈ ∂πf(x) with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1}:

(i) There exists a unit vector ux such that d2
−f(x|ξ)(ux) ≤ −2µ−1.

(ii) There exist sequences tn → 0+ in R and {un} in X such that limn→+∞ ‖un‖ =
1 and

lim
n→+∞

f(x+ tnun)+ − f(x)+ − tn〈ξ, un〉
t2n

≤ −2µ−1.

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ 2µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(0, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ (2µ)−1(δ/2)2 can be replaced with
0 < ε ≤ +∞.

Proof. By the definition of the second-order subderivative, condition (i) implies
condition (ii). Hence it suffices to prove the theorem under condition (ii).

We now prove the theorem by contradiction. Suppose that there were u ∈
B(x0, δ/2) ∩ f−1(0, ε) such that d2

S(u) > 2µf(u)+. We choose t > 1 such that

4γ := 2tµf(u) <

{
min{d2

S(u), (
δ
2 )

2} for 0 < ε ≤ (2µ)−1( δ2 )
2;

d2
S(u) for x0 ∈ S and 0 < ε ≤ +∞.

(12)

Thus f(u) = 2γ(tµ)−1 and hence

f(u)+ ≤ inf
v∈X

f(v)+ + 2γ(tµ)−1.

Note that the function f(·)+ is l.s.c. and bounded below. Applying smooth vari-
ational principle [4, Theorem 4.2, p. 43] to f(·)+ with σ = 2γ(tµ)−1 and λ =

√
γ, we

find x, y ∈ X satisfying

‖y − u‖ < λ, ‖x− y‖ < λ, f(x)+ ≤ f(u)+

and

f(v)+ + 2(tµ)−1h(v) ≥ f(x)+ + 2(tµ)−1h(x) for all v ∈ X,(13)

where h(v) := ‖v − y‖2. Thus
‖x− u‖ ≤ ‖x− y‖+ ‖y − u‖ < 2λ = 2

√
γ < dS(u)

and, by the triangle inequality and (12),

‖x− x0‖ ≤ ‖x− u‖+ ‖u− x0‖
<

{
2
√
γ + δ

2 < min{dS(u), δ2}+ δ
2 ≤ δ for 0 < ε ≤ (2µ)−1( δ2 )

2;
dS(u) + ‖u− x0‖ < δ for x0 ∈ S and 0 < ε ≤ +∞
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and hence x ∈ B(x0, δ) ∩ f−1(0, ε).
On the other hand, from (13) and [4, Proposition 1.2.11, p. 38], we have

0 ∈ ∂π(f(x) + 2(tµ)−1h(x)) = ∂πf(x) + 2(tµ)−1{2(x− y)}.(14)

This implies that ξ := 4(tµ)−1(y − x) ∈ ∂πf(x) and hence, by (12),

‖ξ‖ ≤ 4‖y − x‖(tµ)−1 < 4λ(tµ)−1 = 4
√
γ(tµ)−1 = 2

√
2tµf(u)(tµ)−1

≤ 2min

{√
2tµε, dS(u),

δ

2

}
(tµ)−1 < min{2

√
2ε µ−1/2, δµ−1}.

So for the sequences {tn} and {un} given in condition (ii) corresponding to ξ, by (13),
we have

lim
n→+∞

f(x+ tnun)+ − f(x)+ − tn〈ξ, un〉
t2n

= lim
n→+∞

f(x+ tnun)+ + 2(tµ)−1h(x+ tnun)− f(x)+ − 2(tµ)−1h(x)

t2n
− 2(tµ)−1

≥ −2(tµ)−1 > −2µ−1,

which contradicts condition (ii).
To put first-order and second-order conditions together, we will use the following

relation between a global error bound and a local error bound.
Proposition 3.2. Let (X, d) be a metric space, let f : X → (−∞,+∞] be

proper, and let S := f−1(−∞, 0]. Then the following are equivalent:
(i) There exist 0 < ε1 < ε2 ≤ +∞ and 0 < µ1, µ2 < +∞ such that

dS(x) ≤ µ1f(x)+ for all x ∈ f−1(0, ε1) and

dS1
(x) ≤ µ2f(x)+ for all x ∈ f−1[ε1, ε2),

where S1 := f−1(−∞, ε1).
(ii) There exist 0 < ε ≤ +∞ and 0 < µ < +∞ such that

dS(x) ≤ µf(x)+ for all x ∈ f−1(0, ε).

Proof. The implication (ii) ⇒ (i) is immediate. We only need to show (i) ⇒ (ii).
Let 0 < ε1 < ε2 ≤ +∞ and 0 < µ1, µ2 < +∞ satisfy

dS(x) ≤ µ1f(x)+ for all x ∈ f−1(0, ε1) and

dS1(x) ≤ µ2f(x)+ for all x ∈ f−1[ε1, ε2),

where S1 := f−1(−∞, ε1). Note that for any fixed x ∈ f−1[ε1, ε2) and each y ∈
f−1(−∞, ε1) we have

dS(x) ≤ dS(y) + d(x, y) ≤ µ1f(y)+ + d(x, y) ≤ µ1ε1 + d(x, y).

Taking the inferior of the right-hand side expression in the above inequalities for y
over f−1(−∞, ε1) yields dS(x) ≤ µ1ε1 + dS1

(x). And hence

dS(x) ≤ µ1ε1 + µ2f(x)+ ≤ (µ1 + µ2)f(x)+ = µf(x)+

for µ := µ1 + µ2. Therefore, (ii) holds for ε = ε2.
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Remark 3.1. When X is a normed linear space and f is convex, we can prove
that the nonemptiness of S and the first inequality in (i) of Proposition 3.2 imply the
second inequality in it. So Proposition 3.2 is an extension of [22, Proposition 2], which
states that for a convex system a local error bound implies a global error bound.

Next, we use Proposition 3.2 and Theorems 2.2 and 3.1 to give a mixed condition.
Theorem 3.3. Let X be a Hilbert space, and let f : X → (−∞,+∞] be contin-

uous. Denote

D(µ) := {x ∈ X : 0 < f(x) and ‖ξ‖ ≤ µ−1 for some ξ ∈ ∂πf(x)} for µ > 0.

Suppose that there exist 0 < ε1 < ε2 ≤ +∞ and 0 < µ1, µ2 such that the set
f−1(−∞, ε1) is nonempty and the following conditions hold:

(i) D(µ1) ⊆ f−1(ε1, ε2).
(ii) For each x ∈ f−1(ε1, ε2) there exists a unit vector ux such that

d2
−f(x|ξ)(ux) ≤ −2µ−1

2 for all ξ ∈ ∂πf(x) with ‖ξ‖ ≤ 2
√
2(ε2 − ε1)/µ2.

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x) for all x ∈ f−1(0, ε2),

where µ = µ1 + (2µ2/ε1)
1/2.

Proof. Since condition (i) implies that

‖ξ‖ > µ−1
1 for all ξ ∈ ∂πf(x) and each x ∈ f−1(0, ε1),

applying Theorem 2.2 to the function f with ∂ω = ∂π, we obtain that S is nonempty
and

dS(x) ≤ µ1f(x)+ for all x ∈ f−1(−∞, ε1).

This also holds for all x ∈ X satisfying f(x) = ε1 by the continuity of f and dS .
Next, by applying Theorem 3.1 to the function f(·)− ε1, we have

df−1(−∞,ε1](x) ≤
√
2µ2[f(x)− ε1] <

√
2µ2

ε1
f(x) for all x ∈ f−1(ε1, ε2).

Thus, by Proposition 3.2, for µ = µ1 + (2µ2/ε1)
1/2 we have

dS(x) ≤ µf(x)+ for all x ∈ f−1(0, ε2).

Remark 3.2. Only in a Hilbert space is Theorem 3.3 established, unlike [7, Theo-
rem 3.2], which is given in a Banach space for the case ε2 = +∞. However, the function
f in [7, Theorem 3.2] needs to be not only continuous but also Gâteaux differentiable,
while the inequality d2

−f(x|ξ)(ux) ≤ −2µ−1
2 in (ii) is required to hold for each x in

D(µ1)\f
−1(−∞, ε1] and for all points in the corresponding interval (x, x + Tux) for

some T > 0. In Theorem 3.3, we do not restrict ε2 to equal +∞ nor require the
condition d2

−f(x|ξ)(ux) ≤ −2µ−1
2 to be satisfied in the interval (x, x+ Tux) for each

x ∈ f−1(ε1, ε2].
In what follows, we use Theorem 3.1 to develop sufficient conditions for a system

of inequalities, equalities, and an abstract constraint to have error bounds in terms of
the second-order subderivatives of the functions involved and certain tangent cones
to the abstract constraint set.
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We first review some concepts about tangent cone and contingent cone briefly.
For a closed subset C in a Banach space X and x ∈ C, the tangent cone to C at x,
denoted TC(x), is defined as

TC(x) := {v ∈ X : d◦C(x; v) = 0},
and the contingent (or the Bouligand tangent) cone to C at x, denoted KC(x), is
given by

KC(x) := {v ∈ X : d−C(x; v) = 0}.
It is well known that v ∈ TC(x) iff, for every sequence xn in C converging to x and

sequence tn in (0,+∞) decreasing to 0, there is a sequence vn inX converging to v such
that xn + tnvn ∈ C for all n and that v ∈ KC(x) iff there exist vn → v and tn → 0+

such that x+ tnvn ∈ C. Therefore we have the inclusive relation TC(x) ⊆ KC(x).
We also recall that a vector v is hypertangent to the set C at the point x in C if

there exists 0 < ε such that

y + tw ∈ C for all y ∈ B(x, ε) ∩ C, w ∈ B(v, ε), t ∈ (0, ε).

[3, Theorem 2.4.8] states that if the set of hypertangents to the set C at x is nonempty,
then it coincides with intTC(x), the interior of TC(x).

The above concepts turn out to be important for us to use Theorem 3.1 to give
sufficient conditions for an inequality system with an abstract constraint set to have
error bounds.

Theorem 3.4. Let X be a Hilbert space, let C be a nonempty closed set in X,
and let f : X → (−∞,+∞] be an l.s.c. function. Suppose that, for some x0 ∈ X,
0 < δ ≤ +∞, 0 < µ, and 0 < ε ≤ (2µ)−1(δ/2)2, the set C ∩B(x0, δ/2) ∩ f−1(−∞, ε)
is nonempty and that, for each x ∈ C ∩B(x0, δ)∩ f−1(0, ε), there exists a unit vector
ux ∈ X such that

(i) ux is hypertangent to C at x and satisfies

d2
−f(x|ξ)(ux) ≤ −2µ−1

for each ξ ∈ ∂π(f + ψC)(x) with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1}; or
(ii) ux ∈ KC(x) and satisfies

d2
+f(x|ξ)(ux) ≤ −2µ−1

for all ξ ∈ X with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1} and 〈ξ, ux〉 ≤ f+(x;ux).
Then S := {x ∈ C : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ 2µf(x)+ for all x ∈ C ∩B

(
x0,

δ

2

)
∩ f−1(0, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ (2µ)−1(δ/2)2 can be replaced with
0 < ε ≤ +∞.

Proof. Let x ∈ C ∩B(x0, δ)∩ f−1(0, ε). Based on Theorem 3.1, it suffices to show
that there exists a unit vector ux ∈ X such that

d2
−(f + ψC)(x|ξ)(ux) ≤ −2µ−1

for each ξ ∈ ∂π(f + ψC)(x) with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1}.
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Now if ux is a unit hypertangent vector in (i), then, for each ξ ∈ ∂π(f + ψC)(x)
with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1}, we have sequences un → ux and tn → 0+ such
that x+ tnun ∈ C and

d2
−(f + ψC)(x|ξ)(ux) ≤ lim

n→+∞
f(x+ tnun)− f(x)− tn〈ξ, un〉

t2n

= d2
−f(x|ξ)(ux) ≤ −2µ−1.

If ux ∈ KC(x) is a unit vector in (ii), then there exist sequences un → ux and
tn → 0+ such that x + tnun ∈ C. It follows that for each ξ ∈ ∂π(f + ψC)(x) there
exists some M > 0 such that

f(x+ tnun)− f(x) ≥ tn〈ξ, un〉 −Mt2n‖un‖2

for sufficiently large n. This implies that 〈ξ, ux〉 ≤ f+(x;ux) for each ξ ∈ ∂π(f +
ψC)(x), that is,

∂π(f + ψC)(x) ⊆ {ξ ∈ X : 〈ξ, ux〉 ≤ f+(x;ux)}.

Thus for each ξ ∈ ∂π(f + ψC)(x) with ‖ξ‖ ≤ min{2√2ε µ−1/2, δµ−1} we have

d2
−(f + ψC)(x|ξ)(ux) ≤ lim sup

n→+∞
f(x+ tnun)− f(x)− tn〈ξ, un〉

t2n

≤ d2
+f(x|ξ)(ux) ≤ −2µ−1.

The proof is therefore complete.
Remark 3.3. From the above proof we see that Theorem 3.4 is a direct result of

Theorem 3.1. Note that if x is an interior point of a closed subset C of X, then the
set of hypertangents to the set C at x is just X. In particular, when C = X, each
unit vector ux is hypertangent to C at x ∈ X. In this case Theorem 3.4 reduces to
Theorem 3.1. So they are in fact equivalent.

To apply Theorem 3.1 to a system of inequalities, we first give a result about the
proximal subdifferential of the pointwise maxima function of several functions.

Proposition 3.5. Let fi : X → R be Lipschitz near x for each i ∈ I. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that ∂πfi(x) = ∂◦fi(x) for each i ∈ I(x). Then

∂πf(x) = co{∂πfi(x) : i ∈ I(x)} = ∂◦f(x),

where coA is the convex hull of a set A.
Proof. Since ∂πfi(x) = ∂◦fi(x) for each i ∈ I(x), by [3, Proposition 2.3.12], we

have

∂πf(x) ⊆ ∂◦f(x) ⊆ co{∂◦fi(x) : i ∈ I(x)} = co{∂πfi(x) : i ∈ I(x)}.

So it suffices to show that co{∂πfi(x) : i ∈ I(x)} ⊆ ∂πf(x).
For any fixed i ∈ I(x) and ξi ∈ ∂πfi(x), there exist M > 0 and δ > 0 such that

fi(y)− fi(x) +M‖y − x‖2 ≥ 〈ξi, y − x〉 for all y ∈ B(x, δ).
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It follows that

f(y)− f(x) +M‖y − x‖2 ≥ 〈ξi, y − x〉 for all y ∈ B(x, δ),

which implies that ξi ∈ ∂πf(x). Since i and ξi are arbitrary, ∂πfi(x) ⊆ ∂πf(x) for
each i ∈ I(x). In addition, ∂πf(x) is convex, so for any λi ≥ 0 with

∑
i∈I(x) λi = 1,∑

i∈I(x)
λiξi ∈ ∂πf(x).

This is what we need to prove.
Theorem 3.6. Let X be a Hilbert space, and let fi : X → R be an l.s.c. function

for each i ∈ I. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ, and 0 < ε ≤ (2µ)−1(δ/2)2, the
set B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and that, for each x ∈ B(x0, δ) ∩ f−1(0, ε)
and each i ∈ I(x),

(i) fi is Lipschitz near x and ∂πfi(x) = ∂◦fi(x); and
(ii) there exists a unit vector ux such that d2

Lfj(x|ξj)(ux) ≤ −2µ−1 and

lim
t→0+

fi(x+ tux)− [fj(x+ tux)− t〈ξj , ux〉]− t〈ξk, ux〉
t2

= 0

for some j ∈ I(x) and ξj ∈ ∂πfj(x), each i ∈ I(x) and ξi ∈ ∂πfi(x), and each
k ∈ I(x) and ξk ∈ ∂πfk(x).

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ 2µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(0, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ (2µ)−1(δ/2)2 can be replaced with
0 < ε ≤ +∞.

Proof. Let x0 ∈ X, 0 < δ ≤ +∞, 0 < µ and let the set B(x0, δ/2)∩f−1(−∞, ε) be
nonempty for some 0 < ε < (2µ)−1(δ/2)2. If, for x ∈ B(x0, δ) ∩ f−1(0, ε), ∂πfi(x) =
∂◦fi(x) for each i ∈ I(x), then, for ξ ∈ ∂πf(x), by Proposition 3.5, ξ =

∑
i∈I(x) λiξi

for some λi ≥ 0 and ξi ∈ ∂πfi(x) with i ∈ I(x) and
∑
i∈I(x) λi = 1.

If ux is the unit vector stated in the assumption, then

d2
Lf(x|ξ)(ux) = lim inf

t→0+

max{fi(x+ tux) : i ∈ I(x)} − f(x)− t〈ξ, ux〉
t2

= lim inf
t→0+

max{fi(x+ tux) : i ∈ I(x)} − f(x)− t
∑
i∈I(x) λi〈ξi, ux〉

t2

= lim inf
t→0+

∑
i∈I(x)

λi
max{fi(x+ tux) : i ∈ I(x)} − f(x)− t〈ξi, ux〉

t2

≤ lim inf
t→0+

fj(x+ tux)− fj(x)− t〈ξj , ux〉
t2

+ lim
t→0+

∑
i∈I(x)

|fi(x+ tux)− [fj(x+ tux)− t〈ξj , ux〉]− t〈ξk, ux〉|
t2

= d2
Lfj(x|ξj)(ux) ≤ −2µ−1.
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Thus the conclusion follows from Theorem 3.1.
Remark 3.4. From the proof of Theorem 3.6 we see that condition (i) can be

replaced with the condition that fi be continuous at x and ∂πf(x) = co{∂πfi(x) : i ∈
I(x)}.

Theorem 3.7. Let X be a Hilbert space and, for each i ∈ I, let fi : X → R be
C1 and satisfy ∂πfi(x) = ∂◦fi(x) for x ∈ X. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that, for some x0 ∈ X, 0 < δ ≤ +∞, 0 < µ, and 0 < ε ≤ (2µ)−1(δ/2)2, the
set B(x0, δ/2) ∩ f−1(−∞, ε) is nonempty and that, for each x ∈ B(x0, δ) ∩ f−1(0, ε),
there exists a unit vector ux such that

〈∇fi(x), ux〉 = 〈∇fj(x), ux〉 and d2
+fi(x|∇fi(x))(ux) ≤ −2µ−1 for all i, j ∈ I(x).

Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ 2µf(x)+ for all x ∈ B

(
x0,

δ

2

)
∩ f−1(0, ε).

Moreover, if x0 ∈ S, then the condition 0 < ε ≤ (2µ)−1(δ/2)2 can be replaced with
0 < ε ≤ +∞.

Proof. Let x0, δ, µ, and ε be given as in the assumption. For each x ∈ B(x0, δ)∩
f−1(0, ε) and i ∈ I(x), fi is C1 and ∂πfi(x) = {∇fi(x)} = ∂◦fi(x), so for ξ ∈
∂πf(x), by Proposition 3.5, ξ =

∑
i∈I(x) λi∇fi(x) for some λi ≥ 0 with i ∈ I(x) and∑

i∈I(x) λi = 1.
If ux is the vector in the assumption, then there exists tn → 0 such that

d2
Lf(x|ξ)(ux) = lim

n→+∞
max{fi(x+ tnux) : i ∈ I(x)} − f(x)− tn〈ξ, ux〉

t2n

= lim
n→+∞

max{fi(x+ tnux) : i ∈ I(x)} − f(x)− tn
∑
i∈I(x) λi〈∇fi(x), ux〉

t2n

= lim
n→+∞

∑
i∈I(x)

λi
max{fi(x+ tnux) : i ∈ I(x)} − f(x)− tn〈∇fi(x), ux〉

t2n

≤ lim sup
n→+∞

max

{
fi(x+ tnux)− fi(x)− tn〈∇fi(x), ux〉

t2n
: i ∈ I(x)

}
≤ max{d2

+fi(x|∇fi(x))(ux) : i ∈ I(x)} ≤ −2µ−1;

that is, we have d2
Lf(x|ξ)(ux) ≤ −2µ−1. Therefore, upon using Theorem 3.1 to f , the

conclusion follows.
We now consider a system of quadratic inequalities

S = {x ∈ Rn : f1(x) ≤ 0, . . . , fm(x) ≤ 0},
where fi(x) = xtQix + btix + ci, Qi is a real n × n symmetric matrix, bi ∈ Rn, and
ci ∈ R for each i ∈ I with xt denoting the transpose of x. For the convex quadratic
system, i.e., when each Qi is positive semidefinite, Luo and Luo [12] and Wang and
Pang [19] show that the nonemptiness of S implies the existence of a positive integer
d ≤ n+ 1 and a positive scalar µ such that

dS(x) ≤ µ

[
f(x)+ + f(x)

1

2d

+

]
for all x ∈ Rn,(15)
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where f(x) = max{fi(x) : i ∈ I}. Furthermore, if S contains an interior point, then
d = 0.

For a nonconvex quadratic system, there are very few existing error bound results.
For the special case of a single quadratic function, Luo and Sturm [13] show that (15)
holds with d equal to 1; Ng and Zheng [15] further prove that for a single quadratic
function, global error bounds with either exponents 1 or 1/2 hold, and they also
classify the cases for exponents being 1 or 1/2. In the following theorem we apply
Theorem 3.7 to derive a sufficient condition for a nonconvex quadratic system. It is
worth pointing out that even for the case of a single quadratic system our theorem
offers something new since an error bound is explicitly given in terms of the eigenvalues
of matrices.

Corollary 3.8. For each i ∈ I, let

fi(x) = xtQix+ btix+ ci for x ∈ Rn,

where Qi is a real n× n symmetric matrix, bi ∈ Rn, and ci ∈ R. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ Rn.

Suppose that for each x ∈ f−1(0,+∞) and for each Qi there exists a negative eigen-
value λi with a common eigenvector u and 〈2Qix + bi, u〉 = 〈2Qjx + bj , u〉 for all
i, j ∈ I(x). Then S := {x ∈ Rn : f(x) ≤ 0} is nonempty and

d2
S(x) ≤ −

4

λ
f(x)+ for all x ∈ Rn,

where λ = max{λi : i ∈ I(x)}. In particular, if I = {1} and λ1 and λ2 are the smallest
eigenvalue and the largest eigenvalue of Q1 with λ1 < 0 < λ2, then S := {x ∈ Rn :
f1(x) = 0} is nonempty and

d2
S(x) ≤ −

4

λ
|f1(x)| for all x ∈ Rn,

where λ = max{λ1,−λ2}.
Proof. Let u be a common eigenvector of Qi corresponding to an eigenvalue λi < 0

for all i ∈ I(x). Then we have

fi(αu) = λiα
2utQiu+ αbtiu+ ci < 0

for sufficiently large positive scalar α. This implies that S := {x ∈ Rn : f(x) ≤ 0} is
nonempty.

Denote ux :=
u

‖u‖ . Then

〈∇fi(x), ux〉 = 〈2Qix+ bi, ux〉 = 〈2Qjx+ bj , ux〉 = 〈∇fj(x), ux〉 and

d2
+fi(x|∇fi(x))(ux) = utxQiux = λi ≤ λ.

Thus, by Theorem 3.7,

d2
S(x) ≤ −

4

λ
f(x)+ for all x ∈ Rn.

Now if I = {1}, we consider

f(x) := max{f1(x),−f1(x)} =
{

f1(x) if f1(x) ≥ 0,
−f1(x) if f1(x) < 0.
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It is easy to see that S := {x ∈ Rn : f1(x) = 0} is nonempty and that∇f(x) = ∇f1(x)
for x ∈ f−1(0,+∞) and ∇f(x) = −∇f1(x) for x ∈ f−1(−∞, 0). If u1 and u2 are unit
eigenvectors corresponding to λ1 and λ2, respectively, then, for each x ∈ f−1

1 (0,+∞),

d2
+f(x|∇f(x))(u1) = ut1Q1u1 = λ1 ≤ λ

and, for each x ∈ f−1
1 (−∞, 0),

d2
+f(x|∇f(x))(u2) = −ut2Q1u2 = −λ2 ≤ λ.

Therefore it follows from Theorem 3.7 that

d2
S(x) ≤ −

4

λ
|f1(x)| for all x ∈ Rn.

Example 3.1. For x ∈ R2, define

f1(x) = xtQ1x+ bt1x+ 1 and f2(x) = xtQ2x+ bt2x,

where

Q1 =

( −1 0
0 3

)
, b1 =

(
3
0

)
, Q2 =

( −1 0
0 −4

)
, and b2 =

(
3
−1

)
.

It is easy to see that λ = −1 is a common eigenvalue of Q1 and Q2 with a common
eigenvector u = (1, 0)t and that 〈2Q1x+b1, u〉 = −2x1+3 = 〈2Q2x+b2, u〉. Therefore,
by Corollary 3.8, S := {x ∈ R2 : f1(x) ≤ 0, f2(x) ≤ 0} is nonempty and

d2
S(x) ≤ 4max{f1(x), f2(x)}+ for all x ∈ R2.

4. Sufficient conditions in lower Dini derivatives. We note that in a general
Banach space the lower Dini subdifferential is not always a ∂ω-subdifferential (see
[10]). Thus Theorem 2.2 is not applicable to the lower Dini subdifferential in a general
Banach space. However, in this case the lower Dini derivative f−(x; ·) of function f
at x turns out to be more convenient for us to present a sufficient condition for error
bounds to exist. For this we first prove one of the main results in this section.

Theorem 4.1. Let (X, d) be a metric space and let f : X → (−∞,+∞] be an
l.s.c. function. For some 0 < ε ≤ +∞ and 0 < µ < +∞ we consider the following
statements:

(i) If the set f−1(−∞, ε) is nonempty and for each x ∈ f−1(0, ε) there exists a
point y ∈ f−1[0, ε) such that

0 < d(x, y) ≤ µ[f(x)− f(y)],

then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ f−1(−∞, ε).

(ii) If for some x0 ∈ X and 0 < δ < +∞ the set B(x0, δ) ∩ f−1(−∞, ε) is
nonempty and for some 0 < ρ < 1 and each x ∈ B(x0, δ) ∩ f−1(0, ε) there
exists a point y ∈ f−1[0, ε) such that

d(y, x0) ≤ max{ρδ, d(x, x0)} and 0 < d(x, y) ≤ µ[f(x)− f(y)],

then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ B(x0, δ) ∩ f−1(−∞, ε).
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(iii) If for some nonempty closed subset C of X the set C∩f−1(−∞, ε) is nonempty
and for some 0 < µ < +∞ and each x ∈ C ∩ f−1(0, ε) there exists a sequence
{xn} ⊆ C\{x} such that

lim
n→+∞

f(xn)+ − f(x)+
‖xn − x‖ ≤ −µ−1,(16)

then S := {x ∈ C : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C ∩ f−1(−∞, ε).

In a metric space X, (i) ⇒ (ii); if X is also complete, then both (i) and (ii) hold. In
a normed space X, (i) ⇔ (iii); hence (iii) holds in a Banach space X.

Proof. We first prove that (i) implies (ii) in a metric space X.
Let x0 ∈ X, 0 < δ < +∞, and 0 < ρ < 1. For each m ∈ N (the set of

natural numbers) such that B(x0, ρδ) ⊆ Bm(x0, δ) := B(x0, (1 − 1/m)δ) and each
x ∈ Bm(x0, δ) ∩ f−1(0, ε) there exists y with the properties stated in (ii) such that
y ∈ Bm(x0, δ) since

d(y, x0) ≤ max{ρδ, d(x, x0)} ≤
(
1− 1

m

)
δ.

Upon applying (i) to the function f + ψBm(x0,δ)
, we obtain that Sm := Bm(x0, δ) ∩

f−1(−∞, 0] is nonempty and

dSm(x) ≤ µf(x)+ for all x ∈ Bm(x0, δ) ∩ f−1(−∞, ε).

This implies that (ii) holds since for each x ∈ B(x0, δ) ∩ f−1(−∞, ε) there exists an
m stated above such that x ∈ Bm(x0, δ) ∩ f−1(−∞, ε) and dS(x) ≤ dSm

(x).
Now it is known from [22, Theorem 3] that (i) holds in a complete metric space,

so (ii) also holds in a complete metric space.
Next, we prove that (i) and (iii) are equivalent in a normed space X.
Suppose that (i) is true. To prove (iii) to be also true, it suffices to show that for

any λ > 1 and x ∈ C ∩ f−1(0, ε) there exists a point y ∈ C ∩ (f+)
−1[0, ε) such that

0 < ‖x− y‖ ≤ λµ[f(x)+ − f(y)+].

Let λ > 1 be fixed. For each x ∈ C ∩ f−1(0, ε), by assumption, there exists a
sequence {xn} ⊆ C\{x} satisfying (16). Hence for sufficiently large n we have

f(xn)+ − f(x)+
‖xn − x‖ ≤ −(λµ)−1,

that is,

0 < ‖xn − x‖ ≤ λµ[f(x)+ − f(xn)+].

So we can take y = xn for any such an n.
Now, to prove (iii) ⇒ (i), we suppose that for each x ∈ f−1(0, ε) there exists a

point y ∈ f−1[0, ε) such that

0 < ‖x− y‖ ≤ µ[f(x)− f(y)].
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By taking xn = y we have

lim
n→+∞

f(xn)+ − f(x)+
‖xn − x‖ = lim

n→+∞
f(y)− f(x)

‖y − x‖ ≤ −µ−1.

It follows from statement (iii) with C = X that S is nonempty and satisfies

dS(x) ≤ µf(x)+ for all x ∈ f−1(−∞, ε).

Therefore (i) is valid.
As we indicated above, (i) holds in a complete metric space, so (iii) holds in a

Banach space.
Based on Theorem 4.1, we present some sufficient conditions in terms of Dini

derivatives of involved functions and tangent cones to a set as below.
Theorem 4.2. Let X be a Banach space and let C be a nonempty closed subset

in X. Suppose that f : X → (−∞,+∞] is an l.s.c. function and that for some 0 < ε ≤
+∞ the set C∩f−1(−∞, ε) is nonempty. If for some 0 < µ and each x ∈ C∩f−1(0, ε)
there exists a unit hypertangent vector ux to C at x such that f−(x;ux) ≤ −µ−1 or
ux ∈ KC(x) such that f+(x;ux) ≤ −µ−1, then S := {x ∈ C : f(x) ≤ 0} is nonempty
and

dS(x) ≤ µf(x)+ for all x ∈ C ∩ f−1(−∞, ε).

Proof. For some 0 < ε ≤ +∞, let x ∈ C ∩ f−1(0, ε). If ux is a unit hypertangent
vector to C at x satisfying f−(x;ux) ≤ −µ−1, then there exist sequences un → ux
and tn → 0+ such that

lim
n→+∞

f(x+ tnun)− f(x)

tn
= f−(x;ux) ≤ −µ−1

and x+ tnun ∈ C. If ux ∈ KC(x) and f+(x;ux) ≤ −µ−1, then there exist sequences
un → ux and tn → 0+ such that x+ tnun ∈ C, for which we have

lim inf
n→+∞

f(x+ tnun)− f(x)

tn
≤ f+(x;ux) ≤ −µ−1.

Now for the above sequences un → ux and tn → 0+ we have xn := x+ tnun ∈ C\{x}
and

lim inf
n→+∞

f(xn)+ − f(x)+
‖xn − x‖ = lim inf

n→+∞
f(xn)− f(x)

‖xn − x‖ ≤ −µ−1.

Hence there exists a subsequence {xnk
} satisfying the condition (iii) in Theorem 4.1.

Therefore the conclusion holds.
Similar to Theorem 3.4, Theorem 4.2 has the following equivalent result.
Theorem 4.3. Let X be a Banach space, and let f : X → (−∞,+∞] be an l.s.c.

function. Suppose that for some 0 < ε ≤ +∞ the set f−1(−∞, ε) is nonempty and
that for some 0 < µ and each x ∈ f−1(0, ε) there exists a unit vector ux in X such
that f−(x;ux) ≤ −µ−1. Then S := {x ∈ X : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ f−1(−∞, ε).

In what follows we use Theorem 4.2 to establish error bounds for a system con-
taining functions f and gi : X → (−∞,+∞] (i ∈ I) for which we denote

g(x) := max{gi(x) : i ∈ I} and I(x) := {i ∈ I : gi(x) = g(x)} for x ∈ X.



FIRST- AND SECOND-ORDER CONDITIONS FOR ERROR BOUNDS 641

Theorem 4.4. Let C be a nonempty closed subset in a Banach space X, let
f : X → (−∞,+∞] be l.s.c., and let gi : X → (−∞,+∞) be locally Lipschitz for each
i ∈ I. Denote

C0 := {x ∈ C : gi(x) ≤ 0 for each i ∈ I}.
Suppose that for some 0 < ε ≤ +∞ the set C0∩f−1(−∞, ε) is nonempty. If, for some
0 < µ and each x ∈ C0 ∩ f−1(0, ε), there exists a unit vector ux ∈ KC(x) such that
f+(x;ux) ≤ −µ−1 and, for each x ∈ C0 ∩ f−1(0, ε) with g(x) = 0 and each i ∈ I(x),
g+
i (x;ux) < 0, then S := {x ∈ C0 : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C0 ∩ f−1(−∞, ε).

Proof. Let x ∈ C0 ∩ f−1(0, ε) and let ux ∈ KC(x) be the unit vector in the
assumption. Then there exist sequences un → ux and tn → 0+ such that x+tnun ∈ C.
According to Theorem 4.2 , it suffices to show that ux ∈ KC0(x).

If g(x) < 0, then, by the continuity of g, g(x+ tnun) ≤ 0 when n is large enough.
This implies that x+ tnun ∈ C0 when n is large enough and hence ux ∈ KC0

(x).
If g(x) = 0, then, by the definition of g+

i (x;ux), there are δ > 0 and ε > 0 such
that for each i ∈ I(x) and all t ∈ (0, δ) we have

gi(x+ tux)− gi(x) ≤ −εt.
Since gi is Lipschitz near x, there exists a constant Li such that

gi(x+ tnun) ≤ gi(x+ tnux) + Litn‖un − ux‖
≤ gi(x) + tn(−ε+ Li‖un − ux‖) ≤ 0

for sufficiently large n. It follows that x + tnun ∈ C0 when n is large enough. Thus
ux belongs to KC0

(x).
Proposition 4.5. Let x be a point in a closed subset C of a Banach space X,

let fi : X → (−∞,+∞) be Lipschitz near x, let gi : X → (−∞,+∞] be Fréchet
differentiable at x for each i ∈ I, and let hj : X → (−∞,+∞) be continuous in a
neighborhood of x and Fréchet differentiable at x for each j ∈ J with the Fréchet
derivative ∇h(x) = (∇h1(x), . . . ,∇hn(x))t being surjective. Denote

C1 := {x ∈ C : (fi + gi)(x) ≤ 0 for i ∈ I and hj(x) = 0 for j ∈ J} and

I(x) := {i ∈ I : (fi + gi)(x) = 0}.
Suppose that x ∈ C1 and there exists v∗ ∈ X such that f◦

i (x; v
∗) + g′i(x; v

∗) < 0 for
each i ∈ I(x) and h′

j(x; v
∗) = 0 for each j ∈ J. If the set of hypertangents to the set

C at x is nonempty, then

{v ∈ intTC(x) : f
+
i (x; v) + g′i(x; v) ≤ 0, i ∈ I(x); h′

j(x; v) = 0, j ∈ J} ⊆ KC1(x).

Proof. First, for v ∈ intTC(x) satisfying f+
i (x; v) + g′i(x; v) < 0 for each i ∈ I(x)

and h′
j(x; v) = 0 for each j ∈ J, we prove that v ∈ KC1(x).

Since ∇h(x) is surjective, by the correction theorem of Halkin [6, Theorem F] and
its proof, there exist a neighborhood U of x and a continuous mapping ξ from U into
X such that ξ(x) = 0, ∇ξ(x) = 0, and

hj(y + ξ(y)) = 〈∇hj(x), y − x〉 for all y ∈ U and each j ∈ J.
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By taking y = x+ sv we have, for t > 0 small enough and all s ∈ (0, t),

hj(x+ sv + ξ(x+ sv)) = 〈∇hj(x), sv〉 = 0 for each j ∈ J.

Note that ξ(x) = 0 and ∇ξ(x) = 0, so ξ(x + tv)/t → 0 as t → 0. By the inequality
f+
i (x; v) + g′i(x; v) < 0, we can take ε > 0 and t > 0 small enough such that

(fi + gi)(x+ sv + ξ(x+ sv)) ≤ (fi + gi)(x)− εs = −εs
for all s ∈ (0, t) and each i ∈ I(x). Also, if v ∈ intTC(x), then v is hypertangent to C
at x. Hence

x+ sv + ξ(x+ sv) = x+ s

[
v +

ξ(x+ sv)

s

]
∈ C for all s ∈ (0, t)

when t > 0 is small enough. This implies that v ∈ KC1(x).
Now, if v∗ ∈ X satisfies f◦

i (x; v
∗)+g′i(x; v

∗) < 0 for each i ∈ I(x) and h′
j(x; v

∗) = 0

for each j ∈ J , then, for v ∈ intTC(x) with f+
i (x; v) + g′i(x; v) ≤ 0 for each i ∈ I(x)

and h′
j(x; v) = 0 for each j ∈ J, we can take t > 0 small enough such that, for all

s ∈ (0, t), v + sv∗ ∈ intTC(x) and

f+
i (x; v + sv∗) + g′i(x; v + sv∗)

≤ f+
i (x; v) + g′i(x; v + sv∗) + sup

u∈X
[f+
i (x;u+ sv∗)− f+

i (x;u)]

≤ f+
i (x; v) + g′i(x; v) + s[f◦

i (x; v
∗) + g′i(x; v

∗)] < 0

for each i ∈ I(x) and

h′
j(x; v + sv∗) = 〈∇hj(x), v + sv∗〉 = 0

for each j ∈ J. By the conclusion of the above paragraph, we have v + sv∗ ∈ KC1(x)
for all s > 0 small enough. This implies that v ∈ KC1

(x) since KC1
(x) is closed.

Combining Theorem 4.2 with Proposition 4.5, we obtain the following result.
Theorem 4.6. Let C be a nonempty closed subset in a Banach space X, let

f : X → (−∞,+∞] be l.s.c., let fi : X → (−∞,+∞) be locally Lipschitz and
gi : X → (−∞,+∞] Fréchet differentiable on C for each i ∈ I, and let hj : X →
(−∞,+∞] be continuous on C for each j ∈ J. Denote

C1 := {x ∈ C : (fi + gi)(x) ≤ 0 for i ∈ I and hj(x) = 0 for j ∈ J} and

I(x) := {i ∈ I : (fi + gi)(x) = 0} for x ∈ C1.

Suppose that for some 0 < ε ≤ +∞ the set C1 ∩ f−1(−∞, ε) is nonempty, that, for
each x ∈ C1 ∩ f−1(0, ε), hj is Fréchet differentiable at x for each j ∈ J with the
Fréchet derivative ∇h(x) = (∇h1(x), . . . ,∇hn(x))t being surjective and there exists
v∗x ∈ X such that f◦

i (x; v
∗
x) + gi(x; v

∗
x) < 0 for each i ∈ I(x) and h′

j(x; v
∗
x) = 0 for

each j ∈ J , and that there exists a unit hypertangent vector ux to the set C at x such
that f+

i (x;ux) + g′i(x;ux) ≤ 0 for each i ∈ I(x), h′
j(x;ux) = 0 for each j ∈ J and

f+(x;ux) ≤ −µ−1 for some 0 < µ independent of x. Then S := {x ∈ C1 : f(x) ≤ 0}
is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C1 ∩ f−1(−∞, ε).
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In what follows, we consider an inequality system determined by several inequal-
ities.

Theorem 4.7. Let C be a nonempty closed subset in a Banach space X and let
fi : X → R be continuous for each i ∈ I. Denote

f(x) = max{fi(x) : i ∈ I} and I(x) := {i ∈ I : fi(x) = f(x)} for x ∈ X.

Suppose that, for some 0 < ε ≤ +∞, the set C ∩ f−1(−∞, ε) is nonempty and that,
for some 0 < µ, each x ∈ f−1(0, ε), and i ∈ I(x), there exists a unit vector ux such
that

(i) ux is hypertangent to C at x, f−
j (x;ux) ≤ −µ−1 for some j ∈ I(x) and

lim
v→ux

t→0+

fi(x+ tv)− fj(x+ tv)

t
= 0 for each i ∈ I(x); or

(ii) ux ∈ KC(x) and f+
i (x;ux) ≤ −µ−1 for each i ∈ I(x).

Then S := {x ∈ C : f(x) ≤ 0} is nonempty and

dS(x) ≤ µf(x)+ for all x ∈ C ∩ f−1(0, ε).

Proof. Let 0 < µ, 0 < ε ≤ +∞, and x ∈ C ∩ f−1(0, ε). If ux is a unit vector
satisfying (i), then

f−(x;ux) = lim inf
v→ux

t→0+

max{fi(x+ tv) : i ∈ I(x)} − f(x)

t

≤ lim inf
v→ux

t→0+

fj(x+ tv)− fj(x)

t
+ lim

v→ux

t→0+

∑
i∈I(x)

|fi(x+ tv)− fj(x+ tv)|
t

= f−
j (x;ux) ≤ −µ−1,

where the first equality is obtained by the continuity of fi at x for each i ∈ I.
If ux satisfies (ii), then there exist un → ux and tn → 0+ such that

f+(x;ux) = lim
n→+∞

f(x+ tnun)− f(x)

tn

= lim
n→+∞max

{
fi(x+ tnun)− fi(x)

tn
: i ∈ I(x)

}
≤ max{f+

i (x;ux) : i ∈ I(x)} ≤ −µ−1.

Therefore, from Theorem 4.2, the required result follows.
Corollary 4.8. For each i ∈ I, let gi : Rn → R be differentiable and let

fi(x) := gi(x) + btix + ci, where bi = (bi1, . . . , bin)
t ∈ Rn and ci ∈ R. Suppose that

for all i ∈ I and some j ∈ J the coordinates bij have the same sign and all gi’s are
independent of the jth coordinate xj of x ∈ Rn. Then

S := {x ∈ Rn : fi(x) ≤ 0 for all each i ∈ I}
is nonempty and for some 0 < µ there holds dS(x) ≤ µf(x)+ for all x ∈ Rn.

Proof. In fact, for x ∈ f−1(0,+∞) and i ∈ I(x) and ux := (0, . . . , 0,−sgn bij , 0, . . . ,
0)t we have

f ′
i(x;ux) = 〈∇fi(x), ux〉 = 〈∇gi(x) + bi, ux〉 = −|bij | for each i ∈ I(x).
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Taking µ−1 = min{|bij | : i ∈ I} and applying Theorem 4.7, we arrive at the conclu-
sion.

Example 4.1. We consider the functions

f1(x) = g1(x1, x2) + 2x1 − x2 + 3x3,

f2(x) = g2(x1, x2) + 2x3,

f3(x) = g3(x1, x2) + 2x1 + 6x3 − 4,

where g1, g2, and g3 are differentiable and independent of x3. Since the coefficients
of x3 in fi’s are all positive and their minimum is 2,

S := {x ∈ R3 : fi(x) ≤ 0 for i = 1, 2, 3}
is nonempty and dS(x) ≤ 1

2f(x)+ holds for all x ∈ R3.

Acknowledgment. We thank two anonymous referees for their valuable com-
ments and suggestions.
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SIAM J. OPTIM. c© 2003 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 646–669

Abstract. In this paper we present a filter algorithm for nonlinear programming and prove
its global convergence to stationary points. Each iteration is composed of a feasibility phase, which
reduces a measure of infeasibility, and an optimality phase, which reduces the objective function in
a tangential approximation of the feasible set. These two phases are totally independent, and the
only coupling between them is provided by the filter. The method is independent of the internal
algorithms used in each iteration, as long as these algorithms satisfy reasonable assumptions on
their efficiency. Under standard hypotheses, we show two results: for a filter with minimum size,
the algorithm generates a stationary accumulation point; for a slightly larger filter, all accumulation
points are stationary.
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1. Introduction. We shall study the nonlinear programming problem

(P)
minimize f0(x)

subject to fE(x) = 0,
fI(x) ≤ 0,

where the index sets E and I refer to the equality and inequality constraints, respec-
tively. Let the cardinality of E ∪ I be m, and assume that the functions fi : Rn → R

for i = 0, 1, . . . ,m are continuously differentiable. The Jacobian matrices of fE and
fI are denoted, respectively, AE(·) and AI(·).

We define the function f+ : Rn → R
m by

f+
i (x) =

{
fi(x) if i ∈ E ,
max{0, fi(x)} if i ∈ I.(1.1)

The ith constraint, i = 1, . . . ,m, is satisfied at x ∈ Rn if f+
i (x) = 0. We consider

a measure of constraint infeasibility x ∈ Rn 
→ h(x), which is an exact penalty applied
to the constraints. Usually this measure is given by

h(x) = ‖f+(x)‖,(1.2)

where ‖ · ‖ denotes an arbitrary norm.
A nonlinear programming algorithm must deal with two conflicting criteria, f0 and

h, which must be simultaneously minimized, with preference given to the infeasibility
measure h, which must be driven to zero.
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Optimality and feasibility can be combined using penalty functions or augmented
Lagrangians, or they can be treated more or less independently. The methods studied
in this paper belong to the class in which f0 and h are treated as two independent
objectives. Each iteration of these methods is composed of two phases: a feasibility
phase, which decreases h, followed by an optimization phase, which decreases f0.

Such methods can be traced back to Rosen’s gradient projection method [16] and
Abadie and Carpentier’s GRG [1]. They are surveyed in Mart́ınez and Pilotta [11].
Combining the ideas of sequential quadratic programming and trust region algorithms
for problems with equality constraints only, Celis, Dennis, and Tapia [6] started a line
of research which led to the method of Byrd [3] and Omojokum [14]: each iteration of
this method works in a trust region centered at the current iterate xk and is composed
of a normal step (feasibility step) followed by a tangential step (optimality step). The
tangential step must follow a direction in the null space of the constraint Jacobian at
xk.

The feasibility and optimality phases become more independent in the inexact
restoration algorithms described by Mart́ınez [9] and by Mart́ınez and Pilotta [10, 11],
who place the trust region used in each iteration around the point obtained after the
feasibility phase. Any method for reducing h can be used in the feasibility phase:
they describe an algorithm for problems with nonlinear equality constraints and box
inequality constraints. Methods for the feasibility phase can also use ideas from
Byrd, Gilbert, and Nocedal [4] and from Byrd, Hribar, and Nocedal [5], who rewrite
the problem using equality constraints and nonnegative slack variables.

In these algorithms, the progress is usually measured by a merit function ψ = f0+
νh, where ν is a positive weight. At iteration k, the points in {x ∈ Rn | ψ(x) ≥ ψ(xk)}
are forbidden, and the step tries to decrease the value of ψ. The choice of ν may be
tricky: small values of ν may forbid the optimal solutions; large values of ν may slow
down the algorithm.

As a rule, algorithms must include some procedure to increase ν when needed,
increasing the importance of h in ψ. This choice of ν usually depends on both the
feasibility and optimality steps, reducing their independence.

Filter algorithms. Filter algorithms define a forbidden region in a clever way:
by memorizing the pairs (f0(x

k), h(xk)) from well-chosen former iterations and then
avoiding points dominated by these by the usual Pareto domination rule:

“x dominates y if and only if f0(y) ≥ f0(x) and h(y) ≥ h(x).”

We cannot construct the set of forbidden points, but it very easy to check whether
a point belongs to it by performing a small number of comparisons in R2.

These methods were introduced by Fletcher and Leyffer in their important paper
[8], and a global convergence proof was obtained by Fletcher et al. [7]. The approach
was also applied to interior point algorithms by Ulbrich, Ulbrich, and Vicente [17]. In
these papers, each feasibility phase must reduce h until a property called compatibility
is verified, which depends on a trust region radius and on the linear model of the
constraints.

Our method is an inexact restoration algorithm in the sense of Mart́ınez and
Pilotta [10], which uses a filter. The method has the following characteristics:

• Each iteration starts with a filter and its associated forbidden region.
• The feasibility and optimality phases are totally independent and may be

based on any algorithms satisfying some reasonable hypotheses. The only
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connection between both phases is that they are not allowed to generate
forbidden points.
• Differently from the filter algorithms cited above, no compatibility is required

after a feasibility step: the only requirement is that h decreases by at least a
fixed ratio.
• In our first algorithm, the number of pairs (h(xk), f0(x

k)) introduced in the
filter is perhaps the minimum possible to guarantee the existence of a sta-
tionary accumulation point.

Local convergence. In this paper we deal with the global convergence of filter
algorithms without discussing details of the internal algorithms. Fletcher and Leyffer
[8] comment that filter algorithms may suffer from the Maratos effect and propose
a second order correction to remedy this shortcoming. Wächter and Biegler in their
recent work [18] propose a filter method using line searches and also discuss the usage
of a second order correction. In our general approach, it is easy to show that the
Maratos effect will be present when the method is applied to Powell’s example [15].
Although we believe that second order correction schemes can be devised for this
general setting, this will not be discussed in this paper.

Structure of the paper. In this section we present some general definitions
and hypotheses. Section 2 describes the main algorithm and proves that under a very
general hypothesis on the behavior of a complete step of the algorithm, any sequence
generated by it has a stationary accumulation point. This section also discusses
how to break this general hypothesis into reasonable independent assumptions for
the feasibility and optimality phases. Section 3 describes the internal algorithms
and shows how to satisfy the hypotheses used in section 2. Section 4 deepens the
convergence analysis, showing that the objective values always converge under the
hypotheses in section 2, and presents two improvements on the algorithms: first, using
a slightly larger filter, we prove that all accumulation points are stationary; second,
we discuss a simplified optimality step using the Jacobian matrices already calculated
in the feasibility phase. Section 5 shows a graphical example, and an appendix proves
some continuity properties.

Hypotheses. We shall develop algorithms which generate sequences (xk) and
(zk) in Rn. Here are the general hypotheses used in this paper.

(H1) The iterates (xk) and (zk) remain in a convex compact domain X ⊂ Rn.
(H2) All the functions fi(·) for i = 0, 1, . . . ,m are uniformly Lipschitz continuously

differentiable in an open set containing X.
(H3) All feasible accumulation points x̄ ∈ X of (xk) satisfy the Mangasarian–

Fromovitz (M-F) qualification condition, namely, the gradients ∇fi(x̄) for
i ∈ E are linearly independent, and there exists a direction d ∈ Rn such that
AE(x̄)d = 0 and AĪ(x̄)d < 0, where Ī = {i ∈ I | fi(x̄) = 0}.

The first hypothesis is quite usual. It can be enforced by adding a large box
constraint to the problem. If the set {x ∈ Rn | h(x) ≤ H̄} is bounded for some H̄ ≥
h(x0), then the filter may start with a pair (−∞, H̄) (see below for the filter structure),
thus forbidding forever points x with h(x) ≥ H̄. Similarly, if {x ∈ Rn | f0(x) ≤ F̄}
for some upper bound F̄ for the value of an optimal solution, then the pair (F̄ ,−∞)
in the filter ensures (H1). Of course, both entries can be used if {x ∈ Rn | h(x) ≤
H̄, f0(x) ≤ F̄} is bounded.

From (H2) we conclude that for x, y ∈ X and i = 0, 1, . . . ,m,

fi(y) = fi(x) +∇fi(x)T (y − x) + o(x, y),(1.3)
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where |o(x, y)| ≤M‖x− y‖2 and M > 0 is a Lipschitz constant.

The linearized sets. We shall associate with each z ∈ Rn a linearization of the
set {x ∈ Rn | fE(x) = fE(z), fI(x) ≤ f+

I (z)}:
L(z) = {x ∈ Rn | AE(z) (x− z) = 0, fI(z) + AI(z) (x− z) ≤ f+

I (z)}.(1.4)

At a feasible point z, L(z) is a linearization of the feasible set. The following facts
are easily seen:

• The M-F condition at a feasible point z is equivalent to the following: AE(z)
has linearly independent rows and the set L(z) satisfies a Slater condition; i.e.,
L(z) has an interior point, a point y ∈ L(z) such that fI(z)+AI(z)(y− z) <
f+
I (z).

• The Karush–Kuhn–Tucker (KKT) conditions for (P) at z coincide with the
KKT conditions at z for the problem of minimizing f0(·) in L(z). These
conditions are also equivalent to the inexistence of a feasible descent direction
from z into L(z).

Optimality conditions. Here we make some comments on optimality conditions
and on our usage of the expression stationary point.

Let us define the projected Cauchy direction or projected gradient direction asso-
ciated with each z ∈ Rn

dc(z) = PL(z)(z −∇f0(z))− z,(1.5)

where PΓ(w) denotes the orthogonal projection of w ∈ Rn onto the closed set Γ ⊂ Rn.
The projected gradient direction is well known. See, for instance, Bertsekas [2].

It satisfies dc(z) = 0 if and only if there exists no feasible descent direction from z
into L(z). We conclude from the facts above that at a feasible z, the KKT conditions
are equivalent to dc(z) = 0. If dc(z) �= 0, then ∇f0(z)

T dc(z) < 0.
Actually, this direction is the main construct used by Mart́ınez and Svaiter [12] to

define an optimality condition which lies between KKT and Fritz–John in generality:
a feasible point x̄ satisfies a Mart́ınez–Svaiter optimality condition if and only if

lim inf
x→x̄

‖dc(x)‖ = 0.(1.6)

This optimality condition is actually quite constructive: what we shall prove in this
paper is that our algorithms produce feasible limit points satisfying (1.6). These
points will be called stationary.

Here we have two possible courses of action: either we rely on their paper and
do not use the M-F condition, or use it and the fact that in this case KKT and
Mart́ınez–Svaiter are equivalent conditions. We choose the second option.

For completeness, we now prove this equivalence, using continuity properties of
the point to set map L(·) which are shown in the appendix. We keep this treatment
in the paper because we believe that it may have some interest in itself.

Lemma 1.1. Let x̄ be a feasible point satisfying an M-F condition. Then
(i) the map (1.5) is continuous at x̄;
(ii) x̄ satisfies the KKT conditions if and only if it satisfies the Mart́ınez–Svaiter

conditions.
Proof. (i) follows directly from Lemmas A.1 and A.2: under an M-F condition,

z 
→ L(z) is a continuous map at x̄ by Lemma A.1, and Lemma A.2 ensures that
z 
→ PL(z)(z −∇f0(z)) is continuous because ∇f0(·) is continuous.
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To prove (ii), note that for a continuous map dc(·), (1.6) is equivalent to dc(x̄) =
0, which as we saw above is equivalent to the KKT conditions, completing the
proof.

Notation. Given two nonnegative functions g1, g2 : X ⊆ Rn → R we say that
• g1(x) = O(g2(x)) (or equivalently g2(x) = Ω(g1(x))) in Γ ⊆ X if there exists

M > 0 such that for all x ∈ Γ, g1(x) ≤Mg2(x);

• g1(x) = o(g2(x)) in Γ ⊆ X if limg2(x)→0+
g1(x)
g2(x)

= 0.

2. The algorithm. In this section we present the method with no specification
of the internal algorithms used in the feasibility and optimality steps. Afterward we
state assumptions on the performance of these steps and prove that any sequence
generated by the algorithm has a stationary accumulation point. The next section
will show that quite usual methods for the internal steps fulfill these assumptions.

Algorithm 2.1. Filter algorithm.
Data: x0 ∈ Rn, F0 = ∅, F0 = ∅, α ∈ (0, 1).
k = 0
repeat

(f̃0, h̃) = (f0(x
k)− αh(xk), (1− α)h(xk)).

Construct the set F̄k = Fk
⋃ {(f̃0, h̃)}.

Define the set F̄k = Fk
⋃ {x ∈ Rn | f0(x) ≥ f̃0, h(x) ≥ h̃}.

Feasibility phase:
if h(xk) = 0, then set zk = xk

else compute zk /∈ F̄k such that h(zk) < (1− α) h(xk).
if impossible, then stop without success.

Optimality phase:
if zk is stationary, then stop with success
else compute xk+1 /∈ F̄k such that xk+1 ∈ L(zk) and f0(x

k+1) ≤ f0(z
k).

Filter update:
if f0(x

k+1) < f0(x
k), then

Fk+1 = Fk, Fk+1 = Fk (f0-iteration)
else

Fk+1 = F̄k, Fk+1 = F̄k (h-iteration)
k = k + 1.
Section 5 shows a graphical example, where each step of the algorithm is depicted.

The main feature of the algorithm is the construction of the filter: at the beginning
of each iteration, the pair (f0(x

k) − δ, h(xk) − δ), with δ = αh(xk), α ∈ (0, 1),
is temporarily introduced in the filter. After the complete iteration, this entry will
become permanent in the filter only if the iteration does not produce a decrease in f0.

The algorithm deals with the filter and with the forbidden set associated with
it. One must keep in mind that the forbidden set is never constructed, but helps the
understanding of the process.

Stopping rules. The algorithm can stop in two situations:
(i) A stationary point is obtained. In this case there is nothing to prove.
(ii) The feasibility algorithm fails. This may well happen, depending on the

method used. A common condition that may cause the failure is the existence of a
stationary point x̄ for h(·), with h(x̄) �= 0.

Elimination of filter entries. Whenever a new entry (f j0 , h
j) is introduced in

the filter, one can eliminate from it all entries dominated by the incoming one. This
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saves comparisons when checking whether a point is forbidden. See the example in
section 5.

From now on we shall assume that the algorithm generates infinite sequences (xk)
and (zk). We also assume that the hypotheses (H1)–(H3) are satisfied, and now we
state the main assumption on the performance of the algorithm at each iteration. We
shall postpone the discussion of this assumption until the end of this section, where
it will be thoroughly analyzed and replaced by simpler ones. In the next section we
shall state methods which satisfy this assumption.

The main hypothesis. Given an iterate xk, we start by defining the filter slack
at xk:

Hk = min
{

1,min{hj | (f j0 , hj) ∈ Fk, f
j
0 ≤ f0(x

k)}
}

,(2.1)

illustrated in Figure 2.1. Our main hypothesis is the following:
(H4) Given a feasible nonstationary point x̄ ∈ X, there exists a neighborhood V

of x̄ such that for any iterate xk ∈ V ,

f0(x
k)− f0(x

k+1) = Ω(
√

Hk).(2.2)

Note that (H4) is a local condition. The relation (2.2) means that there exists
M > 0 dependent on x̄ such that whenever xk is near x̄, f0(x

k)−f0(x
k+1) ≥M

√
Hk.

Hk z z+ λd

temporarypermanent

f

h

0

x indicates (f (x),h(x))
0

x

kk

k

Fig. 2.1. Example of the set F̄k and of the quantity Hk.

The following facts follow directly from the hypotheses and the construction made
by the algorithm.

Fact 2.2. Given k ∈ N, xk+p /∈ Fk+1 for all p ≥ 1.
Fact 2.3. Given k ∈ N, at least one of the following two situations occurs:

(i) h(xk+1) ≤ (1− α) h(xk).
(ii) f0(x

k+1) ≤ f0(x
k)− α h(xk).

Fact 2.4. Given k ∈ N, hj > 0 for all j ∈ N such that (f j0 , h
j) ∈ Fk. Conse-

quently, Hk > 0 for all k ∈ N.
By Algorithm 2.1, the pair (f̃0, h̃) is included in the filter at the end of the iteration

if and only if that iteration is an h-iteration. If h̃ = h(xk) = 0, then zk = xk and
f0(x

k+1) < f0(z
k), so the iteration k is an f0-iteration, and both statements in the

fact follow.
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Lemma 2.5. Let x̄ ∈ X be a nonstationary point. Then there exist k̄ ∈ N and
a neighborhood V of x̄ such that whenever k > k̄ and xk ∈ V , the iteration k is an
f0-iteration.

Proof. If x̄ ∈ X is a feasible point, then by (H4) and Fact 2.4 there exists a
neighborhood V of x̄ such that for all xk ∈ V ,

f0(x
k)− f0(x

k+1) = Ω(
√

Hk) > 0,

and k is an f0-iteration.
Assume that x̄ is infeasible, i.e., h(x̄) > 0. Assume by contradiction that there

exists an infinite set K ⊂ N such that xk
K→ x̄ and all iterations in K are h-iterations.

Since h and f0 are continuous functions, we have

h(xk)
K→ h(x̄) and f0(x

k)
K→ f0(x̄).

Then there must exist k1 ∈ K such that for all k ∈ K, k ≥ k1,

|h(xk)− h(x̄)| <
α

2
h(xk1) and |f0(x

k)− f0(x̄)| <
α

2
h(xk1).(2.3)

For any given k2 ∈ K such that k2 > k1,

|h(xk2)− h(x̄)| <
α

2
h(xk1) and |f0(x

k2)− f0(x̄)| <
α

2
h(xk1).(2.4)

Using the triangle inequality, (2.3), and (2.4), we have

|h(xk2)− h(xk1)| < α h(xk1) and |f0(x
k2)− f0(x

k1)| < α h(xk1).

Therefore xk2 ∈ Fk1+1, contradicting Fact 2.2 and completing the proof.
Lemma 2.6. Suppose that (xk)k∈N has no stationary accumulation point. Then

for k sufficiently large, all iterations are f0-iterations.
Proof. Assume by contradiction that there exists an infinity of h-iterations. Then

there exists an infinite set K1 ⊂ N such that for k ∈ K1, the iteration k is an h-
iteration. By hypothesis (H1), (xk)k∈K1 is bounded, and hence there exist K2 ⊂ K1

and x̄ ∈ Rn such that xk
K2→ x̄. From the previous lemma, x̄ must be a stationary

accumulation point, contradicting the hypothesis and completing the proof.
Theorem 2.7. The sequence (xk) has a stationary accumulation point.
Proof. Assume by contradiction that (xk)k∈N has no stationary accumulation

point. Then from Lemma 2.6 for k large (say, k > k1), all iterations are f0-iterations,
f0(x

k) decreases, and hence

f0(x
k+1)− f0(x

k)→ 0.(2.5)

For any k ≥ k1, Fk = Fk1 by construction, and using Fact 2.4, Hk ≥ Hk1 > 0.
The sequence (xk) cannot have a feasible accumulation point, because by the

hypothesis (H4), if there exist K1 ∈ N and a feasible x̄ ∈ X such that xk
K1→ x̄, then

for large k ∈ K1 (say, k > k2 > k1)

f0(x
k)− f0(x

k+1) = Ω(
√

Hk1) > 0,

contradicting (2.5).
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Now we prove the following claim: for large k ∈ N,

h(xk+1) ≤ (1− α) h(xk).(2.6)

Assume by contradiction that in some infinite set K2 ⊂ N,

h(xk+1) > (1− α) h(xk).

Using Fact 2.3, for k ∈ K2,

f0(x
k+1) ≤ f0(x

k)− α h(xk).

Using (2.5), we conclude that h(xk)
K2→ 0, which contradicts the fact that (xk) has no

feasible accumulation points.
Hence (2.6) holds and h(xk) converges linearly to zero. This again contradicts

the fact that (xk) has no feasible accumulation points, completing the proof.

The hypothesis (H4). This hypothesis is an assumption on each complete iter-
ation. Although it may be difficult to check for specific algorithms, its interpretation
is simple: near a feasible nonstationary point, the optimality step dominates, and the
reduction of f0 is large. The filter slack Hk indicates how much h is allowed to increase
in the tangential step, and, by being tangential, it is expected that h changes with
the square of the variation of x. In an efficient tangential step, f0 will vary linearly
with the variation of x, and then (H4) will be true.

Now we show how (H4) can be replaced by simpler hypotheses made separately
for the feasibility and optimality steps.

Feasibility step condition.
(H5) At all iterations k ∈ N, the feasibility step must satisfy

h(xk)− h(zk) = Ω(‖zk − xk‖).(2.7)

This can also be stated as

‖zk − xk‖ = O(h(xk)),(2.8)

because h(zk) ≥ 0. Note that since ∇f0(·) is bounded in X, by the mean-value
theorem, for all k ∈ N,

|f0(z
k)− f0(x

k)| = O(‖zk − xk‖).
Using this and (2.8) we have

|f0(z
k)− f0(x

k)| = O(h(xk)).(2.9)

Optimality step condition.
(H6) Given a feasible nonstationary point x̄ ∈ X, there exists a neighborhood V

of x̄ such that for any iterate xk ∈ V ,

f0(z
k)− f0(x

k+1) = Ω(
√

Hk).(2.10)

The assumption (H5) is used by Mart́ınez [9] and is a global condition. It means
that the feasibility step must be efficient, in the sense that the direction zk−xk must
be a good descent direction for h. Mart́ınez discusses this hypothesis and shows that it
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is satisfied under reasonable conditions. The assumption (H6) isolates the tangential
step and is local (associated with each given nonstationary feasible point). It has the
same interpretation as the one given for (H4), but now without the influence of the
feasibility step.

Remark. Note, however, that condition (H6) is not completely independent of
the feasibility phase, because it uses Hk, which is associated with xk. Also, the
condition is stated for xk ∈ V , and not zk ∈ V , but this is not important because
‖xk − zk‖ = O(h(xk)): if xk is near x̄, then the same is true for zk.

Before proving that (H5) and (H6) imply (H4), let us state one more hypothesis
which is not needed here but which is very reasonable and will be useful ahead. It is
similar to (H5) but applied to the objective function.

(H7) Given a feasible nonstationary point x̄ ∈ X, there exists a neighborhood V
of x̄ such that for any iterate xk ∈ V ,

f0(z
k)− f0(x

k+1) = Ω(‖xk+1 − zk‖).

With this hypothesis, (H6) can be stated as ‖zk − xk+1‖ = Ω(
√

Hk) and has a
simple interpretation: if the filter restricts the step (Hk is small), then this means
that the variation of h is of the order of ‖xk − xk+1‖2, which is quite reasonable in a
tangential step; otherwise (Hk is large), the condition means that ‖zk−xk+1‖ = Ω(1);
i.e., near a fixed nonstationary point, an unconstrained tangential step is always large.
Figure 2.1 illustrates the trajectory of the pair (f0(z

k + λd), h(zk + λd)) as λ grows
and d = xk+1 − zk.

Finally, we prove two lemmas, extending for the whole step the properties of the
tangential step near a feasible nonstationary point.

Lemma 2.8. (H5) and (H6) imply (H4).
Proof. Let x̄ be a nonstationary feasible point, and let V1 be the neighborhood

defined by (H6). Since ‖xk − zk‖ = O(h(xk)), there exists a neighborhood Ṽ1 ⊂ V1

of x̄ such that for xk ∈ Ṽ1, zk ∈ V1 and h(xk) < 1. Consider an iterate xk in Ṽ1 . By
definition of Hk, we have h(xk) ≤ Hk. By (H5) and (H6), there are positive constants
M and N such that

f0(x
k)− f0(x

k+1) = f0(x
k)− f0(z

k) + f0(z
k)− f0(x

k+1)

≥M
√

Hk −Nh(xk)

≥
(
M −N

√
h(xk)

)√
Hk.

By continuity of h at x̄, there exists a neighborhood V ⊂ Ṽ1 such that for any x ∈ V ,√
h(x) ≤ 0.5M/N . For any iterate xk in this neighborhood, f0(x

k) − f0(x
k+1) ≥

0.5M
√

Hk, completing the proof.
Lemma 2.9. Assume that (H5)–(H7) hold. Then given a feasible nonstationary

point x̄ ∈ X, there exists a neighborhood V of x̄ such that for any xk ∈ V ,

f0(x
k)− f0(x

k+1) = Ω(‖xk+1 − xk‖).

Proof. Let V1 and V2 be the neighborhoods of a feasible nonstationary point x̄
provided, respectively, by (H6) and (H7). As in the proof of Lemma 2.8, in some
neighborhood Ṽ1 ⊂ V1 of x̄, we have

f0(x
k)− f0(x

k+1) = f0(x
k)− f0(z

k) + f0(z
k)− f0(x

k+1),
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with |f0(x
k) − f0(z

k)| = O(h(xk)) by (2.9) and f0(z
k) − f0(x

k+1) = Ω(
√

Hk). We
easily deduce from these two facts that for xk sufficiently near x̄, say xk ∈ V3 ⊂ Ṽ1,
|f0(x

k)− f0(z
k)| ≤ 0.5(f0(z

k)− f0(x
k+1)). It follows that

f0(x
k)− f0(x

k+1) ≥ 0.5(f0(z
k)− f0(x

k+1)).(2.11)

We can also write

‖xk − xk+1‖ ≤ ‖xk − zk‖+ ‖zk − xk+1‖,

with ‖xk − zk‖ = O(h(xk)) by (H5) and ‖zk − xk+1‖ = Ω(f0(z
k)− f0(x

k+1)) by the
Lipschitz continuity of f0. Again by the same reasoning as in the proof of Lemma 2.9,
for xk ∈ Ṽ2 ⊂ V2, z

k ∈ V2, and we obtain from (H6) ‖zk−xk+1‖ = Ω(
√

Hk). As above,
we deduce that for xk sufficiently near x̄, say xk ∈ V4 ⊂ Ṽ2, ‖xk− zk‖ ≤ ‖zk−xk+1‖,
and hence

‖xk − xk+1‖ ≤ 2 ‖zk − xk+1‖.

Using in sequence (2.11), hypothesis (H7), and this expression in the neighborhood
V = V3 ∩ V4, we obtain

f0(x
k)− f0(x

k+1) ≥ 0.5(f0(z
k)− f0(x

k+1))

= Ω(‖zk − xk+1‖)
= Ω(‖xk − xk+1‖),

completing the proof.

3. Internal algorithms. In this section we discuss the internal steps used in
each iteration of the main algorithm. We assume that Algorithm 2.1 has generated
infinite sequences (xk) and (zk) and that hypotheses (H1)–(H3) are satisfied.

Feasibility step algorithm. The purpose of the feasibility phase is to find a
point zk such that h(zk) < (1−α)h(xk) and zk �∈ F̄k. The procedure used in this phase
could in principle be any iterative algorithm for decreasing h, and finite termination
should be achieved because as we have seen above all filter entries (f j0 , h

j) ∈ Fk have
hj > 0.

The feasibility step studied by Mart́ınez [9] satisfies assumption (H5) and applies
directly to our case. Thus we shall not describe the feasibility procedure in detail in
this paper.

Note that the feasibility algorithm may fail if h(·) has an infeasible stationary
point. In this case, the method stops without success.

Optimality step algorithm. The optimality step must find xk+1 in the lin-
earized set L(zk) such that f0(x

k+1) ≤ f0(z
k), and such that xk+1 �∈ F̄k. We shall

describe a very general trust region method for this and then show that the resulting
step satisfies the assumptions (H6) and (H7).

The main tool for the analysis (not necessarily for the construction) of such algo-
rithms is the projected Cauchy direction described in the introduction.

The projected gradient method. A very simple (but impractical) method for
the tangential step is the following: from zk, compute the projected Cauchy direction
dc(z

k) = PL(zk)(z
k−∇f0(z

k))−zk and perform an Armijo search along zk+λdc(z
k),

λ ≥ 0. The search must avoid forbidden points, which can be achieved by using in the
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Armijo search the objective θ(λ) = f0(z
k+λdc(z

k)) if zk+λdc(z
k) �∈ F̄k, θ(λ) = +∞

otherwise.
We shall not prove the efficiency of this tangential step, because it is a particular

case of the trust region iteration to be described from now on. The main requirement
on the trust region step will be that it produces a point at least as good as the so-called
Cauchy point, which lies on this projected gradient direction.

The quadratic model. Given zk ∈ X generated by Algorithm 2.1 in the feasi-
bility phase, the trust region algorithm associates to zk a quadratic model of f0,

x ∈ Rn 
→ mk(x) = f0(z
k) +∇f0(z

k)T (x− zk) +
1

2
(x− zk)TBk(x− zk),(3.1)

where Bk is an n × n symmetric matrix. This matrix may be an approximation of
∇2f0(z

k), or any other matrix, provided that the hypothesis (H8) below is verified.
Usually, Bk will be an approximation of the Hessian of some Lagrangian function, and
then mk deviates from a straightforward model of f0 by incorporating the curvature
along the manifold of the constraints. Although this may be essential in the design
of efficient algorithms, this discussion is out of the scope of this paper.

(H8) There exists β > 0 such that the quadratic model (3.1) satisfies ‖Bk‖ ≤ β for
all k ∈ N.

The trust region step uses a radius ∆ > 0 and computes a step d(zk,∆) ∈ Rn
such that ‖d(zk,∆)‖ ≤ ∆. We define the predicted reduction produced by the step
d(zk,∆) as

pred(zk,∆) = mk(z
k)−mk(z

k + d(zk,∆))(3.2)

and the actual reduction as

ared(zk,∆) = f0(z
k)− f0(z

k + d(zk,∆)).(3.3)

Lemma 3.1. Consider zk ∈ X and d(zk,∆) ∈ Rn generated by the trust region
algorithm. Then

ared(zk,∆) = pred(zk,∆) + o(zk,∆),(3.4)

where

lim
∆→0+

o(zk,∆)

∆
= 0

uniformly in zk ∈ X.
Proof. From (3.2)

−pred(zk,∆) = ∇f0(z
k)T d(zk,∆) + 1

2d(zk,∆)TBkd(zk,∆)

= ∇f0(z
k)T d(zk,∆) + O(∆2)

because ‖d(zk,∆)‖ ≤ ∆ and ‖Bk‖ ≤ β. From (3.3) and (1.3),

−ared(zk,∆) = ∇f0(z
k)T d(zk,∆) + o(zk,∆),

where

lim
∆→0+

o(zk,∆)

∆
= 0.
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This limit is uniform in zk ∈ X because ∇f0(·) is Lipschitz continuous in X. Hence

ared(zk,∆) = pred(zk,∆) + O(∆2)− o(zk,∆),

completing the proof.
In the optimality step algorithm, which we will discuss below, we made the fol-

lowing choices which simplify the treatment:

(1) Each trust region computation starts with a radius ∆ ≥ ∆min, where ∆min > 0
is fixed. The choice of ∆ is irrelevant for the theory, and it usually comes from
the former iteration. The use of this minimum radius ∆min simplifies the treat-
ment substantially. In well-designed trust region algorithms for unconstrained
problems this is not needed, but the convergence proofs become quite involved
(see [13, Theorem 4.7]).

(2) A step d(zk,∆) is accepted only if the sufficient decrease condition is satisfied:

ared(zk,∆) > η pred(zk,∆)(3.5)

for a given η ∈ (0, 1).
(3) The trust region computation solves approximately the problem

minimize mk(x)
subject to x ∈ L(zk),

‖x− zk‖ ≤ ∆,
(3.6)

where ‖ · ‖ is any norm in Rn.

Now we explain what we mean by “solving approximately.” Given z ∈ X and the
set L(z), the projected gradient direction is defined by

dc(z) = PL(z)(z −∇f0(z))− z.(3.7)

Define

ϕ(z) = − ∇f0(z)
T dc(z)

‖dc(z)‖ .

Then ϕ is the descent rate of f0 along dc. As usual, we denote dkc = dc(z
k), ϕk = ϕ(zk).

As we saw in the introduction, ϕ(z) > 0 whenever z is a feasible nonstationary point.
Now we use known results about the minimization of mk(·) along a direction; see

the discussion on the Cauchy point in [13]. Defining the generalized Cauchy point as
the minimizer of mk(·) along dc in the trust region {x ∈ Rn | ‖x− zk‖ ≤ ∆},

xc = argmin
{
mk(x) | ‖x− zk‖ ≤ ∆, x = zk + λdkc , λ ≥ 0

}
,

we know that

mk(z
k)−mk(xc) ≥ ξϕk

2
min

{
ϕk

‖Bk‖ , ‖d
k
c‖, ∆

}
,

where ξ depends on the norms used. Using hypothesis (H8), this can be rewritten as

mk(z
k)−mk(xc) ≥ ξϕk

2
min

{
ϕk

β
, ‖dkc‖, ∆

}
.(3.8)

We accept as an approximate solution of (3.6) any feasible solution for this prob-
lem satisfying (3.8).

After stating the trust region step we shall study its properties.
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Algorithm 3.2. Optimality step.
Data: η ∈ (0, 1), ∆min > 0, zk /∈ F̄k, ∆ = ∆0 ≥ ∆min.
repeat

Compute d = d(zk,∆) such that ‖d‖ ≤ ∆, zk + d ∈ L(zk) and

pred(zk,∆) ≥ ξϕk

2
min

{
ϕk

‖Bk‖ , ‖d
k
c‖,∆

}
.

Set ared(zk,∆) = f0(z
k)− f0(z

k + d).
if zk + d /∈ F̄k and ared(zk,∆) > η pred(zk,∆)

set xk+1 = zk + d, ∆k = ∆, and exit with success
else ∆ = ∆/2.
Our task now is proving that this algorithm satisfies the assumptions (H6) and

(H7) made for the optimality step.
Lemma 3.3. For any z ∈ X, d ∈ Rn such that (z + d) ∈ L(z),

|h(z + d)− h(z)| = O(‖d‖2).

Proof. From (1.3), for any z ∈ X, d ∈ Rn, i = 0, 1, . . . ,m,

fi(z + d)− fi(z) ≤ ∇fi(z)
T d + O(‖d‖2).

Since (z + d) ∈ L(z), by the definition of L(z) given in (1.4), we have for i = 1, . . . ,m

fi(z) +∇fi(z)
T d ≤ f+

i (z),

and hence

fi(z + d) ≤ f+
i (z) + O(‖d‖2).

We must prove that

f+
i (z + d) ≤ f+

i (z) + O(‖d‖2).(3.9)

If fi(z+d) < 0 and i ∈ I, this is true because the right-hand side is positive. Otherwise
f+
i (z + d) = fi(z + d). Using (3.9) in the norm definition we set

‖f+(z + d)‖ = ‖f+(z)‖+ O(‖d‖2),

completing the proof.
Now we study the optimality step near a nonstationary feasible point x̄ ∈ X. The

first lemma says that if we ignore the filter, then the trust region step is large near x̄.
Lemma 3.4. Let x̄ ∈ X be a feasible nonstationary point satisfying an M-F

condition. Then there exist a neighborhood Ṽ of x̄, ∆̃ ∈ (0,∆min), and a constant
c̃ > 0 such that for any zk ∈ Ṽ ,

(i) for any ∆ > 0, pred(zk,∆) ≥ c̃ min{∆, ∆̃};
(ii) for any ∆ ∈ (0, ∆̃), ared(zk,∆) > η pred(zk,∆) ≥ ηc̃ ∆.
Proof. From the generalized Cauchy decrease condition (3.8), which is satisfied

by construction at each iteration,

pred(zk,∆) ≥ ξϕ(zk)

2
min

{
ϕ(zk)

β
, ‖dkc‖, ∆

}
.
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From Lemma 1.1 we deduce that z 
→ ‖dc(z)‖ and z 
→ ϕ(z) = − ∇f0(z)
T dc(z)

‖dc(z)‖
are continuous at x̄. Hence there exists a neighborhood Ṽ of x̄ such that for zk ∈ Ṽ ,
ϕ(zk) ≥ ϕ(x̄)/2 and ‖dc(zk)‖ ≥ ‖dc(x̄)‖/2. Thus, for zk ∈ Ṽ ,

pred(zk,∆) ≥ ξϕ(x̄)

4
min

{
ϕ(x̄)

2β
,
‖dc(x̄)‖

2
, ∆

}
.

This can be written as pred(zk,∆) ≥ c̃ min{∆1,∆}, proving (i).
From Lemma 3.1, for any k ∈ N and ∆ > 0,

ared(zk,∆) = pred(zk,∆) + o(zk,∆)

= η pred(zk,∆) + (1− η) pred(zk,∆) + o(zk,∆),

where lim∆→0+
o(zk,∆)

∆ = 0 uniformly in zk. For ∆ ≤ ∆1, pred(zk,∆) ≥ c̃ ∆ and then

ared(zk,∆) ≥ η pred(zk,∆) + (1− η)c̃ ∆ + o(zk,∆).

For ∆ sufficiently small, say, ∆ ≤ ∆̃ ≤ ∆1, (1− η)c̃ ∆ + o(zk,∆) ≥ 0, completing the
proof.

Algorithm 3.2 in iteration k starts with ∆0 ≥ ∆min and iterates by setting ∆j =
2−j∆0, j = 0, 1, . . . , and computing for each ∆j the step d(zk,∆j). Whenever ∆j <
∆̃, the condition ared(zk,∆j) > η pred(zk,∆j) is satisfied; the radius ∆j can only be
rejected if zk + d(zk,∆j) ∈ F̄k.

By construction, zk �∈ F̄k. Since F̄k is a closed set, for ∆j sufficiently small,
zk + d(zk,∆j) /∈ F̄k. This shows that the algorithm always terminates.

Lemma 3.5. Let x̄ ∈ X be a feasible nonstationary point satisfying an M-F
condition, and assume that (2.7) holds. Then there exists a neighborhood V of x̄ such
that for xk ∈ V ,

f0(z
k)− f0(x

k+1) = Ω(
√

Hk),(3.10)

f0(z
k)− f0(x

k+1) = Ω(‖xk+1 − zk‖),(3.11)

where xk+1 = zk + d(zk,∆) is computed by Algorithm 3.2.
Proof. By a usual argument, it is enough to prove that for any subsequence

(xk)k∈K converging to x̄, (3.10) and (3.11) are true for large k ∈ K.

Assume that xk
K→ x̄, where K ⊂ N. It follows that zk

K→ x̄, because by (2.8)

‖xk − zk‖ = O(h(xk))
K→ 0.

Let Ṽ ⊂ X and ∆̃ > 0 be the neighborhood of x̄ and radius given by Lemma 3.4.
For large k ∈ K, say k ∈ K1 ⊂ K, zk ∈ Ṽ . Let us now consider an iteration k ∈ K1,
and denote (f̃0, h̃) = (f0(x

k)−αh(xk), (1−α)h(xk)) the temporary entry in the filter.
Algorithm 3.2 starts with a radius ∆0 ≥ ∆min and computes d(zk,∆j), ∆j =

2−j∆0, j = 0, 1, . . ., until zk + d(zk,∆j) /∈ F̄k and ared(zk,∆j) > η pred(zk,∆j).
Then ∆k = ∆j . Let us define ∆̂ as the first ∆j such that

ared(zk,∆j) > η pred(zk,∆j) and(3.12)

zk + d(zk,∆j) /∈ F̄k or f0(z
k + d(zk,∆j)) ≥ f̃0.(3.13)

Let us denote d̂ = d(zk, ∆̂) and x̂ = zk + d̂. Note that ∆̂ ≥ ∆k, and ∆̂ > ∆k happens

only when f0(x̂) ≥ f̃0. We shall derive properties of this step d̂ and then prove that
this situation cannot occur when xk is sufficiently near x̄.
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We shall first prove that x̂ satisfies the bounds in the lemma. Choose ∆̄ ≤ ∆̃/2.
(i) First, the easy case: assume that ∆̂ ≥ ∆̄. Then by Lemma 3.4,

pred(zk, ∆̂) ≥ c̃min{∆̂, ∆̃} ≥ c̃∆̄.

By definition of ∆̂, (3.12) holds, and hence

f0(z
k)− f0(x̂) ≥ ηc̃∆̄ = Ω(1).

It follows trivially that f0(z
k)− f0(x̂) = Ω(

√
Hk) and f0(z

k)− f0(x̂) = Ω(‖xk − x̂‖),
because in both cases the right-hand side is bounded in X.

(ii) Now, assume that ∆̂ < ∆̄. Then the radius 2∆̂ < 2∆̄ ≤ ∆̃ < ∆min does not
satisfy (3.13) (and was rejected by Algorithm 3.2). By Lemma 3.4,

ared(zk, d(zk, 2∆̂)) > η pred(zk, d(zk, 2∆̂)),

and it follows from (3.13) that zk + d(zk, 2∆̂) ∈ F̄k and f0(z
k + d(zk, 2∆̂)) < f̃0. By

definition of Hk, we must have h(zk + d(zk, 2∆̂)) ≥ Hk.
By construction, h(zk) < (1− α)h(xk) ≤ (1− α)Hk. Thus,

h(zk + d(zk, 2∆̂))− h(zk) ≥ αHk.

By Lemma 3.3,

h(zk + d(zk, 2∆̂))− h(zk) = O(‖d(zk, 2∆̂)‖2) = O(∆̂2),(3.14)

because ‖d(zk, 2∆̂)‖ ≤ 2∆̂. Merging these two results, we obtain αHk ≤ O(∆̂2), or

∆̂ = Ω(
√

Hk).(3.15)

Using Lemma 3.4 again with ∆̂ < ∆̄ < ∆̃,

f0(z
k)− f0(x̂) ≥ ηc̃Ω(

√
Hk) = Ω(

√
Hk),(3.16)

f0(z
k)− f0(x̂) ≥ ηc̃∆̂ = Ω(∆̂).(3.17)

So, the step d̂ satisfies the conditions in the lemma.
To finish the proof, we must show that for large k ∈ K2, f0(x̂) < f̃0, which implies

x̂ /∈ F̄k, and thus x̂ = xk+1. From (3.16) and (2.9), there are positive constants M
and N such that

f0(x̂) ≤ f0(z
k)−M

√
Hk,

f0(z
k) ≤ f0(x

k) + Nh(xk).

Adding these expressions, we get f0(x̂) ≤ f0(x
k)−M

√
Hk +Nh(xk). It is immediate

to check that for k ∈ K2 such that
√

h(xk) < M/(N + α) (say, k ∈ K3), f0(x̂) <

f0(x
k)− αh(xk) = f̃0, completing the proof.

4. Improvements. In this section we present three improvements to our treat-
ment. First, we improve the convergence analysis by showing that under hypotheses
(H5) and (H6) the objective function values always converge, thus very much lim-
iting the possibility of reaching nonstationary accumulation points, especially when
(H7) is added. Second, we show how a small change in the master algorithm totally
precludes the possibility of generating nonstationary accumulation points. Third, we
discuss a simplified optimality step using the Jacobian matrices already calculated in
the feasibility phase instead of the ones for zk.
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4.1. Convergence of the objective function values. We shall continue the
analysis of sequences (xk) generated by the algorithm in section 2. We start by
showing that f0 cannot grow much in a single iteration.

Lemma 4.1. Assume that hypothesis (H5) holds. Then there exists a constant
M > 0 such that in any iteration k,

f0(x
k+1) ≤ f0(x

k) + Mh(xk).

Proof. Note that f0(·) can only grow in an h-iteration. From (2.9), there exists
a constant M > 0 such that in any iteration k, f0(z

k) ≤ f0(x
k) + Mh(xk). By

construction, f(xk+1) ≤ f(zk), completing the proof.
Now we show that f0 cannot grow much in a sequence of iterations.
Lemma 4.2. Assume that hypotheses (H5) and (H6) hold. Consider a finite

sequence of iterations I = {k̄, k̄+1, . . . ,K} such that for k ∈ I, fk ≡ f0(x
k) ≥ f0(x

k̄),1

and let M > 0 be given by Lemma 4.1. Then

fK ≤ f k̄ +
M

α
h(xk̄).

Proof. Let us denote fk = f0(x
k), hk = h(xk) for k ∈ I and h̄ = hk̄. Let us also

define the following values:

φ0 = f k̄,

φ1 = φ0 + Mh̄,

φ2 = φ1 + M(1− α)h̄ = φ0 + [1 + (1− α)]Mh̄,

φj = φ0 +

(
j−1∑
i=0

(1− α)i

)
Mh̄ ≤ φ0 +

M

α
h̄.

We show the following: there exists an integer J ≤ K − k̄ such that the sequence has
at least one element in each interval [φj , φj+1], j = 0, 1, . . . , J , and fK ∈ [φJ , φJ+1].
Consequently fK will be smaller than φ0 + Mh̄/α.

First interval. The iteration k̄ is an h-iteration. The pair (φ0 − αh̄, (1 − α)h̄)
enters the permanent filter, and hence hk ≤ (1 − α)h̄ for k = k̄ + 1, . . . ,K and
f k̄+1 ≤ φ0 + Mh̄ = φ1 by Lemma 4.1.

Let k0 be the largest k ∈ I such that fk ≤ φ1 (several h-iterations and f0-
iterations may have occurred between k̄ and k0). If k0 = K, then the proof is complete.
Otherwise fk0+1 will be in the second interval.

Second interval. The iteration k0 is an h-iteration, and as for the first interval,

(fk0 − αhk0 , (1− α)hk0) ≤ (φ1, (1− α)2h̄)

enters the filter. Hence hk ≤ (1 − α)2h̄ for k = k0 + 1, . . . ,K and φ1 ≤ fk0+1 ≤
φ1 + M(1− α)h̄ = φ2 by Lemma 4.1.

Following the same process, we detect an h-iteration k1, the last in the second
interval. If k1 = K, the proof is complete. Otherwise fk1+1 will be in the third
interval, and so on until fkJ = fK is obtained. Then fK ≤ φ0 + Mh̄/α, completing
the proof.

We can now prove the main result in this analysis.

1Note that (fk) is not necessarily increasing, but k̄ is an h-iteration.
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Theorem 4.3. Assume that hypotheses (H5) and (H6) hold. Then the sequence
(f0(x

k)) converges.
Proof. Let us denote fk ≡ f0(x

k) for k ∈ N. The sequence (fk) is bounded by
hypothesis. We shall use the following fact, which is a simple exercise in sequences:
Given a sequence (fk) such that lim sup(fk) > lim inf(fk) + δ, δ > 0, it is possible to
extract two subsequences (fk)k∈K and (fk+jk)k∈K, K ⊂ N, such that for any k ∈ K,

fk+jk ≥ fk + δ,

fk+r ≥ fk for r = 1, . . . , jk.

In fact, to prove this fact it is enough to take a subsequence convergent to lim sup(fk)
and associate with each index (say, l) the last index l− jl such that f l−jl ≤ f l − δ, if
it exists. For large l, the construction will always be well defined.

Assume by contradiction that lim sup(fk) > lim inf(fk) + δ for some δ > 0, and
let the subsequence (fk)k∈K be given by the construction above. Then from Lemma
4.2, we conclude that for all k ∈ K, the iteration k is an h-iteration and

fk + δ ≤ fk+jk ≤ fk +
M

α
h(xk).(4.1)

Taking subsequences if necessary, assume that (xk)k∈K converges to a point x̄. Then

x̄ must be stationary by Lemma 2.5, and consequently h(xk)
K→ 0. This contradicts

(4.1), completing the proof.
Now we incorporate hypothesis (H7) and show that near a feasible nonstation-

ary point the objective function always changes by a large amount, precluding the
possibility of feasible nonstationary accumulation points.

Lemma 4.4. Assume that hypotheses (H5)–(H7) hold. Let x̄ ∈ X be a feasible
nonstationary point. Then there exist a neighborhood V of x̄ and δ > 0 such that
whenever xk ∈ V , there exists lk ∈ N such that

f0(x
k+lk) ≤ f0(x

k)− δ.(4.2)

Proof. Lemma 2.8 implies (H4). From (H4) and Lemma 2.9, there exist a neigh-
borhood V1 of x̄ and constants β1, β2 > 0 such that for all xk ∈ V1,

f0(x
k)− f0(x

k+1) ≥ β1 ‖xk+1 − xk‖,(4.3)

f0(x
k)− f0(x

k+1) ≥ β2

√
Hk,(4.4)

and the iteration k is an f0-iteration.
Consider ε > 0 such that Bε(x̄) = {x ∈ Rn | ‖x − x̄‖ < ε} ⊂ V1, and define

V = Bε/2(x̄).

Let k ∈ N be such that xk ∈ V . While xk+i, i = 1, 2, . . . , remain in Bε(x̄), the
iterations (k + i) are f0-iterations, and the filter does not change, i.e.,

Fk+i = Fk and Fk+i = Fk for i = 1, 2, . . . .

Consequently, from (4.4) f0 decreases by at least the constant amount β2

√
Hk. Hence,

there exists a finite lk ∈ N such that xk+lk /∈ Bε(x̄), xk+i ∈ Bε(x̄) for i = 0, 1, . . . , lk−1.
We have

‖xk+lk − xk‖ ≥ ε

2
(4.5)
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because xk ∈ Bε/2(x̄). Using (4.3), (4.5), and the triangle inequality,

f0(x
k)− f0(x

k+lk) =

lk−1∑
i=0

f0(x
k+i)− f0(x

k+i+1)

≥ β1

lk−1∑
i=0

‖xk+i+1 − xk+i‖

≥ β1 ‖xk − xk+lk‖
≥ β1ε/2,

completing the proof.
It is now trivial to prove (and this will be done in a moment) that feasible non-

stationary points cannot be accumulation points of the sequence. The presence of
nonstationary accumulation points is then reduced to a single seemingly unreason-
able possibility: there must exist an infeasible accumulation point, reached by large
jumps from points arbitrarily near a stationary solution, and the objective values
must converge. We now show how a simple change in the algorithm precludes this
possibility.

4.2. The modified algorithm. The only change is in the criterion used to
introduce a point in the filter, which now becomes the following:
Filter update: Given ε > 0

if f0(x
k+1) < f0(x

k)−min{(h(xk))2, ε}, then
Fk+1 = Fk, Fk+1 = Fk (f0-iteration)

else
Fk+1 = F̄k, Fk+1 = F̄k (h-iteration)

This implies that potentially more points will be introduced in the filter.
Let us now study the sequence (xk) generated by an application of the modified

algorithm. Near feasible nonstationary points, the criterion for entering the filter
becomes

f0(x
k)− f0(x

k+1) ≤ (h(xk))2 = o(h(xk)) = o(Hk).

The term o(Hk) vanishes when added to f0(x
k) − f0(x

k+1) = Ω(
√

Hk), and hence
Lemma 2.5 remains true. Lemma 2.6 and Theorem 2.7 also remain true; it is im-
mediate to check that the same proofs apply to the modified algorithm. Hence all
the results of section 2 remain valid, and the sequence has a stationary accumulation
point.

Theorem 4.5. Assume that hypotheses (H1)–(H3) and (H5)–(H7) hold. Then
any accumulation point of (xk) is stationary.

Proof. By contradiction, assume that xk
K→ x̄, x̄ nonstationary, K ⊂ N. From

Lemma 2.5, we know that for large k ∈ K all iterations are f0-iterations.
If h(x̄) > 0, then for large k ∈ K, h(xk) > h(x̄)/2 and hence f0(x

k+1) ≤ f0(x
k)−

δ1, with δ1 = min{ε, (h(x̄))2/4} > 0.
If h(x̄) = 0, then Lemma 4.4 ensures that for large k ∈ K, there exist δ2 > 0 and

jk ∈ N such that

f0(x
k+jk) ≤ f0(x

k)− δ2.

In any case, we construct a subsequence (xk+jk)k∈K such that for k ∈ K
f0(x

k+jk) ≤ f0(x
k)− δ,
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where δ = min{δ1, δ2} > 0.
It follows that the sequence f0(x

k) is not a Cauchy sequence, contradicting The-
orem 4.3 and completing the proof.

4.3. The simplified tangential step. In our algorithm the feasibility and tan-
gential steps are independent. This means that the Jacobians AE and AI must be
calculated both at xk and zk. In most algorithms based on feasibility and optimality
steps, the tangential step uses at zk the linear model computed at xk, reducing the
computations.

This makes sense if xk is near zk and if the feasibility algorithm has taken only
one step to reach zk from xk. If multiple steps were used, then the tangential step
can be simplified by approximating the Jacobians by the last ones computed in the
feasibility procedure.

We shall now change the tangential step and use the following maps, which asso-
ciate with each (z, x) ∈ R2n the set

L(z, x) = {y ∈ Rn | AE(x) (y − z) = 0, fI(z) + AI(x) (y − z) ≤ f+
I (z)}(4.6)

and the point

dc(z, x) = PL(z,x)(z −∇f0(z))− z.(4.7)

So, L(zk, xk) is the same as L(zk) given by (1.4), with AE(zk), AI(zk) replaced by
AE(xk), AI(xk). Similarly, the projected gradient direction is now projected into
L(zk, xk).

When xk
K→ x̄, x̄ ∈ X feasible, K ⊂ N, it is also true that zk

K→ x̄, because by
(2.8) ‖xk − zk‖ = O(h(xk)). So, we need the continuity of (4.6) and (4.7) at a pair
(x̄, x̄): this is guaranteed by straightforward changes in the proof of Lemma A.1.

The main change in the treatment is in Lemma 3.3, which now becomes the
following.

Lemma 4.6. For any z, x ∈ X such that ‖z − x‖ = O(h(x)) and d ∈ Rn such
that (z + d) ∈ L(z, x),

|h(z + d)− h(z)| = h(x) O(‖d‖) + O(‖d‖2).
Proof. From (1.3), for any z ∈ X, d ∈ Rn, i = 0, 1, . . . ,m,

fi(z + d)− fi(z) ≤ ∇fi(z)
T d + O(‖d‖2).

By the Lipschitz condition on ∇fi, i = 0, 1, . . . ,m,

‖∇fi(z)−∇fi(x)‖ = O(‖z − x‖) = O(h(x))

and

∇fi(z)
T d = ∇fi(x)T d + O(h(x)) ‖d‖

= ∇fi(x)T d + h(x) O(‖d‖).
Now, proceeding as in the proof of Lemma 3.3, we get

‖f+(z + d)‖ = ‖f+(z)‖+ h(x) O(‖d‖) + O(‖d‖2),
completing the proof.
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Lemma 3.4 is not affected by the changes, and we only need to change the proof
of Lemma 3.5.

The only place where Lemma 3.3 is used in the proof is in the expressions (3.14)
and (3.15). We will show now that with a good choice of the value ∆̄ (defined in the
beginning of the proof), (3.15) is still valid.

Let us modify (3.14), using Lemma 4.4:

αHk ≤ h(zk + d(zk, 2∆̂))− h(zk) = h(xk) O(‖d(zk, 2∆̂)‖) + O(‖d(zk, 2∆̂)‖2).
Since d(zk, 2∆̂) ≤ 2∆̂ and h(xk) < Hk,

Hk ≤ cHk∆̂ + O(∆̂2),

where c > 0 is a constant dependent only on x̄. For a choice of ∆̄ so that c∆̄ < 1/2,
we obtain

1

2
Hk = O(∆̂2),

which implies (3.15).
From this point on, the proof is identical, proving that the simplified algorithm

has the same convergence properties as the original one.

5. A graphical example. In this section we present a graphical example of the
mechanics of the algorithms. Consider the bidimensional problem

minimize x2

subject to f(x) = x2 + (2 + x1)cos(x1) = 0.

Figure 5.1 (as well as all figures to follow) shows the level curves of h(x) = |f(x)|
and a local minimizer. The figure on the right shows the pairs (f(x), h(x)).
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Fig. 5.1. The merit function forbids the local optimizer.

Using a merit function ψ(x) = f(x) + νh(x) with ν = 0.5, the figure shows
the forbidden points associated with the point (1,−4), i.e., the points x such that
ψ(x) ≥ ψ((1,−4)). Notice that the local optimizer is forbidden for this value of ν.
This happens because ν is too small, smaller than the KKT multiplier at the optimum.

Figure 5.2 shows the same situation for ν = 1.5, and now the local optimizer is
never forbidden. This is actually true for any value of ν ≥ 1, the value of the optimal
multiplier.

The following figures show some iterations of the filter method, programmed in
Matlab and using internal algorithms which are intentionally imprecise but satisfy all
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Fig. 5.2. Now the optimizer is not forbidden.
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Fig. 5.3. First iteration of a filter method.
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Fig. 5.4. Temporarily and permanently forbidden points after the first iteration.

the hypotheses. Figure 5.3 shows the first iteration. On the left are the temporarily
forbidden region associated with the first iterate and a feasibility step followed by
a tangential step. The figure on the right shows the filter: now F0 = ∅, and F̄0

contains only the point (f0(x
0)− αh(x0), (1− α)h(x0)). The pairs resulting from the

feasibility and tangential steps are also shown. For the tangential step, we show the
pairs corresponding to zk + λ(xk+1 − zk), λ ≥ 0.

The first iteration was an h-iteration, because f0(x
1) > f0(x

0). So, (f0(x
0), h(x0))

becomes a permanent entry in the filter. Figure 5.4 shows the second iteration, where
the permanently forbidden points and pairs are in the darker region.

The second iteration was also an h-iteration, and the permanent filter has two
points. The third iteration is an f0-iteration (see Figure 5.5).

After one more h-iteration (iteration 4), filter entries dominated by the new one
can be eliminated from the filter. Figure 5.6 shows the fifth iteration.
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Fig. 5.5. Third iteration: an f0-iteration.
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Fig. 5.6. Fifth iteration: two filter elements were eliminated.

Appendix. Continuity properties of maps. Let L : Rn → P(Rn) be the
map defined in (1.4),

z ∈ Rn 
→ L(z) = {x ∈ Rn | AE(z)(x− z) = 0, fI(z) + AI(z)(x− z) ≤ f+
I (z)},

where z 
→ AE(z) and z 
→ AI(z) are continuous.
We say that x ∈ Rn is an interior point of L(z) if x ∈ L(z) and fI(z)+AI(z)(x−

z) < f+
I (z).

Lemma A.1. Consider z̄ ∈ Rn such that AE(z̄) has linearly independent rows
and L(z̄) has an interior point (i.e., the M-F qualification condition is satisfied at z̄).
Then the point to set map L(·) is continuous at z̄.

Proof. Consider a sequence (zk) such that zk → z̄ and the sets L(zk).
(1) Upper semicontinuity: Let xk ∈ L(zk), k ∈ N, be such that xk → x̄. Using

the continuity of all functions involved in the definition of L(·), the fact that x̄ ∈ L(z̄)
is straightforward.

(2) Lower semicontinuity: Consider an arbitrary point x̄ ∈ L(z̄). We must exhibit
a sequence xk ∈ L(zk), k ∈ N, such that xk → x̄.

Define xk = PL(zk)(x̄), where PΓ(w) denotes the orthogonal projection of w ∈ Rn
onto the closed set Γ ⊂ Rn.

By contradiction assume that there exist an infinite set K ⊂ N and ε > 0 such
that for all k ∈ K, ‖xk − x̄‖ > ε. We shall establish a contradiction by obtaining
k ∈ K and a point wk ∈ L(zk) such that ‖wk − x̄‖ < ε.

Let y ∈ Rn be an interior point of L(z̄). Then for any λ ∈ (0, 1),

yλ = λ y + (1− λ)x̄

is an interior point of L(z̄). Choose λ such that ‖yλ − x̄‖ < ε/2, and define wk as
the projection of yλ onto {x ∈ Rn | AE(zk)(x − zk) = 0}. For zk sufficiently near z̄,
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AE(zk) has linearly independent rows, and the projection is given by

(yλ − wk) = AE(zk)T
(
AE(zk)AE(zk)T

)−1
AE(zk)(yλ − zk).

The projection is continuous at z̄, and hence yλ−wk → 0, because AE(z̄)(yλ− z̄) = 0.
From the continuity of AI and fI(z̄) + AI(z̄)(yλ − z̄) < f+

I (z̄) and the facts that

zk
K→ z̄ and wk

K→ yλ, for large k ∈ K

fI(zk) + AI(zk)(wk − zk) < f+
I (zk).

Thus, for large k ∈ K, we have wk ∈ L(zk) and ‖wk − yλ‖ < ε/2. For such wk,

‖x̄− wk‖ ≤ ‖x̄− yλ‖+ ‖yλ − wk‖ < ε,

completing the proof.
Lemma A.2. Let the point to set map z ∈ Rn 
→ L(z) ∈ P(Rn) and the function

z ∈ Rn 
→ p(z) ∈ Rn be continuous at z̄ ∈ Rn. Then z ∈ Rn 
→ PL(z) (p(z)) is
continuous at z̄.

Proof. Consider a sequence zk → z̄ ∈ Rn, xk = PL(zk) (p(zk)). We must prove

that xk → x̄ = PL(z̄) (p(z̄)).

From the lower semicontinuity of L(·), there exists a sequence yk ∈ L(zk) such
that yk → x̄. By definition of projection,

‖p(zk)− xk‖ ≤ ‖p(zk)− yk‖.(A.1)

Hence (p(zk) − xk) is bounded, and consequently (xk) is bounded. Consider
x̃ ∈ Rn and K ⊂ N such that (xk)

K→ x̃. Using the upper semicontinuity of L(·),
x̃ ∈ L(z̄), and hence by definition of projection,

‖x̃− p(z̄)‖ ≥ ‖x̄− p(z̄)‖.

Taking limits in (A.1) for k ∈ K, k →∞,

‖p(z̄)− x̃‖ ≤ ‖p(z̄)− x̄‖.

It follows that ‖p(z̄)− x̃‖ = ‖p(z̄)− x̄‖, and thus x̃ = x̄ by uniqueness of the projection
onto a convex set. This proves that x̄ is the unique accumulation point of (xk),
completing the proof.
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Abstract. The search directions in an interior-point method for large scale semidefinite pro-
gramming (SDP) can be computed by applying a Krylov iterative method to either the Schur com-
plement equation (SCE) or the augmented equation. Both methods suffer from slow convergence
as interior-point iterates approach optimality. Numerical experiments have shown that a diagonally
preconditioned conjugate residual method on the SCE typically takes a huge number of steps to con-
verge. However, it is difficult to incorporate cheap and effective preconditioners into the SCE. This
paper proposes to apply the preconditioned symmetric quasi-minimal residual (PSQMR) method to
a reduced augmented equation that is derived from the augmented equation by utilizing the eigen-
value structure of the interior-point iterates. Numerical experiments on SDP problems arising from
maximum clique and selected SDPLIB (SDP Library) problems show that moderately accurate so-
lutions can be obtained with a modest number of PSQMR steps using the proposed preconditioned
reduced augmented equation. An SDP problem with 127600 constraints is solved in about 6.5 hours
to an accuracy of 10−6 in relative duality gap.
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1. Introduction. Let Sn be the vector space of n× n real symmetric matrices
endowed with the inner product A•B = Trace(AB). Given a positive integer n, we let
n̄ = n(n+ 1)/2. We use the notation X � 0 (X � 0) to denote that X is symmetric
positive semidefinite (symmetric positive definite). Given k × l matrices G,H, we
define the linear map G©∗ H : Sl → Sk by G©∗ H(M) = (HMGT + GMHT )/2 for
M ∈ Sl.

Consider the standard primal semidefinite program (SDP)

minX , C •X,
A(X) = b,

X � 0,
(1)

where A : Sn → R
m is the linear map defined by

A(X) = [A1 •X · · · Am •X]
T
.

Here b ∈ Rm and A1, . . . , Am,C ∈ Sn are given data. The dual of (1) is

maxy,Z , bT y,

AT y + Z = C,

Z � 0,

(2)
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where AT : Rm → Sn is the adjoint of A defined by

AT y =

m∑
k=1

ykAk.

In this paper, we assume that (1) and (2) are strictly feasible, and the set {A1, . . . , Am}
is linearly independent in Sn.

We consider primal–dual path-following methods [31, 34] for SDP using the
Nesterov–Todd direction in which the general framework in each iteration is as fol-
lows. Given a current iterate (X, y, Z) and a centering parameter σ ∈ [0, 1), where
X,Z � 0, the methods find a search direction (∆X,∆y,∆Z) ∈ Sn × Rm × Sn so as
to generate the next iterate by solving the following linear system of equations:

A∆X = Rp := b−AX,(3a)

AT∆y + ∆Z = Rd := C − Z −AT y,(3b)

E∆X + F∆Z = Rc := σµI − Σ2,(3c)

where µ = X • Z/n, E = G−T ©∗ GZ, and F = G−TX©∗ G. Here G is the unique
matrix such that Σ := GZGT = G−TXG−1 is a positive definite diagonal matrix.
Note that W := GTG is the NT scaling matrix such that WZW = X; see [31].
Instead of solving (3a)–(3c) directly, one can substitute ∆Z = Rd −AT∆y from (3b)
into (3c) and solve the following augmented system:

−U∆X +AT∆y = R := Rd −F−1Rc = Rd − σµX−1 + Z,(4a)

A∆X = Rp,(4b)

where U := F−1E = W−1©∗ W−1.
One can further eliminate ∆X from the augmented system above by substituting

∆X = U−1(AT∆y − Rd + F−1Rc) from (4a) into (4b) to obtain the following Schur
complement equation (SCE) involving only ∆y:

AU−1AT︸ ︷︷ ︸
M

∆y = h := Rp +AU−1Rd −AE−1Rc.(5)

The m ×m matrix M is known as the Schur complement matrix, and its (i, j) ele-
ment is given by Mij = Ai •WAjW . Most implementations of interior-point methods
for SDP use (5) to compute the search direction. Generally, (5) is solved by a di-
rect method by first computing and storing the matrix M and then computing its
Cholesky factorization to find ∆y. Substantial reduction in the cost of computing
M is possible when the SDP data is sparse; see [13] for the details. However, M is
generally fully dense even when the data is sparse. Thus when m is larger than a
few thousands, it is impossible to store M in the memory of most current worksta-
tions. Furthermore, the m3/3 flops required to compute the Cholesky factor of M
also becomes prohibitively expensive. Consequently, when m is large, it is extremely
difficult to solve (5) by a direct method, and a Krylov subspace iterative method such
as the preconditioned conjugate gradient (PCG) or preconditioned conjugate residual
(PCR) method becomes necessary, as these methods do not require M to be stored
explicitly.

Earlier research works on using the PCG or PCR method to solve the SCE aris-
ing from large scale SDPs include [8, 20, 22, 23, 35]. As the coefficient matrix M is
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dense, traditional preconditioning techniques that are designed for sparse matrices,
such as incomplete Cholesky factorizations, cannot be readily applied to M with-
out incurring a significant computational cost and memory usage. Thus in all the
above-mentioned papers, except [20], only simple preconditioners such as diagonal or
block-diagonal preconditioners were used. In [20], attempts had been made to use
incomplete Cholesky factors as preconditioners, but no substantial improvement over
diagonal preconditioners was observed. The preconditioners just mentioned are inef-
fective when the Schur complement matrix becomes increasingly ill-conditioned as the
interior-point iterates approach an optimal solution. As a result, in all these works,
only low accuracies in the duality gap can be achieved at reasonable costs.

The difficulties in constructing cheap and effective preconditioners for the SCE
lead one to believe that second-order methods like those presented in [1, 18, 21, 31, 34]
are too expensive for large scale SDPs. Thus, despite the success of second-order
methods in solving small and medium size SDPs, attention has been diverted to
first-order methods for large scale SDPs. Currently, there are three main classes of
first-order methods. In [16], the dual SDP (2) was first formulated as a nonsmooth
convex optimization problem and was solved by a spectral bundle (SB) method based
on standard nonsmooth optimization techniques. On the other hand, Burer, Monterio,
and Zhang [4] converted the dual SDP into a nonconvex nonlinear program in Rn++×
R
m and used a log-barrier method to solve the resulting nonlinear program. The

third class of first-order methods [3] is based on the primal SDP (1). In this class of
methods, the primal positive semidefinite constraintX � 0 is eliminated by employing
the factorization X = V V T for some matrix V ∈ Rn×p, where p is an estimate on the
rank of an optimal primal solution. Such a technique transforms (1) into a nonlinear
nonconvex program. In [3], an infeasible first-order augmented Lagrangian method
(called BMPR method) is used to solve the resulting nonlinear program.

However, there are recent advances in using second-order methods to solve large
SDPs. In [30], Toh and Kojima constructed preconditioners for the SCE based on
orthogonal projectors derived from the eigenvalue structure of W . It was shown that
these preconditioners can improve the convergence rate of the PCR method substan-
tially in solving the SCE. However, each preconditioning step is rather expensive.
Furthermore, the construction of these preconditioners requires the computation of a
dense p̄× p̄ matrix and its Cholesky factorization. Though p̄ is generally a few times
smaller than m, it does grow proportionately with m, and when m is very large,
computing these preconditioners will require excessive memory space and time. Such
a drawback poses a limit on the size of SDPs one can solve using these precondi-
tioners. In [14], Fukuda, Kojima, and Shida used a predictor-corrector approach to
numerically trace the central path in the space of Lagrange multipliers. The method
uses the BFGS quasi-Newton method in the corrector procedure to locate points on
the central path and the PCG method with BFGS preconditioners to solve a Schur
complement-type equation in the predictor procedure. Preliminary numerical results
on small SDPs show that this approach is promising for solving large scale SDPs, but
careful numerical implementations have yet to be done to actualize this goal.

We should mention that in a primal–dual interior-point method, memory prob-
lems can also occur when n is large, since the primal variable X is typically dense
even if the SDP data and the resulting dual variable Z are sparse. However, the root
cause of this problem lies in the primal-dual framework used to solve the SDP, and it
cannot be easily overcome by simply using an iterative method to compute the search
direction. For such a problem, it is more appropriate to use methods, such as the
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dual scaling method in [7], that avoid the need to form X explicitly. Another method
that can alleviate the memory demand of the primal variable is the matrix completion
method proposed in [15]. However, the implementation of the latter method is more
complex than the dual scaling method.

In this paper, we will mainly focus on SDPs where m is large but n is moderate,
say, less than 1000. We propose an efficient preconditioned iterative method to solve
the augmented system (4a)–(4b). Like the SCE, the augmented system also suffers
from ill-conditioning as the interior-point iterates approach optimality. We overcome
the ill-conditioning problem by transforming the original augmented system into a
better-conditioned reduced augmented system based on a newly developed block pre-
conditioning technique in [29]. The basic idea is to analyze the eigenvalue structure
of the (1,1) block U of the augmented system and eliminate the small eigenvalues
by applying the technique in [29]. For SDP problems that are primal and dual non-
degenerate and strict complementarity holds at optimality, the coefficient matrix of
the reduced augmented system is shown to have a bounded condition number even
as the interior-point iterates approach optimality. Like the Schur complement ma-
trix, the reduced augmented matrix is dense even if the SDP data is sparse. Thus,
to further improve the conditioning of the reduced augmented matrix without incur-
ring significant computational and storage costs, we are restricted to consider only
diagonal preconditioners. Fortunately, the class of diagonal preconditioners that are
proposed in [26] for augmented systems arising from soil consolidation problems in
civil engineering is also quite effective for our reduced augmented systems. To solve
the reduced augmented system, we use the preconditioned symmetric quasi-minimal
residual (PSQMR) method [12].

Because the cost of applying the PCR method to the SCE is typically two to three
times cheaper than that of applying the PSQMR method to the reduced augmented
system, it is desirable to use the SCE unless the Schur complement matrix is highly
ill-conditioned. By using the hybrid approach of applying the PCR method to the
SCE when interior-point iterates are not close to optimality and switching to the
PSQMR method applied to the reduced augmented system when they are, we are
able to solve some large SDPs arising from maximum clique problems of graphs,
and selected SDPLIB problems [6] to moderately high accuracies, but at reasonable
costs. Numerical experiments indicate that our method is promising in solving large
SDPs. But there is a slight limitation in that our method cannot be adapted for the
HRVW/KSH/M direction [17, 18, 21] for reasons that we will explain later.

The paper is organized as follows. In section 2, the derivation of the reduced
augmented system is presented. The implementation of the PCR method for solving
the SCE is given in section 3. The implementation of the PSQMR method for solv-
ing the reduced augmented system and the class of diagonal preconditioners used are
presented in section 4. This is followed by numerical results in section 5 showing the
effectiveness of the preconditioned reduced augmented systems on two collections of
SDPs arising from maximum clique problems of graphs. Section 6 presents further
numerical results for SDPs (selected SDPLIB problems and those arising from fre-
quency assignment problems) whose degeneracies make them potentially ill-suited for
computation via an iterative solver. In section 7, we conclude our paper.

We end this section by introducing some notations. We let svec : Sn → R
n̄ be

the isometry defined by

svec(U) =
[
U11,

√
2U12, U22,

√
2U13,

√
2U23, U33, . . . ,

√
2U1n, . . . , Unn

]T
.(6)



674 KIM-CHUAN TOH

Note that for K,L ∈ Sn, K •L = svec(K)T svec(L). We let smat : Rn̄ → Sn be the
inverse of svec. We define the linear map vec : Rm×n → R

mn by

vec(U) = [U11, . . . , Um1, U12, . . . , Um2, . . . , U1n, . . . , Umn]
T

(7)

and tvec : Rn×n → R
n̄ by

tvec(U) = [U11, U12, U22, U13, U23, U33, . . . , U1n, . . . , Unn]
T
.(8)

For a vector d, diag(d) denotes the diagonal matrix with d as its diagonal. The
Matlab notation [x ; y] is used to denote the column vector formed by appending a
column vector y to x. We use ‖ · ‖ to denote the vector and matrix 2-norms, and we
use ‖ · ‖F to denote the Frobenius norm. The notation diag(P,Q) is used to denote
the block-diagonal matrix with P and Q as its diagonal blocks. The condition number
κ(P ) of a matrix P is defined to be the ratio between the largest and smallest singular
values of P . For a vector x ∈ Rn++, the notation x = Θ(ε) means that there exist
positive constants γ1, γ2 such that γ1ε ≤ xi ≤ γ2ε for all i = 1, . . . , n.

2. Reduced augmented system. Given an interior-point iterate (X, y, Z), let
µ := X •Z/n and W be the associated NT scaling matrix. Let W−1 = QDQT be the
eigenvalue decomposition of W−1. Then the eigenvalue decomposition of U is given
by

U = (Q©∗ Q)(D©∗ D)(QT ©∗ QT ).(9)

With the above decomposition, the augmented system (4a)–(4b) can be rewritten as
follows:

−(D©∗ D) (QT∆XQ) + (QT ©∗ QT )AT ∆y = QTRQ,(10a)

A(Q©∗ Q) (QT∆XQ) = Rp.(10b)

Suppose (X, y, Z) is close to some optimal solution (X∗, y∗, Z∗) of the primal and
dual SDP. If (X∗, Z∗) satisfies the strict complementarity condition defined in [2] (that
is, rank(X∗) + rank(Z∗) = n), then as (X,Z) approaches this optimal solution (i.e.,
when µ is sufficiently small), the eigenvalues of W−1 will separate into two groups,
one with small magnitude of the order Θ(

√
µ) and the other with large magnitude of

the order Θ(1/
√
µ). Now suppose that W−1 has a group of p small eigenvalues and

a group of q := n− p large eigenvalues. Let the vector of small and large eigenvalues
be d1 and d2, respectively. We can rewrite W−1 as

W−1 = Q1D1Q
T
1 + Q2D2Q

T
2 ,(11)

according to the partition D = diag(D1, D2) and Q = [Q1 Q2], with D1 = diag(d1) ∈
R
p×p, Q1 ∈ Rn×p corresponding to the small eigenvalues, and D2 = diag(d2) ∈ Rq×q,

Q2 ∈ Rn×q corresponding to the large eigenvalues. When µ is sufficiently small, the
number of eigenvalues of W−1 with magnitudes Θ(

√
µ) is equal to the rank of X∗.

Thus p is usually equal to the rank of X∗. In actual computation, however, we can
set p to be any integer such that p̄ ≤ m, and it is not necessary to know the exact
rank of X∗. Recall that by a theorem of Pataki [25], there exists an optimal solution
X∗ whose rank p satisfies the inequality p̄ ≤ m. Thus it is legitimate to choose p such
that p̄ ≤ m in actual computation.
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Based on the eigenstructure of W−1, we will now propose a method to overcome
the ill-conditioning problem in the SCE and augmented equation when µ is small.
We start from the augmented system (10a)–(10b) by diagonalizing U based on the
eigenvalue decomposition of W−1.

As a reminder, we have d1 = diag(D1) and d2 = diag(D2).
Theorem 2.1. With the partition in (11), the augmented system (10a)–(10b)

can be rewritten as

(12)


−D11 BT11
−D12 BT12

−D22 BT22
B11 B12 B22







svec(QT1 ∆XQ1)
√
2vec(QT1 ∆XQ2)

svec(QT2 ∆XQ2)

∆y




=




svec(QT1RQ1)
√
2vec(QT1RQ2)

svec(QT2RQ2)

Rp



,

where

BT11 =
[
svec(QT1 A1Q1) · · · svec(QT1 AmQ1)

] ∈ Rp̄×m,
BT12 =

[ √
2vec(QT1 A1Q2) · · · √2vec(QT1 AmQ2)

] ∈ Rpq×m,
BT22 =

[
svec(QT2 A1Q2) · · · svec(QT2 AmQ2)

] ∈ Rq̄×m,
and

D11 = diag(tvec(d1d
T
1 )), D12 = diag(vec(d1d

T
2 )), D22 = diag(tvec(d2d

T
2 )).

Proof. Using the fact that for any U ∈ Sn,

QTUQ =

[
QT1 UQ1 QT1 UQ2

QT2 UQ1 QT2 UQ2

]
,

we get from (10a) the following equations:

−D1(Q
T
1 ∆XQ1)D1 +

m∑
k=1

(QT1 AkQ1)∆yk = QT1RQ1,

−D1(Q
T
1 ∆XQ2)D2 +

m∑
k=1

(QT1 AkQ2)∆yk = QT1RQ2,

−D2(Q
T
2 ∆XQ2)D2 +

m∑
k=1

(QT2 AkQ2)∆yk = QT2RQ2.

It is readily shown that these three equations correspond to the first three block
equations in (12). Now, from (10b), we have

A(Q©∗ Q)(QT∆XQ) =




(QTA1Q) • (QT∆XQ)

...

(QTAmQ) • (QT∆XQ)
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=




(QT
1 A1Q1) • (QT

1 ∆XQ1) + 2(Q
T
1 A1Q2) • (QT

1 ∆XQ2) + (Q
T
2 A1Q2) • (QT

2 ∆XQ2)

...

(QT
1 AmQ1) • (QT

1 ∆XQ1) + 2(Q
T
1 AmQ2) • (QT

1 ∆XQ2) + (Q
T
2 AmQ2) • (QT

2 ∆XQ2)




= B11svec(QT
1 ∆XQ1) +

√
2B12vec(QT

1 ∆XQ2) + B22svec(QT
2 ∆XQ2).

This corresponds to the last block equation in (12).
Through (10a)–(10b), the system (12) is orthogonally equivalent to the augmented

system (4a)–(4b), and thus the condition numbers of the coefficient matrices are the
same. To improve the conditioning of (12), we apply the block splitting introduced in
[29] to (12) to get a smaller reduced augmented system as shown in the next theorem.

Theorem 2.2. Let β ∈ Rp be a given positive vector. Suppose

E11 = diag(tvec(ββT + βdT1 + d1β
T )),(13)

S11 := D11 + E11 = diag(tvec((d1 + β)(d1 + β)T )).(14)

The augmented system (12) can be solved via the following reduced augmented system:
 H B11S

−1/2
11

S
−1/2
11 BT11 −Ψ




︸ ︷︷ ︸
K


 ∆y

S
−1/2
11 E11svec(Q

T
1 ∆XQ1)




=


 Rp + Bdiag(S−1

11 , D−1
12 , D−1

22 )svec(QTRQ)

S
−1/2
11 svec(QT1RQ1)


 ,(15)

where B = [B11 B12 B22], and

H = B diag(S−1
11 , D−1

12 , D−1
22 )BT , Ψ = D11E

−1
11 .

Note that

H = A(P1©∗ P1)AT +A((2P2 + P3)©∗ P3)AT ,(16)

where

P1 = Q1 diag(β + d1)
−1QT1 , P2 = Q1 D

−1
1 QT1 , P3 = Q2 D

−1
2 QT2 .

Note that once ∆y and QT1 ∆XQ1 are computed, QT∆XQ can be computed as follows:

QT1 ∆XQ2 = D−1
1

(
QT1 (AT∆y −R)Q2

)
D−1

2 ,(17)

QT2 ∆XQ2 = D−1
2

(
QT2 (AT∆y −R)Q2

)
D−1

2 .(18)

Proof. The derivation of (15) follows readily by applying Theorem 2.1 in [29] to
the system in (12). Next we will derive (16). Note that

H = B11diag(S
−1
11 )BT11 + B12diag(D−1

12 )BT12 + B22diag(D−1
22 )BT22.

We shall just show that B11diag(S
−1
11 )BT11 = A(P1©∗ P1)AT , and it is easy to simplify

the other two terms similarly. For any v ∈ Rm, we have

BT11v = svec(G),

diag(S−1
11 )BT11v = svec(ΛGΛ),
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where G = QT1 (AT v)Q1 and Λ = diag(β + d1)
−1. Hence

B11diag(S
−1
11 )BT11v = B11svec(ΛGΛ) =




svec(QT1 A1Q1)
T svec(ΛGΛ)

...

svec(QT1 AmQ1)
T svec(ΛGΛ)




=




A1 •Q1ΛQ
T
1 (AT v)Q1ΛQ

T
1

...

Am •Q1ΛQ
T
1 (AT v)Q1ΛQ

T
1


 =




A1 • P1(AT v)P1

...

Am • P1(AT v)P1




= A(P1©∗ P1)AT v.

Thus, we have derived the first term in (16).
Notice that the reduced augmented matrix K ∈ Sm+p̄ in (15) is smaller in size

compared to the augmented matrix in (12), whose dimension is m + n̄. It is also
potentially better conditioned, as shown in Theorem 2.4 below. Before we present that
theorem, it is beneficial for us to recall the concept of primal and dual nondegeneracy
introduced in [2].

Theorem 2.3 (see [2]). Suppose (X∗, Z∗) satisfies the strict complementarity
condition. Then X∗ is primal nondegenerate if and only if the matrix [B11 B12] has
full row rank, and a necessary condition for primal nondegeneracy is n̄− q̄ ≥ m. The
solution Z∗ is dual nondegenerate if and only if the matrix B11 has full column rank,
and a necessary condition for dual nondegeneracy is p̄ ≤ m.

Proof. The proof follows readily from Theorems 6 and 9 in [2].
Theorem 2.4. Under the assumption that (X∗, Z∗) satisfies the strict comple-

mentarity condition, and the primal and dual nondegeneracy conditions defined in [2],
the coefficient matrix K in (15) has a condition number that is bounded independent
of µ (when µ is small).

Proof. When µ is sufficiently small and (X,Z) is close to a strictly complementary
optimal solution (X∗, Z∗) with p = rank(X∗), by Theorem 6 in [2], primal nonde-
generacy implies that [B11 B12] has full row rank; and by Theorem 9 in [2], dual
nondegeneracy implies that B11 has full column rank. By Theorem 3.2 in [29], the
theorem follows.

For an SDP that is primal and dual nondegenerate, and where the strict comple-
mentarity condition holds, Theorem 2.4 implies that one can expect a Krylov subspace
method applied to (15) to have a better rate of convergence than one that is applied
to (5). There is another advantage in using the reduced augmented system. Because
the (1,1) and (1,2) blocks of K are not ill-conditioned, the task of constructing effec-
tive preconditioners for K is likely to be easier than that for the highly ill-conditioned
matrix M .

Remark. (a) Notice that the derivation of the reduced augmented system (15)
depends on our ability to find the eigenvalue decomposition of W−1©∗ W−1. For
the HRVW/KSH/M direction described in [17, 18, 21], W−1©∗ W−1 is replaced by
(X©∗ Z−1)−1. Unfortunately, unlike the former, the eigenvalue decomposition of the
latter is not readily available even if those of X and Z are known. For this reason, the
augmented system (12) cannot be reduced to the form in (15) for the HRVW/KSH/M
direction. However, for the dual scaling direction in [7], W−1©∗ W−1 is replaced by
Z©∗ Z, and the corresponding reduced augmented system can be found readily once
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the eigenvalue decomposition of Z is known.
(b) For the numerical experiments in this paper, the vector β in Theorem 2.2 is

chosen to be

β = max(1,max(d1)) (1, 1, . . . , 1)
T .

(c) Our reduced augmented system (15) can also be applied to interior-point
methods for linear programs (LPs). Such a system can potentially produce a search
direction that is numerically more accurate than that computed straightforwardly
from the SCE (5). This topic is currently being investigated. Another method that
had been proposed to overcome the stability/accuracy problems encountered when
solving the SCE arising from LP is the stabilization method of Kovacevic-Vujcic and
Asic [33]. The stabilization method in [33] is based on a novel pivoting strategy
to avoid excessive loss of numerical accuracies due to the mixing of elements corre-
sponding to large and small scaling factors when the Schur complement matrix M
is factorized. As far as we know, the reduced augmented system approach and the
stabilization method in [33] are not directly related, although both can be used to
avoid excessive numerical errors for computing the search directions in interior-point
methods for LP.

2.1. Nondegeneracy and condition number of the reduced augmented
matrix. Now we present some examples to illustrate the validity of Theorem 2.4,
as well as examples to demonstrate what may happen to the condition number κ(K)
when the nondegeneracy conditions in Theorem 2.4 do not hold. In order to know the
ranks of X∗ and Z∗ unambiguously, we need to compute very accurate approximate
optimal solutions. But it is well known that the standard approach of computing
the search direction from (5) in each interior-point iteration usually does not deliver
very accurate approximate optimal solutions because of highly ill-conditioned Schur
complement matrices. Thus we have to rely on an alternative approach to compute
the search directions.

It turns out that the approach of computing the directions from (15) via the
LDLT factorization of K can usually deliver more accurate approximate solutions
than the standard approach. On a limited set of examples that we have tested,
the accuracy gained is usually more than two digits in the infeasibilities and duality
gap. Better accuracy is plausible because K is potentially better conditioned than
M , and so the search direction computed via (15) is potentially more accurate than
that computed from (5). When the assumption in Theorem 2.4 holds, the condition
number of the coefficient matrix in (15) is bounded independent of µ. This implies
that the unknowns ∆y and QT1 ∆XQ1 can be computed accurately even when µ is
small. From (18), it is easy to see that QT2 ∆XQ2 can be computed accurately since
d2 = Θ(1/

√
µ). From (17), we have

(QT1 ∆XQ2)ij =

(
QT1 (AT∆y −R)Q2

)
ij

d
(i)
1 d

(j)
2

;

thus QT1 ∆XQ2 can also be computed accurately since d
(i)
1 d

(j)
2 = Θ(

√
µ)Θ(1/

√
µ) =

Θ(1). Therefore ∆X can be computed accurately from QT1 ∆XQ1, Q
T
1 ∆XQ2, and

QT2 ∆XQ2. Finally, ∆Z can also be computed accurately from ∆Z = Rd −AT∆y.
As our purpose in this paper is the application of iterative methods for solving

large SDPs, we shall not discuss further the issue of solving an SDP via (15) by using
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the LDLT factorization. We leave this issue for a more detailed investigation in the
future.

To illustrate the validity of Theorem 2.4, in Table 1 we give the condition number
of K in (15) and M in (5) for some of the interior-point iterates generated by the
SDP software, SDPT3 version 3.0 [32]. The SDP problem is the problem theta2

(with m = 498 and n = 100) taken from the SDPLIB [6]. The default parameters
in SDPT3 are used. But when µ is small, the search direction in each interior-point
iteration is computed via (15) instead of via the system (5) that is implemented in
SDPT3.

The table shows that κ(K) is bounded at the level 2.5 × 106 when µ = X • Z/n
is approaching 0, while κ(M) grows like 3× 104/µ. In the table,

φ = max

( ‖Rp‖
1 + ‖b‖ ,

‖Rd‖F
1 + ‖C‖F

)
.(19)

The approximate optimal solution (X, y, Z) of theta2 is strictly complementary,
and it satisfies the necessary conditions in Theorem 2.3 for primal and dual nondegen-
eracy. Suppose the eigenvalues of X and Z are ordered in decreasing and increasing
order, respectively. We have mini{λi(X) + λi(Z)} = 3.2× 10−3, and p = 16, q = 84.
For this problem, the matrix [B11 B12] ∈ Rm×1480 has singular values in the range
[0.1, 4.1], while those of B11 ∈ Rm×136 are contained in [5× 10−2, 4.1].

Table 1
Condition number of reduced augmented and Schur complement matrices corresponding to

interior-point iterates generated by SDPT3 for the SDP problem theta2. The approximate opti-
mal solution has a relative duality gap of 3.6e-14. This SDP is primal and dual nondegenerate.

Iteration X • Z/n φ κ(K) κ(H) κ(B11S−1/2
11 ) κ(M)

13 2.8e-08 4.8e-15 2.0e+06 1.9e+06 6.8e+01 1.4e+12

14 3.0e-09 4.0e-16 2.4e+06 2.3e+06 6.8e+01 1.0e+13

15 2.5e-10 4.0e-16 2.5e+06 2.3e+06 6.9e+01 9.9e+13

16 5.9e-12 4.2e-16 2.5e+06 2.4e+06 6.9e+01 4.2e+14

17 1.7e-13 2.1e-16 2.4e+06 2.3e+06 6.9e+01 4.5e+14

Next we give an example to illustrate what may happen to κ(K) when the condi-
tions in Theorem 2.4 are not satisfied. For this purpose, we use the SDPLIB problem
qap6 (with m = 229 and n = 37). The approximate solution delivered by SDPT3 is
strictly complementary with mini{λi(X) + λi(Z)} = 5.0× 10−4, and we have p = 12
and q = 25. Although n̄− q̄ = 378 ≥ m satisfies the necessary condition in Theorem
2.3 for primal nondegeneracy, the problem qap6 is in fact nearly primal degenerate,
because the matrix [B11 B12] ∈ Rm×378 has 13 small singular values that are in the
range [1× 10−5, 7× 10−5], while the rest are in the range [1.2× 10−1, 4.2× 101]. Note
that qap6 is dual nondegenerate, which can be seen from the fact that the singular
values of B11 are contained in the interval [7.0× 10−2, 2.3× 101].

Because of near primal degeneracy, we see from Table 2 that for qap6, κ(K) is
no longer bounded independent of µ due to the fact that the (1,1) block H of K is
nearly singular. In fact, both κ(K) and κ(H) have order equal to the reciprocal of the
machine precision (≈ 2× 10−16). This example illustrates that for a nearly primal or
dual degenerate problem, the matrix K can also be very ill-conditioned, just like the
matrix M .
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Table 2
Same as Table 1 but for the SDP problem qap6. The approximate optimal solution has a relative

duality gap of 6.5e-9. This SDP appears to be primal degenerate but dual nondegenerate.

Iteration X • Z/n φ κ(K) κ(H) κ(B11S−1/2
11 ) κ(M)

24 1.8e-06 5.2e-12 8.6e+16 7.3e+16 3.2e+02 1.7e+20

25 4.6e-07 4.8e-12 4.6e+17 9.7e+17 3.2e+02 5.0e+20

26 1.9e-07 1.1e-11 4.8e+18 2.9e+18 3.2e+02 1.2e+20

27 1.0e-07 7.5e-12 7.5e+18 1.6e+18 3.2e+02 1.3e+20

28 7.6e-08 4.3e-12 3.0e+18 1.0e+19 3.2e+02 2.0e+21

29 6.7e-08 7.3e-12 2.2e+18 1.1e+18 3.2e+02 3.3e+20

Our third example is the problem mcp250-1 (with m = 250, n = 250) from
SDPLIB. This problem has a strictly complementary approximate optimal solution,
with p = 25 and q = 225. This problem is primal nondegenerate since the singular
values of [B11 B12] are contained in the interval [1.3× 10−1, 1]. But it is clearly dual
degenerate since p̄ > m violates the necessary condition for dual nondegeneracy in

Theorem 2.3. This is also reflected in Table 3 with κ(B11S
−1/2
11 ) numerically equal to

infinity.

Table 3
Same as Table 1 but for the SDP problem mcp250-1. The approximate optimal solution has a

relative duality gap of 1.5e-13. This SDP is primal nondegenerate, but it is dual degenerate.

Iteration X • Z/n φ κ(K) κ(H) κ(B11S−1/2
11 ) κ(M)

14 2.4e-07 1.1e-15 1.1e+11 9.8e+03 Inf 5.9e+08

15 3.8e-08 9.7e-16 2.9e+11 6.1e+03 Inf 2.3e+09

16 3.3e-09 6.4e-16 5.3e+12 7.2e+03 Inf 2.8e+10

17 1.0e-10 6.3e-16 1.9e+14 7.7e+03 Inf 9.0e+11

18 3.3e-12 6.7e-16 5.5e+15 7.3e+03 Inf 2.7e+13

A closer inspection of the problem data of mcp250-1 reveals that it has 20 con-
straints that fix for a given i, Xii = 1, and Xij = 0 for j �= i. That is, X is actually
a block-diagonal matrix where one of the blocks is the 20 × 20 identity matrix. The
presence of such a fixed block makes the problem dual degenerate. By removing the
fixed block, the resulting problem has m = 230 and n = 230. The new problem
becomes dual nondegenerate, and now the condition number of K is bounded inde-

pendent of µ, as shown in Table 4. The singular values of B11S
−1/2
11 are now in the

interval [3.5 × 10−2, 2.2 × 10−1]. This example shows that preprocessing SDP data
is an important step to avoid degeneracies, and hence also potential numerical diffi-
culties. Preprocessing to avoid degeneracies is especially important when one chooses
to use an iterative solver to compute the search direction since degeneracies can seri-
ously increase the condition number of the coefficient matrix, and hence worsen the
convergence rate.

Our last example is on an SDP that is both primal and dual degenerate. This
problem, fap01, is an SDP relaxation of a frequency assignment problem considered
in [5]. This SDP has a semidefinite variable in S52

+ and a linear variable in R1160
+ .

The number of constraints is m = 1378. The approximate optimal solution is strictly
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Table 4
Same as Table 3 for the SDP problem mcp250-1 but with fixed diagonal block removed. The

approximate optimal solution has a relative duality gap of 5.7e-14. This SDP is primal and dual
nondegenerate.

Iteration X • Z/n φ κ(K) κ(H) κ(B11S−1/2
11 ) κ(M)

14 2.5e-07 6.4e-16 2.7e+06 9.2e+03 6.2e+00 4.5e+08

15 3.5e-08 6.8e-16 1.2e+06 6.1e+03 6.2e+00 2.2e+09

16 2.7e-09 6.1e-16 1.7e+06 7.5e+03 6.2e+00 3.7e+10

17 9.0e-11 7.0e-16 1.8e+06 7.8e+03 6.2e+00 1.0e+12

18 3.0e-12 7.7e-16 1.7e+06 7.3e+03 6.2e+00 3.0e+13

19 2.3e-13 6.7e-16 1.7e+06 7.5e+03 6.2e+00 3.9e+14

complementary with mini{λi(X) + λi(Z)} = 3.9 × 10−4. We have p = 48, q = 4
for the semidefinite block, and p = 30, q = 1130 for the linear block. The matrix
[B11 B12] ∈ Rm×1368 has 6 singular values that are smaller than 5 × 10−16, with
the rest contained in the interval [8.2 × 10−2, 2]. It is clear that the problem is
primal degenerate since [B11 B12] does not have full row rank. The matrix B11 has
4 singular values that are smaller than 10−11, with the rest lying in the interval
[1.7×10−2, 2]. Since B11 has very small singular values, the problem can be considered

dual degenerate. The condition numbers of K, H, and B11S
−1/2
11 in Table 5 clearly

reflect the fact that the problem is primal and dual degenerate.

Table 5
Same as Table 1 but for the SDP problem fap01. The approximate optimal solution has a

relative duality gap of 1.6e-14. This SDP appears to be both primal and dual degenerate.

Iteration X • Z/n φ κ(K) κ(H) κ(B11S−1/2
11 ) κ(M)

24 2.8e-08 8.7e-11 4.8e+06 5.7e+06 9.1e+13 5.6e+12

25 1.3e-09 8.1e-16 5.0e+11 2.2e+08 9.7e+14 1.4e+15

26 3.0e-11 1.9e-15 1.5e+13 1.0e+10 1.4e+14 1.9e+18

27 6.6e-13 2.1e-15 3.9e+15 4.5e+11 2.2e+13 4.0e+16

28 1.6e-14 2.1e-15 3.7e+16 1.4e+13 5.2e+11 4.5e+17

29 3.9e-16 1.7e-15 2.1e+18 3.5e+14 6.2e+10 1.5e+20

The reader would have noticed that for all the examples, except qap6, we are
able to compute very accurate approximate solutions (with φ and relative duality gap
both smaller than 2× 10−13). It is rather surprising that this is possible for the last
example since K is highly ill-conditioned.

3. Solving the SCE via the conjugate residual method. The use of an
iterative method to solve the SCE (5) requires less computer memory compared to
using a direct method. It also has the added advantage that one can terminate the it-
erative solver whenever an approximate solution of (5) is deemed sufficiently accurate.
This can lead to a significant saving in the CPU time required in each interior-point
iteration, especially during the initial phase, where accurate computation of the search
direction is not necessary. In [19], Kojima, Shida, and Shindoh (KSS) proposed in-
exact search directions, where (3a) and (3b) are satisfied exactly but (3c) is relaxed.
If ∆y is an approximate solution of (5), the KSS inexact search direction requires
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the computation of the matrix U := AT (AAT )−1(h−M∆y) for computing ∆X and
determining whether ‖(E∆X + F∆Z)−Rc‖F = ‖E(U)‖F is sufficiently small. How-
ever, such a computation can be expensive when either AAT is not easily invertible
or when computing E(U) is expensive. Due to these drawbacks, we decide to use the
heuristic rule described below to compute an inexact search direction.

Suppose ∆y satisfies (5) only approximately. Let r = h −M∆y. Given such an
∆y, we compute ∆Z and ∆X via the following equations:

∆Z = Rd −AT∆y, ∆X = E−1Rc − E−1F∆Z.(20)

Then (∆X,∆y,∆Z) satisfies (3a)–(3c) approximately, where the residual vector is

[r ; 0 ; 0]
T
. As our interest is to solve (3a)–(3c), it is reasonable to insist that the

relative residual norm of the approximate solution (∆X,∆y,∆Z) must be smaller
than some prescribed threshold, say θ. Let

‖(Rp, Rd, Rc)‖ := max(‖Rp‖, ‖Rd‖F , ‖Rc‖F ).(21)

That is, we want

‖r‖ ≤ θ ‖(Rp, Rd, Rc)‖.(22)

Note that for the dual variables, once dual feasibility is achieved, it is maintained
because (3b) is satisfied exactly. However, for the primal variable, primal infeasibility
may deteriorate since (3a) is satisfied only approximately. But we can ensure that
the primal infeasibility is reduced proportionately to ‖(Rp, Rd, Rc)‖ in each iteration.
Suppose the new primal iterate is X+ = X+α∆X, where α ∈ (0, 1] is the step-length;
then we have

‖b−AX+‖ ≤ (1− α)‖Rp‖+ α‖r‖ ≤
(
1− α(1− θ)

)
‖(Rp, Rd, Rc)‖.

The behavior of the preconditioned conjugate residual (PCR) method on the SCE
was discussed in detail in [30]. Because the matrix M is dense, it is difficult to adapt
existing preconditioning techniques that are mainly designed for sparse matrices toM ,
and the only obvious and easily implementable choices are diagonal preconditioners.
In [30], the PCR method was applied to following preconditioned version of (5):

L−1ML−T︸ ︷︷ ︸
M̂

(LT∆y) = L−1h,(23)

where L = diag(
√
M11, . . . ,

√
Mmm). It was observed that the PCR method on (23)

is highly efficient in computing an approximate solution when the iterate (X, y, Z) is
not close to optimality, i.e, when the duality gap X • Z is not too small. However,
when the iterate is close to optimality, the PCR method becomes exceedingly slow
because the matrix M̂ becomes very ill-conditioned (with a condition number of the
order 1/µ), and also a more accurate solution of the system (23) is needed when the
duality gap is small.

As we shall compare with the reduced augmented equation approach in section
4, the strength of solving (23) by an iterative method such as the PCR method
lies in its simplicity and inexpensive matrix-vector products (where each cost about
3ρsn

3 +2ρtmn2 flops; ρs and ρt are defined in section 4.1). Thus it is desirable to use
the PCR method whenever its convergence rate is not too slow.
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4. Computing the search direction via the reduced augmented system.
Assume that ∆y and ∆X are computed inexactly from Theorem 2.2 and the residual
vector from (15) is denoted by [

ξ

η

]
.(24)

Then simple algebraic manipulations show that we have

−U∆X +AT∆y = R−Q1 smat(S
1/2
11 η)QT1 ,

A∆X = Rp − ξ +A svec(Q1smat(S
−1/2
11 η)QT1 ).

Now if we compute ∆Z via the equation

∆Z = Rd −AT∆y −Q1 smat(S
1/2
11 η)QT1 ,(25)

then we have

E∆X + F∆Z = F
(
U∆X +Rd −AT∆y −Q1 smat(S

1/2
11 η)QT1

)
= F (Rd −R) = Rc,

where R is defined as in (4a). Thus, for the inexact search direction (∆X,∆y,∆Z)
computed from (15) and (25), it satisfies (3a)–(3c) approximately, and the residual
vector is 


ξ −A svec(Q1smat(S

−1/2
11 η)QT1 )

Q1 smat(S
1/2
11 η)QT1

0


 .(26)

Again, we want the relative residual norm of our inexact search direction
(∆X,∆y,∆Z) to be sufficiently small. That is, we want

max(‖ξ −A svec(Q1smat(S
−1/2
11 η)QT1 )‖, ‖S1/2

11 η‖) ≤ θ ‖(Rp, Rd, Rc)‖.(27)

Remark. Notice that we computed ∆Z as in (25) so as to satisfy the linearized
complementarity equation (3c) exactly. However, if it is desirable to maintain dual
feasibility, then we can compute ∆Z via ∆Z = Rd − AT∆y to make (3b) exact but

(3c) approximately satisfied. In the latter case, if we let V = smat(S
1/2
11 η), then the

residual associated with (3c) is given by

F(Q1V Q
T
1 ) = [Σ(GQ1)V (GQ1)

T + (GQ1)V (GQ1)
TΣ]/2,

which can be computed in 2p2n + pn2 flops (with symmetry taken into account) if
GQ1 is precomputed. Because of the extra cost incurred in the present case, this
explains why we prefer to compute ∆Z via (25).

Observe that (3a) and (3b) are not satisfied exactly; primal and dual feasibilities
are not maintained even if the iterate happens to be feasible. However, in each
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iteration, the infeasibilities are reduced proportionately with ‖(Rp, Rd, Rc)‖. From
(26) and (27), the primal infeasibility for the new iterate satisfies

‖b−AX+‖ ≤ (1− α)‖Rp‖+ α‖ξ −A svec(Q1smat(S
−1/2
11 η)QT1 )‖

≤
(
1− α(1− θ)

)
‖(Rp, Rd, Rc)‖.

It is easy to see that a similar inequality holds for the new dual iterate.

4.1. Preconditioned symmetric quasi-minimal residual method. Recall
that the reduced augmented equation (15) is symmetric but indefinite. In this sub-
section, we will discuss an appropriate Krylov subspace method to solve such a linear
system.

The standard Krylov subspace methods for solving a symmetric indefinite system
are SYMMLQ and MINRES due to Paige and Saunders [24]. When preconditioning
is used, both methods above require the preconditioner to be symmetric positive def-
inite, and this excludes the use of indefinite preconditioners that are perhaps more
appropriate since the coefficient matrix itself is indefinite. Here, we choose the precon-
ditioned symmetric quasi-minimal residual (PSQMR) method proposed in [12] that
allows the use of symmetric indefinite preconditioners. Note that if no preconditioning
is used, the SQMR method and MINRES are mathematically equivalent.

Let I be the set of indices of nonzero elements of the matrix
∑m
k=1 |Ak| (where

|Ak| is the matrix whose (i, j) element is the magnitude of the corresponding element
of Ak), and

ρs =

(
number of nonzero elements of the matrix

m∑
k=1

|Ak|
)
/n2,

ρt = (total number of nonzero elements of A1, A2, . . . , Am)/(mn2).

Note that ρs and ρt are the ratios of the actual number of nonzero elements over the
maximum possible number of nonzero elements.

In each PSQMR iteration, we compute the matrix-vector product K[u ; v] for the
reduced augmented system (15) via the procedure described in Table 6, where the
cost is also estimated.

The cost of a matrix-vector product for the reduced augmented system is 3p2n+
3ρs pn

2+7ρs n
3+2ρtmn2, as estimated in Table 6. In contrast, the corresponding cost

for the SCE (5) is 3ρsn
3+2ρtmn2, as estimated in [30]. In our numerical experiments

in section 5, we have found that the cost of the former range from 2 to 4 times more
expensive than the latter. For the projected SCE approach proposed in [30], a matrix-
vector product would cost about 6p2n+ 6ρspn

2 + 4ρsn
3 + 6ρtmn2 + 2p̄2, and this is

usually more expensive than that for the reduced augmented system.
In the current literature, most preconditioning techniques are proposed for a

sparse matrix that is stored explicitly, and preconditioners such as incomplete Cholesky
factors are generally quite effective for matrices that are not too ill-conditioned [28].
However, as the reader may have recalled, our matrix K is dense and is not formed ex-
plicitly. Thus, most of the current preconditioning techniques [28, Chapter 10] are not
applicable to our linear system. The only obvious and easily implementable choices
for our system are diagonal preconditioners.

In [26], some effective diagonal preconditioners were proposed for a symmetric
indefinite matrix of the form K that arises from the finite element solution of Biot’s



SOLVING LARGE SDP VIA AN ITERATIVE SOLVER 685

Table 6
Computational cost required in the matrix-vector product for (15).

Computing Number of flops required

T := ATu ρtmn2

{U(1)ij | (i, j) ∈ I}, where U1 := P1©∗ P1(T ) 3ρs n3

{U(2)ij | (i, j) ∈ I}, where U2 := (2P2 + P3)©∗ P3(T ) 4ρs n3

{U(3)ij | (i, j) ∈ I}, where U3 := Q1©∗ Q1smat(S
−1/2
11 v) 2p2n+ ρs pn2

A(U1 + U2 + U3) ρtmn2

S
−1/2
11 svec(QT

1 ©∗ QT
1 (T ))−Ψv p2n+ 2ρs pn2

K[u ; v] 3p2n+ 3ρs pn2 + 7ρs n3 + 2ρtmn2

soil consolidation equations. Those diagonal preconditioners were derived from some
theoretical forms that are proven to have tight eigenvalue clustering properties. By
adapting those preconditioners for our matrix K, we get

 diag(H) 0

0 α diag
(
S
−1/2
11 BT11diag(H)−1B11S

−1/2
11 +Ψ

)

 ,(28)

where α is a given scalar. In our numerical experiments in section 5, we take α = −20.
Notice that the diagonal preconditioner (28) is indefinite.

5. Numerical experiments on SDPs arising from maximum clique prob-
lems. We will now present numerical experiments to show the convergence behavior
of the PCR method on (23) versus the PSQMR method on (15).

All the numerical results presented in this paper are computed using Matlab
on a 700MHz HP workstation c3700 with 1G of RAM. Note that computational
intensive parts such as the PCR and PSQMR methods are implemented in C but
with interface to Matlab. To give an idea of the speed of this machine, we run the
Matlab benchmark command, bench. Compared to a 300MHz SGI R1200 IRIX 64
machine, our machine is about 2 times faster on LU factorization and has about the
same speed on sparse matrix operations.

The interior-point method we used is the primal–dual path-following method
(without corrector) described in [32], except that the direct solver used to solve (5) is
replaced by an iterative solver. The following starting iterates (slightly modified from
the default in [32]) are used throughout:

y0 = 0, X0 = ξ I, Z0 = η I,

where

ξ = nmax

(√
n, n max

k

{
1 + |bk|

1 + ‖Ak‖F

})
,

η =
√
n max

(
n, ‖C‖F , max

k
{‖Ak‖F }

)
.

For easy reference, we will call the interior-point method in [32] that uses the
PCR method to solve the preconditioned SCE (23) Algorithm PFsch (“PF” for “path-
following”). The parameter θ in (22) is set to 0.01. In view of the efficiency of the
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PCR method in computing an inexact search direction via (23) when the duality gap
X • Z is not too small, for the experiments we use a hybrid method that combines
the advantage of applying the PCR method to (23) and the PSQMR method to (15)
for computing the search direction in each interior-point iteration. The details of the
hybrid method are given in Algorithm PFaug in Table 7. The parameter θ in (27) is
set to θ = 0.05.

Our test problems consist of the following two collections of SDPs:
1. the first consists of SDPs arising from maximum clique problems on randomly

generated graphs;
2. the second consists of SDPs associated with maximum clique problems for

graphs from the Second DIMACS Implementation Challenge [9].
We choose these SDP collections because they are likely to be primal and dual nonde-
generate. These are problems with m large and n moderate. Thus they are also well
suited for solution via a primal–dual interior point method with an iterative solver.
There are two commonly used equivalent SDP relaxations [27, equations (2.6) and
(2.9)] for the maximum clique problems. The relaxation we used for a given simple
undirected graph (G,V ) follows equation (2.6) in [27]. That is,

min{−(eeT ) •X : Trace(X) = 1, Xij = 0 ∀ (i, j) ∈ E, X � 0},
where e is the vector of all ones. We also tested on the second formulation given
in [27, equation (2.9)] but found that the SDPs are typically either primal or dual
degenerate.

Let

Nk =




the number of PCR/PSQMR steps required at the kth interior-
point iteration to solve (23)/(15) so that the admissible condition
(22)/(27) is satisfied.

The maximum numbers of PCR and PSQMR steps allowed in each interior-point
iteration are set to 5m and 3m, respectively.

Table 8 shows the primal and dual objective values obtained by Algorithm PFaug.
Table 9–12 compare the cumulative CPU time taken by Algorithms PFsch and PFaug
at various interior-point iterations so as to achieve the following accuracy:

max(relgap, φ) ≤ 10−4, 10−5, 10−6.

Here relgap is the relative duality gap defined by

relgap =
X • Z

1 + (|C •X|+ |bT y|)/2 ,(29)

and φ is the infeasibility measure defined in (19). For each problem, three rows of
data are reported, and they correspond to the CPU time needed to solve the problem
to an accuracy of 10−4, 10−5, and 10−6, respectively.

Tables 9–11 show that Algorithm PFaug is much faster than Algorithm PFsch
on the majority of the problems tested. For example, consider the problem theta82

with m = 23872; Algorithm PFaug is about 7 times faster than Algorithm PFsch
to achieve an accuracy of 10−6 in max(relgap, φ). On the set of maximum clique
problems on randomly generated graphs considered in Table 9, Algorithm PFaug is
3–14 times faster than Algorithm PFsch. For those SDPs arising from [9] in Table 11,
Algorithm PFaug is 2–9 times faster than Algorithm PFsch. The reader may have
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observed that the speedup in these problems is mainly gained on the last few interior-
point iterations. Comparing Tables 9 and 11, we see that the number of PSQMR
steps needed to solve (15) is far less than that required by (23) when the iterates are
close to optimality. This also confirms the usefulness of Theorem 2.4. But because
computing a matrix-vector product for (15) is more expensive, the saving in CPU
time is not as impressive as the reduction in the number iterative steps.

It is worth noting that in Table 9, we are able to solve an SDP (theta162) with
127600 constraints in 6.5 hours to an accuracy of 10−6. If the required accuracy is
10−4, then only 3.5 hours is needed.

Observe that in Table 10 the reduced augmented system (15) in Algorithm PFaug
is never invoked, indicating that the condition number of the NT scaling matrix W
never exceeds 5 × 103 in Algorithm PFaug described in Table 7. It is surprising
that the collection of hamming problems can be solved so efficiently via the SCE
alone. For example, the problem hamming-9-5-6 is solved to an accuracy of 10−6 in
3 minutes, whereas the CPU time reported in [5] by using the first-order nonlinear
programming method in [4] (we will called it the BMZ method for convenience) is
more than 10 hours. Although the comparison here between Algorithm PFaug and
the BMZ method is not entirely fair because the latter solves a different, though
equivalent, SDP relaxation [27, equation (2.9)] of the maximum clique problem, the
fact that such a disparity is possible indicates that one should not totally abandon
second-order methods in favor of first-order methods when solving large scale SDPs.

Despite the success of Algorithm PFaug reported in Tables 9–11, for the
problems in Table 12 the performance of Algorithm PFaug is worse than Algorithm
PFsch. For example, it performs badly compared to Algorithm PFsch on the problem
p-hat300-1. To understand why the reduced augmented equation approach does not
perform well, we need to know whether the problem is degenerate. This can be done

by estimating the condition number of H and B11S
−1/2
11 . Since the matrices are large,

we used the Lanczos method to estimate the largest and smallest eigenvalues of the

matrices H and S
−1/2
11 BT11B11S

−1/2
11 . The ratio between these eigenvalues would then

give a lower bound on κ(H) and κ(B11S
−1/2
11 )2. A lower bound we get for κ(H) is

1.5 × 108. As for κ(B11S
−1/2
11 ), we are able to get an accurate estimate of 9.0 × 101.

From these numbers, we may conclude that the problem is dual nondegenerate, but it
is possibly primal degenerate due to the large condition number estimate we have for
H. The poorer performance of Algorithm PFaug on G51--G54 compared to Algorithm
PFsch is also due to degeneracies.

Methods for solving large SDPs are still in the infancy state. Currently, the most
successful methods are the spectral bundle (SB) method in [16], the BMZ method
in [4], and the BMPR method in [3]. Detailed comparison between the SB (ver-
sion 1.1.1) and BMZ methods are given in [5], where the BMZ method appeared
to perform generically better than the SB method on the tested set of SDPs arising
from maximum clique problems from the Second DIMACS Implementation Challenge.
Comparison between the BMPR and SB (version 1.1.1) methods on the same set of
SDPs are reported in [3]. Based on the results reported in [3] and [5], it is known
that the BMPR is superior to the BMZ method on this set of SDPs. The latter is in
turn superior to the SB method. Thus in this section we shall compare our reduced
augmented equation approach mainly with the BMPR method.

For the set of SDPs listed in Tables 10 to 12, except G43--G47, G51--G54, Algo-
rithm PFaug is comparable to the BMPR method (Tables 4 and 7 in [3]) in terms of
computational time (although we must take into account that different machines are
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used, and our machine is 1–2 times faster based on Matlab’s bench command). For
example, the problems brock400-1 and c-fat-200-1 are solved by Algorithm PFaug
in 1016 and 67 seconds, respectively. The corresponding numbers for the BMPR
method reported in [3] are 2028 and 742 seconds.

For G43--G47, our method is able to solve them in about 1.5 hours to an accu-
racy of 10−6. The BMPR method, however, is much faster, taking an average of 15
minutes to solve these problems (see Table 7 in [3]), though less accurately than ours.
The fact that the latter is far superior to Algorithm PFaug on these problems can
be explained. First, because the matrix variable has a relatively large dimension of
n = 1000, computing the NT scaling matrix W and eigenvalue decomposition of W−1

in Algorithm PFaug takes more than 50% of the total computation time. Second, the
rank of the optimal primal variable (about 60) is small compared to n; the BMPR
method can fully exploit such an advantage, whereas Algorithm PFaug is not designed
to do the same. The reasons above apply also to the problems G51--G54. For the
problems G52 and G53, our interior-point based algorithms perform much worse than
the BMPR method. For example, Algorithm PFsch takes 6.5 hours to achieve an
accuracy of 10−4, whereas the BMPR method takes only 2 hours to achieve a com-
parable accuracy. If the required accuracy is 10−6, then Algorithm PFsch would take
about 33.5 hours to solve the problem. Comparing the results in Table 11 and 12,
obviously G52 and G53 are much harder to solve compared to G43--47. We suspect
that this is because the former are highly degenerate problems. For example, for G52
we have p̄ = 48828  m = 5917, which violates the necessary condition for dual
nondegeneracy in Theorem 2.3.

We note that the objective values reported in Table 8 are generally better than
those reported in [3]. For example, the primal objective value we obtained for
brock400-1 is −39.7018863, with a primal infeasibility of 5.1 × 10−10, whereas the
corresponding number obtained by the BMPR method is −39.652, with a primal
infeasibility of 1.4× 10−4.

Other than computational time, we should mention a comparison criterion be-
tween interior-point methods (such as Algorithm PFaug) and first-order methods
(such as the BMPR method) that is perhaps underappreciated. An advantage of the
former is that it can produce a duality gap that measures how close the approximate
optimal solution is to optimality. The latter, however, can only obtain either an ap-
proximate primal or dual optimal solution, and there is no optimality guarantee on
the approximate solution delivered.

6. Numerical experiments on other SDPs. In this section, we further in-
vestigate the performance of Algorithms PFaug and PFsch but on some SDPs that
are not necessarily well suited for the reduced augmented equation or the primal–dual
interior-point framework. The problems we considered are as follows.

mcp: this collection consists of the preprocessed version of the SDPLIB problems
mcp500-1–mcp500-4. These are SDPs arising from relaxation of maximum
cut problems. The original SDPs are dual degenerate, but a simple prepro-
cessing step to remove fixed diagonal blocks render them dual nondegenerate.
For these problems, m ≈ 500 and n = 500.

arch: this consists of the SDPLIB problems arch0, arch2, arch4, and arch8.
Each of these problems has a semidefinite variable of dimension 161 and a
linear variable of dimension 174, and m = 174.

fap: these are SDPs arising from semidefinite relaxation of frequency assignment
problems [11]. The explicit form of the primal SDP is given in [5, equation
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Table 7
Algorithm PFaug.

Algorithm PFaug. Suppose we are given an initial iterate (X0, y0, Z0) with
X0, Z0 positive definite. Set γ0 = 0.9 and σ0 = 0.5.

For k = 0, 1, . . .

Let the current and the next iterate be (X, y, Z) and (X+, y+, Z+) respectively.
Also, let the current and the next step-length (centering) parameter be denoted by
γ and γ+ (σ and σ+), respectively.

1. Set µ = X • Z/n. Stop the iteration if the infeasibility measure φ defined
in (19) and relgap defined in (29) are sufficiently small.

2. Compute the NT scaling matrix W and the eigenvalue decomposition
W−1 = QDQT . Let d = diag(D), where d is sorted in ascending or-
der.

If max(d)/min(d) > 5× 103

choose p to be the integer such that dp+1/dp is the maximum,
else

set p = 0,
end

3. (a) If p = 0;

Compute an inexact direction (∆X,∆y,∆Z) via the PCR method on
(23) with diagonal preconditioner diag(M).

(b) If p > 0;

Compute an inexact search direction (∆X,∆y,∆Z) via the PSQMR
method on (15) with diagonal preconditioner described in (28).

4. Update (X, y, Z) to (X+, y+, Z+) by

X+ = X + α∆X, y+ = y + β∆y, Z+ = Z + β∆Z,

where α = min
(
1,−γ/λmin(X

−1∆X)
)
, β = min

(
1,−γ/λmin(Z

−1∆Z)
)
.

(Here λmin(U) denotes the minimum eigenvalue of U ; if the minimum eigen-
value in either expression is positive, we ignore the corresponding term.)

5. Update the step-length and centering parameters by

γ+ = 0.9 + 0.08min(α, β), σ+ = 1− 0.9min(α, β).

(5)] (note the difference between maximizing and minimizing the objective
function in [5, equation (5)] and (1)). Note that this collection of SDPs are
likely to be both primal and dual degenerate (evident from Table 5 for fap01).
Each of these problems has a semidefinite variable with moderate dimension
n and a linear variable with dimension slightly less than m, where m is the
number of constraints and m n.

Before we discuss the numerical results for the above SDPs, we would like to mention
that many of the SDPs in SDPLIB [6] appear to be either primal or dual degener-
ate or ill-posed in the sense that the primal and dual problems are not both strictly
feasible. The mcp problems are dual degenerate if fixed diagonal blocks are not re-
moved. The qap problems are nearly primal degenerate; the control problems either
do not appear to have strictly complementary approximate optimal solutions or they
are primal degenerate. The gpp problems do not have strictly primal feasible points.
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Table 8
Primal and dual objective values obtained by Algorithm PFaug.

Problem n m Primal obj Dual obj

theta6 300 4375 -63.4770649 -63.4770915

theta62 300 13390 -29.6412339 -29.6412589

theta8 400 7905 -73.9535154 -73.9535717

theta82 400 23872 -34.3668848 -34.3668981

theta83 400 39862 -20.3018839 -20.3018980

theta10 500 12470 -83.8059524 -83.8059706

theta102 500 37467 -38.3905171 -38.3905620

theta103 500 62516 -22.5285606 -22.5285800

theta104 500 87245 -13.3361385 -13.3361438

theta12 600 17979 -92.8016040 -92.8016958

theta123 600 90020 -24.6686484 -24.6686554

theta162 800 127600 -37.0097262 -37.0097436

MANN-a27 378 703 -132.7628635 -132.7628930

johnson8-4-4 70 561 -13.9999840 -14.0000044

johnson16-2-4 120 1681 -7.9999998 -8.0000017

san200-0.7-1 200 5971 -29.9999629 -30.0000002

c-fat200-1 200 18367 -11.9999970 -12.0000002

hamming-6-4 64 1313 -5.3333301 -5.3333351

hamming-8-4 256 11777 -15.9999977 -16.0000010

hamming-9-8 512 2305 -223.9996367 -224.0000138

hamming-10-2 1025 23040 -102.3999498 -102.4000165

hamming-7-5-6 128 1793 -42.6666515 -42.6666678

hamming-8-3-4 256 16129 -25.5999744 -25.6000043

hamming-9-5-6 512 53761 -85.3331694 -85.3333369

brock200-1 200 5067 -27.4566346 -27.4566445

brock200-4 200 6812 -21.2934670 -21.2934817

brock400-1 400 20078 -39.7018863 -39.7019055

keller4 171 5101 -14.0122384 -14.0122440

sanr200-0.7 200 6033 -23.8361531 -23.8361601

G43 1000 9991 -280.6245145 -280.6245830

G44 1000 9991 -280.5831314 -280.5832102

G45 1000 9991 -280.1848899 -280.1851375

G46 1000 9991 -279.8365727 -279.8369756

G47 1000 9991 -281.8938988 -281.8939612

p-hat300-1 300 33918 -10.0679626 -10.0679686

G51 1000 5910 -348.9996545 -349.0001073

G52 1000 5917 -348.3860739 -348.3864065

G53 1000 5915 -348.3469748 -348.3473550

G54 1000 5917 -340.9998601 -341.0000203

The mcp and arch problems are problems with m ≈ n, and they are not large
scale. Thus they are not ideal examples to evaluate the viability of using iterative
methods to solve large SDPs in a primal–dual interior-point method. However, they
are included here to evaluate the merit of the reduced augmented equation (15) over
the SCE (5) when solved via an iterative method. The CPU time given in Table 14
for these problems is not indicative of the time spent in solving these linear systems
because a substantial part is spent on computingW and its eigenvalue decomposition.
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Table 9
Comparison of Algorithms PFsch and PFaug on a number of SDP problems arising from max-

imum clique problems on randomly generated graphs.

Algorithm PFsch Algorithm PFaug

n
m

Iter.
no.

relgap φ
Cum.
time

Nk relgap φ
Cum.
time

Nk p

theta6 22 (22) 7.8 -5 2.2 -5 1:11 715 9.3 -5 4.1 -6 1:00 170 47
300 24 (24) 4.3 -6 7.9 -7 6:12 6782 1.8 -6 1.6 -7 1:49 365 47
4375 25 (25) 6.2 -7 1.6 -7 12:11 11641 5.0 -7 3.1 -8 2:28 540 48

theta62 21 (21) 7.9 -5 1.2 -5 3:35 1327 7.9 -5 1.2 -5 3:17 1327 0
300 23 (23) 3.2 -6 4.9 -7 26:31 15796 3.2 -6 9.2 -8 7:43 1015 106

13390 24 (24) 8.7 -7 1.0 -7 1:03:13 33831 8.4 -7 6.9 -9 10:38 1105 106

theta8 23 (23) 2.4 -5 5.0 -6 7:57 3247 2.3 -5 2.8 -8 4:00 400 66
400 24 (24) 4.4 -6 1.1 -6 18:21 7896 3.0 -6 9.5 -9 5:18 415 66
7905 25 (25) 7.2 -7 1.8 -7 43:24 18436 7.6 -7 3.9 -8 6:37 430 66

theta82 23 (23) 2.2 -5 3.6 -6 15:27 3036 2.2 -5 2.3 -7 10:35 510 138
400 24 (24) 2.7 -6 5.1 -7 45:44 11751 2.7 -6 2.4 -9 14:37 620 138

23872 25 (25) 3.9 -7 7.6 -8 2:19:49 36504 3.9 -7 6.6-10 18:16 555 138

theta83 22 (22) 2.8 -5 2.9 -6 16:04 2959 2.8 -5 2.9 -6 15:49 2959 0
400 23 (23) 4.0 -6 4.5 -7 48:23 12031 4.0 -6 1.4 -7 29:18 1785 204

39862 24 (24) 6.9 -7 8.0 -8 2:31:30 38507 6.9 -7 4.4 -9 38:21 1160 201

theta10 22 (22) 9.0 -5 2.2 -5 10:01 1327 9.7 -5 9.1 -6 7:13 265 81
500 24 (24) 1.9 -6 6.5 -7 55:50 9120 1.8 -6 9.5 -8 13:36 460 81

12470 25 (25) 2.3 -7 9.6 -8 2:32:49 28412 2.2 -7 2.6 -8 17:52 560 82

theta102 23 (23) 6.3 -5 7.9 -6 22:25 1800 6.3 -5 7.9 -6 22:04 1800 0
500 24 (24) 8.8 -6 1.3 -6 54:53 6437 8.8 -6 2.6 -7 32:33 820 170

37467 26 (26) 1.7 -7 3.3 -8 7:51:53 62416 1.7 -7 8.9-10 1:02:15 1120 174

theta103 22 (22) 3.3 -5 2.9 -6 35:16 3719 3.3 -5 2.9 -6 34:50 3719 0
500 23 (23) 5.3 -6 4.8 -7 1:38:14 12045 5.3 -6 3.6 -8 54:21 1190 252

62516 24 (24) 8.6 -7 9.0 -8 4:26:17 32131 8.6 -7 1.8 -9 1:11:38 1005 252

theta104 22 (22) 7.3 -5 4.0 -6 24:28 2070 7.3 -5 4.0 -6 24:12 2070 0
500 24 (24) 2.2 -6 1.0 -7 3:31:02 26022 2.2 -6 1.0 -8 2:25:53 4285 332

87245 25 (25) 4.0 -7 2.1 -8 9:24:10 65693 4.0 -7 3.4-10 3:08:09 2160 328

theta12 24 (24) 5.3 -5 1.5 -5 25:21 1430 5.8 -5 3.3 -6 18:39 255 98
600 25 (25) 9.2 -6 2.3 -6 1:07:37 5626 9.2 -6 3.7 -8 25:13 395 98

17979 27 (26) 1.4 -7 5.9 -8 8:03:22 40323 9.8 -7 3.4 -8 33:13 485 98

theta123 23 (23) 5.2 -5 4.7 -6 47:35 2707 5.2 -5 4.7 -6 47:25 2707 0
600 24 (24) 7.9 -6 7.4 -7 2:10:12 9587 7.9 -6 1.2 -7 1:20:28 1135 301

90020 26 (26) 2.8 -7 2.7 -8 16:29:46 72630 2.8 -7 5.0-10 2:20:16 885 301

theta162 25 (25) 1.4 -5 1.8 -6 3:20:59 6126 1.4 -5 1.8 -6 3:21:34 6126 0
800 26 (26) 2.3 -6 3.0 -7 10:00:53 20400 2.3 -6 5.9 -8 4:58:07 1670 335

127600 27 (27) 4.7 -7 6.0 -8 27:47:52 54234 4.7 -7 4.2 -9 6:34:37 1650 340

For the mcp problems, the iterative solvers use only less than 30% of the total CPU
time. Thus the number of iterative steps used to solve the linear systems would be a
better indicator of the relative merit between (5) and (15). From Table 14, we observe
that the PSQMR method on (15) takes significantly fewer steps to converge than the
PCR method on (5) when µ is small. This confirms again the merit of the reduced
augmented equation over the SCE when µ is small.

The fap problems are SDPs that are both primal and dual degenerate. Be-
cause these problems are expected to be hard to solve via an interior-point method
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Table 10
Comparison of Algorithms PFsch and PFaug on SDPs from the Second DIMACS Challenge on

Maximum Clique Problems.

Algorithm PFsch Algorithm PFaug

n
m

Iter.
no.

relgap φ
Cum.
time

Nk relgap φ
Cum.
time

Nk p

MANN-a27 39 (39) 7.5 -5 1.8 -5 1:48 28 7.5 -5 1.8 -5 1:43 28 0
378 41 (41) 2.0 -6 9.5 -7 1:56 50 2.0 -6 9.5 -7 1:51 50 0
703 42 (42) 2.0 -7 9.8 -8 2:00 61 2.0 -7 9.8 -8 1:55 61 0

johnson8-4-4 16 (16) 1.5 -5 1.1-10 0:18 2 1.5 -5 1.1-10 0:16 2 0
70 17 (17) 1.5 -6 6.0-10 0:19 2 1.5 -6 6.0-10 0:17 2 0
561 18 (18) 1.5 -7 3.6 -9 0:20 2 1.5 -7 3.6 -9 0:18 2 0

johnson16-2-4 17 (17) 2.4 -5 7.8-13 0:20 2 2.4 -5 7.8-13 0:18 2 0
120 18 (18) 2.4 -6 6.4-12 0:22 2 2.4 -6 6.4-12 0:19 2 0
1681 19 (19) 2.4 -7 5.3-11 0:23 2 2.4 -7 5.3-11 0:20 2 0

san200-0.7-1 23 (23) 1.2 -5 8.4 -7 0:35 22 1.2 -5 8.4 -7 0:32 22 0
200 24 (24) 1.2 -6 9.6 -8 0:37 30 1.2 -6 9.6 -8 0:34 30 0
5971 25 (25) 1.2 -7 1.0 -8 0:39 49 1.2 -7 1.0 -8 0:36 49 0

c-fat200-1 21 (21) 2.8 -5 1.6 -6 0:54 175 2.8 -5 1.6 -6 0:51 175 0
200 22 (22) 2.8 -6 2.1 -7 1:01 255 2.8 -6 2.1 -7 0:58 255 0

18367 23 (23) 2.8 -7 1.9 -8 1:10 313 2.8 -7 1.9 -8 1:07 313 0

hamming-6-4 15 (15) 9.4 -5 5.0 -7 0:17 3 9.4 -5 5.0 -7 0:15 3 0
64 16 (16) 9.4 -6 4.9 -8 0:18 3 9.4 -6 4.9 -8 0:16 3 0

1313 17 (17) 9.4 -7 4.9 -9 0:19 3 9.4 -7 4.9 -9 0:17 3 0

hamming-8-4 20 (20) 2.1 -5 1.9 -7 0:34 4 2.1 -5 1.9 -7 0:31 4 0
256 21 (21) 2.1 -6 1.3 -8 0:36 5 2.1 -6 1.3 -8 0:33 5 0

11777 22 (22) 2.1 -7 1.2 -8 0:38 4 2.1 -7 1.2 -8 0:35 4 0

hamming-9-8 19 (19) 1.7 -5 1.3 -6 2:10 4 1.7 -5 1.3 -6 2:08 4 0
512 20 (20) 1.7 -6 7.6 -7 2:17 4 1.7 -6 7.6 -7 2:15 4 0
2305 21 (21) 1.7 -7 2.3 -9 2:25 5 1.7 -7 2.3 -9 2:23 5 0

hamming-10-2 21 (21) 6.5 -5 3.4-10 17:31 3 6.5 -5 3.4-10 17:36 3 0
1025 22 (22) 6.5 -6 1.5 -9 18:26 3 6.5 -6 1.5 -9 18:31 3 0
23040 23 (23) 6.5 -7 5.1 -8 19:19 2 6.5 -7 5.1 -8 19:24 2 0

hamming-7-5-6 17 (17) 3.8 -5 4.0 -6 0:21 2 3.8 -5 4.0 -6 0:18 2 0
128 18 (18) 3.8 -6 5.2 -9 0:22 4 3.8 -6 5.2 -9 0:19 4 0
1793 19 (19) 3.8 -7 1.9 -8 0:23 4 3.8 -7 1.9 -8 0:21 4 0

hamming-8-3-4 19 (19) 1.2 -5 2.6 -8 0:32 3 1.2 -5 2.6 -8 0:30 3 0
256 20 (20) 1.2 -6 5.5 -8 0:34 4 1.2 -6 5.5 -8 0:31 4 0

16129 21 (21) 1.2 -7 1.5 -9 0:36 6 1.2 -7 1.5 -9 0:33 6 0

hamming-9-5-6 20 (20) 2.0 -5 2.7 -6 2:47 6 2.0 -5 2.7 -6 2:46 6 0
512 21 (21) 2.0 -6 8.7 -8 2:56 5 2.0 -6 8.7 -8 2:56 5 0

53761 22 (22) 2.0 -7 6.4 -9 3:06 5 2.0 -7 6.4 -9 3:06 5 0

using an iterative solver, now the accuracy tolerance is set to max(relgap, φ) ≤
10−2, 10−3, 10−4 in Table 15. Also, because these problems have convergence dif-
ficulty in a purely primal–dual path-following method, we use a primal–dual path-
following method with Mehrotra’s predictor-corrector. Note that in each iteration of
the predictor-corrector method, two linear systems with the same coefficient matrix
have to be solved. But having the same coefficient matrix offers no savings in compu-
tation time for an iterative solver, unlike the case of a direct solver where the same
factorization can be used for both linear systems. Thus, unless necessary, predictor-
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Table 11
Comparison of Algorithms PFsch and PFaug on SDPs from the Second DIMACS Challenge on

Maximum Clique Problems.

Algorithm PFsch Algorithm PFaug

n
m

Iter.
no.

relgap φ
Cum.
time

Nk relgap φ
Cum.
time

Nk p

brock200-1 21 (21) 3.8 -5 6.6 -6 1:33 1646 3.6 -5 1.1 -7 1:14 335 63
200 22 (22) 6.2 -6 1.1 -6 3:35 6498 5.9 -6 8.0 -9 1:30 330 63
5067 24 (24) 3.2 -7 1.0 -7 16:50 25334 3.6 -7 3.3-10 1:57 240 63

brock200-4 21 (21) 1.8 -5 2.5 -6 2:15 3185 1.8 -5 8.7 -9 1:29 640 79
200 22 (22) 3.5 -6 4.8 -7 5:52 11188 3.5 -6 1.6 -9 2:14 900 79
6812 23 (23) 7.2 -7 8.2 -8 14:17 26054 6.9 -7 1.1 -9 2:41 545 77

brock400-1 23 (23) 3.0 -5 5.8 -6 11:55 2077 3.0 -5 6.2 -8 9:33 515 123
400 24 (24) 3.3 -6 7.4 -7 34:22 8883 3.3 -6 2.9 -9 13:04 560 123

20078 25 (25) 4.8 -7 1.1 -7 1:53:34 31285 4.8 -7 5.1-10 16:56 620 123

keller4 21 (21) 4.2 -5 4.2 -6 0:51 1008 4.2 -5 2.9 -7 0:25 110 67
171 22 (22) 4.2 -6 4.2 -7 1:33 3180 4.2 -6 1.3 -7 0:34 235 67
5101 23 (23) 4.2 -7 4.2 -8 2:30 5063 4.2 -7 3.4 -8 0:58 765 67

sanr200-0.7 21 (21) 2.6 -5 4.4 -6 1:45 2149 2.6 -5 7.0 -8 1:07 410 71
200 22 (22) 4.6 -6 7.9 -7 4:33 8718 4.6 -6 1.1 -8 1:32 510 71
6033 23 (24) 9.3 -7 1.4 -7 11:39 22494 3.0 -7 2.7-10 2:15 375 71

G43 27 (27) 4.0 -5 3.1 -5 48:39 754 5.4 -5 3.6 -7 43:18 245 56
1000 29 (28) 4.7 -6 8.3 -7 3:37:58 11230 9.7 -6 2.2 -7 51:22 300 58
9991 30 (32) 4.7 -7 3.8 -7 5:16:54 8943 2.6 -7 3.8 -8 1:25:23 265 58

G44 28 (28) 2.0 -5 1.2 -5 1:09:00 1497 1.4 -5 1.2 -7 54:55 220 60
1000 29 (29) 7.4 -6 3.7 -6 2:38:09 8070 2.8 -6 2.7 -9 1:04:46 380 60
9991 31 (30) 2.5 -7 2.0 -7 9:44:55 14144 2.8 -7 2.3-10 1:11:52 255 60

G45 28 (29) 1.8 -5 1.4 -5 1:48:32 854 8.9 -5 5.9 -7 1:09:36 310 57
1000 29 (30) 3.6 -6 2.4 -6 3:09:17 7315 8.9 -6 3.7 -7 1:15:55 220 58
9991 30 (31) 7.7 -7 2.7 -7 7:38:25 24263 8.9 -7 4.0 -8 1:24:22 320 58

G46 27 (27) 3.9 -5 3.1 -5 48:01 652 5.5 -5 1.6 -6 44:23 235 56
1000 29 (28) 7.6 -6 2.9 -6 3:35:40 10852 8.9 -6 1.0 -7 53:19 340 60
9991 31 (30) 2.6 -7 2.1 -7 7:20:06 10383 1.8 -7 9.8-11 1:09:28 335 60

G47 27 (27) 5.3 -5 4.0 -5 44:42 608 6.3 -5 6.7 -7 44:50 190 58
1000 30 (28) 2.0 -6 1.4 -6 2:36:55 2108 9.7 -6 1.4 -7 51:11 225 58
9991 31 (30) 4.1 -7 1.5 -7 4:54:55 12555 2.2 -7 8.3 -9 1:07:37 375 58

corrector approach is not the preferred option when an iterative solver is used.
Because of degeneracies, the reduced augmented equation would offer no advan-

tage over the SCE for the fap problems. Since each matrix-vector product in (15)
is more expensive, it is logical only to expect that Algorithm PFsch would be more
efficient than Algorithm PFaug. This expectation is confirmed by the numerical re-
sults presented in Table 15. It is evident that Algorithm PFaug consistently takes a
longer time than Algorithm PFsch to solve the problems. Furthermore, Algorithm
PFaug fails to solve eight of the problems (entries with boldface fonts) to the required
accuracy of 10−4, whereas Algorithm PFsch successfully solved all. This set of SDPs
illustrates that for problems that are degenerate, it is not advisable to use an iterative
method to solve the reduced augmented equation (15). Unless modifications on (15)
are done to handle the ill-conditioning of K, it appears that the simplest approach of
using the PCR method on (5) should be used.

Table 13 shows the primal and dual objective values for the mcp, arch, and fap
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Table 12
Comparison of Algorithms PFsch and PFaug on SDPs from the Second DIMACS Challenge on

Maximum Clique Problems.

Algorithm PFsch Algorithm PFaug

n
m

Iter.
no.

relgap φ
Cum.
time

Nk relgap φ
Cum.
time

Nk p

p-hat300-1 24 (24) 9.3 -5 1.3 -6 13:19 4357 9.3 -5 1.1 -9 1:42:24 26790 209
300 26 (26) 6.8 -6 1.8 -7 42:52 17512 6.9 -6 3.8 -8 9:49:14 101750 200

33918 28 (28) 7.1 -7 1.2 -8 2:12:47 43234 5.9 -7 1.7-10 20:47:54 100775 200

G51 44 (43) 4.2 -5 1.5 -5 1:19:28 305 8.7 -5 5.8 -6 2:56:49 1505 5
1000 45 (45) 4.3 -6 3.5 -6 1:23:51 482 1.4 -6 1.4 -6 3:06:26 414 0
5910 46 (46) 4.8 -7 4.2 -7 1:28:16 490 1.4 -7 1.4 -7 3:11:11 514 0

G52 60 (58) 9.3 -5 5.2 -6 4:28:59 3291 8.7 -5 1.2 -6 13:02:23 5395 6
1000 68 (65) 6.8 -6 6.7 -7 9:04:03 4212 7.9 -6 2.7 -7 25:58:35 9985 8
5917 71 (69) 6.0 -7 2.2 -7 11:31:50 5907 9.5 -7 5.9 -8 33:19:59 14257 0

G53 56 (58) 8.4 -5 3.0 -6 6:25:55 6874 7.7 -5 6.4 -6 7:25:49 3905 6
1000 62 (63) 8.8 -6 1.2 -6 14:06:25 26162 8.7 -6 4.6 -7 17:32:15 12955 6
5915 68 (68) 5.2 -7 3.2 -7 33:24:45 29574 8.6 -7 4.9 -7 37:15:59 17740 6

G54 45 (45) 6.6 -5 3.9 -5 1:17:04 288 3.7 -5 6.3 -6 3:35:28 2290 7
1000 46 (46) 6.6 -6 5.8 -6 1:21:25 477 3.7 -6 3.5 -6 3:40:09 494 0
5917 48 (47) 3.4 -7 1.1 -7 1:45:27 2325 3.7 -7 3.3 -7 3:46:16 699 0

Table 13
Primal and dual objective values obtained by Algorithm PFsch.

Problem n m Primal obj Dual obj

mcp500-1 451 451 -598.1479228 -598.1485310

mcp500-2 493 493 -1070.0563326 -1070.0567704

mcp500-3 500 500 -1847.9696030 -1847.9700289

mcp500-4 500 500 -3566.7373504 -3566.7380666

arch0 161 174 -0.5665156 -0.5665177

arch2 161 174 -0.6715133 -0.6715158

arch4 161 174 -0.9726271 -0.9726275

arch8 161 174 -7.0569738 -7.0569811

fap01 52 1378 0.0329454 0.0328773

fap02 61 1866 0.0007310 0.0006973

fap03 65 2145 0.0493711 0.0493676

fap04 81 3321 0.1749789 0.1748222

fap05 84 3570 0.3083974 0.3082823

fap06 93 4371 0.4595326 0.4593247

fap07 98 4851 2.1180259 2.1176137

fap08 120 7260 2.4363666 2.4362657

fap09 174 15225 10.7982702 10.7976727

fap10 183 14479 0.0096992 0.0096708

fap11 252 24292 0.0298764 0.0297662

fap12 369 26462 0.2734163 0.2732371
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Table 14
Comparison of Algorithms PFsch and PFaug on mcp and arch problems from SDPLIB.

Algorithm PFsch Algorithm PFaug

n
m

Iter.
no.

relgap φ
Cum.
time

Nk relgap φ
Cum.
time

Nk p

mcp500-1 25 (25) 1.0 -5 1.1 -6 1:24 225 1.1 -5 3.1 -6 1:49 95 11
451 26 (26) 1.0 -6 1.1 -7 1:38 411 3.3 -6 2.9 -7 1:58 95 11
451 27 (27) 1.0 -7 9.9 -9 1:55 536 5.1 -7 5.4 -8 2:10 140 11

mcp500-2 22 (22) 8.2 -5 6.5 -6 1:43 336 8.2 -5 6.5 -6 1:47 336 0
493 24 (24) 2.5 -6 3.3 -7 2:21 550 3.1 -6 4.9 -7 2:19 170 8
493 25 (25) 4.1 -7 4.6 -8 3:04 1161 9.2 -7 1.8 -7 2:44 270 8

mcp500-3 20 (20) 7.4 -5 1.3 -5 1:40 195 7.5 -5 2.8 -5 1:48 85 8
500 21 (22) 9.9 -6 2.6 -6 1:55 322 6.2 -6 1.6 -6 2:17 110 9
500 23 (24) 2.3 -7 5.2 -8 2:55 848 6.0 -7 5.0 -8 2:47 115 9

mcp500-4 19 (19) 5.4 -5 2.5 -5 1:45 183 5.4 -5 2.5 -5 1:54 183 0
500 21 (21) 7.7 -6 1.7 -6 2:43 885 7.7 -6 1.8 -6 2:31 70 11
500 23 (24) 2.0 -7 1.3 -7 3:35 681 7.2 -7 9.6 -8 3:12 60 11

arch0 52 (52) 9.1 -5 8.3 -7 0:57 869 9.4 -5 5.8 -9 0:45 100 8
161 57 (57) 6.0 -6 4.1 -6 1:17 869 6.3 -6 2.4-11 0:54 110 8
174 58 (62) 2.8 -6 3.7 -6 1:21 869 5.8 -7 7.5-11 1:02 105 8

arch2 45 (45) 5.9 -5 1.0 -6 0:49 869 5.9 -5 3.0 -9 0:30 80 8
161 48 (48) 6.0 -6 1.0 -6 1:03 869 6.0 -6 4.7-10 0:35 90 8
174 50 (52) 2.2 -6 7.2 -6 1:11 869 7.6 -7 4.1-12 0:41 100 8

arch4 50 (51) 9.9 -5 3.3 -6 0:56 869 5.9 -5 8.9-10 0:36 75 5
161 52 (53) 4.4 -6 3.7 -7 1:05 869 2.8 -6 1.6-11 0:39 80 5
174 53 (54) 7.2 -7 2.6 -6 1:09 869 2.9 -7 2.1-11 0:40 75 5

arch8 52 (52) 2.1 -5 1.4 -8 0:50 587 3.5 -5 6.8 -9 0:33 35 7
161 53 (53) 7.0 -6 7.2 -7 0:54 869 9.7 -6 1.2 -9 0:34 55 7
174 58 (57) 1.0 -6 2.5 -7 1:16 869 1.1 -7 6.9-11 0:39 50 8

problems obtained by Algorithm PFsch.
It has been reported in [5] that the BMZ method is highly successful in solving

the fap problems compared to the SB method. (The BMPR method is not tested on
the fap problems in [3].) By comparing the performance of Algorithm PFsch in Table
15 with the results report in [5, Table 6], we observe that our interior-point method
fared reasonably well compared to the first-order BMZ method. The CPU time taken
to solve all the problems, except fap12, are comparable for both methods (again, we
must take into account that different machines are used, and our machine is 1–2 times
faster). For example, the problem fap11 is solved in 9 hours by Algorithm PFsch,
and the CPU time reported in [5] is 10.8 hours.

The objective values we obtained in Table 13 for the fap problems are better than
those obtained in [5]. Take fap11, for example; the dual objective value we obtained
is 0.0297662, with a dual infeasibility of 1.1× 10−16. This value is better (the larger
the absolute value the better) than the absolute value of 0.0296136 reported in [5].
For fap12, the BMZ method is superior to Algorithm PFsch, where the former is
about 3 times faster if an accuracy requirement of 10−4 is set for the latter. But if
the accuracy requirement is set to 10−3, then Algorithm PFsch can solve fap12 in
about 19 hours compared to 12.5 hours in the BMZ method.

Our comparison here between Algorithm PFsch and the BMZ method indicates
that interior-point methods are not totally uncompetitive compared to first-order
methods.



696 KIM-CHUAN TOH

Table 15
Comparison of Algorithms PFsch and PFaug on fap problems.

Algorithm PFsch Algorithm PFaug

n
m

Iter.
no.

relgap φ
Cum.
time

Nk relgap φ
Cum.
time

Nk p

fap01 26 (26) 2.5 -3 4.3 -7 0:10 4474 2.5 -3 4.3 -7 0:10 4474 0
52 27 (27) 3.7 -4 9.8 -8 0:15 10071 3.7 -4 9.8 -8 0:15 10071 0

1378 28 (28) 6.7 -5 3.4 -7 0:21 11022 3.8 -4 4.6 -5 0:25 6885 46

fap02 23 (23) 5.9 -3 4.1 -7 0:05 1116 5.9 -3 4.1 -7 0:05 1116 0
61 25 (25) 7.6 -4 4.5 -8 0:09 2660 7.6 -4 4.5 -8 0:09 2660 0

1866 27 (27) 3.4 -5 4.0 -9 0:15 6096 2.9 -5 1.4 -4 0:31 9325 56

fap03 30 (30) 3.3 -3 3.3 -7 0:17 4431 3.3 -3 3.3 -7 0:17 4431 0
65 31 (31) 8.2 -4 8.6 -8 0:25 9612 3.2 -3 1.5 -4 0:47 10715 60

2145 33 (31) 2.8 -5 1.1 -6 0:55 17158 3.2 -3 1.5 -4 0:47 10715 60

fap04 37 (37) 4.1 -3 3.3 -7 1:47 23146 5.8 -3 9.6 -7 2:28 15250 76
81 39 (39) 4.2 -4 8.3 -7 3:12 26566 2.5 -3 1.2 -5 5:25 16600 76

3321 40 (39) 8.7 -5 4.7 -6 3:55 26566 2.5 -3 1.2 -5 5:25 16600 76

fap05 41 (41) 6.4 -3 2.6 -7 2:26 28558 7.5 -3 8.6 -7 4:12 14620 79
84 43 (45) 8.4 -4 1.4 -5 4:04 28558 2.7 -3 2.6 -6 11:38 17840 79

3570 45 (45) 3.6 -5 2.9 -5 5:40 28558 2.7 -3 2.6 -6 11:38 17840 79

fap06 43 (43) 4.2 -3 1.7 -7 3:36 31778 5.7 -3 2.2 -6 10:16 21850 83
93 45 (45) 4.6 -4 6.9 -6 6:30 34966 9.8 -4 5.8 -7 16:18 20005 86

4371 47 (49) 3.4 -5 1.3 -5 9:16 34966 3.9 -4 2.7 -6 29:09 21850 86

fap07 43 (44) 7.7 -3 6.1 -7 4:49 34270 7.6 -3 9.4 -7 8:13 20145 93
98 46 (47) 4.0 -4 4.1 -6 10:15 38806 8.1 -4 1.8 -6 20:26 24250 90

4851 48 (50) 4.3 -5 1.1 -5 13:49 38806 2.5 -4 8.7 -7 33:14 24250 91

fap08 45 (45) 5.0 -3 3.0 -7 8:29 30394 6.2 -3 1.1 -6 15:51 11560 110
120 47 (48) 5.8 -4 2.1 -7 18:04 58078 5.6 -4 1.2 -7 37:13 26745 110
7260 49 (51) 4.3 -5 3.8 -6 27:59 58078 5.2 -5 2.5 -8 1:04:43 27890 110

fap09 70 (72) 5.0 -3 8.0 -7 28:53 23255 8.2 -3 2.2 -6 1:10:58 10885 157
174 73 (76) 4.3 -4 7.4 -8 1:25:14 92031 7.6 -4 2.6 -7 2:35:05 28440 156

15225 75 (77) 5.3 -5 2.2 -6 2:38:43 121798 3.7 -4 1.6 -7 3:14:07 42065 156

fap10 65 (65) 7.9 -3 1.1 -7 25:27 25835 7.9 -3 1.1 -7 25:36 25835 0
183 67 (67) 5.5 -4 1.4 -8 1:12:04 99556 5.5 -4 7.9 -6 1:47:55 72390 144

14479 69 (70) 1.3 -5 2.2 -6 2:28:29 115830 7.1 -5 5.7 -5 5:11:44 72390 140

fap11 71 (71) 9.3 -3 1.2 -7 1:22:14 30988 9.3 -3 1.2 -7 1:22:58 30988 0
252 73 (73) 7.9 -4 1.1 -8 3:54:12 130230 7.9 -4 1.2 -6 10:07:30 121455 175

24292 75 (75) 1.5 -5 9.2 -7 9:01:15 194334 4.5 -5 2.9 -5 18:49:02 121455 171

fap12 68 9.3 -3 1.3 -7 5:21:43 64851
369 70 9.5 -4 4.0 -8 18:43:24 211694 excluded since it will take too long to run

26462 72 4.0 -5 8.2 -7 33:34:41 211694

7. Conclusion and future research. We introduced the reduced augmented
equation for computing the search directions in primal–dual interior-point methods.
For SDPs that are primal and dual nondegenerate and have strictly complementary
optimal solutions, the coefficient matrices of the reduced augmented equations have
condition numbers that are bounded independent of the barrier parameter µ, even
when µ approaches 0.

We proposed Algorithm PFaug, which is based on a hybrid between the PCR
method applied to the SCE and the PSQMR method applied to the reduced aug-
mented equation. Numerical experiments on SDPs arising from maximum clique
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problems show that Algorithm PFaug performs much better than Algorithm PFsch,
which is based solely on applying the PCR method to the SCE.

Our interior-point based methods, Algorithms PFaug and PFsch, are competi-
tive (timewise) compared to the first-order BMPR method on the majority of the
maximum clique problems considered in [5]. Our interior-point based method, Algo-
rithm PFsch, is also competitive compared to the first-order BMZ method on the fap
problems. The numerical results presented in this paper indicate that interior-point
methods like Algorithms PFaug and PFsch are not totally uncompetitive compared
to first-order methods such as the SB, BMZ, and BMPR methods. On many of the
problems tested in this paper, we are able to obtain objective values that are better
or comparable to those obtained by the first-order methods.

Algorithm PFaug is well suited for primal and dual nondegenerate problems with
optimal solutions that are strictly complementary. It appears that significant modi-
fications to the reduced augmented equation are needed to effectively solve problems
that are degenerate. Besides this important issue, there are a number of other issues
that we hope to address in the future.

(a) We would like to investigate the performance of the reduced augmented equa-
tion approach in a dual scaling interior-point framework for solving SDPs with
n large, especially large SDPs arising from maximum cut and graph parti-
tioning problems.

(b) The construction of more sophisticated preconditioners for the reduced aug-
mented matrix.

(c) The use of a direct method to solve the reduced augmented equation so as to
generate accurate approximate optimal solutions. Our numerical results in
section 2.1 indicate that the outcome would be promising.
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Abstract. This paper investigates the complexity of steepest descent algorithms for two classes
of discrete convex functions: M-convex functions and L-convex functions. Simple tie-breaking rules
yield complexity bounds that are polynomials in the dimension of the variables and the size of the
effective domain. Combining the present results with a standard scaling approach leads to an efficient
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1. Introduction. Discrete convex functions have long been attracting research
interest in the area of discrete optimization. Miller [15] was a forerunner in the early
1970s. The relationship between submodularity and convexity was discussed in Ed-
monds [3], and deeper understanding of this relationship was gained in the 1980s by
Frank [5], Fujishige [6], and Lovász [13] (see also [7]). Favati and Tardella [4] intro-
duced integrally convex functions to show a local characterization for global mini-
mality, and Dress and Wenzel [2] considered valuated matroids in terms of a greedy
algorithm. Recently, Murota [17, 18, 20, 21] advocated “discrete convex analysis,”
where M-convex and L-convex functions play central roles. M�-convex and L�-convex
functions,1 introduced, respectively, by Murota and Shioura [22] and Fujishige and
Murota [8], are variants of M-convex and L-convex functions. It was shown in [8]
that L�-convex functions are the same as the submodular integrally convex functions
considered in [4].

Minimization of discrete convex functions is most fundamental in discrete opti-
mization. In fact, we have recently witnessed dramatic progress of algorithms for
submodular set-function minimization; see, e.g., Iwata [10], Iwata, Fleischer, and Fu-
jishige [11], Schrijver [23], and a survey by McCormick [14].

M-convex function minimization contains the minimum-weight matroid-base prob-
lem (see, e.g., [1]) as a very special case. Minimization of an M-convex function on
{0, 1}-vectors is equivalent to maximization of a matroid valuation, for which the
greedy algorithm of Dress and Wenzel [2] works. The first polynomial time algorithm
for general M-convex functions was given by Shioura [24], and scaling algorithms were
considered by Moriguchi, Murota, and Shioura [16], Tamura [26], and Shioura [25].

For L-convex function minimization the algorithm of Favati and Tardella [4],
originally meant for submodular integrally convex functions, works with slight modi-
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fications. It is the first polynomial time algorithm for L-convex function minimization,
but it is not practical, being based on the ellipsoid method. A steepest descent algo-
rithm was proposed by Murota [19], with a subsequent improvement by Iwata [9] using
a scaling technique. The steepest descent algorithm heavily depends on algorithms
for submodular set-function minimization.

In this paper we investigate the complexity of steepest descent algorithms for
M-convex functions and L-convex functions. With certain simple tie-breaking rules
we can obtain complexity bounds that are polynomials in the dimension n of the
variables and the size K of the effective domain. Combining the present complexity
bound with a standard scaling approach results in an efficient algorithm for L-convex
function minimization of complexity bounded by polynomials in n and logK. This is
faster than any other known algorithms for L-convex function minimization.

Some conventions are introduced. We consider functions defined on integer lattice
points that may possibly take +∞, i.e., f : ZV → R ∪ {+∞} with a finite set V of
cardinality n. The effective domain of f is denoted by

dom f = {x ∈ ZV | f(x) < +∞},(1.1)

and the �1-size of dom f by

Kf = max{||x− y||1 | x, y ∈ dom f},(1.2)

where the �1-norm of a vector x = (x(v) | v ∈ V ) with components indexed by V is
designated by

||x||1 =
∑
v∈V
|x(v)|.

For a subset X of V we denote by χX the characteristic vector of X; χX(v) equals
one or zero according to whether v belongs to X or not. For u ∈ V we denote χ{u}
by χu.

2. M-convex function minimization. M-convex functions are defined in terms
of a generalization of the exchange axiom for matroids. We say that a function
f : ZV → R ∪ {+∞} with dom f 	= ∅ is M-convex if it satisfies the exchange axiom

(M-EXC) For x, y ∈ dom f and u ∈ supp+(x − y), there exists v ∈ supp−(x − y)
such that

f(x) + f(y) ≥ f(x− χu + χv) + f(y + χu − χv).(2.1)

The inequality (2.1) implicitly imposes the condition that x − χu + χv ∈ dom f
and y + χu − χv ∈ dom f for the finiteness of the right-hand side. It follows from
(M-EXC) that the effective domain of an M-convex function lies on a hyperplane
{x ∈ RV |∑v∈V x(v) = r} for some integer r.

Global optimality for an M-convex function is characterized by local optimality.
Lemma 2.1 (see [17, 20, 21]). For an M-convex function f and x ∈ dom f , we

have

f(x) ≤ f(y) (∀ y ∈ ZV ) ⇐⇒ f(x) ≤ f(x− χu + χv) (∀u, v ∈ V ).

This local characterization of global minimality naturally suggests the following
algorithm of steepest descent type [16, 19, 24].
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Steepest descent algorithm for an M-convex function f .
S0: Find a vector x ∈ dom f .
S1: Find u, v ∈ V (u 	= v) that minimize f(x− χu + χv).
S2: If f(x) ≤ f(x− χu + χv), then stop (x is a minimizer of f).
S3: Set x := x− χu + χv and go to S1.
Step S1 can be done with n2 evaluations of function f . At the termination of

the algorithm in step S2, x is a global optimum by Lemma 2.1. The function value
f decreases monotonically with iterations. This property alone does not ensure finite
termination in general, although it does if f is integer-valued and bounded from below.

The following is a key property of the steepest descent algorithm for M-convex
functions, showing an upper bound on the number of iterations in terms of the distance
to the optimal solution rather than in terms of the function value. We denote by x◦

the initial vector found in step S0.
Lemma 2.2. If f has a unique minimizer, say x∗, the number of iterations is

bounded by ||x◦ − x∗||1/2.
Proof. Put x′ = x − χu + χv in step S2. By Lemma 2.3 below we have x∗(u) ≤

x(u)−1 = x′(u) and x∗(v) ≥ x(v)+1 = x′(v), which implies ||x′−x∗||1 = ||x−x∗||1−2.
Note that ||x◦ − x∗||1 is an even integer.

Lemma 2.3 (see [24]; see also [21]). Let f : ZV → R ∪ {+∞} be an M-convex
function with argmin f 	= ∅. For x ∈ dom f \ argmin f , let u, v ∈ V be such that

f(x− χu + χv) = min
s,t∈V

f(x− χs + χt).

Then u 	= v and there exists x∗ ∈ argmin f with

x∗(u) ≤ x(u)− 1, x∗(v) ≥ x(v) + 1.

When given an M-convex function f , which may have multiple minimizers, we
consider a perturbation of the function so that we can use Lemma 2.2. Assume now
that f has a bounded effective domain of �1-size Kf in (1.2). We arbitrarily fix a
bijection ϕ : V → {1, 2, . . . , n} to represent an ordering of the elements of V , put
vi = ϕ−1(i) for i = 1, . . . , n, and define a function fε by

fε(x) = f(x) +

n∑
i=1

εi x(vi),

where ε > 0. This function is M-convex, and, for a sufficiently small ε, it has a unique
minimizer that is also a minimizer of f . Suppose that the steepest descent algorithm
is applied to the perturbed function fε. Since

fε(x− χu + χv) = f(x− χu + χv) +

n∑
i=1

εix(vi)− εϕ(u) + εϕ(v)

this amounts to employing a tie-breaking rule:

Take (u, v) that lexicographically minimizes Φ(u, v),(2.2)

where

Φ(u, v) =

{
(−1, ϕ(u),−ϕ(v)) if ϕ(u) < ϕ(v),
(+1,−ϕ(v), ϕ(u)) if ϕ(u) > ϕ(v),
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in case of multiple candidates in step S1 of the steepest descent algorithm applied
to f . Combining this observation with Lemma 2.1 yields the following complexity
bound, where Ff denotes an upper bound on the time to evaluate f .

Theorem 2.4. For an M-convex function f with finite Kf , the number of it-
erations in the steepest descent algorithm with tie-breaking rule (2.2) is bounded by
Kf/2. Hence, if a vector in dom f is given, the algorithm finds a minimizer of f in
O(Ff · n2Kf ) time.

Although a number of algorithms of smaller theoretical complexity are already
known for M-convex function minimization [24, 25, 26], the present analysis is intended
to reveal the most fundamental fact about M-convex function minimization. The
tie-breaking rule (2.2) as well as the steepest descent algorithm can be adapted to
M�-convex function minimization.

3. L-convex function minimization. L-convex functions are defined in terms
of submodularity on integer lattice points. For integer vectors p, q ∈ ZV we denote
by p ∨ q and p ∧ q the vectors of componentwise maximum and minimum of p and q,
i.e.,

(p ∨ q)(v) = max(p(v), q(v)), (p ∧ q)(v) = min(p(v), q(v)) (v ∈ V ).

We say that a function g : ZV → R∪ {+∞} with dom g 	= ∅ is L-convex if it satisfies

g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) (∀p, q ∈ ZV ),(SBF)

∃r ∈ R such that g(p+ 1) = g(p) + r (∀p ∈ ZV ),(TRF)

where 1 = (1, 1, . . . , 1) ∈ ZV . In this paper we assume r = 0, since otherwise g is not
bounded from below and does not have a minimum.

Global optimality for an L-convex function is characterized by local optimality.
Lemma 3.1 (see [18, 20, 21]). For an L-convex function g with r = 0 in (TRF)

and p ∈ dom g, we have

g(p) ≤ g(q) (∀ q ∈ ZV ) ⇐⇒ g(p) ≤ g(p+ χX) (∀X ⊆ V ).

This local characterization of global minimality naturally suggests the following
algorithm of steepest descent type [19]. Recall our assumption r = 0 in (TRF).

Steepest descent algorithm for an L-convex function g.
S0: Find a vector p ∈ dom g.
S1: Find X ⊆ V that minimizes g(p+ χX).
S2: If g(p) ≤ g(p+ χX), then stop (p is a minimizer of g).
S3: Set p := p+ χX and go to S1.
Step S1 amounts to minimizing a set-function

ρp(X) = g(p+ χX)− g(p)

over all subsets X of V . As a consequence of (SBF) this function is submodular, i.e.,

ρp(X) + ρp(Y ) ≥ ρp(X ∪ Y ) + ρp(X ∩ Y ) (∀X,Y ⊆ V ),

and can be minimized in strongly polynomial time (see, e.g., [10, 11, 14, 23]). At the
termination of the algorithm in step S2, p is a global optimum by Lemma 3.1. The
function value g decreases monotonically with iterations. This property alone does
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not ensure finite termination in general, although it does if g is integer-valued and
bounded from below.

We can guarantee an upper bound on the number of iterations by introducing a
tie-breaking rule in step S1:

Take the (unique) minimal minimizer X of ρp.(3.1)

Let p◦ be the initial vector found in step S0. If g has a minimizer at all, it has,
by (TRF), a minimizer p∗ satisfying p◦ ≤ p∗. Let p∗ denote the smallest of such
minimizers, which exists since p∗ ∧ q∗ ∈ argmin g for p∗, q∗ ∈ argmin g.

Lemma 3.2. In step S1, p ≤ p∗ implies p + χX ≤ p∗. Hence the number of
iterations is bounded by ||p◦ − p∗||1.

Proof. Put Y = {v ∈ V | p(v) = p∗(v)} and p′ = p + χX . By submodularity we
have

g(p∗) + g(p′) ≥ g(p∗ ∨ p′) + g(p∗ ∧ p′),
whereas g(p∗) ≤ g(p∗∨p′) since p∗ is a minimizer of g. Hence g(p′) ≥ g(p∗∧p′). Here
we have p′ = p+χX and p∗ ∧ p′ = p+χX\Y , whereas X is the minimal minimizer by
the tie-breaking rule (3.1). This means that X \ Y = X, i.e., X ∩ Y = ∅. Therefore,
p′ = p+ χX ≤ p∗.

It is easy to find the minimal minimizer of ρp using the existing algorithms for
submodular set-function minimization. For example, with Schrijver’s algorithm [23]
we can find the minimal minimizer with O(n8) function evaluations and O(n9) arith-
metic operations. Assuming that the minimal minimizer of a submodular set-function
can be computed with O(σ(n)) function evaluations and O(τ(n)) arithmetic opera-
tions, and denoting by Fg an upper bound on the time to evaluate g, we can perform
step S1 in O(σ(n)Fg + τ(n)) time, where (σ(n), τ(n)) = (n8, n9) is a valid choice. We
measure the size of the effective domain of g by

K̂g = max{||p− q||1 | p, q ∈ dom g, p(v) = q(v) for some v ∈ V },(3.2)

where it is noted that dom g itself is unbounded by (TRF).
Theorem 3.3. For an L-convex function g with finite K̂g, the number of it-

erations in the steepest descent algorithm with tie-breaking rule (3.1) is bounded by
K̂g. Hence, if a vector in dom g is given, the algorithm finds a minimizer of g in

O((σ(n)Fg + τ(n))K̂g) time.

Proof. We have ||p◦ − p∗||1 ≤ K̂g since p◦(v) = p∗(v) for some v ∈ V . Then the
claim follows from Lemma 3.2.

A function g : ZV → R ∪ {+∞} is called L�-convex if the function

g̃(p0, p) = g(p− p01) (p0 ∈ Z, p ∈ ZV )(3.3)

is an L-convex function in n+ 1 variables. Whereas L�-convex functions are concep-
tually equivalent to L-convex functions by the relation (3.3), the class of L�-convex
functions in n variables is strictly larger than that of L-convex functions in n variables.
The steepest descent algorithm for L-convex functions can be adapted to L�-convex
function minimization.

Steepest descent algorithm for an L�-convex function g.
S0: Find a vector p ∈ dom g.
S1: Find ε ∈ {1,−1} and X ⊆ V that minimize g(p+ εχX).
S2: If g(p) ≤ g(p+ εχX), then stop (p is a minimizer of g).
S3: Set p := p+ εχX and go to S1.



704 KAZUO MUROTA

Step S1 amounts to minimizing a pair of submodular set functions

ρ+
p (X) = g(p+ χX)− g(p), ρ−p (X) = g(p− χX)− g(p).

Let X+ be the minimal minimizer of ρ+
p , and let X− be the maximal minimizer of

ρ−p . The tie-breaking rule for step S1 reads

(ε,X) =

{
(1, X+) if min ρ+

p ≤ min ρ−p ,
(−1, X−) if min ρ+

p > min ρ−p .
(3.4)

This is a translation of the tie-breaking rule (3.1) for g̃ in (3.3) through the corre-
spondence

g g̃
p→ p+ χX ⇐⇒ p̃→ p̃+ (0, χX)
p→ p− χX ⇐⇒ p̃→ p̃+ (1, χV \X)

,

where p̃ = (0, p) ∈ Z1+n. Since (1, χV \X−) cannot be minimal in the presence of
(0, χX+), we choose (1, X+) in the case of min ρ+

p = min ρ−p .
In view of the complexity bound given in Theorem 3.3 we note that the size K̂g̃

of the effective domain of the associated L-convex function g̃ is bounded in terms of
the size of dom g. The �1-size and �∞-size of dom g are denoted, respectively, by Kg

in (1.2) and

K∞
g = max{||p− q||∞ | p, q ∈ dom g}.

Lemma 3.4. K̂g̃ ≤ Kg + nK∞
g ≤ min[ (n+ 1)Kg, 2nK∞

g ].

Proof. Take p̃ = (p0, p) and q̃ = (q0, q) in dom g̃ such that K̂g̃ = |p0−q0|+||p−q||1
and either (i) p0 = q0 or (ii) p(v) = q(v) for some v ∈ V . We may assume p0 ≥ q0
and p ≥ q since p̃ ∨ q̃, p̃ ∧ q̃ ∈ dom g̃ and ||(p̃ ∨ q̃)− (p̃ ∧ q̃)||1 = ||p̃− q̃||1. The vectors
p′ = p− p01 and q′ = q − q01 belong to dom g. In case (i), we have K̂g̃ = ||p− q||1 =
||p′ − q′||1 ≤ Kg. In case (ii), we have p0 − q0 = q′(v)− p′(v) and

K̂g̃ = |p0 − q0|+ ||p− q||1
= (p0 − q0) +

∑
u∈V

(p(u)− q(u))

= (p0 − q0) +
∑
u∈V

(p′(u)− q′(u)) + n(p0 − q0)

=
∑
u �=v

(p′(u)− q′(u))− n(p′(v)− q′(v))

≤ Kg + nK∞
g .

Note finally that Kg ≤ nK∞
g and K∞

g ≤ Kg.

4. Discussion.

4.1. Scaling algorithm. Scaling is one of the common techniques in designing
efficient algorithms. This is also the case with L- or M-convex function minimization.
We deal with L-convex function minimization to demonstrate an implication of our
result stated in Theorem 3.3.

A scaling algorithm to minimize an L-convex function g finds a minimizer of the
scaled function gα(q) = g(p◦ + αq) for α = α◦, α◦/2, α◦/4, α◦/8, . . . , starting with a
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sufficiently large α◦ (a power of 2) until reaching α = 1, where p◦ is an initial solution.
For each α, gα is an L-convex function, which can be minimized, e.g., by the steepest
descent algorithm. The scaling algorithm reads as follows, where

K̂∞
g = max{||p− q||∞ | p, q ∈ dom g, p(v) = q(v) for some v ∈ V }

and r = 0 in (TRF).
Scaling algorithm for an L-convex function g.

S0: Find a vector p ∈ dom g, and set α := 2�log2(K̂
∞
g /2n).

S1: Find an integer vector q that minimizes g(p+ αq) and set p := p+ αq.
S2: If α = 1, then stop (p is a minimizer of g).
S3: Set α := α/2 and go to S1.
The success of this scaling approach hinges on the efficiency of the minimization

in step S1. By a proximity theorem due to [12] (see Proposition 8.9 in [20] or Theo-
rem 7.18 in [21]) there exists a minimizer q of g(p+ αq) such that 0 ≤ q ≤ (n− 1)1.
Our complexity bound (Lemma 3.2 or Theorem 3.3) guarantees that the steepest
descent algorithm with tie-breaking rule (3.1) finds the minimizer in step S1 in
O((σ(n)Fg + τ(n))n2) time. The number of executions of step S1 is bounded by

�log2(K̂
∞
g /2n)�, and at the termination of the algorithm in step S2 with α = 1, p is

a minimizer of g by Lemma 3.1. Thus the result of the present paper guarantees the
efficiency of the scaling approach based on steepest descent algorithm.

It is in order here to compare our algorithm with the scaling algorithm of [9],
which is described in [20]. In [9] step S1 above is performed via submodular set-
function minimization over a ring family on a ground set of cardinality ≤ n2. This
is based on the general fact (Birkhoff’s representation theorem) that any distributive
lattice can be represented as a boolean lattice over a ground set, and the size of the
ground set is equal to the length of a maximal chain of the distributive lattice. Thus
the minimization of the scaled function in step S1 can be carried out with O(σ(n2))
evaluations of g. Although the complexity of this algorithm for step S1 is bounded
by a polynomial in n, the algorithm is not easy to implement and will be slow in
practice. Our steepest descent algorithm above is much simpler, both conceptually
and algorithmically, and will be faster in practice, performing the minimization of
the scaled function in step S1 with O(σ(n)n2) evaluations of g. Note that σ(n)n2 is
smaller in order than σ(n2) if σ(n) = ns with s > 2.

As for M-convex function minimization, a similar scaling approach works, pro-
vided that the scaled function fα(y) = f(x+ αy) remains M-convex for any α and x,
although this is not always the case; see [16]. See [25] and [26] for more sophisticated
scaling algorithms for M-convex function minimization.

4.2. Integrally convex functions. Global optimality is characterized by local
optimality also for integrally convex functions, of which M-convex and L-convex func-
tions are special cases. Namely, it is known [4] that, for an integrally convex function
f , a point x in dom f is a global minimizer of f if and only if f(x) ≤ f(x+χY −χZ) for
all disjoint subsets Y,Z ⊆ V . This fact would naturally suggest the following generic
scheme of steepest descent algorithms for minimizing an integrally convex function.

Steepest descent scheme for an integrally convex function f .
S0: Find a vector x ∈ dom f .
S1: Find disjoint Y,Z ⊆ V that minimize f(x− χY + χZ).
S2: If f(x) ≤ f(x− χY + χZ), then stop (x is a minimizer of f).
S3: Set x := x− χY + χZ and go to S1.
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The steepest descent algorithms for M-convex and L-convex functions in sections
2 and 3 both fit in this generic form. It is emphasized, however, that for a general
integrally convex function no efficient algorithm for step S1 is available, whereas we
do have polynomial time algorithms for M-convex and L-convex functions.

Acknowledgments. The author thanks Satoru Fujishige, Shiro Matuura, and
Akihisa Tamura for helpful comments, and the anonymous referees for pointing out a
flaw in the earlier version of the tie-breaking rule for M-convex function minimization.
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Abstract. A new variant of pure random search (PRS) for function optimization is introduced.
The basic finite-descent accelerated random search (ARS) algorithm is simple: the search is confined
to shrinking neighborhoods of a previous record-generating value, with the search neighborhood
reinitialized to the entire space when a new record is found. Local maxima are avoided by including
an automatic restart feature which reinitializes the search neighborhood after some number of shrink
steps have been performed.

One goal of this article is to provide rigorous mathematical comparisons of ARS to PRS. It
is shown that the sequence produced by the ARS process converges, with probability one, to the
maximum of a continuous objective function faster than that of the PRS process by adjustably large
multiples of the time step (Theorem 1). Regarding an infinite-descent (no automatic restart) version
of ARS, it is shown that if the objective function satisfies a local nonflatness condition, then the right
tails of the distributions of inter-record times are exponentially smaller than those of PRS (Theorem
3).

Performance comparisons between ARS, PRS, and three quasi-Newton-type optimization rou-
tines are reported in attempting to find extrema of (i) each of a small collection of standard test
functions of two variables, and (ii) d-dimensional polynomials with random roots. Also reported is
a three-way performance comparison between ARS, PRS, and a simulated annealing algorithm in
attempting to solve traveling salesman problems.

Key words. random search, stochastic optimization, global optimization

AMS subject classifications. 65K10, 90C15

DOI. 10.1137/S105262340240063X

1. Introduction. Let f be a real-valued function with compact support D ⊂
Rd. Pure random search (PRS), the quintessential Monte Carlo optimization tech-
nique for attempting to solve

max
x∈D

f(x),(1.1)

consists of sampling a stream of independent and identically distributed (i.i.d.) ran-
dom vectors {Xi}ni=1 with uniform distribution on D and then computing Mn =
max{f(Xi) : i = 1, . . . , n}. PRS is very easy to implement. The sequence {Mn} is
guaranteed to converge, with probability one, to the essential supremum of f , ess
sup f ≡ sup{r : Pr{x : f(x) > r} > 0}, if f is merely measurable. (The essential
supremum is equivalent to the maximum in (1.1) when the latter exists.) Unfortu-
nately, convergence is extremely slow in most cases of interest (e.g., where standard
calculus-based methods are not applicable, where d is very large, etc.).

Much attention has been devoted to modifying PRS to improve its convergence
rate. Our investigation can be put into the following framework: given an initial
sequence {Xi}ki=1 of candidates for argmaxx∈D f(x) and an associated sequence of
probability distributions {Pi}ki=1 on D, a new candidate Y is obtained by first sam-
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pling from a distribution Pk+1 and then taking

Xk+1 =

{
Y if f(Y ) > f(Xk),
Xk if f(Y ) ≤ f(Xk).

(1.2)

Some authors [15, 8, 2, 14] allow Pk to vary only slightly, if at all, so as to remain
absolutely continuous with respect to the dominating measure (usually Lebesgue mea-
sure), thus preserving convergence; improvements are mainly due to refinements made
to the decision function (1.2). There are approaches [31, 4] involving adaptive con-
struction of Pk’s which assign more mass to promising regions of the search space.
The standard theme here is to direct a localized search either by using the gradient of
the objective function or by partitioning the domain D and reassigning mass accord-
ingly. Others [12, 26, 27] develop time-based triggers which shrink the domain of Pk

by some factor, depending on how many records (i.e., k such that Xk+1 �= Xk) have
been observed. Techniques belonging to the latter two classes are harder to analyze
rigorously. In order to ensure convergence, additional assumptions must be made with
respect to the surface of objective function, its gradient, etc. Proofs of convergence
are very uncommon; even more rare are rigorous results showing an acceleration in
the convergence rate relative to PRS.

The ARS algorithm. We propose the following algorithm for solving (1.1). We
assume that D is the d-dimensional unit hypercube [0, 1]d. We denote by ‖ · ‖ the
sup-norm on D. The closed ball of radius r centered at x, {y ∈ D : ‖x − y‖ ≤ r},
is denoted by B(x, r). Thus, D = D ∩ B(x, 1) for any x in D. We work with a
real-valued, measurable objective function f on domain D.

Let a contraction factor c > 1 and a precision threshold ρ > 0 be given.

Step 0. Set n = 1 and r1 = 1. Generate X1 from a uniform distribution on D.

Step 1. Given Xn ∈ D and rn ∈ (0, 1], generate Yn from a uniform distribution

on B(Xn, rn).

Step 2. If f(Yn) > f(Xn), then let Xn+1 = Yn and rn+1 = 1.

Else if f(Yn) ≤ f(Xn), then let Xn+1 = Xn and rn+1 = rn/c.

If rn+1 < ρ, then rn+1 = 1.

Increment n := n+ 1 and go to Step 1.

We refer to the algorithm just described as finite descent ARS (accelerated random
search). We refer to the sequence {Xn} as the sequence of record generators and the
sequence {Mn = f(Xn)} as the record sequence. The ARS algorithm first appeared
in [1].

At first glance the algorithm we propose may seem counterintuitive, in that we
shrink the search space if the new candidate Y is not an improvement; otherwise, we
reinitialize the search space to include all ofD, while keeping our last record generator.
Due to the exponentially contracting radii, ARS will shrink the search space very fast
and ultimately sample only in neighborhoods of local maxima.

Consider the following example. Let f be continuous on [0, 1], and set c = 2 and
ρ = 2−20. Given an initial X0 in the unit interval, ARS samples random points from
the balls B(X0, 1/2

i), i = 1, 2, . . . , until either a candidate Y satisfies f(Y ) > f(X0)
or i = 20, in which case the algorithm restarts, sampling from the entire unit interval.
Either way, ARS will eventually produce a sequence of record generators Xk such that
Xk converges to some X∗ in argmaxx∈D f(x) and f(Xk) converges to f∗ ≡ f(X∗).
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Once Xk is close enough to X∗, the advantage of ARS vis-à-vis PRS is revealed.
Suppose that |Xk−X∗| ≤ 10−3. In this case, PRS will need to sample approximately
103 points before it finally hits the relevant ball B(Xk, 1/2

10) (note 2−10 ≈ 10−3). By
contrast, ARS will sample from the relevant ball after only 10 iterations.

We note that the ARS algorithm may be readily extended to problems defined
over a general metric space, for example, to combinatorial optimization problems
and to optimization problems whose domains involve complicated constraints. The
theoretical results contained herein extend as well after simple modifications.

From a practical standpoint, there is nothing to be gained by allowing the pre-
cision threshold ρ to take values smaller than machine precision. However, from a
theoretical point of view it is interesting to consider the case where ρ = 0. We call
the following algorithm infinite descent ARS.

Let a contraction factor c > 1 be given.

Step 0. Set n = 1 and r1 = 1. Generate X1 from a uniform distribution on D.

Step 1. Given Xn ∈ D and rn ∈ (0, 1], generate Yn from a uniform distribution

on B(Xn, rn).

Step 2. If f(Yn) > f(Xn), then let Xn+1 = Yn and rn+1 = 1.

Else If f(Yn) ≤ f(Xn), then let Xn+1 = Xn and rn+1 = rn/c.

Increment n := n+ 1 and go to Step 1.

The only change here is the removal of the radius restart logic (if rn+1 < ρ, then
rn+1 = 1). However, this has major ramifications for the algorithm, as convergence
of the record sequence to the essential supremum of the objective function no longer
occurs with probability one. For example, any locally constant function will, with
positive probability, cause infinite descent ARS to stall at a local maximum.

We remark that ARS bears some resemblance to the classic simulated annealing
(SA) algorithm [11] in that the typical ARS realization of some m points sampled
uniformly from the shrinking balls B(Xk, 1), B(Xk, 1/c), . . . , B(Xk, 1/c

m) is similar
statistically to m points sampled from a symmetric distribution with exponential
tails centered at Xk. The latter is the net result of a sequence from SA’s probabilistic
scheme of accepting a candidate which does not offer an improvement with a proba-
bility which is log-linearly proportional to the difference between the “energy” of the
current best point and the new candidate. One notable difference between ARS and
SA is that the number of contractions prior to restart in ARS depends in an auto-
matic way on the topology of the function surface, whereas SA relies on a prescribed
“cooling schedule” for its stream of exponential probability models.

We also note that the ARS algorithm fits nicely into the meta-approach of Solis
and Wets [29]. Their basic conceptual algorithm can sample randomly from uniform
distributions on sup-norm balls centered at the current record generator whose radius
shrinks by a constant factor if no improvement is found and stretches (to full unit
value) otherwise. Mathematical rigor is limited there to proofs of convergence only,
without results on rates of convergence.

In other related work, there is a fair amount of literature (see [17]) on pure
adaptive search (PAS). The core concept in PAS is to draw the next point Xk+1

uniformly from the region Rk = {x : f(x) > f(Xk)}. There are results which establish
an exponential improvement of PAS over PRS in the case of Lipschitz continuous
[32] and finite-valued objective functions [34]. An extension to SA has also been
investigated [5, 21]. The drawback, of course, is that PAS is not implementable, since
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the region Rk is rarely known. However, various schemes for sampling from Rk in an
efficient or approximate way have been considered [21, 30, 33]. One idea is to construct
a candidate approximant to Rk by covering with (possibly shrinking) balls a subset of
search iterates consisting of those points whose objective function value is larger than a
given value, and then sampling uniformly from this covering [9]. ARS may be thought
of in this context since for a “nice” function f—for example, if f is strictly concave
in a neighborhood of argmaxx∈D f(x)—there exists a constant λ > 0 which does not
depend on k such that for k large enough, vol(B(Xk, r) ∩ Rk)/vol(B(Xk, r)) > λ for
all r small. In the concave case in one dimension, we have λ = 1/2, which ensures
that a sample from the ball has a 50% chance of being from the preferred region
Rk. Attempts to combine PAS and its extensions with directional search techniques
have been made [22, 3, 10]. With these methods, as with the previously mentioned
methods involving time-based triggers, it would seem difficult to pinpoint conditions
necessary to prevent the search from becoming trapped away from local extrema.

In the next section, we state our main theoretical results; proofs and complements
are delayed until Appendix B. In section 3, we report the results of applications of
ARS to a variety of numerical optimization problems. The paper is briefly summarized
in section 4. Throughout the paper, and often in the proofs of the theoretical results,
we use standard notation and terminology from probability theory and real analysis; a
reader unfamiliar with these is urged to consult any of a number of standard graduate-
level texts in probability theory; see, for example, [7].

2. Statement of theoretical results.
Theorem 1. Let f be a continuous function on the d-dimensional unit cube

with finitely many global maxima. Let {Mn} be the record sequence produced by finite
descent ARS, and let {M̃n} be the record sequence produced by PRS.

Given a contraction factor c > 1 and a precision threshold ρ ∈ (0, 1), let m =
| ln(ρ)|/ ln(c). For each positive integer C < cm/(3m) there exists a positive integer
nC , depending only on C, such that for each n > nC

E (Mn) ≥ E
(
M̃Cn

)
.(2.1)

Here, E(·) stands for the expected value operator. The content of Theorem 1 is
essentially that for a continuous objective function, one may pick a multiplier C from
a range (depending only on c and ρ) of large constants, and that after a (possibly
large) number of initial steps, finite descent ARS at n steps outperforms PRS at Cn
steps, in the sense of L1 (and hence with probability one if the two processes are run
simultaneously on the same space, since f is bounded). We note that the assumption
of continuity is somewhat more than what is needed for Theorem 1 to hold; all we
really require is the existence of a certain “maximal absorbing” set. The reader is
referred to the proof in Appendix B for details.

For infinite descent ARS, convergence to local or global maxima is no longer
guaranteed. In fact, the algorithm may stall on some very smooth functions; that is,
the event {Xn+1 = Xn, eventually} may occur with positive probability, where the
common value of Xn beyond some index is only a local optimum. However, we do
have convergence when the complementary event {Xn+1 �= Xn infinitely often (i.o.)}
occurs.

Theorem 2. Let {Xn} denote the record-generating sequence from infinite de-
scent ARS. The record sequence converges, with probability one, to ess sup f on the
event {Xn+1 �= Xn i.o.}.
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Theorem 2 implies that P (Mn → ess supf) = P (Xn+1 �= Xn i.o.); the common
value of the two probabilities is no longer necessarily one. In Appendix B (Proposition
7), we provide a characterization of P (Xn+1 �= Xn i.o.) = 1 in terms of a product
criterion. The sufficiency half of this criterion is similar to the global convergence
theorem of Solis and Wets [29].

Our third result states that for a class of objective functions satisfying a local
non-“flatness” condition, the right tails of the distributions of inter-record times in
infinite descent ARS are exponentially smaller than those of PRS.

Property B. For almost every x ∈ D,

sup
r>0

P {y : f(y) ≤ f(x) |B(x, r)} < 1.(2.2)

Theorem 3. Let f satisfy Property B and let {Xn} denote the record-generating
sequence from infinite descent ARS. Let {Nk} be the sequence of random times at
which a new record is found,

N1 = min {n : Xn+1 �= Xn} ,(2.3)

and, recursively,

Nk+1 = min {n > Nk : Xn+1 �= Xn} .(2.4)

Let ∆k+1 = Nk+1 −Nk denote the inter-record times. Let X̃n, Ñk, and ∆̃k+1 denote
the analogous quantities from PRS. Then there are constants 0 ≤ η < 1 and K > 0
such that

P (∆k > n) ≤ ηnP (∆̃k > n) for all k ≥ K.(2.5)

3. Applications. We now report results from computational experiments with
ARS. The first three sets involve performance comparisons between ARS, PRS, and
three quasi-Newton-type optimization routines in attempting to find global optima of
each of a small collection of test functions of two variables as well as a collection of
polynomials on the d-dimensional unit hypercube with random roots. In the fourth
set, we report the performance of ARS versus PRS and SA in attempting to find
minimum-weight Hamiltonian paths through a complete graph (traveling salesman
problem).

The quasi-Newton-type methods used were (i) Mathematica’s [13] default opti-
mization routine, a modified Powell’s method routine (denoted here by MDF); (ii)
Mathematica’s quasi-Newton method (MQN); and (iii) Algorithm 573 [6], as down-
loaded from the Internet [16]. Algorithm 573, also known as N12SOL, is another
Powell-type quasi-Newton method.

Since the candidate Yn+1, generated immediately after finite descent ARS restarts,
is uniformly distributed on the entire space D = B(Xn+1, rn+1) = B(Xn+1, 1), it fol-
lows that the subsequence of the record sequence that corresponds to these candidates
provides us with a PRS sequence. Thus, with probability one, finite descent ARS will
never permanently stall at a local but nonglobal maximum. However, in the experi-
ments described below we used a modification of finite descent ARS in order to speed
up our experimental work. Below, the term modified ARS refers to the following: we
keep track of the number Nrestart of times finite descent ARS restarts (rn < ρ and so
rn+1 = 1). If Nrestart = n > L, a prescribed positive integer, then we restart the entire
ARS process, setting rn+1 = 1, Nrestart = 0, and generating Xn+1 from a uniform
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Table 1
Standard test functions.

Test function NARS NMQN NMDF N573
Rosenbrock 1256 188 210 119
Himmelblau 188 26 57 29
Freudenstein–Roth 1693 99 166 121
Jennrich–Sampson 438 65 138 58
Griewank 539 54 56 43
Rastrigin 1640 550 (1) 817 (5) 1017
Gaussian 1 2723 413 388 (12) 342
Gaussian 2 16977 545 485 (22) 475

distribution on D; Xn is declared a local maximum and is not used in subsequent
iterations of the algorithm.

We note that modified ARS is very robust with respect to the choice of the
parameter L. We chose L = 4 everywhere but in the traveling salesman problems.
We have experimented with different (small) values and can report no observable
change in performance. We worked with the dimension-dependent choice of L = d2

in the traveling salesman problems in order to counter the rapidity with which ARS
shrinks its search space there.

Standard test functions. We report results for a variety of test functions, the first
six of which are standard in the optimization literature. Some mathematical formulae
appear in Appendix A. All experiments were conducted using modified ARS with
L = 4, contraction factor c =

√
2, and precision threshold ρ = 10−4.

The whole point here is to demonstrate that ARS outperforms PRS by several
orders of magnitude. For each problem, we first ran PRS for 1,000,000 iterations and
recorded the final (minimum value) record attained. We then ran modified ARS until
it found a record whose value was no greater than that found by PRS and recorded
the number of iterations needed. We repeated the whole process 100 times. The
same experiment was repeated using algorithms MDF, MQN, and 573, starting from
random points, with one addition: since each of the quasi-Newton-type methods is
really designed to look for local extrema, we aided them within each trial by repeatedly
restarting from a new random starting point until either a better result than PRS was
found or the number of such restarts exceeded a maximum number Trestart. We set
Trestart = 50 here. All internal stopping criteria and parameters for these quasi-
Newton algorithms were taken as the subroutines’ defaults.

The results are summarized in Table 1. The average number (over 100 trials) of
function evaluations required by each of ARS, MDF, MQN, or 573 to find a better
record than PRS is denoted below asNARS, NMDF, NMQN, andN573, respectively. For
example, in 100 trials on Rastrigin’s function, ARS needed on average 1640 iterations
to find a better record than PRS after 1,000,000 iterations, while Algorithm 573
needed 1017. The values in parentheses stand for the number of trials in which the
given method failed to beat PRS after reaching the maximum of 50 restarts. For
example, the MQN routine exceeded its allotted 50 restarts on one of the 100 trials;
thus its average value of 550 is an average over 99 successes. Similarly, MDF’s average
of 817 is over 95 trials, as MDF exceeded its 50-restart allotment on 5 trials.

Clearly, ARS significantly outperformed PRS in each of these experiments, which
is consistent with Theorem 1. We get a sense of the value of the constant C in the
theorem by simply dividing NARS into 1,000,000. While all of these test functions are
smooth with two-dimensional domains, there is some variety in terms of scaling issues,
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Table 2
Brownian sheet.

Group Avg PRSmax Avg ARSmax NARS Max Min
1 4.51E-02 4.60E-02 3049 12177 154
2 1.76E-01 1.77E-01 1638 4837 160
3 1.64E-01 1.64E-01 2650 8416 179
4 2.85E-02 2.91E-02 12881 38782 276
5 6.87E-02 6.90E-02 1104 2517 177

the existence of local extrema (Griewank and Rastrigin), near-flatness near global
extrema (Himmelblau), and “spiky” functions with hard-to-find extrema (Gaussian
functions).

Brownian sheet. Consider the function f(s, t) = B1(s) · B2(t), where B1 and
B2 are independent Brownian motions on the unit interval. We simulate Brownian
motion here by first generating i.i.d. standard normal variates Z1, . . . , Zn and then

computing B(t) = n−1/2
∑[nt]

i=1 Zi, where the resolution was set to n = 106 and [x]
denotes the integer part of x. As Brownian motion is everywhere continuous but
nowhere differentiable, any calculus-based method can be expected to perform poorly
on it; the three quasi-Newton-type methods MQN, MDF, and 573 each failed to
produce meaningful results here.

On each of 100 realizations of a Brownian sheet, we again ran PRS 1,000,000 times,
recorded the (maximum value) record achieved, and then ran modified ARS until it
reported a better (larger) result. All experiments were conducted using modified
ARS with L = 4, contraction factor c = 21/2, and precision threshold ρ = 10−4. The
summary statistics over 5 groups of 20 runs appear in Table 2. Again, NARS is the
average number of function evaluations used by ARS, while Max and Min here are
the maximum and minimum number, respectively, of ARS function evaluations over
the 20-run trial.

Polynomials with random roots. For fixed integers d and m we construct a set
of random univariate polynomials on [0,1] as follows: for each i = 1, . . . , d, let Zi,j ,
j = 1, . . . ,m−1, be i.i.d. random variables with uniform distribution on [0, 1]. Taking
0, Zi,1, . . . , Zi,m−1, 1 to be the zeros of the ith polynomial pi(·), define pi(u) = u(u−
1)
∏m−1

j=1 (u − Zi,j). For x in the d-dimensional unit hypercube we now define a test

function f(x) = dm ·∏d
i=1 pi(xi). Thus, f is a product of polynomials with random

roots in [0, 1]. The magnification factor dm before the product is irrelevant to PRS
and ARS, but we found that the quasi-Newton-type methods have difficulty in regions
where the objective is near zero.

For each d,m pair, we performed the following experiment 100 times: we first
generated a random polynomial-product test function, then ran PRS for NPRS =
d2(m)2104 trials, followed by runs of each of modified ARS with L = 4, contrac-
tion factor c = 21/d, and precision threshold ρ = (10NPRS)

−1/d, MQN, MDF, and
Algorithm 573 until each respective record was larger than that found by PRS.

Table 3 shows the average number of trials required by each method to find a
better record than PRS. As before, the values in parentheses indicate the number of
trials in which the given method failed to beat PRS before reaching the maximum
number of restarts, Trestart = 50d.

These results provide a dramatic demonstration of the acceleration in performance
predicted by Theorem 1. For each d,m pair, ARS required orders of magnitude fewer
iterations to achieve performance on par with PRS. Perhaps more surprising is the
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Table 3
Polynomials with random roots.

d m NPRS NARS NMQN NMDF N573
1 3 9000 115 16 26 12
1 4 16000 103 19 23 22
1 5 25000 120 25 22 31
1 9 81000 216 61 31 48
1 11 121000 166 87 37 72
1 13 169000 194 76 22 38
2 3 360000 258 43 89 (3) 54
2 4 640000 262 93 119 (3) 142
2 5 1000000 423 147 (2) 198 (1) 183
2 6 1440000 518 335 329 226
3 3 810000 419 306 (1) 217 (4) 202 (3)
3 4 1440000 540 1681 (19) 447 (1) 523 (11)
3 5 2250000 813 2118 (13) 841 (1) 753 (9)
3 6 3240000 765 3256 (65) 2012 (5) 1623 (23)
4 3 1440000 800 - - -
4 4 2560000 1004 - - -
4 5 4000000 1454 - - -
4 6 5760000 3704 - - -
5 3 2250000 1663 - - -
5 4 4000000 1965 - - -
5 5 6250000 3989 - - -
5 6 9000000 5858 - - -

comparison of ARS to the three calculus-based methods. For d = 1 and 2 the results
are as we might have expected from Table 1. In the trials with d = 3, we begin to
see a degradation in performance of the quasi-Newton-type methods relative to ARS,
which worsens as the complexity (m) of the function surface increases. We believe that
this behavior is due to the existence in these polynomials of numerous local maxima
coupled with wide, nearly flat regions: f(x) = 0 whenever x = Zi,j × [0, 1]d−1,
i = 1, . . . , d, j = 1, . . . ,m − 1. We recall (Table 1) the relative difficulty that the
quasi-Newton-type methods had both with Rastrigin’s function, with its dozens of
local minima, and with the Gaussian functions.

We found that the quasi-Newton-type methods performed reasonably well when
the random starting point was in a neighborhood of argmaxx∈D f(x). But this of
course becomes increasingly unlikely as dimension and degree grow—hence the nu-
merous restarts, all attracted to local maxima. We therefore report no trials using
algorithms MQN, MDF, or 573 for d > 3, as the performance degradation only wors-
ened there.

Traveling salesman problems. The following example is intended to demonstrate
the wider applicability of ARS, where all that is really required for implementation
is that the objective function be computable and that its domain be a metric space
from which one can simulate uniform random variates.

For a given dimension d, we produced a realization of a randomly weighted com-
plete graph on d vertices by generating a d× d symmetric matrix with random (uni-
form on [0, 1]) entries. We then searched for a minimum-weight (Hamiltonian) path
through the graph using three techniques: PRS, modified ARS, and a version of the
SA algorithm [11].

A path through the complete graph is uniquely represented by a permutation
of the ordered string 1, 2, . . . , d. PRS was performed by generating a predetermined
number (NPRS) of random permutations, computing the weight (sum over all edge
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Table 4
Traveling salesmen.

d NPRS = d6 NARS NSA
10 1000000 23565 72479
11 1771561 12306 11431
12 2985984 8619 22319
13 4826809 11403 23293
14 7529536 14936 22290
15 11390625 3380 15183
16 16777216 19402 43862
17 24137569 5368 12334
18 34012224 4693 6709
19 47045881 2431 8927
20 64000000 4233 6534
21 85766121 2028 5654

Table 5
More traveling salesmen.

d NPRS = 2((d− 1)!) NARS NSA
8 10080 171 686
9 80640 989 162
10 725760 9531 87286
11 7257600 14377 3770
12 79833600 56148 219145
13 958003200 478162 741741

weights) of each, keeping the current lowest.
In order to apply ARS, we first placed a metric on the space of paths (permuta-

tions) by taking the distance between two paths π1 and π2 to be the smallest number
of pairwise transpositions needed to transform π1 into π2. For example, the distance
between 1, 2, 3 and 3, 1, 2 is 2. Although this is a discrete problem, one can argue that
if two paths π1 and π2 are close (with respect to this distance), then the sums over
all edge weights are also close.

We implemented SA according to the following algorithm: given a path π1, sample
a new path π2 randomly from the ball B(π1, d/2) (with respect to the above metric).
Let w(π) denote the weight of a path π. If w(π2) < w(π1), then keep π2 as the new
candidate; if not, compute the probability p = exp(−3(w(π1) − w(π2))), and then
keep or reject π2 as the new candidate with probability p or 1− p, respectively.

In our modified ARS, we took L = d2, contraction factor c = 1.3, and precision
threshold ρ = 1. As in the previous experiments, we ran ARS and the SA procedure
until the reported minimum was smaller than the one obtained by PRS. For each
dimension d we repeated the experiment 10 times and recorded the averages.

As before, ARS outperformed PRS by orders of magnitude (see Table 4). It is
important to note that none of the three methods found an actual minimum-weight
path. We simply claim that, after only a few thousand steps, ARS found a path with
smaller weight than did PRS after millions of iterations. The same is also true of SA,
although ARS did somewhat better here as well.

To see how ARS performs in searching for an actual minimum-weight path, we
conducted a second experiment in which we ran PRS for 2((d−1)!) times. In this case,
PRS found a true minimum-weight path with probability 1− (1− 1/(d− 1)!)2(d−1)! ≥
1− e−2 ≈ 0.85 (see Table 5).
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Linear systems. It is of interest to note a conspicuous failure of ARS. We consid-
ered optimizing objective functions of the form f(x) = −‖Ax−b‖, where x and b lie in
Rd, A is a real d×d matrix, and ‖ · ‖ is an lp vector norm. Typically, ARS performed
poorly in this setting. It was not unusual for ARS to require more than 104 iterations
in order to solve a 5×5 linear system. It is of small consolation to note that ARS did
perform better than PRS (which typically needs more than 1,000,000 iterations). As
one would expect, the quasi-Newton-type methods performed flawlessly here, since
for any convex quadratic function, Newton’s method converges in one iteration.

4. Summary. We have described accelerated random search, a simple, but effec-
tive, new variant of the classic Monte Carlo pure random search algorithm. We have
included a literature context for our work. Some mathematically rigorous theoretical
results have been provided, which clearly point to improvements in performance of
ARS over PRS. In order to demonstrate the efficacy of the algorithm, we have in-
cluded the results of a variety of numerical optimization experiments which feature
performance comparisons of ARS to PRS, as well as to standard quasi-Newton-type
optimization methods (smooth functions of several variables) and a simulated anneal-
ing algorithm (traveling salesman problems).

Appendix A. List of test functions.
Rosenbrock “banana” function [23]:

f(x, y) = 100(y − x2)2 + (1 − x)2, where x, y ∈ [−5, 5]. The function has a unique
global minimum of 0 at (1, 1).

Himmelblau’s function [20]:
f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2, where x, y ∈ [−5, 5]. The function takes its
minimum value of 0 at four solution points, given by the intersection of the two conic
sections y = −x2 + 11 and x = −y2 + 7.

Freudenstein–Roth function [24]:
f(x, y) = ((x − 13) + ((5 − y)y − 2)y)2 + ((x − 29) + ((y + 1)y − 14)y)2, where
x, y ∈ [−10, 10]. The global minimum of 0 occurs at (5, 4).

Jennrich–Sampson function [25]:

f(x, y) =
∑10

k=1(2 + 2k − (ekx + eky))2, where x, y ∈ (−1, 1). The global minimum of
124.362 occurs at (0.257825, 0.257825).

Griewank’s function [28]:

f(x, y) = 1 +
∑n

i=1
x2
i

d −
∏n

i=1 cos(
xi√
i
), where x, y ∈ (−100, 100), with n = 2 and

d = 10. The global minimum of 0 occurs at (0, 0).
Rastrigin’s function [19]:

f(x, y) = (x2 + y2)− cos(18x)− cos(18y), where x, y ∈ [−1, 1]. The global minimum
of −2 occurs at (0, 0).

Gaussian function 1:
let g(x, y;h,m, s) = (h− ((x−m1)

2 + (y −m2)
2)) · exp(−s((x−m1)

2 + (y −m2)
2))

and construct a test function

f(x, y) = g(x, y;h1,m0, s1) + g(x, y;h2,m1, s2) + g(x, y;h2,m2, s2)

+ g(x, y;h2,m3, s2) + g(x, y;h2,m4, s2)

with h1 = 5, h2 = 1, s1 = 10, s2 = 0.5, m0 = (0, 0), m1 = (0, 5), m2 = (0,−5),
m3 = (5, 0), and m4 = (−5, 0). The function f has a global maximum at (0, 0) with
very small support. There are also four local maxima at (±5,±5) with large supports.

Gaussian function 2: same as above but with s1 = 100.
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Appendix B. Proofs and theoretical complements. Throughout the fol-
lowing, 1A denotes the binary indicator random variable for set membership in A. We
denote Lebesgue measure on Rd by µ. Let h be a measurable mapping on a proba-
bility space (Ω,F , P ), and let C denote a condition (set membership, an inequality,
etc.). We make frequent use of two notational abbreviations, which are commonly
used in probability theory:

{ω ∈ Ω : h(ω) satisfies C} = {h satisfies C} ,

P ({ω ∈ Ω : h(ω) satisfies C}) = P (h satisfies C) .

Proof of Theorem 1. We first prove two preliminary lemmas.
Lemma 4. Let D ⊂ Rd such that 0 < µ(D) < ∞ and such that there exists

r > 0 for which D ⊂ ∩x∈DB(x, r). Let Z0 be uniformly distributed on D (i.e.,
P (Z0 ∈ C) = µ(C ∩D)/µ(D)) and let {Zk}∞k=1 and {Xk}∞k=0 be such that for k ≥ 0

Xk ∈ σk = σ (Z0, Z1, . . . , Zk)

(the sigma-field generated by Z0, Z1, . . . , Zk),

Xk ∈ D,

Zk+1 ∼ uniform on B(Xk, r).

Let y ∈ Dc and for k > 0, let Yk = Zk · 1{Zk∈D} + y · 1{Zk /∈D}. The conditional
distribution L(Yk|Yk �= y) of Yk, given that Yk �= y, is uniform on D, and the sequence
{Yk}∞k=1 is i.i.d.

Proof of Lemma 4. First we observe that µB ≡ µ(B(Xk, r)) does not depend on
Xk. For any set A not containing y we have

P (Yk ∈ A) = P (Zk ∈ A ∩D)

= E (P (Zk ∈ A ∩D|σ(Xk−1)))

(by the definition of Zk and since D ⊂ ∩x∈DB(x, r))

= E

(
µ(A ∩D ∩B(Xk−1, r))

µ(B(Xk−1, r))

)

= E

(
µ(A ∩D)

µB

)

=
µ(A ∩D)

µB
,(B.1)

which does not depend on k. Similarly, for any A which contains y

P (Yk ∈ A) = P (Yk ∈ A \ {y}) + P (Yk = y)

=
µ(A ∩D)

µB
+ 1− µ(D)

µB
,

which again does not depend on k. This implies that {Yk}∞k=1 is i.i.d. and that
L(Yk|Yk �= y) is uniform on D.

We now demonstrate independence of the sequence {Yk}∞k=1. For any sequence
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of sets Ci ⊂ Rd, i = 1, 2, . . . , we have

P (Yk ∈ Ci|σk−1) = P (Yk ∈ Ci \ {y}|σk−1) + P (Yk ∈ Ci ∩ {y}|σk−1)

= P (Zk ∈ D ∩ Ci|σk−1) + 1{y∈Ci}P (Zk ∈ Dc|σk−1)

(again, by the definition of Zk)

= P (Zk ∈ D ∩ Ci|σ(Xk−1)) + 1{y∈Ci} · P (Zk ∈ Dc|σ(Xk−1))

(using the same argument as in (B.1))

=
µ(Ci ∩D)

µB
+ 1{y∈Ci} ·

(
1− µ(D)

µB

)
≡ qi.

Since each qi, i = 1, 2, . . . , does not depend on k, nor is it random, we have

P (Yk ∈ Ci) = E [P (Yk ∈ Ci|σk−1)]

= qi.(B.2)

Therefore

P (∩nk=1{Yk ∈ Ck}) = E [P (∩nk=1{Yk ∈ Ck}|σn−1)]

(since Yk ∈ σk)

= E

(
n−1∏
k=1

1{Yk∈Ck} · P (Yn ∈ Cn|σn−1)

)

(by (B.2))

= E

(
qn ·

n−1∏
k=1

1{Yk∈Ck}

)
= qn · P

(∩n−1
k=1{Yk ∈ Ck}

)
(by repeating the above computation n− 1 times)

=

n∏
k=1

qk

=

n∏
k=1

P (Yk ∈ Ck) ,

which implies independence. This proves Lemma 4.
Before stating the next lemma we make the following definitions. Let K be the

largest integer such that 1/cK > ρ and let

k1 = 1,

ki = min{n : n > ki−1 and Xn �= Xki−1
} for i = 1, 2, . . . ,

In = max{m : km ≤ n},
τi = ki+1 − ki,

and

Yi,j ∼ uniform on B
(
Xki ,

r

cl

)
, where j ≤ τi + 1 and l = (j − 1) mod (K + 1).
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For given A ⊂ Rd, let

mL(A) = min

{
n :

In−1∑
i=1

[
τi

K + 1

]
1{Xki

∈A} +
[
n− kIn
K + 1

]
1{XkIn

∈A} = L

}
,

where [x] denotes the largest integer less than or equal to x. We set mL(A) =
∞ if the above minimum is not defined. Essentially, mL(A) tells us how far we
should go with the sequence {X1, X2, . . . , XmL(A)} in order to have exactly L of

Yi,j ’s sampled uniformly on the minimal balls B(νi,
1
cK

) with centers νi ∈ A. For
X∗ ∈ argmaxx∈D f(x) and fixed r ∈ R, a set A such that

A ⊂ B(X∗, r), µ(A) > 0,

and

f(x) ≥ f(y) for all x ∈ A and for all y ∈ D \B(X∗, r)

is called an absorbing set for the radius r. A set is called the maximal absorbing set
for the radius r if it is the union of all the absorbing sets for the radius r. It should
be noted that for some r and functions f , absorbing sets might not exist. We use the
term “absorbing” to describe such a set A because once the ARS sequence lands in
A, it never leaves the ball B(X∗, r). That is, if Xk ∈ A, then Xk+n ∈ B(X∗, r) for
all n. If A is a maximal absorbing set, then Xk ∈ A implies that Xk+n ∈ A for all n.

Lemma 5. Let f be a continuous function on the d-dimensional hypercube D with
unique maximum at X∗, and let {Xi}∞i=1 be a sequence of record generators produced
by the ARS algorithm. Then for a maximal absorbing set A for the radius s = 1/(3ρ)

P (mL(A) > 3KL)→ 0 as L→∞.

Proof of Lemma 5. Since f is continuous with unique maximizer X∗, for every
0 < ε < ρ the maximal absorbing set Aε associated with radius ε exists in B(X∗, ε).
Since ρ is fixed

µ(Aε)/µ(B(X∗, ρ))→ 0 as ε→ 0.

First we will show that

P (τi ≤ K)→ 0 as i→∞.(B.3)

To see this, note that

P (τi ≤ K) = P ({Xki+1 �= Xki} ∪ · · · ∪ {Xki+K �= Xki})

≤
K∑
j=1

P (Xki+j �= Xki)

≤
K∑
j=1

P ({Xki+j �= Xki
} ∩ {Xki

∈ Aε}) +K · P (Xki
�∈ Aε)(B.4)

for any ε > 0. For Xki
∈ Aε, we have Xki+j �= Xki

only if Yki,j ∈ Aε and f(Yki,j) >
f(Xki). Therefore

P ({Xki+j �= Xki} ∩ {Xki ∈ Aε}) ≤ P (Yki,j ∈ Aε)

≤ µ(Aε)

µ(B(X∗, ρ))
,
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which can be made arbitrarily small by the choice of ε. For the second part of (B.4)
we observe that since Xki converges, with probability one, to X∗ ∈ Aε (since ARS
restarts periodically) and µ(Aε) > 0, we have P (Xki

∈ Aε)→ 1 as i tends to infinity.
This proves (B.3). Now, by the definition of mL(A) we have

P (mL(A) ≤ 3KL)=P

(
I3KL−1∑

i=1

[
τi

K+1

]
1{Xki

∈A}+
[
3KL−kI3KL

K+1

]
1{

XkI3KL
∈A

}≥L
)
.

We observe that, for φ = min{j : Xkj
∈ A}, the definition of maximal absorbing set

yields

I3KL−1∑
i=1

[
τi

K + 1

]
1{Xki

∈A} +
[
3KL− kI3KL

K + 1

]
1{

XkI3KL
∈A

}

=

φ∑
i=1

[
τi

K + 1

]
1{Xki

∈A} +
I3KL−1∑
i=φ

[
τi

K + 1

]
1{Xki

∈A} +
[
3KL− kI3KL

K + 1

]
1{

XkI3KL
∈A

}

= 1{φ<I3KL−1} ·

I3KL−1∑

i=φ

[
τi

K + 1

]
+

[
3KL− kI3KL

K + 1

] .

Since Xki
→ X∗ and P (Xi = X∗) = 0, we have I3KL →∞ as L→∞, and therefore

1{φ<I3KL−1} → 1 (all limits are with probability one). We will need the estimate

I3KL−1∑
i=φ

[
τi

K + 1

]
+

[
3KL− kI3KL

K + 1

]

=

I3KL−1∑
i=φ

[
τi

K + 1

]
1{τi≥K+1} +

[
3KL− kI3KL

K + 1

]
1{(3KL−kI3KL

)≥K+1}

≥ 1

2

I3KL−1∑
i=φ

τi
K + 1

1{τi≥K+1} +
1

2

3KL− kI3KL

K + 1
1{(3KL−kI3KL

)≥K+1}

=
1

2


I3KL−1∑

i=φ

τi
K + 1

+
3KL− kI3KL

K + 1




−1

2


I3KL−1∑

i=φ

τi
K + 1

1{τi<K+1} +
3KL− kI3KL

K + 1
1{(3KL−kI3KL

)<K+1}




(since τi
K+11{τi<K+1} ≤ 1{τi<K+1} and likewise for (3KL− kI3KL

))

≥ 1

2


I3KL−1∑

i=φ

τi
K + 1

+
3KL−kI3KL

K + 1


− 1

2


I3KL−1∑

i=φ

1{τi<K+1}+1{(3KL−kI3KL
)<K+1}




≥ 1

2


I3KL−1∑

i=φ

τi
K + 1

+
3KL− kI3KL

K + 1


− 1

2


I3KL−1∑

i=φ

1{τi<K+1}




=
1

2(K+1)

(
I3KL−1∑

i=1

τi+(3KL− kI3KL
)

)
− 1

2(K + 1)

φ−1∑
i=1

τi − 1

2


I3KL−1∑

i=φ

1{τi<K+1}


 .
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By the definition of τi = ki+1− ki we have
∑I3KL−1

i=1 τi = kI3KL
− 1. This implies that

the last quantity above is equal to

3KL− 1

2(K + 1)
− 1

2(K + 1)

φ−1∑
i=1

τi − 1

2


I3KL−1∑

i=φ

1{τi<K+1}


 .

Letting W = 1
2(K+1) (

∑φ−1
i=1 τi − 1) and summarizing, we have shown that

P (mL(A) ≤ 3KL)

≥ P




 3KL

2(K + 1)
−W − 1

2


I3KL−1∑

i=φ

1{τi<K+1}


 ≥ L


 ∩ {φ < I3KL − 1}




+ P (φ ≥ I3KL − 1).

We already have observed that P (φ ≥ I3KL)→ 0 as L→∞, so in order to show that
P (mL(A) ≤ 3KL)→ 1, it suffices to show that

P


 3KL

2(K + 1)
−W − 1

2


I3KL−1∑

i=φ

1{τi<K+1}


 ≥ L


→ 1

as L→∞. Since W does not depend on L, it is sufficient to show that

P




I3KL−1∑

i=φ

1{τi<K+1}


 ≤ L/2


→ 1 as L→∞.

This would easily follow if 1
L

∑I3KL

i=φ 1{τi<K+1} → 0 in probability. An easy computa-
tion yields

1

L

I3KL∑
i=φ

1{τi<K+1} ≤ 1

L

3KL∑
i=1

1{τi<K+1}

and

P


 1

L

I3KL∑
i=φ

1{τi<K+1} > ε


 ≤ 1

εL

3KL∑
i=1

P (τi < K + 1),

which converges to 0 by (B.3). This proves Lemma 5.
Proof of Theorem 1. We prove the theorem only in the case of a unique maximum

since the extension to finitely many maxima is straightforward. Without loss of
generality we can assume that 0 < f(0) ≤ f(x) for all x ∈ D and that X∗ ≡
argmaxx∈D f(x) is at least ρ away from the boundary of D. (This can always be
accomplished by slightly enlarging the cube and by shifting the function.) We will
use the notation f∗ ≡ f(X∗).

Since f is continuous and has a unique maximum, we can take the set A to be
the maximal absorbing set for s = 1/(3cK). Let mL := mL(A). (Here K and mL(A)
are as in Lemma 5.) Let

ΛL = {(i, j) ∈ N2 : 1 ≤ i ≤ (ImL
− 1), 1 ≤ j ≤ τi}

∪{(i, j) ∈ N2 : i = ImL
, 1 ≤ j ≤ (n− kIML

)},
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and let Λ̃L ⊂ N2 consist of those (i, j) satisfying

Xki ∈ A , i = 1, . . . , (ImL
− 1), and j = l(K + 1) with l = 1, . . . ,

[
τi

K + 1

]

or

XkImL
∈ A , i = ImL

, and j = l(K + 1) with l = 1, . . . ,

[
n− kImL

K + 1

]
.

In other words, Λ̃L consists of (i, j) for which Yi,j are sampled from the minimal balls

B(ν, 1/cK) with center ν ∈ A. Since Λ̃L ⊂ ΛL we have

f(XmL
) = max{f(X1), . . . , f(XmL

)}
= max{f(Yi,j) : (i, j) ∈ ΛL}
≥ max{f(Yi,j) : (i, j) ∈ Λ̃L}.(B.5)

By the choice of mL, the cardinality of Λ̃L is exactly L. Therefore we can reorder the
Yi,j variables as Zi, i = 1, . . . , L, yielding

f(XmL
) ≥ max{f(Zi) : i = 1, . . . , L}.

We also observe that, for each i = 1, . . . , L, Zi is uniformly distributed on B(ηi,
1
cK

),
where ηi are random variables measurable with respect to σ(Z1, Z2, . . . , Zi−1) such
that ηi ∈ A for all ω. Let η0 be any point in A and Z0 ∼ uniform on B(η0,

1
cK

). Since
by assumption f(0) ≤ f(x) for all x ∈ D, we have

max{f(Zi) : i = 1, . . . , L} ≥ max{f(Zi · 1{Zi∈A}) : i = 1, . . . , L}.
Combining the above inequalities, we see that

f(XmL
) ≥ max{f(Zi · 1{Zi∈A}) : i = 1, . . . , L}.(B.6)

Clearly the sequence {Zi · 1{Zi∈A}}Li=1 satisfies the conditions of Lemma 4 (by letting
y = 0 and Yi = Zi · 1{Zi∈A}) and is therefore i.i.d. We would like to compare the
right-hand side of (B.6) with the maximum obtained by PRS. Since by assumption
the argmax X∗ is at least ρ away from the boundary of D, we have

µ

(
B

(
X∗,

1

cK

))
=

1

λK
,(B.7)

where λ = cd (this is true only for sup-norm balls; modifications for other norms are

straightforward). Let {Z̃i}∞i=1 be i.i.d. uniform on D,

NL = max{f(Z̃i · 1{Z̃i∈A}) : i = 1, . . . , λKL}

and

ML = max{f(Zi · 1{Zi∈A}) : i = 1, . . . , L}.
We will show that

P (ML > t) > P (NL > t) for all t ∈ (0, f∗) and all L ∈ N,(B.8)



724 M. J. APPEL, R. LABARRE, AND D. RADULOVIĆ

which in turn implies that E(ML) > E(NL), since 0 < f(x) < f∗ for all x �= X∗. Let

At = {x ∈ D : f(x) > t} , Bt = At ∩A.

For t > f(0) we have

P (ML > t) = P (Zi · 1{Zi∈A} ∈ At for some i ≤ L)

(since 0 /∈ At)

= P (Zi · 1{Zi∈A} ∈ At ∩A for some i ≤ L)

= P (Zi ∈ Bt for some i ≤ L)

= 1− (P (Z1 ∈ (Bt)
c))L

= 1− (1− P (Z1 ∈ Bt))
L

= 1− (1− PM(t))L,

where PM(t) = P (Z1 ∈ Bt). By a similar argument and with PN(t) = P (Z̃1 ∈ Bt),
we have

P (NL > t) = 1− (1− PN(t))λ
KL.(B.9)

By the choice of λ and expression (B.7) we have

PN(t) =
µ(Bt)

µ(D)
=

µ(Bt)

µ(B(X∗, 1
cK

))λK
=

PM(t)

λK
.

Hence, (B.9) is equal to

1−
(
1− PM(t)

λK

)λKL

.

Since

1− (1− a)L > 1−
(
1− a

s

)sL
for all a ∈ (0, 1), L > 0, and s > 1, we obtain the inequality (B.8) by setting
a = PM(t) and s = λK . Combining (B.8) and (B.6) gives

E (f (XmL
)) > E

(
max
i≤λKL

{
f
(
Z̃i · 1{Z̃i∈A}

)})
.(B.10)

Since f(x) > 0 and A is a maximal absorbing set, we can eliminate 1{Z̃i∈A} from

(B.10). That is, for L large enough

max
i≤λKL

{
f
(
Z̃i · 1{Z̃i∈A}

)}
= max

i≤λKL

{
f
(
Z̃i

)}
.

Thus, for any 0 < δ < 1

E (f (XmL
)) ≥ E

(
max

i≤δλKL
{f(Z̃i)}

)
for L large enough.(B.11)
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Finally, Lemma 5 allows us to replace f(XmL
) with f(X3KL), from which we have

E (f (X3KL)) ≥ E

(
max

i≤δλKL
{f(Z̃i)}

)
for L large enough.

Theorem 1 now follows by letting n = 3KL.
Proof of Theorem 2. We first prove the following lemma. Let {Xn} be a sequence

of integrable random variables defined on a probability space (Ω,F , P ), let {σn} be
a sequence of subsigma fields, and let N be an integer stopping time {N = n} ∈ σn
for all n. Define

σN ≡ σ{C : C ∩ {N = n} ∈ σn for each n}.
Lemma 6. The random variables XN and Xn satisfy

E (XN | σN ) = E (Xn| σn) a.s. on {N = n}.(B.12)

Proof of Lemma 6. For any A in σN ,

E[E(XN | σN ) · 1{A∩{N<∞}}] = E[XN · 1{A∩{N<∞}}]

=
∑
n

E[XN · 1{A∩{N=n}}]

=
∑
n

E[E(XN | σN ) · 1{A∩{N=n}}]

= E

[(∑
n

E[E(XN | σN )1{N=n}

)
· 1{A∩{N<n}}]

]
.

Since A is arbitrary, we have

E(XN | σN ) =
∑
n

E(Xn| σn) · 1{N=n} a.s. on {N <∞},

which is equivalent to the statement of the lemma.
Moving on to a proof of Theorem 2, let L = supnMn. By monotonicity, Mn ↑ L

as n→∞. We assume without loss of generality that P (Xn+1 = Xn eventually) < 1
and that {Xn+1 �= Xn i.o.} = {Xn+1 = Xn eventually}c occurs. Let

N1 = min {n : Xn+1 �= Xn}(B.13)

and, recursively,

Nk+1 = min {n > Nk : Xn+1 �= Xn} .(B.14)

Note that Nk is not a stopping time; however, N+
k = Nk + 1 is. The random indices

Nk ↑ ∞ as k →∞. By compactness, there is a convergent subsequence XN+
ki

of XN+
k

which converges to some X as i→∞. By monotonicity, MN+
ki

↑ L as i→∞, as well.

For n = 1, 2, . . . , let {σn} = σ(X1, . . . , Xn). Let A be any (Lebesgue) measurable
set and consider the event An = {Yn ∈ A}. By definition,

P (An | σ(Xn) ) =
µ(A ∩B(Xn, R))

µ(B(Xn, R))
, with probability one.(B.15)
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Clearly,

P (An | σn ) = P (An | σ(Xn) ), with probability one.(B.16)

A “strong Markov” version of (B.16) also holds. Indeed, for any stopping time N an
expansion along possible values of N yields

P (AN | σN ) = P (AN | σ(XN ) ), with probability one, on {N <∞}.(B.17)

An argument analogous to the proof of Lemma 6 shows that

P (AN | σN ) = P (An | σn ), with probability one, on {N = n}.(B.18)

It follows that

µ(A ∩B(XN , 1))

µ(B(XN , 1))
= P (An | σn ), with probability one, on {N = n}.(B.19)

Observe that for any x in D and s > 0

sd ≤ µ(B(x, s)) ≤ (2s)
d ∧ 1.(B.20)

Let 0 < δ < 1, and let Zδ be distributed uniformly on B(X, 1− δ) and independent of
the record-generating sequence {Xn}. For any Lebesgue measurable set A, if n and
I are large enough so that N+

ki
= n for some i ≥ I, then by (B.19) and (B.20)

P (Zδ ∈ A) =
µ(A ∩B(X, 1− δ))

µ(B(X, 1− δ))

≤ 2d

(1− δ)
d

∑
i≥I

µ(A ∩B(XN+
ki

, 1))

2d
· 1{N+

ki
=n}(B.21)

≤ 2d

(1− δ)
d

∑
i

P (An | σn ) · 1{N+
ki

=n},

where again An = {Yn ∈ A}. Take A = {x ∈ D : f(x) > L}; note that A is random
and measurable (pointwise). Since An = ∅, we find that P (An| σn) = 0; hence, by
(B.21) we must have P (Zδ ∈ A) = µ(A∩B(X, 1− δ)) = 0. We conclude the proof by
letting δ ↓ 0.

We are able to characterize the almost-sure occurrence of an infinite stream of
record generators in terms of the following assumption on the topology of f under µ.

Property A. For almost every x ∈ D,

M∏
i=1

P
(
f ≤ f(x)

∣∣B(x, c−i)
)→ 0 as M →∞.(B.22)

Proposition 7. Let {Xn} be the record-generating sequence from infinite descent
ARS applied to the objective function f . Then P{Xn+1 �= Xn i.o.} = 1 if and only if
f satisfies Property A.

We know that for any sequence {pi} in [0, 1],

M∏
i=1

(1− pi)→ 0 if and only if

M∑
i=1

pi →∞.
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Thus Property A is equivalent to the statement that
∑

i P (f > f(x)|B(x, c−i)) di-
verges for almost every x in D. We note the similarity of Property A to assumption
H2 of Solis and Wets [29].

Proof of Proposition 7. We first suppose that f satisfies Property A. Conditioning
on the mth record generator in the ARS sequence, we have

QM (m) ≡ P
(∩Mn=m{Xn+1 = Xn}| σ (Xm)

)
=

M−m∏
i=1

P
(
f ≤f(Xm)

∣∣B(Xm, c
−i−J)

)→0, with probability one, as M→∞,

with J ∈ {0, 1, . . . ,m} randomly chosen. By the bounded convergence theorem, for
each m

P (∩n≥m{Xn+1 = Xn}) = E [P (∩n≥m{Xn+1 = Xn}| σ (Xm))]

= E
[

lim
M→∞

QM (m)
]

= 0,

and so by Boole’s inequality,

P (Xn+1 = Xn, eventually) = P (∪m ∩n≥m {Xn+1 = Xn})
≤
∑

m
P (∩n≥m{Xn+1 = Xn})

= 0.

On the other hand, assume P (Xn+1 = Xn eventually) = 0. Then P (∩n≥m{Xn+1

= Xn}) = 0 for each m, and so QM (m) ↓ 0 as M → ∞ in L1, hence in probability,
and therefore with probability one, by monotonicity. Assume that Property A does
not hold: there is a measurable set A such that µ(A) > 0 and

lim sup
M

M∏
i=1

P
(
f ≤ f(x)

∣∣B(x, c−i)
)
> 0

for all x in A. Now for each m

QM (m) =

M−m∏
i=1

P
(
f ≤ f(Xm)

∣∣∣B(Xm, c
−(i+J))

)

=

M+J−m∏
i=J+1

P
(
f ≤ f(Xm)

∣∣B(Xm, c
−i)

)

≥
M∏
i=1

P
(
f ≤ f(Xm)

∣∣B(Xm, c
−i)

)
,

since 0 ≤ J ≤ m. Since QM (m) ↓ 0, the last quantity tends to zero as M tends to
infinity, so it must be that Xm is not in A. Since we have assumed an infinite sequence
of new records and hence restarts, it follows that there is an infinite sequence {Yn}
of candidates from Step 1 of the infinite descent ARS algorithm which are i.i.d. and
uniformly distributed on D. Since none of these lies in A, with probability one, we
must conclude that µ(A) = 0, which contradicts the assumption that Property A does
not hold. This proves Proposition 7.
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The convergence to zero of the product in Property A (or, equivalently, diver-
gence of the associated series) controls the rate at which the probabilities P (f >
f(x)|B(x, c−i)) can decay in order for (B.22) to hold. If we assume slightly more,
namely, Property B ((2.2) above), then we obtain Theorem 3. Property B is essen-
tially a restriction against local flatness. To see this, note first that if f is almost
surely constant on a ball B, then P (f ≤ f(x)|B(x, r)) = 1 for all r > 0 small
enough so that B(x, r) lies in B. On the other hand, if there is an r > 0 such
that P (f ≤ f(x)|B(x, r)) = 1 for all x in a ball B, then fix such an x. For any
y ∈ B(x, r) ∩B the conditions imposed yield f(y) = f(x), with probability one; that
is, f is almost surely constant on B(x, r) ∩B.

Proof of Theorem 3. Let N+
k = Nk + 1 and A ∈ σN+

k
. Then

P (∆k+1 = n,A) =
∑
i≥k

P (Nk+1 = n+ i, A,Nk = i)

=
∑
i≥k

P (Xn+i+1 �= Xi+1, Xl+i = Xi+1, l = 2, . . . , n, A,Nk = i)

=
∑
i≥k

P (f(Yn+i+1) > f(Xi+1)≥ f(Yl+i), l = 2, . . . , n, A,N+
k = i+ 1)

=
∑
i≥k

E[1{Nk=i} · 1A · P (f(Yn+i+1) > f(Xi+1) ≥ f(Yl+i),

l = 2, . . . , n, A| σi+1)],

where {Yl+i}l=2,...,n+1 are independent with Yl+i distributed uniformly on B(Xi,c
−l).

Here we use Lemma 6, the double expectation formula conditioning on σi+1, and the
fact that N+

k is a stopping time. Let

qi+1,l = P (f(Yl+i) ≤ f(Xi+1)| σi+1)

=
µ({f ≤ f(Xi+1)} ∩B(Xi+1, c

−l))

µ(B(Xi+1, c−l))

= P
(
f ≤ f (Xi+1)

∣∣B (
Xi+1, c

−l
))

.

Then

P (∆k+1 = n,A) =
∑
i≥k

E

[
1{Nk=i} · 1A · (1− qi+1,n+1)

n∏
l=2

qi+1,l

]
,

and since A is arbitrary it follows that for the ARS algorithm we have

P (∆k+1 = n | σNk
) = (1− qi+1,n+1)

n∏
l=2

qi+1,l a.s. on {Nk = i} ,(B.23)

and by summation

P (∆k+1 > n | σNk
) =

n+1∏
l=2

qi+1,l a.s. on {Nk = i} .(B.24)

Next, consider again PRS for maxima of f . Let {X̃n} be an i.i.d. sequence of random

points in D with common uniform distribution and let σ̃n = σ(X̃1, . . . , X̃n). For a
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stopping time Ñ with respect to the filtration {σ̃n}, define σ̃Ñ = {C : C ∩{Ñ = n} ∈
σ̃n for all n}. Let

Ñ1 = min {n : f (Xn+1) > Mn}

and, recursively,

Ñk+1 = min
{
n > Ñk : f (Xn+1) > Mn

}
.

Again, Ñk is not a stopping time but Ñ+
k = Ñk + 1 is. Let ∆̃k+1 = Ñk+1 − Ñk and

q̃i+1 = P
(
f
(
X̃i+2

)
≤Mi+1 | σ̃i+1

)
= µ (f ≤Mi+1) .

Since the X̃-process is i.i.d., it is not surprising that ∆̃k+1 follows a geometric distri-

bution conditional on Ñk. Let A ∈ σ̃
Ñ+

k
. Then

P
(
∆̃k+1 = n,A

)
=
∑
i≥k

P
(
Ñk+1 = n+ i, A, Ñk = i

)

=
∑
i≥k

P
(
f
(
X̃n+i+1

)
> Mn+i = Mi+1 ≥ f

(
X̃l

)
,

l = i+ 2, . . . , n+ i, A, Ñ+
k = i+ 1

)
=
∑
i≥k

E
[
1{Ñk=i} · 1A · (1− q̃i+1)q̃

n−1
i+1

]
,

where we condition on σi+1 and use the double expectation formula, Lemma 6, and
the i.i.d. assumption. Since A is arbitrary, we have

P
(
∆̃k+1 = n | σ̃

Ñk

)
= (1− q̃i+1)q̃

n−1
i+1 a.s. on

{
Ñk = i

}

and, of course,

P
(
∆̃k+1 > n | σ̃

Ñk

)
= q̃ni+1 a.s. on

{
Ñk = i

}
(B.25)

by summation. The record sequence {M̃i} of PRS converges almost surely to ess sup
f ; thus, for given a < 1, we have q̃i > a for all i large enough. From Property B,
there is a b < 1 such that qi,l ≤ b for all i and l. To finish the proof we take a > b,
set η = b/a, compare (B.24) with (B.25), and take expected values.
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1. Introduction. Functionals defined as distances from (target) sets are called
error functionals. Minimization of such functionals occurs in optimization tasks aris-
ing in various areas such as decision processes, system identification, machine learning,
and pattern recognition.

In various applications, admissible solutions over which error functionals are min-
imized are functions depending on a large number of variables: for example, when
routing strategies have to be devised for large-scale communication and transporta-
tion networks, when an optimal closed-loop control law has to be determined for
a dynamical system with high-dimensional output measurement vector and a large
number of decision stages, etc. In the last decades, complex optimization problems of
this kind have been approximately solved by searching suboptimal solutions over ad-
missible sets of functions computable by neural networks [4], [21], [22], [25], [28], [29].
Neural networks can be studied in a more general context of variable-basis functions,
which also include other nonlinear families of functions such as free-node splines and
trigonometric polynomials with free frequencies [17]. Families of variable-basis func-
tions are formed by linear combinations of a fixed number of elements chosen from a
given basis without a prespecified ordering [16], [17].

When admissible functions depend on a large number of variables, implementa-
tion of some procedures of approximate optimization may be infeasible due to the
“curse of dimensionality” [3]. For example, when optimization is performed over lin-
ear combinations of fixed-basis functions, the number of basis functions required to
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guarantee a desired optimization accuracy may grow exponentially fast with the num-
ber of variables of admissible solutions [23, pp. 232–233], [29]. However, experience
has shown that neural networks with a small number of computational units may per-
form well in optimization tasks where admissible solutions depend on a large number
of variables [21], [22], [25], [28], [29].

In this paper, we investigate generalized Tikhonov well-posedness of the problems
of minimization of error functionals over admissible sets formed by variable-basis func-
tions, and we estimate rates of decrease of infima of such problems with increasing
complexity of admissible sets. For such an investigation, we derive various conditions
on target and admissible sets guaranteeing convergence of minimizing sequences. We
show that these conditions are satisfied by target sets defined by suitable interpola-
tion and smoothness conditions and admissible sets formed by functions computable
by families of variable-basis functions that include commonly used classes of neural
networks. Rates of decrease are estimated for infima of error functionals over neural
networks with increasing number of computational units. We derive upper bounds on
such rates.

The paper is organized as follows. In section 2, we introduce basic concepts
and definitions used throughout the paper. Section 3 states conditions on sets of
target functions and admissible solutions that guarantee convergence of minimizing
sequences. Section 4 applies the tools developed in section 3 to minimization of error
functionals over neural networks and variable-basis functions, and section 5 gives
estimates of rates of decrease of infima of such functionals with increasing number of
computational units.

2. Preliminaries. In this paper, by a normed linear space (X, ‖.‖) we mean a
real normed linear space. We write only X when it is clear which norm is used. For
a positive integer d, a set Ω ⊆ �d, where � denotes the set of real numbers, and
p ∈ [1,∞), by (Lp(Ω), ‖.‖p) is denoted the space of measurable, real-valued functions
on Ω such that

∫
Ω
|f(x)|p dx < ∞ endowed with the Lp-norm. (C(Ω), ‖.‖C) denotes

the space of real-valued continuous functions on Ω with the supremum norm.
By B({0, 1}d) is denoted the space of real-valued Boolean functions, i.e., functions

from {0, 1}d to �. This space is endowed with the standard inner product defined for
f, g ∈ B({0, 1}d) as f · g = ∑x∈{0,1}d f(x)g(x), which induces the l2-norm ‖f‖l2 =√
f · f . The space (B({0, 1}d), ‖.‖l2) is isomorphic to the 2d-dimensional Euclidean

space �2d

with the l2-norm.
For M ⊆ (X, ‖.‖), cl(M) denotes the closure of M in the topology induced by

the norm ‖.‖. For f ∈ X, we write ‖f −M‖ = infg∈M ‖f − g‖. A ball of radius r
centered at h ∈ (X, ‖.‖) is denoted by Br(h, ‖.‖) = {f ∈ X : ‖f − h‖ ≤ r}. We write
Br(‖.‖) for Br(0, ‖.‖) and merely Br when it is clear which norm is used.

For brevity, sequences are denoted by {hi} instead of {hi : i ∈ N+}, where N+

is the set of positive integers. When there is no ambiguity, the same notation is used
for a sequence and its subsequences. A sequence converges subsequentially if it has a
convergent subsequence.

Following [8], we denote by (M,Φ) the problem of infimizing a functional Φ :
M → � over M ⊆ X. M is called the set of admissible solutions or the ad-
missible set. A sequence {gi} of elements of M is called Φ-minimizing over M if
limi→∞Φ(gi) = infg∈M Φ(g). The set of argminima of the problem (M,Φ) is de-
noted by argmin(M,Φ) = {h ∈ M : Φ(h) = infg∈M Φ(g)}. The problem (M,Φ) is
Tikhonov well-posed in the generalized sense [8, p. 24] if argmin(M,Φ) is not empty
and each Φ-minimizing sequence over M converges subsequentially to an element of
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argmin(M,Φ).
For C a nonempty subset of X, the error functional measuring the distance from

C is denoted by eC and defined for any h ∈ X, as eC(h) = ‖h − C‖. We call C the
target set or the set of target functions. By the triangle inequality, eC = ecl(C). For
a singleton C = {h} ⊂ X, we write eh instead of e{h}.

For error functionals, the definition of generalized Tikhonov well-posedness can
be restated as follows.

Proposition 2.1. Let M and C be nonempty subsets of a normed linear space
(X, ‖.‖). Then (M, eC) is Tikhonov well-posed in the generalized sense if and only
if every sequence in M that minimizes eC converges subsequentially to an element
of M .

Proof. Let {gi} be a subsequence of an eC-minimizing sequence converging
to go ∈ M . By continuity of eC [26, p. 391], infg∈M eC(g) = limi→∞ eC(gi) =
eC(limi→∞ gi) = eC(g

0). Thus, go ∈ argmin(M, eC) and so (M, eC) is Tikhonov
well-posed in the generalized sense. The “only if” statement follows directly from the
definition of generalized Tikhonov well-posedness.

Recall that a nonempty subset M of a normed linear space is compact if every
sequence has a convergent subsequence, is precompact if cl(M) is compact, and is
boundedly compact if its intersection with any ball is precompact (equivalently, every
bounded sequence in M is subsequentially convergent). Note that this definition of
boundedly compact set does not requireM to be closed. M is approximatively compact
[26, pp. 368, 382] if, for all h ∈ X, every sequence in M that minimizes the distance
to h converges subsequentially to an element of M .

By Proposition 2.1, the notion of an approximatively compact set can be refor-
mulated in terms of optimization theory as a set M such that, for every h ∈ X, the
problem (M, eh) is Tikhonov well-posed in the generalized sense. A subset M of a
normed linear space X is proximinal (or an existence set) if for any h ∈ X there exists
g ∈M such that ‖h−M‖ = ‖h− g‖. In decreasing degree of strength, a subset of a
normed linear space may be compact, boundedly compact, approximatively compact,
and proximinal. Each implies the next, with the exception that bounded compactness
implies approximative compactness only for closed sets; proximinal implies closed [26,
pp. 368, 382–383].

3. Minimization of error functionals under weakened compactness.
Generalized Tikhonov well-posedness can be interpreted as a type of weakened com-
pactness of admissible sets. The following theorem shows that for error functionals it
is closely related to the concept of approximative compactness.

Theorem 3.1. Let M and C be nonempty subsets of a normed linear space
(X, ‖.‖). Each of the following conditions guarantees that (M, eC) is Tikhonov well-
posed in the generalized sense:

(i) M is approximatively compact and C is precompact;
(ii) M is approximatively compact and bounded and C is boundedly compact;
(iii) M is boundedly compact and closed and C is bounded.
Proof. Let {gi} be an eC-minimizing sequence over M . By Proposition 2.1, it is

sufficient to show that {gi} converges subsequentially to go ∈M .
(i) Since eC = ecl(C), it is sufficient to consider cl(C). As cl(C) is compact,

it is proximinal and so there exists a sequence {fi} ⊆ cl(C) such that for every i,
eC(gi) = ecl(C)(gi) = ‖fi − gi‖. Again by compactness, the sequence {fi} converges
subsequentially to fo ∈ cl(C). Replacing {fi} and {gi} with the corresponding sub-
sequences, for every ε > 0 we get i0 ∈ N+ such that for all i ≥ i0, ‖fi − fo‖ < ε/2.
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As {gi} is eC-minimizing over M , there exists i1 ≥ i0 such that for all i ≥ i1,
eC(gi) ≤ infg∈M eC(g) + ε/2. So, for all i ≥ i1, efo(gi) ≤ ‖gi − fi‖ + ‖fi − fo‖ =
eC(gi) + ‖fi − fo‖ < infg∈M eC(g) + ε ≤ infg∈M efo(g) + ε. Hence, {gi} is an efo -
minimizing sequence over M . By approximative compactness of M , there exists
go ∈M such that {gi} converges subsequentially to go.

(ii) As cl(C) is boundedly compact and closed, it is proximinal and so there exists
a sequence {fi} ⊆ cl(C) such that for every i, eC(gi) = ‖fi − gi‖. By the triangle
inequality, ‖fi‖ ≤ ‖fi − gi‖ + ‖gi‖. Both sequences, {‖gi‖} and {‖fi − gi‖}, are
bounded: the first one by boundedness of M and the second one as {‖fi − gi‖} is
convergent (since limi→∞ ‖gi − fi‖ = limi→∞ eC(gi) = infg∈M eC(g)). By closedness
and bounded compactness of cl(C), there exists fo ∈ cl(C), to which {fi} converges
subsequentially, and so we can proceed as in the second part of the proof of (i).

(iii) As C is bounded, there exists r > 0 such that C ⊆ Br. Let a = inf{‖f − g‖ :
f ∈ C, g ∈ M}. Then there exist i0 ∈ N+ and b > 0 such that for all i ≥ i0,
eC(gi) < a+ b and so there exist i1 ≥ i0, fi ∈ C, and b′ ≥ b such that for all i ≥ i1,
‖gi − fi‖ < a + b′. By the triangle inequality, ‖gi‖ ≤ ‖gi − fi‖ + ‖fi‖ < a + b′ + r.
Thus for all i ≥ i1, {gi} ⊆ Ba+b′+r ∩M and so {gi} has a bounded subsequence. As
M is boundedly compact and closed, this subsequence converges subsequentially to
go ∈M .

Table 3.1 summarizes conditions on M and C assumed in Theorem 3.1 which
guarantee that (M, eC) is Tikhonov well-posed in the generalized sense.

Table 3.1
Conditions on M and C guaranteeing Tikhonov well-posedness in the generalized sense of

(M, eC). Y = yes, N = no (by “no” we mean “there exists a counterexample”).

C precompact C boundedly C bounded
compact

M approximatively compact Y N N

M boundedly compact Y N Y
and closed

M approximatively compact Y Y N
and bounded

The first entry in the first column holds by Theorem 3.1(i), while the other two
entries in the same column hold since there the conditions on M are stronger than
those required in the first entry. In the second column, Theorem 3.1(ii) justifies the
“yes” entry, while “yes” in the third column holds by Theorem 3.1(iii).

Both “no” entries in the second column are shown by the following counterex-
ample. In the Euclidean space �2, let C be the x-axis and M the graph of the
exponential function. Then M and C are boundedly compact and closed and hence
approximatively compact. But no eC-minimizing sequence in M has a convergent
subsequence.

The “no” entries in the third column are demonstrated by the following example.
Let (l2, ‖.‖l2) be the Hilbert space of square-summable sequences and let {ei} be its
orthonormal basis. Let L denote the orthogonal complement of a unit vector (say,
e1) and let M = L ∩ B1(‖.‖l2). As every closed convex subset of a uniformly convex
Banach space is approximatively compact [5, p. 25], M is a bounded approximatively
compact set. Let C = w e1+M , where w is any nonzero real number. Then C is closed
and bounded. The sequence {e2, e3, . . .} inM satisfies, for all j ≥ 2, ‖ej−C‖l2 = |w|,
and so it is eC-minimizing over M but has no convergent subsequence.
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Theorem 3.1 will be used in the next section to investigate generalized Tikhonov
well-posedness of (M, eC) for admissible sets M computable by variable-basis func-
tions and, as a particular case, by neural networks.

4. Convergence of minimizing sequences formed by variable-basis func-
tions. In this section, X is a linear space of real-valued functions on a subset of �d.
Let G be a subset of X. The families spannG = {∑n

i=1 wigi : wi ∈ �, gi ∈ G}
and convnG = {∑n

i=1 wigi : wi ∈ [0, 1],
∑n
i=1 wi = 1, gi ∈ G} are called variable-

basis functions [16], [17]. Sets spannG model situations in which admissible func-
tions are represented as linear combinations of any n-tuple of functions from G,
with unconstrained coefficients in the linear combinations. In many applications
such coefficients are constrained by a bound on a norm of the coefficients vector
(w1, . . . , wn). When such a norm is the l1-norm, the corresponding functions belong
to the set {∑n

i=1 wigi : wi ∈ �, gi ∈ G,
∑n
i=1 |wi| ≤ c}, where c > 0 is a given

bound on the l1-norm. It is easy to see that this set is contained in convnG
′, where

G′ = {rg : |r| ≤ c , g ∈ G}. As any two norms on �n are equivalent, every norm-based
constraint on the coefficients of linear combinations defines a set contained in a set of
the form convnG

′.
Depending on the choice of X and G, one can obtain a variety of admissible

sets that include functions computable by neural networks, splines with free nodes,
trigonometric polynomials with free frequencies, etc. For simplicity, we shall consider
functions defined on [0, 1]d. Let A ⊆ �q, φ : A × [0, 1]d → � be a function of two
vector variables, and Gφ = {φ(a, ·) : a ∈ A}. By suitable choices of A and φ, one
can represent by Gφ sets of functions computable by various types of so-called neural
networks with computational unit φ. If A = Sd−1×�, where Sd−1 = {e ∈ �d : ‖e‖ =
1} is the set of unit vectors in �d, and φ((e, b), x) = ϑ(e · x+ b), where ϑ denotes the
Heaviside function, defined as ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0, then we shall
denote such a set Gφ by Hd, as it is the set of characteristic functions of closed half-
spaces of �d restricted to [0, 1]d. Functions in Hd are called Heaviside perceptrons;
functions in spannHd and convnHd are called Heaviside perceptron networks.

If A = [−c, c]d × [−c, c] and φ((v, b), x) = ψ(v · x+ b), where ψ : � → � is called
activation function, b is called bias, and the components of v are called weights, then
Gφ, denoted by Pd(ψ, c), is the set of functions on [0, 1]

d computable by ψ-perceptrons
with both biases and weights bounded by c. Pd(ψ) denotes the corresponding set with
no bounds on the parameters values. Functions in spann Pd(ψ, c), convn Pd(ψ, c),
spann Pd(ψ), and convn Pd(ψ) are called ψ-perceptron networks. The most common
activation functions in perceptrons are sigmoidals, i.e., bounded measurable functions
σ : � → � with limt→−∞ σ(t) = 0 and limt→+∞ σ(t) = 1 such as the logistic sigmoid
σ(t) = 1/(1 + exp(−t)) and the Heaviside function. If the activation function ψ is
positive and even, A = [−c, c]d× [−c, c], and φ((v, b), x) = ψ(b‖x− v‖), where ‖.‖ is a
norm on �d, b is called width, and v is called centroid, then Gφ, denoted by Fd(ψ, c),
is the set of functions on [0, 1]d computable by ψ-radial-basis-functions (ψ-RBF ) with
both widths and centroids bounded by c (a typical activation function for RBF units

is the Gaussian function ψ(t) = e−t
2

). Fd(ψ) denotes the corresponding set with
no bounds on the parameters values. Functions in spann Fd(ψ, c), convn Fd(ψ, c),
spann Fd(ψ), and convn Fd(ψ) are called ψ-RBF networks. The number n of compu-
tational units in ψ-perceptron networks and ψ-RBF networks can be considered as a
measure of the network “complexity,” as the number of network parameters depends
on n linearly.

The following proposition applies Theorem 3.1 to admissible sets computable by
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neural networks. We use the notation of the preceding three paragraphs.

Proposition 4.1. Let (X, ‖.‖) be a normed linear space and C, M be nonempty
subsets. The problem (M, eC) is Tikhonov well-posed in the generalized sense if any
of the following conditions hold:

(i) C is bounded and M = convnGφ or M = spannGφ, where n is a positive
integer and Gφ is finite-dimensional;

(ii) (X, ‖.‖) = (C([0, 1]d), ‖.‖C), C is bounded, and M = convnPd(ψ, c) or M =
convnFd(ψ, c), where c > 0, ψ is bounded and continuous, and d, n are posi-
tive integers;

(iii) (X, ‖.‖) = (Lp([0, 1]d), ‖.‖p), p ∈ [1,∞), C is precompact, andM = spannHd,
or else C is bounded, M = convnHd, and d, n are positive integers.

Proof. (i) If Gφ is finite-dimensional (e.g., if the set A of parameters of φ is
finite), then it is straightforward that spannGφ is boundedly compact and closed. So
we conclude by Theorem 3.1(iii).

(ii) By Theorem 3.1(iii), it is sufficient to check that in all these cases M is
boundedly compact and closed. For G = Pd(ψ, c) and G = Fd(ψ, c) with c > 0 and ψ
bounded and continuous, compactness of convnG in (C([0, 1]d), ‖.‖C) has been proved
in [12].

(iii) If C is precompact andM = spannHd, then by Theorem 3.1(i) it is sufficient
to check that spannHd is approximatively compact. Approximative compactness of
spannHd in (Lp([0, 1]

d), ‖.‖p), p ∈ [1,∞), was shown in [11]. If C is bounded and
M = convnHd, then by Theorem 3.1(iii) it is sufficient to prove that convnHd is
boundedly compact and closed. Compactness of G = Hd in (L2([0, 1]

d), ‖.‖2) was
proved in [9] and inspection of the argument shows that it also holds for Lp-spaces
with p ∈ [1,∞). Since the convex hull of a compact set G is compact and convnG is
closed in conv G, compactness of convnHd follows from compactness of Hd.

Note that for neural networks with differentiable activation functions (e.g., per-
ceptrons with logistic sigmoid or RBF with the Gaussian activation function) the sets
spannGφ are not approximatively compact in (C([0, 1]d), ‖.‖C) or in (Lp([0, 1]d), ‖.‖p),
because they are not even closed. (It was shown in [20] for perceptron networks, and
the arguments used there can be extended to Gaussian RBF networks.)

Proposition 4.1 can be combined with various conditions guaranteeing precom-
pactness of the target set C, such as interpolation and smoothness conditions, which
model neural network learning from data described by input/output pairs and con-
straints given by physical considerations or feasibility of implementation.

Proposition 4.2. Let d, n be positive integers and let C be a nonempty set of
continuous functions defined on [0, 1]d satisfying the following two conditions:

(1) there exists a > 0 such that on (0, 1)d all first-order partial derivatives of all
elements of C are continuous and bounded by a in absolute value;

(2) there exist x0 ∈ (0, 1)d and b > 0 such that for all f ∈ C, |f(x0)| ≤ b.
Then for every c > 0 and ψ bounded and continuous, (convnPd(ψ, c), eC) and
(convnFd(ψ, c), eC) are Tikhonov well-posed in the generalized sense in (C([0, 1]d), ‖.‖C)
and (convnHd, eC) and (spannHd, eC) are Tikhonov well-posed in the generalized
sense in (Lp([0, 1]

d), ‖.‖p), p ∈ [1,∞).
Proof. Since precompactness in the space (C([0, 1]d), ‖.‖C) implies precompactness

in (Lp([0, 1]
d), ‖.‖p), p ∈ [1,∞), by Proposition 4.1(ii) and (iii) it is sufficient to check

that C satisfies the assumptions of the Ascoli–Arzelà theorem [1, Theorem 1.30], i.e.,
that the elements of C are equibounded and equicontinuous on (0, 1)d. Equicontinuity
follows from the mean value theorem [6, p. 79] and the Cauchy–Schwarz inequality,
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which together imply that for all f ∈ C, all x ∈ (0, 1)d, and all h such that for every
t ∈ [0, 1], x+th ∈ (0, 1)d, there exists τ ∈ (0, 1) such that |f(x+th)−f(x)| = |∇f(x+
τh) · h| ≤ ‖∇f(x+ τh)‖ ‖h‖ ≤ a√d ‖h‖. By applying the inequality just derived, for
every f ∈ C and every x ∈ (0, 1)d we have |f(x) − f(x0)| ≤ a

√
d ‖x − x0‖ ≤ a d.

Hence, f(x) ∈ [−b − a d, b + a d] and so functions in C are equibounded on (0, 1)d.
Thus C is precompact in (C([0, 1]d), ‖.‖C) and the statements follow from Proposition
4.1(ii) and (iii).

Precompactness in (Lp([0, 1]
d), ‖.‖p) can also be derived using Lp versions of the

Ascoli–Arzelà theorem (see, e.g., [1, Theorem 2.21]). The conditions of smoothness
and interpolation required by Proposition 4.2 may be incompatible, i.e., C could be
empty. In this case, one must either increase the size of the intervals Yj or increase
the bound on the derivatives.

5. Rates of decrease of infima with increasing complexity of admissible
sets of variable-basis functions. In applications, the rate of decrease of infima
of an error functional over convnG and spannG should be fast enough to achieve a
reasonable accuracy even for small values of n. We shall derive estimates of such rates
using a result from approximation theory by Maurey [24], Jones [10], and Barron [2].

Here we reformulate these estimates in terms of a norm tailored to a given subset
G of a normed linear space (X, ‖.‖). Such a norm, called G-variation and denoted by
‖.‖G (although it also depends on the normed linear space), was introduced in [13] as
the Minkowski functional of the set cl conv (G∪−G), where closure is with respect to
‖.‖, i.e.,

‖f‖G = inf
{
c > 0 : c−1f ∈ cl conv (G ∪ −G)} .

G-variation is a norm on the subspace {f ∈ X : ‖f‖G < ∞} ⊆ X; for its properties
see [15], [17], and [18]. In [16] and [18] it was shown that when G is an orthonormal
basis of a separable Hilbert space, G-variation is equal to the l1-norm with respect to
G, defined for f ∈ X as ‖f‖1,G =

∑
g∈G |f · g|. For t > 0, we define

G(t) = {wg : g ∈ G,w ∈ �, |w| ≤ t}.
We now restate in terms of G-variation the Maurey–Jones–Barron theorem [24],
[10], [2] and its extension to Lp-spaces [7].

Theorem 5.1. Let (X, ‖.‖) be a normed linear space, G a bounded nonempty
subset, and sG = supg∈G ‖g‖. For every f ∈ X and every positive integer n, the
following hold:

(i) if (X, ‖.‖) is a Hilbert space, then

‖f − spannG‖ ≤ ‖f − convnG(‖f‖G)‖ ≤ ‖f‖G sG√
n

;

(ii) if (X, ‖.‖) = (Lp([0, 1]d), ‖.‖p), p ∈ (1,∞), then

‖f − spannG‖ ≤ ‖f − convnG(‖f‖G)‖ ≤ 21/p̄+1‖f‖G sG
n1/q̄

,

where q = p/(p− 1), p̄ = min(p, q), and q̄ = max(p, q);
(iii) if (X, ‖.‖) is a separable Hilbert space and G is an orthonormal basis, then

‖f − spannG‖ ≤ ‖f − convnG(‖f‖G)‖ ≤ ‖f‖G sG
2
√
n

.
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For the proof of Theorem 5.1(i) and (ii) see [13] and [14], respectively; for the
proof of Theorem 5.1(iii) see [16, Theorem 3] and [18, Theorem 2.7].

As a corollary of Theorem 5.1, we obtain the following upper bounds on rates of
decrease of infima of error functionals over spannG, with n increasing.

Corollary 5.2. Let (X, ‖.‖) be a normed linear space with G, C subsets such
that r = inff∈C ‖f‖G and sG = supg∈G ‖g‖ are finite. For every positive integer n,
the following hold:

(i) if (X, ‖.‖) is a Hilbert space, then

inf
g∈spannG

eC(g) ≤ inf
g∈convnG(r)

eC(g) ≤ r√
n
sG;

(ii) if (X, ‖.‖) = (Lp([0, 1]d), ‖.‖p), p ∈ (1,∞), then

inf
g∈spannG

eC(g) ≤ inf
g∈convnG(r)

eC(g) ≤ r 2
1/p̄+1

n1/q̄
sG;

(iii) if (X, ‖.‖) is a separable Hilbert space and G is an orthonormal basis, then

inf
g∈spannG

eC(g) ≤ inf
g∈convnG(r)

eC(g) ≤ r

2
√
n
sG.

Proof. (i) For each t > r, choose ft ∈ C such that r ≤ ‖ft‖G < t. By Theorem
5.1(i), for every n we have ‖ft−convnG(t)‖ ≤ t sG/

√
n. Thus, infg∈convnG(t) eC(g) ≤

infg∈convnG(t) ‖g − ft‖ ≤ t sG/
√
n. Since G(r) =

⋂{G(t) : t > r}, we obtain
infg∈spannG eC(g) ≤ infg∈convnG(r) eC(g) ≤ r sG/

√
n.

Parts (ii) and (iii) are proved similarly to (i) using Theorem 5.1(ii) and (iii),
respectively.

When applied to spaces of functions of d variables, the bounds from Theorem 5.1
and Corollary 5.2 show that for functions in balls of fixed radii in G-variation the
curse of dimensionality does not occur. However, the shape of such balls may depend
on the number of variables [14], [17], [18].

In the following we apply Corollary 5.2 to admissible sets of Boolean functions
in (B({0, 1}d), ‖.‖l2). We give conditions on target sets C, which guarantee rates of
minimization of eC of order O(1/√n) for any number of variables d, for admissible
sets of functions in (B({0, 1}d), ‖.‖l2) computable by perceptron neural networks with
the signum activation function, defined as sgn(t) = −1 or +1 according to whether
t < 0 or t ≥ 0. Let H̄d denote the set of functions on {0, 1}d computable by signum
perceptrons, i.e., H̄d = {f ∈ B({0, 1}d) : f(x) = sgn(v · x+ b), v ∈ �d, b ∈ �}.

We estimate variation with respect to signum perceptrons using variation with
respect to the Fourier orthonormal basis defined as Fd =

{
fu : u ∈ {0, 1}d, fu(x) =

2−d/2(−1)u·x} [27]. Every real-valued Boolean function can be represented as f(x) =
2−d/2

∑
u∈{0,1}d f̂(u)(−1)u·x, where the Fourier coefficients f̂(u) are given by f̂(u) =

2−d/2
∑
x∈{0,1}d f(x)(−1)u·x. If we interpret the output 1 as −1 and 0 as 1, then the

elements of the Fourier basis Fd correspond to the generalized parity functions. The l1-
norm with respect to the Fourier basis, defined as ‖f‖1,Fd

= ‖f̂‖l1 =
∑
u∈{0,1}d |f̂(u)|,

is called the spectral norm.
The next proposition gives an upper bound on the rate of decrease of infima of

error functionals over perceptron neural networks, in terms of the smallest spectral
norm of elements of the target set C.
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Proposition 5.3. Let d be a positive integer, let r > 0, and let C be a bounded
subset of (B({0, 1}d), ‖.‖l2). Then for every positive integer n, (spandn+1 H̄d, eC)
and (convdn+1 H̄d(r), eC) are Tikhonov well-posed in the generalized sense, and for
a = inf{‖h‖1,Fd

: h ∈ C}, we have

min
g∈spandn+1 H̄d

eC(g) ≤ min
g∈convdn+1 H̄d(a)

eC(g) ≤ a

2
√
n
.

Proof. For every u, x ∈ {0, 1}d, (−1)u·x = 1+(−1)d

2 +
∑d
j=1(−1)j sgn(u ·x−j+ 1

2 );
so every function of the Fourier basis Fd can be expressed as a linear combination of
at most d+1 signum perceptrons [18]. Hence, any linear combination of n elements of
Fd belongs to spandn+1H̄d. As for any orthonormal basis of a separable Hilbert space,
G-variation is equal to l1-norm with respect to G [16], [18], we have ‖f‖Fd

= ‖f‖1,Fd
,

and the statement follows from Proposition 4.1(i) and Corollary 5.2(iii).
The next two propositions describe target sets for which minimization of error

functionals over admissible sets computable by Boolean signum perceptron networks
does not exhibit the curse of dimensionality. The first result considers target sets
whose elements can be expressed as linear combinations of a “small” number of gen-
eralized parities.

Proposition 5.4. Let d, n, and m be positive integers, let m ≤ 2d, and let
C be a subset of (B({0, 1}d), ‖.‖l2) such that C contains a function f with at most
m Fourier coefficients nonzero and with ‖f‖l2 ≤ 1. Then (spandn+1 H̄d, eC) and
(convdn+1 H̄d(

√
m), eC) are Tikhonov well-posed in the generalized sense and

min
g∈spandn+1 H̄d

eC(g) ≤ min
g∈convdn+1 H̄d(

√
m)
eC(g) ≤ 1

2

√
m

n
.

Proof. Let f ∈ C be such that f =
∑m
i=1 wigi, where gi ∈ Fd are the Fourier

coefficients of f . Then ‖f‖Fd
= ‖f‖1,Fd

=
∑m
i=1 |wi|. By the Cauchy–Schwarz in-

equality,
∑m
i=1 |wi| ≤ ‖w‖2‖u‖2, where w = (w1, . . . , wm) and u = (u1, . . . , um), with

ui = sgn(wi). As ‖w‖2 = ‖f‖l2 ≤ 1 and ‖u‖2 =
√
m, we have ‖f‖1,Fd

≤ √m. Hence,
inf{‖h‖1,Fd

: h ∈ C} ≤ √m and the statement follows by Proposition 5.3.
For C satisfying the assumptions of Proposition 5.4, if eC is minimized over

the set of d-variable Boolean functions computable by networks with dn + 1 signum
perceptrons with n ≥ m

4ε2 , then the minimum is bounded from above by ε; the number
dm
4ε2 + 1 of perceptrons needed for accuracy ε grows linearly with d.

A decision tree (e.g., [19]) is a binary tree with labeled nodes and edges. The
size of a decision tree is the number of its leaves. A function f : {0, 1}d → � is
representable by a decision tree if there exists such a tree with internal nodes labeled
by variables x1, . . . , xd, all pairs of edges outgoing from a node labeled by 0’s and 1’s,
and all leaves labeled by real numbers, so that f can be computed as follows: The
computation starts at the root and, after reaching an internal node labeled by xi,
continues along the edge whose label coincides with the actual value of the variable
xi; finally a leaf is reached and its label is equal to f(x1, . . . , xd). Let DT (s) be the
set of all functions which are representable by a decision tree of size s.

For any real-valued function f (not identically equal to zero) on a finite set, define
the resolution of f , ρ(f), to be the ratio of the largest absolute value to the smallest
nonzero absolute value. So for a nowhere-zero function f on {0, 1}d, the resolution of
f is maxx∈{0,1}d |f(x)|/minx∈{0,1}d |f(x)|.

Proposition 5.5. Let d, s be positive integers, let C be a subset of the unit
ball in (B({0, 1}d), ‖.‖l2), and suppose C contains a nowhere-zero function in DT (s).
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Then (spandn+1 H̄d, eC) and (convdn+1 H̄d(sb), eC) are Tikhonov well-posed in the
generalized sense and

min
g∈spandn+1 H̄d

eC(g) ≤ min
g∈convdn+1 H̄d(sb)

eC(g) ≤ sb

2
√
n
,

where b = inf{ρ(f)‖f‖l2 : f ∈ C, f(x) �= 0 ∀x ∈ {0, 1}d, f ∈ DT (s)}.
Proof. By [18, Theorem 3.4] (which extends [19, Lemma 5.1]), if f is in C and is

representable by a decision tree of size s, then
‖f‖1,Fd

‖f‖l2
≤ sρ(f), so we get ‖f‖1,Fd

≤ s b.
We conclude by Proposition 5.3.

Inverting the estimate of Proposition 5.5, we see that d
(
sb
2ε

)2
+1 perceptrons are

sufficient for an accuracy ε.
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[14] V. Kůrková, High-dimensional approximation by neural networks, in Advances in Learning
Theory: Methods, Models and Applications, J. Suykens et al., eds., IOS Press, Amsterdam,
2003, pp. 69–88.
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Abstract. We describe an extension of the classical cutting plane algorithm to tackle the un-
constrained minimization of a nonconvex, not necessarily differentiable function of several variables.

The method is based on the construction of both a lower and an upper polyhedral approximation
to the objective function and is related to the use of the concept of proximal trajectory.

Convergence to a stationary point is proved for weakly semismooth functions.
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1. Introduction. Most of the numerical methods for solving nonsmooth opti-
mization problems aim at minimizing convex functions of several variables, and convex
analysis is in fact the background theory [9, 22]. Although generalized gradient the-
ory [2] and codifferentiable functions theory [4] provide an interesting framework for
dealing with nonsmooth nonconvex functions, apparently they have not yet been fully
exploited from the numerical point of view.

Most of the existing algorithms for nonsmooth optimization fall into the class of
subgradient and space dilatation–type algorithms [24], bundle methods [7, 10, 18], or
minmax-type algorithms [5, 21] (convexity is not necessary in the latter).

In particular, the bundle methods family is based on the cutting plane method,
first described in [1, 11], where the convexity of the objective function is the fundamen-
tal assumption. In fact the extension of the cutting plane method to the nonconvex
case is not straightforward. A basic observation is that, in general, first order informa-
tion no longer provides a lower approximation to the objective function independently
of the nonsmoothness assumption.

Thus, the optimization of the cutting plane approximation does not necessarily
give an optimistic estimate of the obtainable reduction in the objective function.
Moreover, such a model might even fail to interpolate the objective function at the
points where its value is known.

On the other hand it is apparent that a number of ideas valid in the convex
nonsmooth framework are valuable also in the treatment of the nonconvex case.

For example, search directions obtained as the opposite of a convex combination
of gradients, relative to points close to each other, appear often to enjoy good de-
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scent properties for nonconvex functions too, especially when the contour lines have
a narrow valley shape.

Thus it appears reasonable to claim that nonconvex nonsmooth minimization can
benefit from the experience of convex optimization, but the approaches valid in the
latter case cannot be trivially extended.

Most of the authors who have extended bundle methods to the nonconvex case
have considered piecewise affine models embedding possible downward shifting of the
affine pieces [15, 19, 23]. However, the amount of the shifting appears somehow
arbitrary.

In this paper we present an iterative algorithm which is still based on first order
approximations to the objective function.

The main difference with other known methods is that our algorithm makes a
distinction between affine pieces that exhibit a convex or a concave behavior relative
to the current point in the iterative procedure. Furthermore, the use of downward
shifting is restricted to some particular cases.

The following notation is adopted throughout the paper. We denote by ‖ · ‖ the
Euclidean norm in Rn, by aT b the inner product of the vectors a and b, and by e
a vector of ones of appropriate dimension. The generalized gradient of a Lipschitz
function f : Rn �→ R at any point x is denoted by ∂f(x).

2. The model. Consider the following unconstrained minimization problem:

min
x∈Rn

f(x),

where f : Rn �→ R is not necessarily differentiable.
We assume that f is locally Lipschitz; i.e., it is Lipschitz on every bounded set.

Since f is locally Lipschitz, then it is differentiable almost everywhere. It is well
known [2] that, under the above hypotheses, there is defined at each point x the
generalized gradient (or Clarke’s gradient or subdifferential)

∂f(x) = conv{g |g ∈ Rn,∇f(xk)→ g, xk → x, xk 	∈ Ωf},
where Ωf is the set (of zero measure) where f is not differentiable. An extension of
the generalized gradient is the Goldstein ε-subdifferential ∂Gε f(x) defined as

∂Gε f(x) = conv{∂f(y) |‖y − x‖ ≤ ε}.
We assume also that we are able to calculate at each point x both the objec-

tive function value and a subgradient g ∈ ∂f(x), i.e., an element of the generalized
gradient.

Now we describe the basic idea of our method, focusing on the differences with
respect to the methods tailored on the convex case. We denote by xj the current
estimate of the minimum in an iterative procedure and by gj any subgradient of f at
xj . The bundle of available information is the set of elements

(xi, f(xi), gi, αi, ai), i ∈ I,
where xi, i ∈ I, are the points touched in the procedure, gi is a subgradient of f at
xi, αi is the linearization error between the actual value of the objective function at
xj and the linear expansion generated at xi and evaluated at xj , i.e.,

αi
�
= f(xj)− f(xi)− gTi (xj − xi),
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and

ai
�
= ‖xj − xi‖ .

We recall that the classical cutting plane method [1, 11] minimizes at each itera-
tion the cutting plane function fj(x) defined as

fj(x) = max
i∈I

{
f(xi) + g

T
i (x− xi)

}
.

The minimization of fj(x) can be put in linear programming form as{
min
η,x

η

η ≥ f(xi) + gTi (x− xi), i ∈ I,
(2.1)

which is equivalent to solving{
min
v,d

v

v ≥ gTi d− αi, i ∈ I,
(2.2)

where d is the “displacement” from xj , i.e., d
�
= x− xj . In what follows we will refer

to the point xj as the “stability center.”
It is worth noting that in the nonconvex case αi may be negative, since the first

order expansion at any point does not necessarily support from below the epigraph
of the function.

Thus we partition the set I into two sets I+ and I−, defined as follows:

I+
�
= {i|αi ≥ 0}, I−

�
= {i|αi < 0}.(2.3)

The bundles defined by the index sets I+ and I− are characterized by points that
somehow exhibit, respectively, a “convex behavior” and a “concave behavior” relative
to xj . We observe that I+ is never empty as at least the element (xj , f(xj), gj , 0, 0)
belongs to the bundle.

The basic idea of our approach is to treat differently the two bundles in the
construction of a piecewise affine model.

We define the following piecewise affine functions:

∆+(d)
�
= max

i∈I+

{
gTi d− αi

}
and

∆−(d)
�
= min
i∈I−

{
gTi d− αi

}
.

In fact ∆+(d) is intended as an approximation of the difference function

h(d)
�
= f(xj + d)− f(xj),

which interpolates it at d = 0 (since the index j belongs to I+).
On the other hand ∆−(d) is a locally “pessimistic” approximation to the difference

function h(d). When I− 	= ∅, since we have ∆+(0) < ∆−(0), it appears reasonable to
consider the approximation ∆+(d) significant as far as

∆+(d) ≤ ∆−(d).
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In other words we introduce a kind of trust region model S defined as

S = {d|∆+(d) ≤ ∆−(d)}.

In addition we introduce proximity control [13] into our approach by defining the
“proximal trajectory” [6] of ∆+(d) as the optimal solution dγ to the following convex
quadratic program, parameterized in the nonnegative scalar γ, where the constraints
ensure that d ∈ S:

QP (γ)




zγ = min
v,d

γv +
1

2
‖d‖2

v ≥ gTi d− αi, i ∈ I+,

v ≤ gTi d− αi, i ∈ I−.

We observe that zγ ≤ 0, as the couple (v, d) = (0, 0) is feasible; we have consequently
that the optimal value of v cannot be positive.

The dual of the program QP (γ) can be written in the form

DP (γ)



wγ = min

λ≥0,µ≥0

1

2
‖G+λ−G−µ‖2 + αT+λ− αT−µ

eTλ− eTµ = γ,
where G+ and G− are matrices whose columns are, respectively, the vectors gi, i ∈ I+,
and gi, i ∈ I−. Analogously, the terms αi, i ∈ I+, and αi, i ∈ I−, are grouped in the
vectors α+ and α−, respectively.

The optimal primal solution (vγ , dγ) is related to the optimal dual solution (λγ , µγ)
by the following formulae:

dγ = −G+λγ +G−µγ ,(2.4a)

vγ = − 1
γ

(‖dγ‖2 + αT+λγ − αT−µγ) .(2.4b)

We remark that the proximal trajectory emanates from the stability center xj .
Before giving a formal description of the algorithm, we state some simple prop-

erties of problem QP (γ).
Lemma 2.1. Let γ1 > γ2 > 0. Then the following relations hold:
(i) zγ1 ≤ zγ2 ;
(ii) vγ1 ≤ vγ2 ;
(iii) ‖dγ1‖ ≥ ‖dγ2‖.
Proof. (i) From the definitions of zγ , vγ , and dγ , and taking into account γ1 >

γ2 > 0, it follows that

zγ1 = γ1vγ1 +
1

2
‖dγ1‖2 ≤ γ1vγ2 +

1

2
‖dγ2‖2 ≤ γ2vγ2 +

1

2
‖dγ2‖2 = zγ2 .

(ii) Assume vγ1 > vγ2 . Then, since γ1 > γ2, it holds that

0 < (γ1 − γ2)(vγ1 − vγ2) = γ1vγ1 + γ2vγ2 − (γ1vγ2 + γ2vγ1).
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By adding and subtracting to the right-hand side

1

2
‖dγ1‖2 +

1

2
‖dγ2‖2

we would have

0 <

[(
γ1vγ1 +

1

2
‖dγ1‖2

)
−
(
γ1vγ2 +

1

2
‖dγ2‖2

)]

+

[(
γ2vγ2 +

1

2
‖dγ2‖2

)
−
(
γ2vγ1 +

1

2
‖dγ1‖2

)]
,

which is a contradiction, since, by the definitions, the right-hand side is the sum of
two nonpositive quantities.

(iii) Assume ‖dγ1‖ < ‖dγ2‖. Then (ii) implies

γ2vγ1 +
1

2
‖dγ1‖2 < γ2vγ2 +

1

2
‖dγ2‖2,

which contradicts the optimality of (vγ2 , dγ2).
Lemma 2.2. For any γ > 0 the following relations hold:
(i) ‖dγ‖ ≤ 2γ‖gj‖;
(ii) zγ ≥ − 1

2γ
2‖gj‖2;

(iii) |vγ | ≥ 1
2γ ‖dγ‖2.

Proof. (i) Since zγ ≤ 0 we have

(vγ , dγ) ∈ D �
=

{
(v, d) | γv + 1

2
‖d‖2 ≤ 0

}
.

The property follows by noting that the objective function of QP (γ) is minorized by

γgTj d+
1

2
‖d‖2.(2.5)

(ii) The property follows by noting that − 1
2γ

2‖gj‖2 is the minimum value of the
minorizing function (2.5).

(iii) The property follows as a consequence of zγ ≤ 0.
3. The algorithm. In this section we describe an algorithm based on repeatedly

solving problem QP (γ), or, equivalently, DP (γ). The core of the algorithm is the
“main iteration,” i.e., the set of steps where the stability center remains unchanged.

Two exits from the “main iteration” may occur:
(i) termination of the whole algorithm due to the satisfaction of an approximate

stationarity condition;
(ii) update of the stability center due to the satisfaction of a sufficient decrease

condition.
The initialization of the algorithm requires a starting point x0 ∈ Rn. The initial

stability center y is set equal to x0. The initial bundle is made up of just one element
(y, f(y), g(y), 0, 0), where g(y) ∈ ∂f(y), so that I− is the empty set, while I+ is a
singleton. The following global parameters are to be set:

• the stationarity tolerance δ > 0 and the proximity measure ε > 0;
• the descent parameter m ∈ (0, 1) and the cut parameter ρ ∈ (m, 1);
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• the reduction parameter r ∈ (0, 1) and the increase parameter R > 1.
A short description of the algorithm is the following.
Algorithm outline.
1. Initialization.
2. Execute the “main iteration.”
3. Update the bundle of information with respect to the new stability center

and return to 2.
In what follows we describe in detail the “main iteration” without indexing it for

the sake of notational simplicity.
The following local parameters are set each time the “main iteration” is entered:
• the proximity measure θ > 0;
• the safeguard parameters γmin and γmax, 0 < γmin < γmax.

We remark that in general the “main iteration” maintains the (updated) bundle
of information from previous iterations. Updating the bundle is necessary since the
quantities αi and ai are dependent on the stability center.

Algorithm 3.1 (main iteration).
0. If ‖g(y)‖ ≤ δ, then STOP (stationarity achieved).

Set

γmin :=
rε

2‖g(y)‖ , γmax := Rγmin, θ := rγminδ.

1. Construct the proximal trajectory dγ for increasing values of γ and choose γ̂
equal to the minimum value of γ ∈ [γmin, γmax] such that

f(y + dγ) > f(y) +mvγ

if such γ does exist. Otherwise set γ̂ := γmax. If ‖dγ̂‖ > θ, go to 3.
2. Set

I+ := I+ \ {i ∈ I+ | ai > ε}
and

I− := I− \ {i ∈ I− | ai > ε}.
Calculate

g∗ = min
g∈conv{gi|i∈I+}

‖g‖.

If ‖g∗‖ ≤ δ, then STOP (stationarity achieved).
Else set γmax := γmax − r(γmax − γmin) and go to 1.

3. Set xγ̂ := y + dγ̂ , calculate gγ̂ ∈ ∂f(xγ̂), and set

αγ̂ := f(y)− f(xγ̂) + gTγ̂ dγ̂ .
4. (a) If αγ̂ < 0 and ‖dγ̂‖ > ε, then insert the element (xγ̂ , f(xγ̂), gγ̂ , αγ̂ , ‖dγ̂‖)

into the bundle for an appropriate value of i ∈ I− and set γ̂ := γ̂ − r(γ̂ − γmin).
(b) Else, if gTγ̂ dγ̂ ≥ ρvγ̂ , then insert the element (xγ̂ , f(xγ̂), gγ̂ ,max(0, αγ̂), ‖dγ̂‖)

into the bundle for an appropriate value of i ∈ I+.
(c) Else find a scalar t ∈ (0, 1) such that g(t) ∈ ∂f(y+ tdγ̂) satisfies the condition

g(t)T dγ̂ ≥ ρvγ̂ and insert the element (y+ tdγ̂ , f(y+ tdγ̂), g(t),max(0, αt), t‖dγ̂‖) into
the bundle for an appropriate value of i ∈ I+, where αt = f(y)−f(y+tdγ̂)+tg(t)T dγ̂ .
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5. If ‖dγ̂‖ ≤ θ, go to 2. If

f(xγ̂) ≤ f(y) +mvγ̂ ,(3.1)

set the new stability center y := xγ̂ and EXIT from the main iteration.
6. Solve QP (γ̂), or, equivalently, DP (γ̂), obtain both the primal and the dual

optimal solution (vγ̂ , dγ̂) and (λγ̂ , µγ̂), and go to 3.
Some explanations are in order. The stationarity test at step 0 prevents the “main

iteration” from being executed if enough information is already available to assess the
stationarity of y.

The construction of the proximal trajectory at step 1 may be discretized by re-
peatedly solving QP (γ) for increasing values of γ, or by adopting techniques of the
type described in [6] (see also [14]).

The rationale of the test executed at step 2 is that the occurrence of a “small”
(in norm) displacement dγ corresponding to a “large” value of γ denotes either that a
stationary point has been reached or that the model is inconsistent. We discriminate
between these two cases by considering the distance measures ai (bundle deletion at
step 2). We observe that the choice of γ̂ defines implicitly a constraint on the norm
of dγ̂ (see Lemma 2.2(i)). On the other hand ‖dγ̂‖ ≤ θ is never a consequence of the
choice of a too small γ̂. In fact we note that if ‖g(y)‖ > δ, it holds that

‖dγmin‖ ≤ 2γmin‖g(y)‖ =
2‖g(y)‖
rδ

θ,

with the right-hand side strictly greater than θ.
We remark that the insertion of a bundle index into I+ or I− at step 4 is not

simply based on the sign of αi. In fact, in case αi < 0 and ai ≤ ε, the index i is
inserted into I+, and not into I− as would be expected, and αi is set equal to zero;
that is, the related affine piece is shifted downward of a quantity equal to |αi| (see
also [23]). This is aimed at letting all elements of the Goldstein ε-subdifferential at
y contribute to the construction of the polyhedral approximation ∆+(d), and also
guarantees that the model interpolates the objective function at y. Furthermore the
reduction of γ̂, whenever a bundle index is inserted into I−, is aimed at avoiding the
same point solution xγ̂ being generated infinitely many times. To explain case (c) at
step 4 we observe that the downward shifting of an affine piece, when α̂ < 0, does
not always cut out the point solution of QP (γ̂) generated at the previous iteration.
A sufficient condition for such a cut to be effective is that gTγ̂ dγ̂ ≥ ρvγ̂ . If such a
condition is not verified, we resort to a line search–type procedure which allows us to
find a point y+tdγ̂ , with t ∈ (0, 1), satisfying g(t)T dγ̂ ≥ ρvγ̂ , where g(t) ∈ ∂f(y+tdγ̂)
(see also [23]).

Notice that the search direction dγ̂ is calculated only at steps 1 and 6. This means
that in passing through step 4(a), the reduction of γ̂ does not cause an immediate
change in dγ̂ , and indeed the search direction used at step 5 is the one available right
before such a reduction.

Finally we observe that every time the stability center is updated, the parameters
αi and ai are to be updated for each element of the bundle as well, which may result
in changing the assignment of the corresponding index i from I+ to I− and vice versa.

4. Convergence. In this section we prove the termination of the algorithm at
a point satisfying an approximate stationarity condition. In particular we prove that,
for any given ε > 0 and δ > 0, it is possible to set the input parameters such that,



750 A. FUDULI, M. GAUDIOSO, AND G. GIALLOMBARDO

after a finite number of “main iteration” executions, the algorithm stops at a point y
satisfying the condition

‖g∗‖ ≤ δ with g∗ ∈ ∂Gε f(y).
Throughout the section we make the following assumptions:
(A1) f is weakly semismooth;
(A2) the set F0 = {x ∈ Rn | f(x) ≤ f(x0)} is compact.
We recall that a function f : Rn �→ R is weakly semismooth at x (see [16, 20, 23])

if it is Lipschitz around x and

lim
t↓0
g(t)T d

exists for all d ∈ Rn, where g(t) ∈ ∂f(x+ td). In particular, if f is weakly semismooth
at x, the directional derivative f ′(x, d) of f along the direction d exists for all d ∈ Rn
and

f ′(x, d) = lim
t↓0
g(t)T d.

Moreover, f is weakly semismooth on Rn if it is weakly semismooth at each x ∈ Rn.
Before proving finite termination of the “main iteration” we introduce the follow-

ing lemma.

Lemma 4.1. Let {(v(k)γ̂ , d
(k)
γ̂ )}k∈K be a subsequence generated within a single

“main iteration” such that

‖d(k)γ̂ ‖ > θ
and

f(y + d
(k)
γ̂ )− f(y) > mv(k)γ̂ ,

with the algorithm looping from step 3 to step 6. Then the following hold:
(i) there exists an index k̄ such that for each k ≥ k̄, k ∈ K, every new bundle

index is inserted into I+ and γ̂ remains unchanged;
(ii) step 4(c) of the algorithm is well posed; i.e., there exist two nonnegative

scalars t
(k)
1 and t

(k)
2 , 0 ≤ t(k)1 < t

(k)
2 < 1, such that for any t ∈ [t(k)1 , t

(k)
2 ] the condition

g(t)T d
(k)
γ̂ ≥ ρv(k)γ̂

is satisfied for every g(t) ∈ ∂f(y + td(k)γ̂ );
(iii) whenever a new bundle index is inserted into I+ the condition

gTk d
(k)
γ̂ ≥ ρv(k)γ̂

holds, where gk is the subgradient corresponding to the new bundle element.
Proof. (i) We observe that an infinite sequence of bundle index insertions into I−

cannot take place, as a consequence of the reduction of γ̂ at step 4(a) of the algorithm.
In particular, no bundle index can be inserted into I− as soon as γ̂ falls below the
threshold ε

2‖g(y)‖ .

(ii) Since the directional derivative f ′(y + t(k)d(k)γ̂ , d
(k)
γ̂ ) exists for any t(k) ≥ 0,

from the mean value theorem (see [3], Chap. 3, Prop. 3.1) it follows that

f(y + d
(k)
γ̂ )− f(y) = c(4.1)
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for some c ∈ [f ′inf , f
′
sup], where

f ′inf
�
= inf

0≤t(k)≤1
f ′(y + t(k)d(k)γ̂ , d

(k)
γ̂ ) and f ′sup

�
= sup

0≤t(k)≤1

f ′(y + t(k)d(k)γ̂ , d
(k)
γ̂ ).

Moreover, taking into account that the sufficient decrease condition is not satisfied,
i.e.,

ρv
(k)
γ̂ < mv

(k)
γ̂ < f(y + d

(k)
γ̂ )− f(y),

by (4.1) and the definition of f ′sup there exists a scalar t̄
(k) ∈ (0, 1) such that

ρv
(k)
γ̂ < f ′(y + t̄(k)d(k)γ̂ , d

(k)
γ̂ ).

Thus the thesis follows as a consequence of the weakly semismoothness assumption.

(iii) We observe that the condition gTk d
(k)
γ̂ ≥ ρv(k)γ̂ is ensured either by construction

or by the fact that

gTk d
(k)
γ̂ ≥ gTk d(k)γ̂ − α(k)

γ̂ = f(y + d
(k)
γ̂ )− f(y) > mv(k)γ̂ > ρv

(k)
γ̂

whenever α
(k)
γ̂ ≥ 0.

Now we can prove finite termination of the “main iteration.”
Lemma 4.2. The “main iteration” terminates after a finite number of steps.
Proof. To prove finiteness of the “main iteration” it is necessary to demonstrate

that in a finite number of steps either the stop at step 2 or the exit at step 5 is
achieved.

We start by proving that the algorithm cannot pass infinitely many times through
step 2. Assume by contradiction that such a case occurs, and let us index by k ∈ K
all the quantities referred to in the kth passage. We have

‖d(k)γ̂ ‖ ≤ θ
and

‖g∗(k)‖ > δ.
Observe that γ̂ ≤ γmax and that by construction γmax falls in a finite number of

steps below the threshold ε
2‖g(y)‖ . Thus, from Lemma 2.2(i), it follows that asymp-

totically ‖d(k)γ̂ ‖ ≤ ε, which in turn implies that the indices of the new bundle elements
are asymptotically inserted into I+ and are never removed.

Moreover, the bundle insertion rules at step 4 allow us to insert an index into I−
only if ‖dγ̂‖ > ε, and this implies that whenever a passage at step 2 occurs, all the
elements with index i ∈ I− are removed.

From the above considerations, taking into account (2.4a) and the constraint
eTλ−eTµ = γ̂ in the dual problem DP (γ̂), it follows that there exists an index k̄ ∈ K
such that for all k ≥ k̄ the direction d(k)γ̂ can be expressed in the form

d
(k)
γ̂ = −γ̂g(k),

with g(k) ∈ conv{gi | i ∈ I(k)+ }. But since ‖d(k)γ̂ ‖ ≤ θ and ‖g∗
(k)‖ > δ, we have

θ ≥ ‖d(k)γ̂ ‖ = γ̂‖g(k)‖ ≥ γmin‖g∗
(k)‖ > θ

δ
δ = θ,
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reaching a contradiction.
So far we have proved that an infinite number of passages through step 2 cannot

occur. To complete the proof of termination we need to show that it is impossible
to have infinitely many times ‖dγ̂‖ > θ and the descent condition (3.1) not satisfied,
with the algorithm looping between steps 3 and 6.

Indexing again by k ∈ K the kth passage through such a loop, we observe that,
by Lemma 4.1(i), there exists an index k̄ such that for every k ≥ k̄ the index of
each new bundle element is put in I+ with γ̂ remaining unchanged. Under such a

condition, for k ≥ k̄ the sequence {z(k)γ̂ } is monotonically nondecreasing, bounded,
and hence convergent. Moreover, since the sequence {d(k)γ̂ } is bounded in norm, it
admits a convergent subsequence, say {d(k)γ̂ }k∈K′⊆K.

The above considerations imply also that the sequence {v(k)γ̂ }k∈K′⊆K is convergent
to a nonpositive limit, say v̄. Now assume that v̄ < 0, let i and j be two successive

indices in K′, and let βi = max{0, αi}, with αi = f(y) − f(y + d(i)γ̂ ) + gTi d(i)γ̂ and

gi ∈ ∂f(y + d(i)γ̂ ). We have

v
(j)
γ̂ ≥ gTi d(j)γ̂ − βi,(4.2)

f(y + d
(i)
γ̂ )− f(y) > mv(i)γ̂ ,

and

gTi d
(i)
γ̂ ≥ ρv(i)γ̂ .

We note that

gTi d
(i)
γ̂ − βi ≥ ρv(i)γ̂ .(4.3)

This inequality is trivial for βi = 0. If, on the other hand, βi = αi, then taking into
account that ρ > m, it holds that

gTi d
(i)
γ̂ − βi = f(y + d(i)γ̂ )− f(y) > mv(i)γ̂ > ρv

(i)
γ̂ .

Combining (4.2) and (4.3) we obtain

v
(j)
γ̂ − ρv(i)γ̂ ≥ gTi (d(j)γ̂ − d(i)γ̂ ),

and passing to the limit

(1− ρ)v̄ ≥ 0,

which contradicts v̄ < 0. Hence we conclude that v̄ = 0, which, by Lemma 2.2(iii),

contradicts the fact that ‖d(k)γ̂ ‖ > θ for all k ∈ K.
Remark. Since γmin =

rε
2‖g(y)‖ and θ = rγminδ it follows that

θ ≥ r
2εδ

2L0
,(4.4)

where L0 is the Lipschitz constant of f on the set F0.
Now we are ready to prove the overall finiteness of the algorithm.
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Theorem 4.3. For any ε > 0 and δ > 0, the algorithm stops in a finite number
of “main iterations” at a point satisfying the approximate stationarity condition

‖g∗‖ ≤ δ with g∗ ∈ ∂Gε f(y).(4.5)

Proof. The approximate stationarity condition (4.5) is exactly the stopping con-
dition tested at step 2 of the “main iteration.” Now suppose that it is not verified
for an infinite number of “main iteration” executions. From Lemma 4.2 it follows
that infinitely many times the descent condition is satisfied. Let y(k) be the stability

center at the kth passage through “main iteration”; then ‖d(k)γ̂ ‖ > θ(k),

f(y(k+1)) ≤ f(y(k)) +mv(k)γ̂ ,

and

f(y(k+1))− f(y(0)) ≤ m
k∑
i=0

v
(i)
γ̂ .

Now consider that by (4.4) ‖d(i)γ̂ ‖ is bounded away from zero. Then from Lemma

2.2(iii) it follows that v
(i)
γ̂ is bounded away from zero as well. Therefore, by passing

to the limit we obtain

lim
k→∞

f(y(k+1))− f(y(0)) ≤ −∞,

which is a contradiction, since f is bounded from below as a consequence of assump-
tions (A1) and (A2).

5. Practical implementation and numerical results. The algorithm de-
scribed in section 3 cannot be immediately implemented, since it may require un-
bounded storage. In fact it does not encompass any mechanism to control the growth
of the bundle size. Also the convergence properties described in section 4 are derived
under the hypothesis that the bundle size can grow indefinitely. Thus, before passing
to the implementation issues, it is necessary to take into account explicitly that the
bundle has finite size and to show that convergence is retained under such a hypoth-
esis. A possible way to tackle the problem is to introduce an aggregation technique
scheme of the type devised by Kiwiel [12] and widely used in bundle methods [10]. In
particular let x̂ be the point generated at step 3 of the “main iteration,” obtained by
solving QP (γ̂) or DP (γ̂). If we define the aggregate quantities

g+
�
=
G+λγ̂
eTλγ̂

, α+ �
=
αT+λγ̂

eTλγ̂

and, in case µγ̂ 	= 0,

g−
�
=
G−µγ̂
eTµγ̂

, α−
�
=
αT−µγ̂
eTµγ̂

,
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it is easy to verify that the aggregate problem

QP a(γ̂)




min
v,d

γ̂v +
1

2
‖d‖2

v ≥ gT+d− α+,

v ≥ gTi d− αi, i ∈ Ī+,

v ≤ gT−d− α−,

v ≤ gTi d− αi, i ∈ Ī−,

has the same optimal solution (vγ̂ , dγ̂) as QP (γ̂), where Ī+ and Ī− are arbitrary
subsets of I+ and I−, respectively. Of course, in case I− = ∅ or µγ̂ = 0, the formulation
of the aggregate problem does not contain the constraint v ≤ gT−d− α− and (vγ̂ , dγ̂)
is still optimal.

On the basis of the above observations it is possible to embed an aggregation
scheme into the algorithm. Suppose that at a certain execution of the “main iter-
ation,” the quadratic program QP (γ̂) (or DP (γ̂)) is solved, and the corresponding
optimal dual vector (λγ̂ , µγ̂) is calculated. Then, once the quantities g+, α

+, g−, α−

have been calculated as well, it is possible to construct the aggregate problem QP a(γ̂)
by inserting the aggregated constraints into QP (γ̂) and deleting part of its bundle
elements. Thus, next time the quadratic program must be solved, it can be obtained
by inserting the new constraint, corresponding to the new bundle element calculated
at step 3 of the “main iteration,” into the aggregated problem QP a(γ̂). Of course,
such an aggregation task will only be carried out each time a given maximal bundle
dimension is reached.

The convergence of the algorithm is not affected by the aggregation mechanism.

Indeed the key argument is that the monotonicity of the sequence {z(k)γ̂ }, necessary
in the proof of Lemma 4.2, is still guaranteed.

The algorithm, encompassing the aggregation scheme, has been implemented in
double precision Fortran-77 under a Windows ME system. The code, called NCVX,
has been tested on a set [17] of 25 problems available on the web at the URL
http://www.cs.cas.cz/˜ luksan/test.html. All test problems, except the Rosenbrock
problem, are nonsmooth.

We have not implemented the construction of the proximal trajectory at step 1
of the “main iteration,” and we have always set γ̂ = 10γmin. Each test has returned
the same number of function evaluations as the number of subgradient evaluations.
In fact the condition at step 1 of the algorithm has always been satisfied by the initial
choice of γ̂ and step 4(c) has never been entered.

The input parameters have been set as follows: ε = 0.1, δ = 10−4, m = 0.2,
ρ = 0.5, r = 0.5, R = 103. In Table 5.1 we report the computational results in
terms of Nf function evaluations. By f

∗ and f we indicate the minimum value of the
objective function and the function value reached by the algorithm when the stopping
criterion is met, respectively.

At each iteration we solve the dual program DP (γ) by using the subroutine
DQPROG provided by the IMSL library and based on M. J. D. Powell’s implemen-
tation of the Goldfarb and Idnani [8] dual quadratic programming algorithm.

In testing the algorithm, we have always adopted the same set of input parameters,
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Table 5.1
NCVX: Computational results.

Problem NCVX
# Problem n f∗ Nf f
1 Rosenbrock 2 0 70 5.009e-07
2 Crescent 2 0 22 8.022e-06
3 CB2 2 1.9522245 18 1.9522245
4 CB3 2 2 15 2.0000001
5 DEM 2 -3 21 -2.9999999
6 QL 2 7.2 28 7.2000005
7 LQ 2 -1.4142136 9 -1.4142135
8 Mifflin1 2 -1 127 -0.9999977
9 Mifflin2 2 -1 13 -1.0000000
10 Rosen–Suzuki 4 -44 29 -44.000000
11 Shor 5 22.600162 44 22.600162
12 Maxquad 10 -0.8414083 56 -0.8414078
13 Maxq 20 0 293 1.660e-07
14 Maxl 20 0 44 1.110e-15
15 Goffin 50 0 148 1.142e-13
16 El-Attar 6 0.5598131 152 0.5598163
17 Wolfe 2 -8 21 -7.9999998
18 MXHILB 50 0 33 1.768e-05
19 L1HILB 50 0 104 6.978e-07
20 Colville1 5 -32.348679 47 -32.348679
21 Gill 10 9.7857721 164 9.7857746
22 HS78 5 -2.9197004 159 -2.9196589
23* TR48 48 -638565 353 -638565.00
24 Shell Dual 15 32.348679 1497 32.349404
25 Steiner2 12 16.703838 196 16.703838

with no tuning based on any specific test problem, aiming at checking algorithm
robustness more than efficiency. For problem 23 (marked by “∗” in Table 5.1) we
have set m = 0.8, as with standard m = 0.2 the quadratic subprogram solver failed
due to the accumulation of rounding errors.

REFERENCES

[1] E. W. Cheney and A. A. Goldstein, Newton’s method for convex programming and Tcheby-
cheff approximation, Numer. Math., 1 (1959), pp. 253–268.

[2] F. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.
[3] V. F. Demyanov and A. Rubinov, Quasidifferential Calculus, Optimization Software Inc.,

New York, 1986.
[4] V. F. Demyanov and A. Rubinov, Constructive Nonsmooth Analysis, Peter Lang, Frankfurt

am Main, Germany, 1995.
[5] G. Di Pillo, L. Grippo, and S. Lucidi, A smooth method for the finite minimax problem,

Math. Program., 60 (1993), pp. 187–214.
[6] A. Fuduli and M. Gaudioso, The Proximal Trajectory Algorithm for Convex Minimization,

Tech. Report 7/98, Laboratorio di Logistica, Dipartimento di Elettronica Informatica e
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[10] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms.
Vol. II, Springer-Verlag, Berlin, 1993.

[11] J. E. Kelley, Jr., The cutting-plane method for solving convex programs, J. Soc. Indust. Appl.



756 A. FUDULI, M. GAUDIOSO, AND G. GIALLOMBARDO

Math., 8 (1960), pp. 703–712.
[12] K. C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Math.

Program., 27 (1983), pp. 320–341.
[13] K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization,

Math. Program., 46 (1990), pp. 105–122.
[14] K. C. Kiwiel, Finding normal solutions in piecewise linear programming, Appl. Math. Optim.,

32 (1995), pp. 235–254.
[15] K. C. Kiwiel, Restricted step and Levenberg–Marquardt techniques in proximal bundle methods

for nonconvex nondifferentiable optimization, SIAM J. Optim., 6 (1996), pp. 227–249.
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1. Introduction. Let X be a Banach space and φ : X → R
⋃{+∞} a proper

lower semicontinuous convex function, and let us consider the convex inequality

φ(x) ≤ 0.(1.1)

Let S denote the solution set of (1.1), that is,

S := {x ∈ X : φ(x) ≤ 0}.
We always assume S �= ∅. Let x0 ∈ ∂S, the topological boundary of S. Recall that
(1.1) is said to be metrically regular at x0 if there exist τ, δ ∈ (0, +∞) such that

dist(x, S) ≤ τ [φ(x)]+ ∀x ∈ B(x0, δ),(1.2)

where B(x0, δ) denotes the open ball with center x0 and radius δ. In this case, we
also say that (1.1) is τ -metrically regular at x0.

For a closed convex subset K of X and a ∈ K, let NK(a) denote the normal cone
of K at a, that is,

NK(a) := {x∗ ∈ X∗ : 〈x∗, x− a〉 ≤ 0 ∀ x ∈ K}.
Let dom(φ) := {x ∈ X : φ(x) < +∞} and epi(φ) := {(x, t) ∈ X × R : φ(x) ≤ t}.
Recall that the subdifferential and singular subdifferential of φ at x ∈ dom(φ) are,
respectively, the sets

∂φ(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ Nepi(φ)(x, φ(x))}
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and

∂∞φ(x) := {x∗ ∈ X∗ : (x∗, 0) ∈ Nepi(φ)(x, φ(x))}.
It is well known and easy to verify that

∂φ(x) = {x∗ ∈ X∗ : 〈x∗, u− x〉 ≤ φ(u)− φ(x) ∀ u ∈ X}
and

∂∞φ(x) = Ndom(φ)(x) and ∂φ(x) = ∂∞φ(x) + ∂φ(x).(1.3)

Let R+ denote the set of all nonnegative real numbers. In the case when φ is a
continuous convex function on X, recall (cf. [11, 6]) that (1.1) satisfies the basic
constraint qualification (BCQ) at x0 if

NS(x0) = R+∂φ(x0).

Incorporating the singular subdifferential, we can extend this property to the case
when φ is a proper lower semicontinuous convex function.

For a nonempty interval P in R+ and a subset A of X∗, we use PA to denote the
set {ta∗ : t ∈ P, a∗ ∈ A} if A �= ∅ and adopt the convention that

PA = {0} if A = ∅.(1.4)

We say that (1.1) satisfies the extended BCQ at x0 if

NS(x0) = ∂∞φ(x0) + R+∂φ(x0).

Therefore, the extended BCQ is reduced to BCQ when φ is a continuous convex
function.

We say that (1.1) satisfies the strong BCQ at x0 if there exists τ ∈ (0, +∞) such
that

NS(x0) ∩BX∗ ⊂ ∂∞φ(x0) + [0, τ ]∂φ(x0),(1.5)

where BX∗ denotes the closed unit ball of X∗. When (1.5) holds, we also say that
(1.1) satisfies the τ -strong BCQ.

By definition and (1.3) as well as recalling the convention (1.4), it is clear that,
in the case when ∂φ(x0) = ∅,

extended BCQ at x0 ⇔ τ -strong BCQ at x0 ⇔ NS(x0) = ∂∞φ(x0).(1.6)

When φ is a continuous convex function, by definition and noting that ∂∞φ(x0) = {0},
one has that

strong BCQ at x0 =⇒ extended BCQ at x0 = BCQ at x0,

but the converse of the first implication is not true (cf. Examples 1 and 2 in section 2).
In the case when X = Rn and φ(x) = max{ψ(x), dist(x,C)}, where ψ is a proper
lower semicontinuous convex function and C is a closed convex subset of X, Lewis
and Pang [9] proved that if x0 ∈ ∂S satisfies φ(x0) = 0 and ∂ψ(x0) �= ∅, then

(1.1) is metrically regular at x0 ⇒ NS(x0) = NC(x0) + R+∂φ(x0),(1.7)
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where A denotes the closure of A. They raised an open problem: find a useful converse
of (1.7) (characterize the metric regularity via the normal cone identity).

In section 2, we study the metric regularity, the BCQ, and the strong BCQ at a
fixed point of ∂S; in particular we present an answer to the above problem of Lewis
and Pang. Moreover, we give a characterization of the existence of error bounds for
(1.1) in terms of the strong BCQ at each point of an appropriate subset of ∂S. For
some other types of constraint qualifications, see [8].

Let I be an arbitrary (but nonempty) index set and {Ci}i∈I be a collection of
closed convex subsets of X. Throughout we assume that C :=

⋂
i∈I Ci is nonempty.

Let p ∈ [1, +∞). We say that the collection {Ci}i∈I is p-linearly regular if there
exists τ ∈ (0, +∞) such that

dist(x,C) ≤ τ

(∑
i∈I

(dist(x,Ci))
p

) 1
p

∀x ∈ X.(1.8)

We say that the collection {Ci}i∈I is boundedly p-linearly regular if there exist τ, δ ∈
(0, +∞) such that

dist(x,C) ≤ τ

(∑
i∈I

(dist(x,Ci))
p

) 1
p

∀x ∈ X with ‖x‖ ≤ δ.(1.9)

The notions of the linear regularity and the bounded linear regularity for finite col-
lections of closed convex sets have been studied by many authors (see [1, 2] and
references therein). When X = Rn, the index set I is finite, and each Ci is a closed
cone, in terms of Jameson’s property (G), Bauschke, Borwein, and Li [1] presented
a characterization of the linear regularity. Recently Ng and Yang [13] extended the
result of Bauschke et al. [1, 2] to a finite collection of closed convex sets in a Banach
space. In section 3, we consider infinite collections of closed convex sets on a Banach
space. We introduce a kind of weak∗ p-sum for infinitely many closed convex sets in
dual spaces. Using this new notion of sums, we generalize Jameson’s property (G) to
an infinite collection of closed convex cones of a Banach space. In terms of tangent
cones and the property (G) we establish characterizations for the infinite collection
{Ci}i∈I to be linearly regular. Moreover, we present some characterizations of the
existence of error bounds for infinite systems of convex inequalities.

2. Metric regularity, extended BCQ and strong BCQ. Recalling [17], we
say that a subset A of a closed convex subset K of X has property (R) if it recessionally
generates K:

K = A + K∞,

where K∞ denotes the recession cone of K, that is,

K∞ := {x ∈ X : K + R+x ⊂ K}.
Trivially (but importantly), we have two examples of subsets of K having prop-
erty (R): (a) K itself and (b) {0}, provided that K is a cone.
Throughout, X denotes a Banach space and φ denotes a proper lower semicontinuous
convex function (unless stated otherwise).
Proposition 2.1. Let τ > 0 and A be a subset of the solution set S of (1.1)

with the property (R). Suppose that ∂S ⊂ φ−1(0). Then (1.1) satisfies the extended
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BCQ (resp., the τ -strong BCQ) at each point of A ∩ ∂S if and only if (1.1) satisfies
the extended BCQ (resp., the τ -strong BCQ) at each point of ∂S.

Proof. Suppose that (1.1) satisfies the extended BCQ (resp., the τ -strong BCQ)
at each point of A ∩ ∂S. Let z ∈ ∂S and x∗ ∈ BX∗ ∩ NS(z) with x∗ �= 0. To prove
the proposition, we need only show that

x∗ ∈ ∂∞φ(z) + R+∂φ(z) (resp., x∗ ∈ ∂∞φ(z) + [0, τ ]∂φ(z)).(2.1)

Let a ∈ A and c ∈ S∞ be such that z = a + c. Then 〈x∗, a + c〉 = maxu∈S〈x∗, u〉.
It follows from a + R+c ⊂ S that 〈x∗, c〉 = 0. Thus 〈x∗, a〉 = maxu∈S〈x∗, u〉. Hence
a ∈ ∂S and x∗ ∈ NS(a). It follows that

x∗ ∈ ∂∞φ(a) + R+∂φ(a) (resp., x∗ ∈ ∂φ(a) + [0, τ ]∂φ(a)).

In the case when ∂φ(a) = ∅, by (1.4) and (1.3), one has that x∗ ∈ ∂∞φ(a) =
Ndom(φ)(a); noting that 〈x∗, a〉 = 〈x∗, z〉, it follows that x∗ ∈ Ndom(φ)(z) = ∂∞φ(z).
Hence (2.1) holds. It remains to consider the case that ∂φ(a) �= ∅. In this case, there
exist x∗

1 ∈ ∂∞φ(a), x∗
2 ∈ ∂φ(a), and t ∈ R+ (resp., t ∈ [0, τ ]) such that x∗ = x∗

1 + tx∗
2.

If t = 0, then x∗ ∈ ∂∞φ(a) = Ndom(φ)(a) and hence x∗ ∈ Ndom(φ)(z) = ∂∞φ(z),

verifying (2.1). If t > 0, by (1.3) one has that x∗
t ∈ ∂φ(a), and so, for any x ∈ X,〈

x∗

t
, x− (a + c)

〉
=

〈
x∗

t
, x− a

〉
≤ φ(x)− φ(a) = φ(x)− φ(a + c),

thanks to the assumption ∂S ⊂ φ−1(0). This shows that x∗ ∈ R+∂φ(a + c) (resp.,
x∗ ∈ [0, τ ]∂φ(a + c)). The proof is completed.

Let f1, f2 : X → R∪{+∞} be proper lower semicontinuous convex functions and
let f0(x) := max{f1(x), f2(x)} for all x ∈ X. It is known (cf. [16, Theorem 2]) that

∂f0(a) = co(∂f1(a) ∪ ∂f2(a)) + ∂∞f2(a)(2.2)

provided that f1 is continuous at a (i.e., a ∈ int[dom(f1)]) and f1(a) = f2(a).
With the help of (2.2), we can prove the following characterization for the metric

regularity in terms of normal cones.
Theorem 2.2. Let z ∈ ∂S ⊂ φ−1(0) and τ > 0. Then the following statements

are equivalent.
(i) (1.1) is τ -metrically regular at z.
(ii) There exists δ > 0 such that (1.1) satisfies the τ -strong BCQ at each point of

B(z, δ) ∩ ∂S.
Proof. (i)=⇒(ii). Suppose that there exists r > 0 such that

dist(x, S) ≤ τ [φ(x)]+ ∀x ∈ B(z, r).(2.3)

Take δ = r
2 , a ∈ B(z, δ) ∩ ∂S, and x∗ ∈ BX∗ ∩NS(a). Noting that

BX∗ ∩NS(a) = ∂dist(·, S)(a) and dist(a, S) = 0,

one has that

〈x∗, x− a〉 ≤ dist(x, S) ∀ x ∈ X.

It follows from (2.3) and B(a, δ) ⊂ B(z, r) that

〈x∗, x− a〉 ≤ τ [φ(x)]+ = τ max{φ(x), 0} ∀x ∈ B(a, δ).
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By φ(a) = 0 (because a ∈ ∂S ⊂ φ−1(0)) and (2.2), one has that

x∗ ∈ τ [co(∂φ(a) ∪ {0}) + ∂∞φ(a)] = [0, τ ]∂φ(a) + ∂∞φ(a).

This shows that B∗
X∩NS(a) ⊂ [0, τ ]∂φ(a)+∂∞φ(a) and so (1.1) satisfies the τ -strong

BCQ at a.
(ii)=⇒(i). Suppose that there exists δ > 0 such that

BX∗ ∩NS(u) ⊂ ∂∞φ(u) + [0, τ ]∂φ(u) ∀u ∈ B(z, δ) ∩ ∂S.(2.4)

Let x ∈ B(z, δ2 ) \ S with x ∈ dom(φ). It suffices to show that

dist(x, S) ≤ τφ(x).(2.5)

Noting that dist(x, S) ≤ ‖x − z‖ < δ
2 , pick γ ∈ (0, 1) with dist(x, S) < γδ

2 . By [12,
Lemma 1.1 and Proposition 1.3], there exist a ∈ ∂S and x∗ ∈ BX∗ ∩NS(a) such that

γ‖x− a‖ ≤ 〈x∗, x− a〉(2.6)

and γ‖x − a‖ ≤ dist(x, S). It follows from dist(x, S) < γδ
2 that ‖x − a‖ < δ

2 . This

and x ∈ B(z, δ2 ) imply that a ∈ B(z, δ). By (2.4) one has that

x∗ ∈ ∂∞φ(a) + [0, τ ]∂φ(a).

On the other hand, by (2.6) one has that 0 < 〈x∗, x− a〉, and hence, by x ∈ dom(φ),
x∗ �∈ Ndom(φ)(a) = ∂∞φ(a). It follows that there exist x∗

1 ∈ ∂∞φ(a), x∗
2 ∈ ∂φ(a), and

t ∈ (0, τ ] such that x∗ = x∗
1 + tx∗

2. This and (1.3) imply that x∗
t ∈ ∂φ(a). By the

assumption a ∈ ∂S ⊂ φ−1(0), it follows that 〈x∗
t , x− a〉 ≤ φ(x). Hence 〈x∗, x− a〉 ≤

τφ(x). This and (2.6) show that γ‖x− a‖ ≤ τφ(x). By dist(x, S) ≤ ‖x− a‖, letting
γ → 1−, one has that (2.5) holds.

Remark. When X = Rn, given a proper lower semicontinuous convex function ψ
on Rn and a closed convex subset C of Rn, Lewis and Pang [9, Proposition 2] proved
that for z ∈ C with ψ(z) = 0 and ∂ψ(z) �= ∅, the implication (α)=⇒(β) holds, where

(α) There exist r, τ ∈ (0, +∞) such that

dist(x,C ∩ ψ−1(−∞, 0]) ≤ τ max{ψ(x), dist(x,C)} ∀x ∈ B(z, r).

(β) NC∩ψ−1(−∞, 0](z) = NC(z) + R+∂ψ(z).
Let S := C ∩ ψ−1(−∞, 0]. Noting that the inclusion NS(z) ⊃ NC(z) + R+∂ψ(z) is
always true, (β) can be rewritten as

NS(z) ⊂ NC(z) + R+∂ψ(z).

Letting φ(·) = max{ψ(·), dist(·, C)}, (α) is equivalent to (i) of Theorem 2.2. Moreover,
by (2.2) one has

∂φ(z) = co((BX∗ ∩NC(z)) ∪ ∂ψ(z)) + ∂∞ψ(z)

⊂ BX∗ ∩NC(z) + [0, 1]∂ψ(z) + ∂∞ψ(z).

We claim that

[0, 1]∂ψ(z) + ∂∞ψ(z) = [0, 1]∂ψ(z).(2.7)
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Granting this and noting that ∂∞φ(z) = Ndom(φ)(z) = Ndom(ψ)(z) = ∂∞ψ(z) (be-
cause of (1.3)),

[0, τ ]∂φ(z) + ∂∞φ(z) ⊂ τBX∗ ∩NC(z) + [0, τ ]∂ψ(z).

Thus, our implication (i)=⇒(ii) provides a conclusion (stronger than (β)):

BX∗ ∩NS(z) ⊂ τBX∗ ∩NC(z) + [0, τ ]∂ψ(z),

if (α) holds. Next we prove (2.7). Let x∗ ∈ [0, 1]∂ψ(z) with x∗ �= 0. Then there exist
tn ∈ (0, 1] and x∗

n ∈ ∂ψ(z) such that tnx
∗
n → x∗. Without loss of generality we can

assume tn → t0 ∈ [0, 1]. Noting that (tnx
∗
n,−tn) ∈ Nepi(ψ)(z, ψ(z)) (because x∗

n ∈
∂ψ(z)), one has that (x∗,−t0) ∈ Nepi(ψ)(z, ψ(z)). It follows that x∗ ∈ [0, 1]∂ψ(z) +
∂∞ψ(z). Hence

[0, 1]∂ψ(z) + ∂∞ψ(z) ⊃ [0, 1]∂ψ(z).

It remains to show that

[0, 1]∂ψ(z) + ∂∞ψ(z) ⊂ [0, 1]∂ψ(z).(2.8)

Since ∂∞ψ(z) is a cone, by (1.3) one has

(0, 1]∂ψ(z) + ∂∞ψ(z) = (0, 1]∂ψ(z).

Thus, to prove (2.8), we need only show that ∂∞ψ(z) ⊂ [0, 1]∂ψ(z). Let u∗ ∈ ∂∞ψ(z),
and take v∗ in ∂ψ(z). Then, by (1.3), 1

nv
∗ + u∗ ∈ [0, 1]∂ψ(z) for any natural number

n. Letting n→∞, u∗ ∈ [0, 1]∂ψ(z). This shows that ∂∞ψ(z) ⊂ [0, 1]∂ψ(z).
Let z be a fixed point of ∂S. Clearly the following implications hold: the metric

regularity at z⇒the strong BCQ at z⇒the extended BCQ at z(= the BCQ at z if
∂φ(z) ��= ∅). The following Examples 1 and 2 show that the converse of each of the
implications is not valid. Moreover, Example 1 also shows that Theorem 2.3 is not
true if the strong BCQ in (ii) is replaced by the BCQ. Thus, these and Theorem 2.3
present a complete answer to an open problem raised by Lewis and Pang in [9].

Let {C1, . . . , Cn} be a collection of closed convex subsets of X such that C =⋂n
i=1 Ci �= ∅. Recall (cf. [1, 2]) that {C1, . . . , Cn} is said to have the strong conical

hull intersection property (CHIP) if

NC(x) =

n∑
i=1

NCi
(x) for each x ∈ C.

Following [2], suppose p ∈ (1, +∞) and let αp := 1
p , βp = 1 − αp, and ρp be the

positive solution of 1
ρ2 = αp

αpβp
βp . Let

S3 := {(x, y, z) ∈ R3 : |y| ≤ ρ3x
α3zβ3 , x ≥ 0, z ≥ 0}

and

S̃2 := {(x, y, z) ∈ R3 : |x| ≤ ρ2y
α2zβ2 , y ≥ 0, z ≥ 0}

(see [2, Definitions 2.18 and 2.22]). Let K and Y be subsets of R4, respectively defined
by

K := ({0} × S̃2) + (S3 × {0}) and Y := {0} ×R3.
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Bauschke, Borwein, and Tseng [2] proved that the pair {K,Y } has the strong CHIP
but is not boundedly linearly regular (which corresponds to the case p = 1 of the
“boundedly p-linearly regular” property defined in section 1); see [2, Theorem 3.1
and Corollary 3.2].

Example 1. Let K and Y be as in the above result proved by Bauschke, Borwein,
and Tseng. Let X = R4 and let φ(x) := max{dist(x,K), dist(x, Y )} for all x ∈ X.
Then (1.1) satisfies the BCQ at each point of ∂S but does not satisfy the τ -strong
BCQ at 0 for any τ ∈ [0, +∞).

Proof. Let τ ∈ [0, +∞). Noting that K and Y are cones, by the above result of
Bauschke, Borwein, and Tseng one has that (1.1) is not τ -metrically regular at 0. Since
the solution set S(= K ∩ Y ) is a cone, {0} is a subset of S with the property (R). It
follows from Proposition 2.1 and Theorem 2.2 that (1.1) does not satisfy the τ -strong
BCQ at 0. On the other hand, since {K,Y } has the strong CHIP,

NS(a) = NK(a) + NY (a) ∀a ∈ S.

Fix an arbitrary a in ∂S. Noting that

∂φ(a) = co(∂(dist(·,K))(a) ∪ ∂(dist(·, Y ))(a))

= co((BX∗ ∩NK(a)) ∪ (BX∗ ∩NY (a)))

⊃ 1

2
BX∗ ∩NK(a) +

1

2
BX∗ ∩NY (a),

one has

R+∂φ(a) ⊃ NK(a) + NY (a) = NS(a).

Therefore, R+∂φ(a) = NS(a) (as the inclusion R+∂φ(a) ⊂ NS(a) is trivial). This
shows that (1.1) satisfies the BCQ at a. The proof is completed.

Example 2. Take X = R2, C = {(u, v) ∈ R2 : v ≤ 1}, and S = {(u, v) ∈ R2 :
u2 + v2 ≤ 1}. Let

φ(x) =

{
+∞, x ∈ X \ C,
dist2(x, S), x ∈ C.

Then S = {x ∈ X : φ(x) ≤ 0} and z := (0, 1) ∈ ∂S. It is clear that, for any
τ ∈ (0, +∞), (1.1) is not τ -metrically regular at z. On the other hand, noting that
∂φ(z) = NS(z),

BX∗ ∩NS(z) ⊂ NS(z) = [0, τ ]NS(z) = [0, τ ]∂φ(z) for any τ > 0

(because NS(z) is a cone). Hence (1.1) satisfies the τ -strong BCQ at z for any τ > 0.
The following theorem provides characterizations for (1.1) to satisfy the τ -strong

BCQ at a given point a in ∂S.
Theorem 2.3. Let τ > 0 and a ∈ ∂S with a ∈ int(dom(φ)) (thus φ is continuous

at a). Then the following statements are equivalent.
(i) (1.1) satisfies the τ -strong BCQ at a.
(ii) dist(h, TS(a)) ≤ τ [d+φ(a)(h)]+ for all h ∈ X, where

d+φ(a)(h) = lim
t→0+

φ(a + th)− φ(a)

t
.

(iii) dist(x, a + TS(a)) ≤ τ [φ(x)]+ for all x ∈ X.
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In order to prove Theorem 2.3, we need the following theorem, which provides a
characterization for (1.1) to have a global error bound.
Theorem 2.4. Let τ > 0 and A be a convex subset of the solution set S with the

property (R). Suppose that ∂S ⊂ φ−1(0). Then

dist(x, S) ≤ τ [φ(x)]+ ∀ x ∈ X

if and only if (1.1) satisfies the τ -strong BCQ at each point of A ∩ ∂S.
Proof. In view of Theorem 2.2, we need only to prove the sufficiency part. Let

x ∈ X \S and γ ∈ (0, 1). By [12, Lemma 1.1 and Proposition 1.3], there exists z ∈ ∂S
such that

dist(z + t(x− z), S) ≥ γt‖x− z‖ ∀t ≥ 0.(2.9)

By Proposition 2.1 and Theorem 2.2 there exists δ ∈ (0, 1) such that

dist(z + δ(x− z), S) ≤ τ [φ(z + δ(x− z))]+ ≤ τ(δ[φ(x)]+ + (1− δ)[φ(z)]) = τδ[φ(x)]+.

It follows from (2.9) and dist(x, S) ≤ ‖x− z‖ that

γδdist(x, S) ≤ τδ[φ(x)]+.

Letting γ → 1, one has that dist(x, S) ≤ τ [φ(x)]+. The proof is completed.
Let C be a closed convex cone in X. We adopt the notation for (negative) polar

set C◦ := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0 for all x ∈ C}.
Proof of Theorem 2.3. Since a ∈ int(dom(φ)), ∂∞φ(a) = {0} and

d+φ(a)(h) = sup{〈x∗, h〉 : x∗ ∈ ∂φ(a)} ∀h ∈ X,

it follows from (TS(a))◦ = NS(a) ⊃ R+∂φ(a) that

TS(a) ⊂ {h ∈ X : d+φ(a)(h) ≤ 0}.
Therefore, if (i) or (ii) holds, one has

TS(a) = {h ∈ X : d+φ(a)(h) ≤ 0}.
Noting that {0} is a subset of TS(a) with the property (R) as TS(a) is a cone, it
follows from Theorem 2.4 that (ii) is equivalent to

BX∗ ∩NTS(a)(0) ⊂ [0, τ ]∂(d+φ(a))(0)

(thanks to ∂∞(d+φ(a))(0) = {0}). Since NTS(a)(0) = NS(a) and ∂(d+φ(a))(0) =
∂φ(a), the equivalence (i)⇐⇒(ii) follows immediately.

(ii)=⇒(iii) is trivial as d+φ(a)(x− a) ≤ φ(x) for each x.
(iii)=⇒(ii) Let h ∈ X \ TS(a). Then, for any t > 0, φ(a + th) > 0 and it follows

from (iii) that

dist(a + th, a + TS(a)) ≤ τφ(a + th),

that is,

dist(h, TS(a)) ≤ τ
φ(a + th)− φ(a)

t
.
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Letting t→ 0+, one has that dist(h, TS(a)) ≤ τd+φ(a)(h). Therefore, (ii) holds.
We conclude this section with the case when φ is the maximum function of finitely

many differentiable convex functions.
Proposition 2.5. Let f1, . . . , fm : X → R be differentiable convex functions.

Let φ(x) = max{fi(x) : 1 ≤ i ≤ n} for all x ∈ X, and let z ∈ ∂S be fixed. Then (1.1)
satisfies the BCQ at z if and only if (1.1) satisfies the strong BCQ at z.

Proof. The sufficiency part is trivial. Conversely we suppose that (1.1) satisfies the
BCQ at z. Let I(z) := {1 ≤ i ≤ m : fi(z) = φ(z)} and D := co({f ′

i(z) : i ∈ I(z)}).
Then ∂φ(z) = D, and hence, by the definition of BCQ,

NS(z) = R+D.(2.10)

Let P be a convex set generated by finitely many points {a1, . . . , an} of X∗ (i.e.,
P = co(a1, . . . , an)) and

E(P ) := {x∗ ∈ [0, 1]P : tx∗ �∈ [0, 1]P ∀ t > 1}.

We claim that

δ(P ) := inf{‖x∗‖ : x∗ ∈ E(P )} > 0.(2.11)

Granting this, let x∗ ∈ NS(z) ∩ BX∗ with x∗ �= 0. By (2.10) let r := sup{t > 0 :
tx∗ ∈ [0, 1]D}. Thus rx∗ ∈ E(D) and so δ(D) ≤ ‖rx∗‖ ≤ r. Hence

x∗ ∈ 1

r
E(D) ⊂

[
0,

1

δ(D)

]
D =

[
0,

1

δ(D)

]
∂φ(z).

This shows that NS(z) ∩ BX∗ ⊂ [0, 1
δ(D) ]∂φ(z). Therefore (1.1) satisfies the strong

BCQ at z. It remains to show that (2.11) holds. We will show this by induction.
(i) It is clear that (2.11) holds when [0, 1]P is of dimension 1.
(ii) Suppose that (2.11) holds whenever [0, 1]P is of dimension n.
(iii) We will show that (2.11) also holds when [0, 1]P is of dimension n + 1.

Suppose to the contrary that there exists a sequence {x∗
k} in E(P ) such that ‖x∗

k‖ → 0.
Note that E(P ) is contained in the relative boundary of [0, 1]P . Since [0, 1]P ,
as a polyhedron of the finite dimensional space span(P ), has finitely many faces
(cf. [15, Theorem 19.1]), by considering a subsequence if necessary we can assume that
{x∗

k} ⊂ P̃ for some face P̃ of [0, 1]P . It follows from ‖x∗
k‖ → 0 and the closedness of P̃

that 0 ∈ P̃ . Thus [0, 1]P̃ = P̃ is of dimension n. By (ii), inf{‖x∗
k‖ : k = 1, 2, . . . } > 0,

a contradiction. The proof is completed.
In the case when X = Rn and φ is as in Proposition 2.5, Li [10] proved an

interesting result that (1.1) is metrically regular at each point of ∂S if and only if
(1.1) satisfies the BCQ at each point of ∂S. In view of Proposition 2.5 and Li’s result,
it gives rise to a natural problem: under all conditions of Proposition 2.5, is it true
that (1.1) is metrically regular at a fixed point z if (1.1) satisfies the BCQ at that
point? We don’t know the answer even for the case when X = Rn.

3. Infinite systems of convex inequalities. Let I be an arbitrary nonempty
index set and (fi)i∈I be a family of proper lower semicontinuous convex functions on
a Banach space X. Consider the following infinite system of convex inequalities:

fi(x) ≤ 0, i ∈ I.(3.1)
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In what follows, we always denote by S the solution set of (3.1): S = {x ∈ X :
fi(x) ≤ 0, i ∈ I}. Let p ∈ [1, +∞). We say that a constant τ > 0 is a p-error bound
of (3.1) if

dist(x, S) ≤ τ

(∑
i∈I

[fi(x)]p+

) 1
p

∀x ∈ X.(3.2)

If
∑

i∈I [fi(x)]p+ = +∞, then (3.2) holds trivially. This leads us to define the following
concept.

We say that (3.1) is of type lp if (fi(x))i∈I ∈ lp(I) for each x ∈ ⋂i∈I dom(fi)
(the basic properties of the classical Banach space lp(I) can be found in Day [5]).
Let {Ci}i∈I be a collection of closed convex subsets of X. For each i ∈ I, define
fi(x) = dist(x,Ci). Then (3.2) holds if and only if the collection {Ci}i∈I is p-linearly
regular. Many authors (e.g., in [1, 2, 13]) have studied the linear regularity of {Ci}i∈I
in the case when the index set I is finite. Using the results presented in section 2, we
will establish, for general I, some characterizations of the existence of p-error bounds
of (3.1). We first establish a few lemmas which are of some independent interest.
Lemma 3.1. Let p ∈ [1, +∞) and suppose that (3.1) is of type lp. Let a ∈

∂S ∩ int(
⋂
i∈I dom(fi)), I(a) := {i ∈ I : fi(a) = 0}, and let φ : X → R be defined by

φ(x) =

(∑
i∈I

[fi(x)]p+

) 1
p

∀ x ∈ X.

Then, for each h ∈ X,

d+φ(a)(h) =




0 if I(a) = ∅,( ∑
i∈I(a)

[d+fi(a)(h)]p+

) 1
p

if I(a) �= ∅.

Proof. Let h ∈ X. Write gi(x) for [fi(x)]+. Since a ∈ int(
⋂
i∈I dom(fi)), gi(a) = 0

and gi is continuous at a. It is easy to verify that

d+gi(a)(h) =

{
[d+fi(a)(h)]+ if i ∈ I(a),
0 if i ∈ I \ I(a).

Take δ > 0 such that a+ δh ∈ ⋂i∈I dom(fi) (because a ∈ int(
⋂
i∈I dom(fi))). By the

convexity of gi, one has that for each i ∈ I,

0 ≤ d+gi(a)(h) ≤ gi(a + th)

t
≤ gi(a + δh)

δ
≤ |fi(a + δh)|

δ
∀t ∈ (0, δ].

Since
(

|fi(a+δh)|
δ

)
i∈I
∈ lp(I), it follows that

lim
t→0+

∑
i∈I

(
gi(a + th)

t

)p
=
∑
i∈I

(d+gi(a)(h))p,

and hence

lim
t→0+

φ(a + th)

t
=

(∑
i∈I

(d+gi(a)(h))p+

) 1
p

=




0 if I(a) = ∅,( ∑
i∈I(a)

[d+fi(a)(h)]p+

) 1
p

if I(a) �= ∅.
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From φ(a) = 0, the lemma is proved.
A family {x∗

i }i∈I of elements in X∗ is said to be weak∗-summable if
∑

i∈I〈x∗
i , h〉

exists in R for each h ∈ X. In this case, one defines x∗ : X → R by 〈x∗, h〉 =∑
i∈I〈x∗

i , h〉. Then by a standard result in Banach space theory, one can show that
x∗ ∈ X∗, and this x∗ will be denoted by

x∗ =
∑
i∈I

∗
x∗
i .(3.3)

A collection (Ai)i∈I of subsets of X∗ is said to be weak∗-summable if
∑

i∈I
∗
x∗
i exists

(in the sense that (3.3) holds for some x∗ ∈ X∗) whenever {x∗
i }i∈I ⊂ X∗ is such that

x∗
i ∈ Ai (for all i ∈ I). We write

∑
i∈I

∗
Ai for the set {∑i∈I

∗
x∗
i : x∗

i ∈ Ai, i ∈ I}
when the collection (Ai)i∈I is weak∗-summable. Let

lp+(I) := {(ti) ∈ lp(I) : ti ≥ 0 ∀i ∈ I}.
If (tiAi)i∈I is weak∗-summable for each (ti)i∈I ∈ lp+(I) with

∑
i∈I t

p
i = 1, we define

Cop(Ai)i∈I as

Cop(Ai)i∈I :=
⋃

(ti)i∈I∈lp+(I),
∑
i∈I

tpi =1

∑
i∈I

∗
tiAi.

Lemma 3.2. Let p, q ∈ (1, +∞) with 1
p + 1

q = 1; let φ and a be as in Lemma 3.1.
Then

∂φ(a) =

{ {0} if I(a) = ∅,
Coq([0, 1]∂fi(a))i∈I(a) if I(a) �= ∅.

Proof. If I(a) = ∅, then d+φ(a)(h) = 0 for all h ∈ X by Lemma 3.1. This implies
that ∂φ(a) = {0}. In what follows, we suppose that I(a) �= ∅. Let gi(x) = [fi(x)]+
for all x ∈ X. Then, for each i ∈ I(a),

∂gi(a) = [0, 1]∂fi(a) and d+gi(a)(·) = [d+fi(a)(·)]+
(see the proof of Lemma 3.1). Since a ∈ int(

⋂
i∈I dom(fi)), it follows that [d+fi(a)(·)]+

is the support functional of [0, 1]∂fi(a) for each i ∈ I(a); that is,

[d+fi(a)]+(h) = max{〈x∗, h〉 : x∗ ∈ [0, 1]∂fi(a)}.
Therefore, for any subset I ′ of I(a), any (ti)i∈I(a) ∈ lq+(I(a)) with

∑
i∈I(a) t

q
i ≤ 1, any

x∗
i ∈ [0, 1]∂fi(a) (i ∈ I(a)), and any h ∈ X, one has

∑
i∈I′

ti〈x∗
i , h〉 ≤

∑
i∈I′

ti[d
+fi(a)(h)]+ ≤

(∑
i∈I′

[d+fi(a)(h)]p+

) 1
p

≤ d+φ(a)(h),(3.4)

thanks to Lemma 3.1. It follows from a standard result in Banach space theory that∑
i∈I

∗
tix

∗
i exists in X∗. Thus Coq([0, 1]∂fi(a))i∈I(a) is well defined. Indeed it is now

easily verified that

Coq([0, 1]∂fi(a))i∈I(a) =

{∑
i∈I

∗
tia

∗
i : a∗i ∈ ∂fi(a), (ti)i∈I ∈ lq+(I),

∑
i∈I

tqi ≤ 1

}
.
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In particular Coq([0, 1]∂fi(a))i∈I(a) is convex. Next we will show that it is weak∗

closed. Let x∗ ∈ Coq([0, 1]∂fi(a))i∈I(a)
w∗

, where A
w∗

denotes the weak∗ closure of
A. Then there exists a directed set Λ and nets (ti(α))α∈Λ, (x∗

i (α))α∈Λ (i ∈ I(a)) such
that ti(α) ≥ 0, x∗

i (α) ∈ ∂fi(a),
∑

i∈I(a)(ti(α))q ≤ 1, and

lim
α

∑
i∈I(a)

∗
ti(α)x∗

i (α) = x∗ with respect to the weak∗ topology.(3.5)

For each α ∈ Λ, let gα := (ti(α))i∈I(a). Then {gα}α∈Λ is a net in the unit ball of
lq(I(a)); hence without loss of generality we can assume that this net weak∗-converges
to (λi)i∈I(a) ∈ lq+(I(a)) with

∑
i∈I(a) λ

q
i ≤ 1. Let I+ = {i ∈ I(a) : λi > 0}. Thus I+

is at most countable. Noting that limα ti(α) = λi = 0 for each i ∈ I(a) \ I+, by (3.4)
one has that limα

∑
i∈I(a)\I+

∗
ti(α)x∗

i (α) = 0 with respect to the weak∗ topology. It

follows from (3.5) that

lim
α

∑
i∈I+

∗
ti(α)x∗

i (α) = x∗ with respect to the weak∗ topology.(3.6)

Without loss of generality we can assume I+ to be the set N of natural numbers. Since
∂fi(a) is weak∗ compact and {x∗

i (α)}α∈Λ ⊂ ∂fi(a) for each i, there exists a subnet
{x∗

1(α)}α∈Λ1
of {x∗

1(α)}α∈Λ weak∗-convergent to a∗1 ∈ ∂f1(a), and hence there exists a
subnet {x∗

2(α)}α∈Λ2 of {x∗
1(α)}α∈Λ1 weak∗-convergent to a∗2 ∈ ∂f2(a), . . . . Continuing

in this way, there exists a subnet {x∗
i+1(α)}α∈Λi+1 of {x∗

i (α)}α∈Λi weak∗-convergent
to a∗i+1 ∈ ∂fi+1(a), . . . , and so on. Then

x∗ =
∑
i∈N

∗
λia

∗
i .(3.7)

Indeed, let h ∈ X and ε > 0. Take n0 ∈ N such that

( ∞∑
i=n0

[d+fi(a)(±h)]p

) 1
p

< ε.

Then, for any n ≥ n0, any (ti)i∈N ∈ lq+(N) with
∑

i∈N tqi ≤ 1, and any x∗
i ∈ ∂fi(a),

one has from (3.4) that

∣∣∣∣∣
∞∑

i=n+1

ti〈x∗
i , h〉

∣∣∣∣∣ ≤ max



( ∞∑
i=n+1

[d+fi(a)(h)]p+

) 1
p

,

( ∞∑
i=n+1

[d+fi(a)(−h)]p+

) 1
p


 < ε.

Since {ti(α)}α∈Λn converges to λi and {x∗
i (α)}α∈Λn weak∗-converges to a∗i for 1 ≤

i ≤ n, it follows from (3.6) that∣∣∣∣∣
n∑
i=1

〈λia∗i , h〉 − 〈x∗, h〉
∣∣∣∣∣ ≤ ε ∀n ≥ n0.

This shows that (3.7) holds. For each i, let ri = λi∑
j∈N λq

j
and z∗i = (

∑
j∈N λqj)a

∗
i . Thus∑

i∈N rqi = 1, z∗i ∈ [0, 1]∂fi(a) and x∗ =
∑

i∈N
∗
riz

∗
i ∈ Coq([0, 1]∂fi(a))i∈I(a). Thus,

we have shown that Coq([0, 1]∂fi(a))i∈I(a) is a weak∗ closed convex set. In view of
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Lemma 3.1 and since d+φ(a)(·) is the support functional of the weak∗ closed convex

set ∂φ(a), to complete the proof it suffices to show that (
∑

i∈I(a)[d
+fi(a)(·)]p+)

1
p is

the support functional of the weak∗ closed convex set Coq([0, 1]∂fi(a))i∈I(a) (cf. [4,
Proposition 2.1.4]). Let h ∈ X. By (3.4), one has that

sup{〈x∗, h〉 : x∗ ∈ Coq([0, 1]∂fi(a))i∈I(a)} ≤

 ∑
i∈I(a)

[d+fi(a)(h)]p+




1
p

.(3.8)

On the other hand, since a ∈ ⋂i∈I int(dom(fi)), for each i ∈ I(a) there exists z∗i ∈
[0, 1]∂fi(a) such that 〈z∗i , h〉 = [d+fi(a)(h)]+ (cf. [14, Proposition 2.24]). Noting that
([d+fi(a)(h)]+)i∈I(a) ∈ lp+(I(a)), there exists (ti)i∈I(a) ∈ lq+(I(a)) with

∑
i∈I(a) t

q
i = 1

such that
 ∑
i∈I(a)

[d+fi(a)(h)]p+




1
p

=
∑
i∈I(a)

ti[d
+fi(a)(h)]+ =

〈 ∑
i∈I(a)

∗
tiz

∗
i , h

〉
.

This and (3.8) imply that (
∑

i∈I(a)[d
+fi(a)(·)]p+)

1
p is the support functional of the set

Coq([0, 1]∂fi(a))i∈I(a). The proof is completed.
For convenience, we adopt the convention to define Coq([0, τ ]∂fi(a))i∈I(a) as {0}

if I(a) = ∅. Theorem 3.3 is immediate from Theorems 2.3 and 2.4 and Lemmas 3.1
and 3.2.
Theorem 3.3. Let p, q ∈ (1, +∞) with 1

p + 1
q = 1 and suppose that the infinite

system (3.1) is of type lp. Let τ ≥ 0 and let A be a subset of the solution set S
with the property (R). Suppose that A ∩ ∂S ⊂ int(

⋂
i∈I dom(fi)). Then the following

statements are equivalent.

(i) dist(x, S) ≤ τ(
∑

i∈I [fi(x)]p+)
1
p ∀x ∈ X.

(ii) dist(h, TS(a)) ≤ τ(
∑

i∈I(a)[d
+fi(a)(h)]p+)

1
p ∀a ∈ A ∩ ∂S and ∀h ∈ X.

(iii) dist(x, a + TS(a)) ≤ τ(
∑

i∈I(a)[fi(x)]p+)
1
p ∀a ∈ A ∩ ∂S and ∀x ∈ X.

(iv) BX∗ ∩NS(a) ⊂ Coq([0, τ ]∂fi(a))i∈I(a) ∀a ∈ A ∩ ∂S.
Finally, we consider the linear regularity of an infinite collection of closed convex

subsets of a Banach space X. We first set some notations. Let (Ki)i∈I be an arbitrary
collection of weak∗ closed subsets of X∗ and p ∈ [1, +∞). If for any (x∗

i )i∈I with
x∗
i ∈ Ki (for all i ∈ I) and

∑
i∈I ‖x∗

i ‖p < +∞ there exists x∗ ∈ X∗ such that
x∗ =

∑
i∈I

∗
x∗
i , we define the weak∗ p-sum of (Ki)i∈I as

p-
∑
i∈I

∗
Ki :=

{∑
i∈I

∗
x∗
i : x∗

i ∈ Ki (∀i ∈ I),
∑
i∈I
‖x∗

i ‖p < +∞
}

.

If I is finite, then the weak∗ p-sum is the usual sum. Let p ∈ (1, +∞), τ > 0 and
suppose that Ki is a weak∗ closed convex cone in X∗ for each i ∈ I.
We say that {Ki}i∈I has property (G, τ)p if(

p-
∑
i∈I

∗
Ki

)
∩BX∗ ⊂ τCop(Ki ∩BX∗)i∈I .

Recall from Jameson [7] and Bauschke, Borwein, and Li [1] that a collection {C1, . . . , Cm}
of closed convex cones of a Banach space Z is said to have property (G) if there exists
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τ > 0 such that

BZ ∩
m∑
i=1

Ci ⊂ τ

m∑
i=1

(Ci ∩BZ).

Clearly in the case when the index set I is finite, it is easy to verify that {Ci}i∈I
has property (G) if and only if {Ci}i∈I has property (G, τ)p for some τ > 0 and any
p ∈ (1, +∞).

The following proposition provides a characterization of property (G, τ)p.
Proposition 3.4. Let X be a Banach space and (Ki)i∈I be an arbitrary collec-

tion of weak∗ closed convex cones of X∗. Let τ > 0 and p ∈ [1, +∞). Suppose that
p-
∑

i∈I
∗
Ki exists. Then(

p-
∑
i∈I

∗
Ki

)
∩BX∗ ⊂ (0, τ)Cop(Ki ∩BX∗)i∈I(3.9)

if and only if for each x∗ in (p-
∑

i∈I
∗
Ki) \ {0},

inf



(∑
i∈I
‖x∗

i ‖p
) 1

p

: x∗ =
∑
i∈I

∗
x∗
i , x∗

i ∈ Ki (∀i ∈ I)


 < τ‖x∗‖(3.10)

(by virtue of the Alaoglu theorem, every bounded weak∗ closed subset of X∗ is weak∗

compact. Hence, if I is finite, the infimum in (3.10) is attained).
Proof. ⇒ Let x∗ ∈ p-

∑
i∈I

∗
Ki \ {0}. By (3.9) there exist (ti)i∈I ∈ lp+(I) with∑

i∈I t
p
i ≤ 1, (z∗i )i∈I with z∗i ∈ Ki ∩BX∗ (∀i ∈ I), and α ∈ (0, τ) such that

x∗

‖x∗‖ = α
∑
i∈I

∗
tiz

∗
i , that is, x∗ =

∑
i∈I

∗
α‖x∗‖tiz∗i .

Therefore,

inf



(∑
i∈I
‖xi‖p

) 1
p

: x∗ =
∑
i∈I

∗
x∗
i , x∗

i ∈ Ki (∀i ∈ I)


 ≤

(∑
i∈I

(‖α‖x∗‖tiz∗i ‖)p
) 1

p

≤ α‖x∗‖ < τ‖x∗‖.
This shows that (3.10) holds.
⇐ Let x∗ ∈ (p-

∑
i∈I

∗
Ki) ∩ BX∗ with x∗ �= 0. By (3.10) there exist α ∈ (0, τ)

and x∗
i ∈ Ki (for all i ∈ I) such that

x∗ =
∑
i∈I

∗
x∗
i and

(∑
i∈I
‖x∗

i ‖p
) 1

p

< α‖x∗‖.

It follows from ‖x∗‖ ≤ 1 that

x∗ = α
∑
i∈I

∗ ‖x∗
i ‖
α
· x∗

i

‖x∗
i ‖
∈ αCop(Ki ∩BX∗)i∈I ⊂ (0, τ)Cop(Ki ∩BX∗)i∈I .

This shows that (3.9) holds. The proof is completed.
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Since each Ki is a cone, it is clear that

the property (G, τ)p ⇔
(
p-
∑
i∈I

∗
Ki

)
∩BX∗ ⊂ (0, τ ]Cop(Ki ∩BX∗)i∈I .

Therefore, (3.9) means that (Ki)i∈I has property (G, τ ′)p for any τ ′ ∈ (0, τ); but we
do not know whether or not it implies that (Ki)i∈I has property (G, τ)p.

Theorem 3.5. Let I be an arbitrary nonempty index set and {Ci}i∈I be a
collection of closed convex subsets of a Banach space X such that C :=

⋂
i∈I Ci is

nonempty. Let τ > 0, p, q ∈ (1, +∞) with 1
p + 1

q = 1, and let A be a subset of C with

property (R). Suppose that (dist(·, Ci))i∈I is of type lp. Then the following statements
are equivalent.

(i) dist(x,C) ≤ τ(
∑

i∈I(dist(x,Ci))
p)

1
p ∀x ∈ X.

(ii) dist(x, TC(a)) ≤ τ(
∑

i∈I(dist(x, TCi
(a)))p)

1
p ∀x ∈ X and ∀a ∈ A ∩ ∂C.

(iii) dist(x, a + TC(a)) ≤ τ(
∑

i∈I(dist(x,Ci))
p)

1
p ∀x ∈ X and ∀a ∈ A ∩ ∂C.

(iv) For each a ∈ A∩∂C, NC(a) = q-
∑

i∈I
∗
NCi(a) and the collection (NCi(a))i∈I

has property (G, τ)q.

Proof. For each i ∈ I, let fi(x) = dist(x,Ci). We apply Theorem 3.3 and note
that S = C. Recall from [3] that for each a ∈ Ci and each h ∈ X,

d+fi(a)(h) = dist(h, TCi
(a)) and ∂fi(a) = BX∗ ∩NCi

(a).(3.11)

Thus (i), (ii), (iii), and (iv) read as (i), (ii), (iii), and (iv) of Theorem 3.3, respectively
(as the inclusion NC(a) ⊃ q-

∑
i∈I

∗
NCi(a) is trivial).

Corollary 3.6. Let I be an arbitrary index set and {Ci}i∈I be a collection of
closed convex subsets of a Banach space X such that C =

⋂
i∈I Ci is a cone, and let

p, q ∈ (1, +∞) with 1
p + 1

q = 1 and τ > 0. Suppose that (dist(·, Ci))i∈I is of type lp.
Then

dist(x,C) ≤ τ

(∑
i∈I

(dist(x,Ci))
p

) 1
p

∀ x ∈ X(3.12)

if and only if C◦ = q-
∑

i∈I
∗
C◦
i and the collection (C◦

i )i∈I has property (G, τ)q.

Proof. Since C is a cone, A := {0} is a subset of C with property (R). Noting
that NCi(0) = C◦

i as 0 ∈ Ci for each i ∈ I, Corollary 3.6 is immediate from the
equivalence of (i) and (iv) in Theorem 3.5.

Corollary 3.6 seems new even when I is finite. Note that when I is finite
(dist(·, Ci))i∈I is always of type lp for each p ∈ [1, +∞), and Corollary 3.6 remains
true if one of p, q is +∞ (with suitable interpretation for the right-hand side of (3.12)
if p = +∞).
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Abstract. This paper introduces a general implicit iterative method for finding zeros of a
maximal monotone operator in a Hilbert space which unifies three previously studied strategies:
relaxation, inertial type extrapolation and projection step. The first two strategies are intended to
speed up the convergence of the standard proximal point algorithm, while the third permits one
to perform inexact proximal iterations with fixed relative error tolerance. The paper establishes
the global convergence of the method for the weak topology under appropriate assumptions on the
algorithm parameters.

Key words. Hilbert space, maximal monotone operator, proximal point, inexact iteration,
relative error, separating hyperplane, orthogonal projection, relaxation, weak convergence
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1. Introduction. From now on, (H, 〈·, ·〉) is a real Hilbert space and the set-
valued mapping A : H ⇒ H is a maximal monotone operator, that is, A is monotone,
i.e., ∀x, y ∈ H, ∀v ∈ A(x), ∀w ∈ A(y), 〈v − w, x − y〉 ≥ 0, and the graph GrA =
{(x, v) ∈ H × H | v ∈ A(x)} is not properly contained in the graph of any other
monotone operator. We are interested in the resolution of the inclusion problem

Find x ∈ H such that 0 ∈ A(x),(1.1)

which appears in a wide variety of equilibrium problems such as convex programming
and monotone variational inequalities. This article establishes the asymptotic con-
vergence, for the weak topology, of some implicit iterative methods for solving (1.1)
under some implementable inexact conditions. These algorithms, which generalize
the classical Proximal Point Algorithm (PPA), are of inertial type in the sense that
they are obtained by discretization of a second-order-in-time dissipative dynamical
system.
Recall that PPA, which was proposed in [15, 16] (inspired by [18]), generates a

sequence (xk) ⊂ H by the successive approximation scheme

xk+1 = xk − λkvk, vk ∈ A(xk+1), k = 0, 1, . . . ,

where (λk) ⊂ R++ is a sequence of positive regularization parameters. Equivalently,

(PPA) xk+1 = JAλk
(xk),

where the single-valued (see [17]) function JAλ := (I+λA)
−1 : H → H is the resolvent

of A of parameter λ. The resolvent is a nonexpansive mapping and, moreover,

JAλ (x) = x if and only if 0 ∈ A(x).(1.2)
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See [7] for further details. PPA may be viewed as an implicit one-step discretization
method for the first-order-in-time differential inclusion ẋ(t) +A(x(t)) � 0, a.e. t ≥ 0,
λk being interpreted as a step size parameter. Set S := A−1({0}). When S �=
∅ and A is demipositive, it is proved in [8] that every solution of this differential
inclusion converges weakly in H to a point in S. Concerning PPA, similar convergence
results are established in [15, 16] for variational inequalities on bounded sets. The
general case is treated in [22], where the equation xk+1 = JAλk

(xk) is replaced by
some inexact criteria, permitting approximate computations of resolvents. See [5]
for a counterexample to strong convergence in the continuous case with A being the
gradient of a convex function; the same counterexample works for PPA as shown in
[13].
To motivate the so-called Inertial Proximal Point Algorithm (IPPA), consider the

equation for an oscillator with damping and conservative restoring force: ẍ(t)+γẋ(t)+
∇f(x(t)) = 0, where γ > 0 and f : H → R is differentiable. This dynamical system is
called Heavy Ball with Friction (HBF), and it seems to have been considered for the
first time in [21] in the context of optimization problems. The inertial nature of HBF
can be exploited in numerical computations in order to accelerate the trajectories
and speed up convergence; see [3, 25] for discussions in this direction. Concerning
asymptotic convergence, it is proved in [1] that if f is convex (i.e., ∇f is monotone)
and (∇f)−1({0}) �= ∅, then each trajectory of HBF converges weakly in H to some
x̂ ∈ H with∇f(x̂) = 0; see [4] for additional convergence results. Consider the implicit
discretization of HBF: (xk+1−2xk+xk−1)/h2+γ(xk+1−xk)/h+∇f(xk+1) = 0, which
can be rewritten as xk+1 = xk + α(xk − xk−1) − λ∇f(xk+1), with λ = h2/(1 + γh)

and α = 1/(1 + γh). In terms of resolvents, xk+1 = J∇f
λ (x

k + α(xk − xk−1)). Note
that λ is no longer a step size but is indeed a regularization parameter that combines
the damping factor γ and the actual step size h > 0.
Replacing ∇f with a maximal monotone operator A, and considering possibly

variable parameters λk > 0 and αk ∈ [0, 1), the previous discussion motivates the
introduction of the inertial type iteration

(IPPA) xk+1 = JAλk
(xk + αk(x

k − xk−1)),

where the extrapolation term αk(x
k − xk−1) is intended to speed up convergence.

IPPA was first considered in [1] for a (nonsmooth) conservative operator A = ∂f ,
the subdifferential of a closed, proper, and convex function f : H → R ∪ {∞}; weak
convergence toward a minimizer of f holds under suitable conditions (see [1, Thm.
3.1]). For the nonconservative case, a partial positive result for cocoercive operators
is proved in [14], where comparisons with first-order-in-time methods are also given
through some numerical tests, showing improvements in the speed of convergence.
The case of an arbitrary maximal monotone operator is treated in [2] under the

conditions

λ := inf
k≥0

λk > 0,(1.3)

∀k ∈ N, αk ∈ [0, 1) and α := sup
k≥0

αk < 1,(1.4)

∑
αk‖xk − xk−1‖2 <∞.(1.5)

Since αk may be chosen once x
k−1 and xk have been found, (1.5) is easy to implement

in numerical computations. Furthermore, (1.5) holds automatically in some special
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situations that can be checked a priori; see, for instance, [1, Thm. 3.1], [2, Prop. 2.1],
and Proposition 2.5 below.
From a different point of view, in order to accelerate the standard PPA, the

following Relaxed Proximal Point Algorithm is proposed in [9] (partially based on
[12]):

(RPPA) xk+1 = [(1− ρk)I + ρkJAλk
](xk),

where ρk ∈ (0, 2) is a relaxation factor which is supposed to satisfy

R1 := inf
k≥0

ρk > 0 and R2 := sup
k≥0

ρk < 2.(1.6)

The overrelaxation ρk ∈ (1, 2) may indeed speed up the convergence of the method;
see, for instance, [6, pp. 129–131] and [10]. Weak convergence is proved in [9] for an
inexact version of RPPA under a standard summable errors condition.
The first aim of this paper is to show that these two acceleration strategies may

be coupled in an iteration of the type

(RIPPA) xk+1 = [(1− ρk)I + ρkJAλk
](xk + αk(x

k − xk−1)),

keeping the weak convergence property of the iterates.
On the other hand, from a practical point of view, it is interesting to consider

inexact versions of IPPA and RIPPA. Concerning IPPA, a first positive answer is given
in [1, Thm. 3.1] for minimization problems, where at each iteration ∂f is replaced
with the approximate subdifferential ∂εkf , under the hypothesis

∑
εk < ∞. In this

direction, a straightforward adaptation (see, for instance, [19]) of the proof of [2,
Thm. 2.1] allows one to deal with the εk-enlargement A

εk of the original operator
A. On the other hand, inexact iterations of RPPA are considered in [9], permitting
additive residuals in the approximate computation of resolvents under a summability
condition analogous to that considered in [22] for PPA. Nevertheless, such inexact
criteria requiring summable errors are rather restrictive.
The second goal of this article is to extend the hybrid projection-proximal al-

gorithm introduced in [23] to cover relaxed proximal iterations as RPPA and more
generally RIPPA. This hybrid algorithm combines an inexact iteration of PPA with
a projection step. In fact, the inexact PPA is used to construct a hyperplane that
strictly separates the current iterate xk from the solution set S; next, xk is projected
onto this separating hyperplane. This method has the remarkable property of per-
mitting a fixed relative error tolerance in the inexact PPA iteration, a less stringent
condition, without affecting the global convergence of the algorithm.
This paper is organized as follows. Section 2 introduces an inexact Relaxed and

Inertial Hybrid Projection-Proximal Point Algorithm, for which weak convergence is
proved under conditions (1.3)–(1.6), and then additional conditions on αk are given in
order to ensure (1.5) a priori. Next, a more standard inexact version of RIPPA is con-
sidered in section 3, for which weak convergence holds under appropriate summability
conditions on the errors.

2. Relaxed and inertial projection-proximal iteration with constant rel-
ative error. In what follows, σ ∈ [0, 1) is a fixed relative error tolerance. Consider
the following iterative scheme:
(Aρ1) Given xk, xk−1 ∈ H,λk > 0, αk ∈ [0, 1), and ρk ∈ (0, 2), find zk ∈ H such

that

(zk − yk)/λk + vk = ηk, for some vk ∈ ρkA(zk/ρk + (1− 1/ρk)yk),(2.1)
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where yk := xk + αk(x
k − xk−1) and the residual ηk ∈ H satisfies

‖ηk‖ ≤ σmax{‖zk − yk‖/λk, ‖vk‖}.(2.2)

(Aρ2) If vk = 0 then set xn := yk for all n ≥ k + 1 and stop.

Otherwise:

• Let Pk : H → H be the orthogonal projection operator onto the hyperplane

Hk = {x ∈ H | 〈vk, x− zk〉 = (1− 1/ρk)〈vk, yk − zk〉}.(2.3)

• Set

xk+1 := yk + ρk(Pky
k − yk) = yk − 〈v

k, yk − zk〉
‖vk‖2 vk.(2.4)

• Let k ← k + 1 and return to (Aρ1).
First, note that (2.1) amounts to zk = (1−ρk)yk+ρkJAλk

(yk+(λk/ρk)η
k). Indeed,

the latter is equivalent to yk + (λk/ρk)η
k ∈ (I + λkA)(zk/ρk + (1− 1/ρk)yk), which

can be written as (yk − zk)/λk + ηk ∈ ρkA(zk/ρk + (1− 1/ρk)yk), and this is exactly
(2.1). In particular, the algorithm described above is well defined.

Notice that if ηk = 0, then xk+1 = yk − λkvk = yk − (yk − zk) = (1 − ρk)yk +
ρkJ

A
λk
(yk). Therefore, (Aρ1)–(Aρ2) with ηk = 0 becomes an exact iteration of RIPPA.
Taking σ > 0, αk ≡ 0, and ρk ≡ 1, one recovers the Hybrid Projection-Proximal

Point Algorithm introduced in [23] (see also [24]), whose main feature is the fixed
relative error tolerance given by (2.2). Concerning the projection step given by (2.4),
this is necessary in general to ensure the boundedness of the iterates (see [23, p. 62]),
even for minimization problems (see [11]).

Some elementary, and key, properties of the relative error criterion are summarized
in the following lemma.

Lemma 2.1. Let σ ∈ [0, 1). If v = u+ η with ‖η‖ ≤ σmax{‖u‖, ‖v‖}, then

(i) ‖v‖ ≤ ‖u‖/(1− σ),
(ii) 〈v, u〉 ≥ (1− σ)‖u‖‖v‖.
Proof. Suppose ‖v‖ > ‖u‖ so that ‖η‖ ≤ σ‖v‖; then ‖v‖ ≤ ‖u‖ + σ‖v‖, or

equivalently ‖v‖ ≤ ‖u‖/(1 − σ); otherwise, ‖v‖ ≤ ‖u‖. In any case, (i) holds. For
(ii), it suffices to consider the case ‖v‖ ≤ ‖u‖, which implies 〈v, u〉 = ‖u‖2 + 〈η, u〉 ≥
(1− σ)‖u‖2 ≥ (1− σ)‖u‖‖v‖.
From (2.1), (2.2), and Lemma 2.1(i), it follows that vk = 0 if and only if zk = yk.

Then, if vk0 = 0 for some k0, then the algorithm ends with y
k0 satisfying 0 ∈ A(yk0),

a solution to (1.1).

Theorem 2.2. Let (xk) ⊂ H be a sequence generated by (2.1)–(2.4), where
A : H ⇒ H is a maximal monotone operator with S := A−1({0}) �= ∅, σ ∈ [0, 1),
and the parameters αk and ρk satisfy (1.4) and (1.6), respectively. Under (1.5), the
following hold:

(i) For all x̄ ∈ S, ‖xk − x̄‖ is convergent, and

lim
k→∞

‖xk+1 − zk/ρk − (1− 1/ρk)yk‖ = 0.(2.5)

(ii) If in addition λk satisfies (1.3), then limk→∞ ‖vk‖ = 0 and there exists x∗ ∈ S
such that xk ⇀ x∗ weakly in H as k →∞.
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Proof. From now on, assume that vk �= 0 for all k ≥ 1; otherwise, the algorithm
finishes in a finite number of iterations, providing a solution to (1.1).
Let x̄ ∈ S = A−1({0}) and define ϕk := 1

2‖xk − x̄‖2. It follows from (2.4) that

ϕk+1 =
1
2‖yk − x̄‖2 + ρk〈Pkyk − yk, yk − x̄〉+ ρ2k

2 ‖Pkyk − yk‖2

= 1
2‖yk − x̄‖2 − ρk‖Pkyk − yk‖2 + ρk〈Pkyk − yk, Pkyk − x̄〉+ ρ2k

2 ‖Pkyk − yk‖2
= 1

2‖yk − x̄‖2 − ρk(1− ρk/2)‖Pkyk − yk‖2 + ρk〈Pkyk − yk, Pkyk − x̄〉.

Next, notice that, by Lemma 2.1(i), vk �= 0 implies (yk − zk)/λk �= 0 due to (2.1) and
(2.2). Then, by virtue of Lemma 2.1(ii),

$k(y
k) = 〈vk, yk − zk〉 ≥ (1− σ)‖vk‖‖yk − zk‖ > 0,(2.6)

where $k(x) = 〈vk, x− zk〉. As vk ∈ ρkA(zk/ρk + (1− 1/ρk)yk), the monotonicity of
A gives 〈vk, x̄− zk/ρk − (1− 1/ρk)yk〉 ≤ 0. Thus, x̄ belongs to the half-space H≤

k =
{x ∈ H | $k(x) ≤ (1− 1/ρk)$k(yk)}. Therefore, since ρk > 0 and taking into account
(2.6), the hyperplane Hk given by (2.3) strictly separates y

k from x̄. Moreover, since
the orthogonal projection of yk onto Hk is also the orthogonal projection onto the
half-space H≤

k , one gets 〈Pkyk − yk, Pkyk − x̄〉 ≤ 0. It follows that

ϕk+1 ≤ 1
2‖yk − x̄‖2 − ρk(1− ρk/2)‖Pkyk − yk‖2.(2.7)

But 1
2‖yk − x̄‖2 = ϕk + αk〈xk − x̄, xk − xk−1〉+ α2

k

2 ‖xk − xk−1‖2. On the other hand,
it is direct to verify that ϕk = ϕk−1 + 〈xk − x̄, xk − xk−1〉 − 1

2‖xk − xk−1‖2. Hence

1
2‖yk − x̄‖2 = ϕk + αk(ϕk − ϕk−1) +

αk+α2
k

2 ‖xk − xk−1‖2.(2.8)

Thus

ϕk+1 ≤ ϕk + αk(ϕk − ϕk−1) + δk − ρk(1− ρk/2)‖Pkyk − yk‖2,(2.9)

where δk :=
αk+α2

k

2 ‖xk−xk−1‖2, which satisfies∑ δk <∞ thanks to (1.5) (recall that
αk ∈ [0, 1)). The following elementary result is a useful tool for proving convergence
for this type of recursive finite difference inequality (see [1, 2]).

Lemma 2.3. Let ϕk ≥ 0 and δk ≥ 0 be such that ϕk+1 ≤ ϕk+αk(ϕk−ϕk−1)+ δk
with

∑
δk <∞, and 0 ≤ αk ≤ α < 1. Then the following hold:

(i)
∑
[ϕk − ϕk−1]+ <∞, where [t]+ := max{t, 0}.

(ii) There exists ϕ∗ ≥ 0 such that limk→∞ ϕk = ϕ
∗.

Proof. Set θk = ϕk − ϕk−1. Then [θk+1]+ ≤ α[θk]+ + δk. This yields [θk+1]+ ≤
αk[θ1]+ +

∑k−1
j=0 α

jδk−j , so that
∑
[θk+1]+ ≤ 1/(1 − α) ([θ1]+ +

∑
δk) < ∞. Set

wk := ϕk −
∑k
j=1[θj ]+, which is bounded from below and nonincreasing. It follows

that (wk) is convergent; hence limk→∞ ϕk =
∑
j≥1[θj ]+ + limk→∞ wk.

By virtue of Lemma 2.3 applied to (2.9), the sequence (ϕk) is convergent under
(1.4) and (1.5). Since x̄ ∈ S is arbitrary, the latter proves the first assertion in
Theorem 2.2(i).
On the other hand, by Lemma 2.3(i), it follows from (2.9) that

∑
ρk(1− ρk/2)‖Pkyk − yk‖2 ≤ ϕ1 + α

∑
[ϕk − ϕk−1]+ +

∑
δk <∞,



778 FELIPE ALVAREZ

which amounts to

(1/R2 − 1/2)
∑
(〈vk, yk − zk〉/‖vk‖)2 <∞,(2.10)

with R2 = supk≥1 ρk < 2 thanks to (1.6). By Lemma 2.1, it may be concluded from
(2.10) that ∑

λ2
k‖vk‖2 ≤

∑
‖yk − zk‖2/(1− σ)2 <∞.(2.11)

It follows that

lim
k→∞

〈vk, yk − zk〉/‖vk‖ = lim
k→∞

‖yk − zk‖ = lim
k→∞

λk‖vk‖ = 0.(2.12)

By (2.4), the first limit in (2.12) ensures that limk→∞ ‖xk+1 − yk‖ = 0. From this
fact, together with the second limit in (2.12), it follows that (2.5) holds because
R1 = inf ρk > 0 due to (1.6). This completes the proof of Theorem 2.2(i).
In order to prove Theorem 2.2(ii), the idea is to apply the following well-known

result on weak convergence in Hilbert spaces, whose proof is given here for the con-
venience of the reader.

Lemma 2.4 (Opial). Let H be a Hilbert space and (xk) a sequence such that there
exists a nonempty set S ⊂ H verifying the following:
(a) For every x̄ ∈ S, limk→∞ ‖xk − x̄‖ exists.
(b) If xkj ⇀ x̂ weakly in H for a subsequence kj →∞, then x̂ ∈ S.

Then, there exists x∗ ∈ S such that xk ⇀ x∗ weakly in H as k →∞.
Proof. It suffices to prove the uniqueness of the weak cluster point. The orig-

inal proof in [20] requires S to be closed and convex. The following argument (see
[15, 22]) does not need that hypothesis. Let x̂1, x̂2 ∈ S be two cluster points of (xk)
for the weak topology of H. Set li := limk→∞ ‖xk − x̂i‖2 for each i = 1, 2. Take a se-
quence kj → ∞ such that xkj ⇀ x̂1 weakly in H. But ‖xk − x̂1‖2 − ‖xk − x̂2‖2
= ‖x̂1 − x̂2‖2 + 2〈x̂1 − x̂2, x̂2 − xk〉, so that l1 − l2 = −‖x̂1 − x̂2‖2. Similarly,
taking km → ∞ such that xkm ⇀ x̂2, l1 − l2 = ‖x̂1 − x̂2‖2. Consequently, ‖x̂1

− x̂2‖ = 0.
By Theorem 2.2(i), condition (a) of Lemma 2.4 holds with S = A−1({0}). Next,

suppose (1.3) and let x̂ be a weak cluster point of (xk). By (2.5), zk/ρk + (1 −
1/ρk)y

k ⇀ x̂. But

vk/ρk ∈ A(zk/ρk + (1− 1/ρk)yk),(2.13)

with vk/ρk → 0 strongly in H thanks to the last limit in (2.12) together with (1.3)
and (1.6). Since the graph of the maximal monotone operator A is closed in H ×H
for the weak-strong topology (see [7]), it is possible to pass to the limit in (2.13) to
deduce that 0 ∈ A(x̂), i.e., x̂ ∈ S. Thus, condition (b) of Lemma 2.4 is also satisfied,
which proves the weak convergence of (xk).

Remark 1. If (1.3) is replaced with∑
λ2
k =∞,(2.14)

then it may be deduced from (2.11) that there exists a subsequence of (vk) that con-
verges strongly to 0. In the finite dimensional case, this is sufficient for the convergence
of (xk) (see [23, Rem. 2.3]). Indeed, take vki → 0 and assume that dimH < ∞. By
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Theorem 2.2(i), (xk) is bounded so that one may assume that, up to a subsequence,
xki+1 → x̂ for some x̂ ∈ H. By virtue of (2.5), one may let ki → ∞ in (2.13) to
deduce that 0 ∈ A(x̂). Hence x̂ ∈ S and, by Theorem 2.2(i), ‖xk − x̂‖ is convergent.
Therefore limk→∞ ‖xk − x̂‖ = limi→∞ ‖xki+1 − x̂‖ = 0.
In practical computations, it is easy to enforce (1.5) by means of a dynamic

rule to update the inertial parameter αk, taking into account the current value of
‖xk−xk−1‖. Furthermore, (1.5) holds a priori in some special cases as the next result
shows, extending [2, Prop. 2.1].

Proposition 2.5. Under the assumptions of Theorem 2.2 with, in addition, (αk)
being nondecreasing (i.e., αk+1 ≥ αk) and satisfying 0 ≤ αk ≤ α for some α ∈ [0, 1)
such that

0 < p(α) := 1/R2 − 1/2− (2/R1 − 1/2)α− (1− 1/R2)α
2,(2.15)

then
∑ ‖xk−xk−1‖2 <∞. In particular, (1.5) holds and thus there exists x̂ ∈ S such

that xk ⇀ x̂ weakly in H as k →∞.
Proof. Noticing that ρ2

k‖Pkyk−yk‖2 = ‖xk+1−yk‖2 = ‖xk+1−xk‖2−2αk〈xk+1−
xk, xk − xk−1〉+ α2

k‖xk − xk−1‖2 ≥ (1− αk)‖xk+1 − xk‖2 − αk(1− αk)‖xk − xk−1‖2,
it follows from (2.9) that

ϕk+1 ≤ ϕk + αk(ϕk − ϕk−1) + [(αk + α
2
k)/2 + (1/ρk − 1/2)αk(1− αk)]‖xk − xk−1‖2

− (1/ρk − 1/2)(1− αk)‖xk+1 − xk‖2,
where ϕk :=

1
2‖xk − x̄‖2. This yields

ϕk+1 − αkϕk ≤ ϕk − αkϕk−1 + αk[1/ρk + (1− 1/ρk)αk]‖xk − xk−1‖2
− (1/ρk − 1/2)(1− αk)‖xk+1 − xk‖2.

Setting µk := ϕk−αkϕk−1+αk[1/ρk+(1−1/ρk)αk]‖xk−xk−1‖2, and since αk+1 ≥ αk,
we obtain

µk+1 ≤ µk + [αk+1/ρk+1 + (1− 1/ρk+1)α
2
k+1 + (1/ρk − 1/2)(αk − 1)]‖xk+1 − xk‖2.

But αk+1/ρk+1 + (1 − 1/ρk+1)α
2
k+1 ≤ α/R1 + (1 − 1/R2)α

2 and (1/ρk − 1/2)(αk −
1) ≤ (1/R1 − 1/2)α − 1/R2 + 1/2. Therefore µk+1 ≤ µk − p(α)‖xk+1 − xk‖2, where
p(α) is given by (2.15). Since p(α) > 0, (µk) is nonincreasing, which implies ϕk ≤
αϕk−1+µk ≤ αϕk−1+µ1. This gives ϕk ≤ αkϕ0+µ1

∑k−1
j=0 α

j ≤ αkϕ0+µ1/(1−α).
Furthermore, it follows that p(α)

∑k
j=0 ‖xj+1 − xj‖2 ≤ µ1 − µk+1 ≤ µ1 + αϕk ≤

αk+1ϕ0 + µ1/(1 − α). This shows that
∑ ‖xk − xk−1‖2 ≤ 2µ1/((1 − α)p(α)). The

conclusion follows by Theorem 2.2.
Remark 2. Suppose R2 ≥ 1. Since p(0) = 1/R2 − 1/2 > 0 thanks to (1.6), there

exists a unique positive root α∗ > 0 of the quadratic polynomial p(α), and for all
α ∈ [0, α∗), p(α) > 0. For instance, when ρk ≡ 1, one gets p(α) = 1/2 − (3/2)α and
so α∗ = 1/3.

3. An alternative inexact scheme with summable residuals. It follows
from (2.2) and (2.11) that the sequence of residuals (ηk) associated with the sequence
(xk) generated by (2.1)–(2.4) satisfies

∑
λ2
k‖ηk‖2 < ∞, and hence

∑ ‖ηk‖2 < ∞ in
view of (1.3). However, it may occur that

∑ ‖ηk‖ =∞; see [11] for an example with
ρk ≡ 1 and αk ≡ 0, which is based on [13]. The constant relative error criterion (2.2)
is thus less stringent than ∑

λk‖ηk‖ <∞.(3.1)
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On the other hand, the next result, which extends [9, Thm. 3], shows that under such
a summability condition the projection step is not necessary for convergence.

Theorem 3.1. Let A : H ⇒ H be a maximal monotone operator with S :=
A−1({0}) �= ∅ and (xk) ⊂ H a sequence satisfying

(xk+1 − yk)/λk + vk = ηk for some vk ∈ ρkA(xk+1/ρk + (1− 1/ρk)yk),(3.2)

where yk = xk+αk(x
k−xk−1), and the parameters λk, αk, and ρk satisfy (1.3), (1.4),

and (1.6), respectively. Suppose (1.5), (3.1), and∑
λk‖ηk‖‖yk‖ <∞.(3.3)

Then vk → 0 strongly in H and there exists x∗ ∈ S such that xk ⇀ x∗ weakly in H.
Proof. It is easy to see that (3.2) amounts to xk+1 = (1 − ρk)yk + ρkJAλk

(yk +

(λk/ρk)η
k). Let (wk) be the auxiliary sequence defined by

wk := (1− ρk)yk + ρkJAλk
(yk).(3.4)

Since JAλ is nonexpansive,

‖xk+1 − wk‖ ≤ λk‖ηk‖.(3.5)

On the other hand, (3.4) may be written as wk = yk−λkρkAλk
(yk), where Aλ : H →

H is given by Aλ =
1
λ (I − JAλ ). Thanks to (1.2),

0 ∈ A(x) if and only if Aλ(x) = 0.(3.6)

Moreover, as JAλ is nonexpansive, Aλ is a cocoercive maximal monotone operator of
parameter λ; that is,

∀x1, x2 ∈ H, 〈Aλ(x1)−Aλ(x2), x1 − x2〉 ≥ λ‖Aλ(x1)−Aλ(x2)‖2.(3.7)

Let x̄ ∈ S. By (3.6), Aλ(x̄) = 0 and since
1
2‖wk − x̄‖2 = 1

2‖yk − x̄‖2 − ρkλk〈yk −
x̄, Aλk

(yk)〉+ (ρkλk)2

2 ‖Aλk
(yk)‖2, the cocoercivity property (3.7) yields

1
2‖wk − x̄‖2 ≤ 1

2‖yk − x̄‖2 − λ2
kρk(1− ρk/2)‖Aλk

(yk)‖2.(3.8)

Define ϕk :=
1
2‖xk− x̄‖2. Then ϕk+1 ≤ 1

2‖wk− x̄‖2+‖xk+1−wk‖‖wk− x̄‖+ 1
2‖xk+1−

wk‖2. By (3.5) and (3.8),

ϕk+1 ≤ 1
2‖yk − x̄‖2 − λ2

kρk(1− ρk/2)‖Aλk
(yk)‖2 + λk‖ηk‖‖yk − x̄‖+ λ2

k

2 ‖ηk‖2.(3.9)

Recalling (2.8), it follows that

ϕk+1 ≤ ϕk + αk(ϕk − ϕk−1) + δk − λ2
kρk(1− ρk/2)‖Aλk

(yk)‖2,(3.10)

where δk :=
αk+α2

k

2 ‖xk − xk−1‖2 + λk‖ηk‖‖yk − x̄‖ + λ2
k

2 ‖ηk‖2. Under (1.5), (3.1), if
(3.3) holds, then

∑
δk < ∞. Thus

∑
δk < ∞ and, by virtue of Lemma 2.3, (ϕk) is

convergent. Moreover, we deduce that
∑
λ2
k‖Aλk

(yk)‖2 <∞. Set ξk := yk−JAλk
(yk),

which amounts to

ξk/λk ∈ A(yk − ξk).(3.11)
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Since
∑ ‖ξk‖2 < ∞, in particular limk→∞ ξk = 0. Let x̂ be a weak cluster point of

(xk). Since limk→∞ αk‖xk − xk−1‖ = 0, yk ⇀ x̂ and consequently yk − ξk ⇀ x̂. By
the weak-strong closedness of the graph of A, letting k →∞ in (3.11) gives 0 ∈ A(x̂).
Therefore, condition (b) of Lemma 2.4 holds, which finishes the proof.

Remark 3. Under (1.5) and (3.1), assume∑
αk‖xk − xk−1‖ <∞.(3.12)

From (3.9), it follows that ‖xk+1 − x̄‖ ≤ ‖yk − x̄‖ + λk‖ηk‖ ≤ ‖xk − x̄‖ + αk‖xk −
xk−1‖+ λk‖ηk‖. Using (3.1) and (3.12), ‖xk − x̄‖ is convergent; in particular (yk) is
bounded. Hence in view of (3.1), condition (3.3) is realized.
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A SQUARED SMOOTHING NEWTON METHOD FOR
NONSMOOTH MATRIX EQUATIONS AND ITS APPLICATIONS IN

SEMIDEFINITE OPTIMIZATION PROBLEMS∗
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Abstract. We study a smoothing Newton method for solving a nonsmooth matrix equation that
includes semidefinite programming and the semidefinite complementarity problem as special cases.
This method, if specialized for solving semidefinite programs, needs to solve only one linear system
per iteration and achieves quadratic convergence under strict complementarity and nondegeneracy.
We also establish quadratic convergence of this method applied to the semidefinite complementarity
problem under the assumption that the Jacobian of the problem is positive definite on the affine
hull of the critical cone at the solution. These results are based on the strong semismoothness
and complete characterization of the B-subdifferential of a corresponding squared smoothing matrix
function, which are of general theoretical interest.

Key words. matrix equations, Newton’s method, nonsmooth optimization, semidefinite com-
plementarity problem, semidefinite programming
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1. Introduction.

1.1. Motivation. Let S(n1, . . . , nm) be the linear space of symmetric block-
diagonal matrices with m blocks of sizes nk × nk, k = 1, . . . ,m, respectively, and let
Ψ be a mapping from S(n1, . . . , nm) to S(n1, . . . , nm) itself. We consider the problem
of finding a root of Ψ(X) = 0. This symmetric block-diagonal-matrix-valued equation
problem (matrix equation problem for short) has many applications in optimization.
For example, arising from Lyapunov stability analysis of systems under uncertainty
[4, 23], we desire to know whether there exists an n × n symmetric matrix X such
that the following system is feasible:{

λX − (LiX +XLi) � 0, i = 1, . . . , k,
X − I � 0 ,

(1.1)

where λ is a given constant, I, Li, i = 1, . . . , k are given n × n symmetric matrices,
and for an arbitrary symmetric matrix Y we write Y � 0 and Y � 0 if Y is positive
definite and positive semidefinite, respectively. It is easy to convert (1.1) into a
matrix equation problem. For X � 0 we denote its symmetric square root by X1/2.
Let |X| := (X2 )1/2 and X+ := (X + |X|)/2 for any X ∈ S(n1, . . . , nm). Note that
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|X| −X = 0 if and only if X is positive semidefinite. Let

Ψ(X) : =
k∑
i=1

[ |λX − LiX −XLi | − λX + LiX +XLi ] + [ |X − I | −X + I ] .

Then solving problem (1.1) is equivalent to solving the matrix equation Ψ(X) = 0.
Note that this equation is not differentiable (in the sense of Fréchet), but is strongly
semismooth [5, 32]. For the definition of semismooth matrix functions and some
related topics see section 2 or references [5, 32] for more details.

Another application of matrix equations refers to semidefinite programming
(SDP). As a modeling tool of optimization and a powerful relaxation form of some
combinatorial optimization problems, SDP has received much attention in the research
community in recent years. The website of semidefinite programming1 contains a nice
categorized list of papers in this area. Assuming strict feasibility of both primal and
dual problems, a semidefinite program is equivalent to finding X � 0, S � 0, and
y ∈ Rm such that

Ai • X = bi, i = 1, . . . ,m,

m∑
i=1

yiAi + S = C, X • S = 0,(1.2)

where • denotes the matrix Frobenius inner product. It is shown by Tseng [35] that

X � 0, S � 0, X • S = 0 ⇐⇒ X − [X − S]+ = 0.(1.3)

Thus, system (1.2) can be rewritten as

Ai • X = bi, i = 1, . . . ,m,

m∑
i=1

yiAi + S = C, X − [X − S]+ = 0,(1.4)

which has the form of Ψ(W ) = 0 with W := diag (y1, . . . , ym, S,X) being a block-
diagonal matrix.

A generalization of SDP—the semidefinite complementarity problem (SDCP)—
can also be reformulated as a matrix equation. The SDCP is to find, for a given
continuously differentiable mapping F : S(n1, . . . , nm) → S(n1, . . . , nm), an X ∈
S(n1, . . . , nm) such that

X � 0, F (X) � 0, X • F (X) = 0.(1.5)

By (1.3) this problem is equivalent to

X − [X − F (X)]+ = 0.(1.6)

A special case of the SDCP, where F is linear, was introduced by Kojima, Shindo,
and Hara [19] and further studied in, e.g., [12, 13, 17, 18]. For the general (nonlinear)
SDCP, Monteiro and Pang [21, 22] treated it as a constrained equation and introduced
interior-point methods for solving the constrained equation. Tseng [35] introduced
merit functions to reformulate the SDCP as an optimization problem. Chen and
Tseng [6] studied noninterior continuation methods for solving the SDCP. Kanzow and
Nagel [15] analyzed smoothing paths for the Karush–Kuhn–Tucker (KKT) system of

1http://www.zib.de/helmberg/semidef.html
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the SDP and proposed smoothing-type methods for solving the KKT system. Pang,
Sun, and Sun [24] studied semismooth homeomorphisms and strong stability of the
SDCP.

The interest in the nonlinear SDCP stems from the research on nonlinear semidef-
inite optimization problems. Shapiro [29] studied first- and second-order perturbation
analysis of nonlinear semidefinite optimization problems. Jarre [14] gave an interior-
point method for solving nonconvex semidefinite programs. Fares, Noll, and Apkar-
ian [7] investigated a sequential SDP approach for a variety of problems in optimal
control, which can be cast as minimizing a linear objective function subject to linear
matrix inequality constraints and nonlinear matrix equality constraints. Leibfritz and
Mostafa [20] proposed an interior-point constrained trust-region method for a special
class of nonlinear SDP problems. Tseng [36] conducted a convergence analysis for an
infeasible interior-point trust-region method for nonlinear semidefinite programs.

In this paper we study a smoothing Newton method for solving a nonsmooth
matrix equation that includes the SDP and the SDCP as special cases. In particular,
for the SDP, this method achieves quadratic convergence under strict complementar-
ity and nondegeneracy. For the SDCP, quadratic convergence is proved under the
condition that the Jacobian of the problem is positive definite on the affine hull of
the critical cone at the solution. The strict complementarity condition is not as-
sumed here. To establish these results, we investigate the strong semismoothness and
the Bouligand-subdifferential (B-subdifferential) of the so-called squared smoothing
matrix function, which are of their own theoretical interest.

The study on smoothing Newton methods can be traced back to a nonsmooth ver-
sion of Newton’s method by Qi and Sun [27] for solving nonsmooth vector valued equa-
tions. It was later found that smoothing techniques could be applied to the nonsmooth
Newton method to improve its computational performance. Many researchers have
contributed to this area, see, for example, [11] and the references therein. The basic
idea of the smoothing Newton method is to replace the nonsmooth equation Ψ(X) = 0
by a smoothing equation G(ε,X) = 0, where G : R×S(n1, . . . , nm)→ S(n1, . . . , nm),
such that

G(ε, Y ) → Ψ(X) as (ε, Y ) → (0, X).

Here the function G is required to be continuously differentiable at (ε,X) unless ε = 0.
The classical damped Newton method can then be used to solve G(ε,X) = 0 as ε ↓ 0
to get a solution of Ψ(X) = 0. Computational results show that this type of method
is quite efficient in solving vector complementarity problems [37].

For ε ∈ R and X ∈ S(n1, . . . , nm), the squared smoothing function Φ : R ×
S(n1, . . . , nm)→ S(n1, . . . , nm) is defined by

Φ(ε,X) : = ( ε2I +X2 )1/2 , (ε,X) ∈ R× S(n1, . . . , nm).(1.7)

Then, Φ is continuously differentiable at (ε,X) unless ε = 0, and for any X ∈
S(n1, . . . , nm),

[Y + Φ(ε, Y ) ]/2 → X+ as (ε, Y ) → (0, X).

Thus we can use Φ to construct smoothing functions for nonsmooth systems (1.4) and
(1.6). We show that the smoothing function

G(ε,X) : = X − [X − F (X) + Φ(ε,X − F (X))] /2(1.8)
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can be used to design a quadratically convergent algorithm for (1.4) and (1.6). We
note that Chen and Tseng [6] have developed a nice smoothing Newton method for
the SDCP and reported promising computational results. The difference between our
paper and theirs is that we show the strong semismoothness of the smoothing function,
which can be utilized to establish quadratic convergence, whereas paper [6] did not
prove the strong semismoothness of the smoothing function. As a result, paper [6]
needs the strict complementarity assumption and the convergence rate proved there
is only superlinear, whereas we obtain quadratic rate of convergence without this
assumption for the SDCP.

1.2. Notation and organization of the paper. The notation used is fairly
standard. Generally, we use calligraphic letters for sets, capital letters for matrices
and matrix functions, lowercase letters for vectors, and Greek letters for scalars and
index sets, respectively. A diagonal matrix is denoted by diag (λ1, . . . , λn), where
λ1, . . . , λn are the diagonal entries. Similarly, a block-diagonal matrix is written as
diag (B1, . . . , Bm) with B1, . . . , Bm being the block matrices.

Let α and β be two sets of indices. We designate by Aαβ the submatrix of A whose
row indices belong to α and whose column indices belong to β. In particular, Aij stands
for the (i, j)th entry of A. For matrices A,B ∈ S(n1, . . . , nm), the Frobenius inner
product is defined as

A • B : = Trace (ATB) = Trace (AB).

Consequently, the Frobenius norm of A ∈ S(n1, . . . , nm) is

‖A‖ : = (A • A )1/2 .

The Hadamard product of A and B is denoted by A ◦B, namely, (A ◦B)ij := AijBij
for all i and j. The 2-norm of a vector x is denoted by ‖x‖. Let I be the identity
matrix of appropriate dimension.

This paper is organized as follows. In section 2 we review some results on nons-
mooth matrix functions and prove the strong semismoothness of Φ defined in (1.7).
Section 3 is devoted to characterizing the B-subdifferential of Φ, which will be used
in the sequel. We describe the squared smoothing Newton method in section 4. Ap-
plications of the smoothing Newton method to the SDP and SDCP are discussed in
sections 5 and 6, respectively. Some final remarks are given in section 7.

2. Strong semismoothness of Φ(ε,X). This section is devoted to proving
the strong semismoothness of the squared smoothing function Φ defined by (1.7). As
a preparation we introduce some basic definitions and results on a general matrix
function Ψ : S(n1, . . . , nm)→ S1, where S1 is also a symmetric block-diagonal matrix
space, but could be of different shape and size from S(n1, . . . , nm).

Suppose that Ψ : S(n1, . . . , nm) → S1 is a locally Lipschitz matrix function.
According to [32], Ψ is differentiable almost everywhere. Denote the set of points at
which Ψ is differentiable by DΨ and for any X ∈ DΨ, let JΨ(X) denote the Jacobian
of Ψ at X. Let ∂BΨ(X) be the B-subdifferential of Ψ at X defined by

∂BΨ(X) =

{
lim

Xk→X
Xk∈DΨ

JΨ(Xk)

}
,(2.1)

and let ∂Ψ(X) denote the convex hull of ∂BΨ(X).
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Definition 2.1. Suppose that Ψ : S(n1, . . . , nm) → S1 is a locally Lipschitz
matrix function. Ψ is said to be semismooth at X ∈ S(n1, . . . , nm) if Ψ is directionally
differentiable at X and for any V ∈ ∂Ψ(X +H) and H ∈ S(n1, . . . , nm),

Ψ(X +H)−Ψ(X)− V (H) = o(‖H ‖) .
Ψ is said to be strongly semismooth at X if Ψ is semismooth at X and

Ψ(X +H)−Ψ(X)− V (H) = O(‖H ‖2) .(2.2)

Instead of showing the strong semismoothness by definition, we will use the fol-
lowing result [32, Theorem 3.6].

Theorem 2.2. Suppose that Ψ : S(n1, . . . , nm) → S1 is locally Lipschitz and
directionally differentiable in a neighborhood of X. Then Ψ is strongly semismooth at
X if and only if for any X +H ∈ DΨ,

Ψ(X +H)−Ψ(X)− JΨ(X +H)(H) = O(‖H ‖2).(2.3)

In order to show that Φ(ε,X) satisfies (2.3), we will first identify the differentiable
points of Φ. We shall show that Φ is differentiable at (ε,X) if and only if ε2I +X2

is nonsingular. Here we view Φ as a function from S(1, n) to S ≡ S(n). This result
easily can be extended to the general block-diagonal case. Unless stated otherwise, S
is assumed to be of this simple structure here and below.

For any X ∈ S, let LX be the Lyapunov operator

LX(Y ) : = XY + Y X ∀ Y ∈ S
with L−1

X being its inverse (if it exists at all).
For X ∈ S, there exist an orthogonal matrix P and a diagonal matrix Λ =

diag (λ1, . . . , λn) of eigenvalues of X such that

X = PΛPT .(2.4)

Define three index sets associated with the eigenvalues of matrix X:

α : = { i : λi > 0 }, β : = { i : λi = 0 }, and γ : = { i : λi < 0 }.
By permuting the rows and columns of X if necessary, we assume that Λ can be
written as

Λ =

⎡
⎢⎣

Λα 0 0

0 Λγ 0

0 0 0

⎤
⎥⎦ ,

where Λα and Λγ are diagonal matrices with diagonal elements λi, i ∈ α and λi, i ∈ γ,
respectively. Let κ := α ∪ γ. Define two diagonal matrices of order |κ |:

D : =

[
Λα 0

0 Λγ

]

and |D| = (D2 )1/2, i.e.,

|D | =

[
Λα 0

0 |Λγ |

]
.

Lemma 2.3. For (ε,X) ∈ R× S, the following statements hold.



788 JIE SUN, DEFENG SUN, AND LIQUN QI

(a) If ε2I+X2 is nonsingular, then Φ is continuously differentiable at (ε,X) and
JΦ(ε,X) satisfies the following equation:

JΦ(ε,X)(τ,H) = L−1
Φ(ε,X)(LX(H) + 2ετI) ∀ (τ,H) ∈ R× S.(2.5)

In particular, in this case,

‖ JΦ(ε,X)(τ,H) ‖ ≤ √n | τ | + ‖H ‖ .(2.6)

(b) Φ is globally Lipschitz continuous and for any (ε,X), (τ, Y ) ∈ R× S,
‖Φ(ε,X)− Φ(τ, Y ) ‖ ≤ √n | ε− τ |+ ‖X − Y ‖ .(2.7)

(c) Φ is directionally differentiable at (0, X) and for (τ,H) ∈ R× S,

Φ′((0, X); (τ,H)) = P

[
L−1
|D|[DH̃κκ + H̃κκD] |D|−1DH̃κβ

H̃T
κβD|D|−1 ( τ2I + H̃2

ββ )1/2

]
PT ,

where H̃ := PTHP .
(d) Φ is differentiable at (ε,X) if and only if ε2I +X2 is nonsingular.
Proof. (a) For any C � 0, we have, by applying [35, Lemma 6.2] or direct

calculation, that (C2 + W )1/2 − C = L−1
C (W ) + o(‖W‖) for all W ∈ S sufficiently

small. Then, for ε2I +X2 nonsingular (and hence positive definite), we have that

Φ(ε+ τ,X +H)− Φ(ε,H) = (C2 +W )1/2 − C
= L−1

C (LX(H) + 2ετI) +O
(
τ2 + ‖H‖2) + o(‖W‖),

where (τ,H) ∈ R×S, C := Φ(ε,X), and W := LX(H) + 2ετI + τ2I +H2. Thus, Φ
is differentiable at (ε,X) and

JΦ(ε,X)(τ,H) = L−1
C (LX(H) + 2ετI) .

By noting the fact that for all (ε+τ,X+H) sufficiently close to (ε,X), Φ(ε+τ,X+H)
is positive definite, from the definition of L−1

Φ we know that L−1
Φ is continuous at

(ε,X). Hence, Φ is continuously differentiable at (ε,X).
Let P and Λ be defined as in (2.4). To prove (2.6), we first note that

LX(H) + 2ετI = P
(
LΛ(PTHP ) + 2ετI

)
PT ,

and for any Y ∈ S,

L−1
C (Y ) = PL−1

Φ(ε,Λ)(P
TY P )PT .

Thus, we have

PTJΦ(ε,X)(τ,H)P = L−1
Φ(ε,Λ)

(
LΛ(PTHP ) + 2ετI

)
.

Hence, by direct calculation, for i, j = 1, . . . , n,

(PTJΦ(ε,X)(τ,H)P )ij=

⎧⎨
⎩(PTHP )ij(λi+λj)

(√
ε2+λ2

i +
√
ε2+λ2

j

)−1

if i �= j,(
λi(P

THP )ii+ετ
) (
ε2+λ2

i

)−1/2
otherwise,
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which implies that

n∑
i,j=1

((
PTJΦ(ε,X)(τ,H)P

)
ij

)2

≤ nτ2 +

n∑
i,j=1

(
(PTHP )ij

)2
.

Hence,

‖ JΦ(ε,X)(τ,H) ‖2 = ‖PTJΦ(ε,X)(τ,H)P ‖2
≤ nτ2 + ‖PTHP ‖2 = nτ2 + ‖H ‖2 .

This completes the proof of part (a).
(b) By part (a) of this lemma, for ε �= 0 and τ �= 0 we have that

‖Φ(ε,X)− Φ(τ, Y ) ‖
= ‖Φ(| ε |, X)− Φ(| τ |, Y ) ‖

=

∥∥∥∥
∫ 1

0

JΦ(| τ |+ t(| ε | − | τ |), Y + t(X − Y ))(| ε | − | τ |, X − Y )dt

∥∥∥∥
≤ √n | (| ε | − | τ |) |+ ‖X − Y ‖
≤ √n | ε− τ |+ ‖X − Y ‖ .

By a limiting process the above inequality is also true for ετ = 0. Hence, (2.7) holds.
(c) Let P and Λ be defined as in (2.4). For any τ ∈ R, H ∈ S, and t ∈ [0,∞), let

∆(t) : = Φ(tτ,X + tH)− Φ(0, X)

and

∆̃(t) : = PT∆(t)P .

Then,

∆̃(t) = PTΦ(tτ,X + tH)P − PTΦ(0, X)P

=
(
t2τ2I + (PT (X + tH)P )2

)1/2 − |PTXP |
=

(
t2τ2I + (PTXP + tPTHP )2

)1/2 − |PTXP |

=
(
t2τ2I + (Λ + tH̃)2

)1/2

− |Λ | ,

where H̃ := PTHP . Thus,

∆̃(t) =
(
|Λ|2 + W̃

)1/2

− |Λ | ,

where

W̃ : = t2τ2I + tΛH̃ + tH̃Λ + t2H̃2

and

|Λ| =

[ |D| 0

0 0

]
.
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After simple computations we have that

W̃ = t

[
DH̃κκ + H̃κκD DH̃κβ

H̃T
κβD 0

]

+

[
O(t2) O(t2)

O(t2) t2τ2I + t2[H̃T
κβH̃κβ + H̃2

ββ ]

]
.

(2.8)

By Lemma 6.2 in Tseng [35], we have that

∆̃(t)κκ = L−1
|D|(W̃κκ) + o(‖W̃‖),(2.9)

∆̃(t)κβ = |D|−1W̃κβ + o(‖W̃‖),(2.10)

and

W̃ββ = ∆̃(t)Tκβ∆̃(t)κβ + ∆̃(t)2ββ .(2.11)

Hence,

∆̃(t)κβ = t|D|−1DH̃κβ + o(t) ,(2.12)

which implies that

∆̃(t)Tκβ∆̃(t)κβ = t2H̃T
κβ(|D|−1D)

2
H̃κβ + o(t2) = t2H̃T

κβH̃κβ + o(t2) .(2.13)

According to (2.9) and (2.8),

∆̃(t)κκ = tL−1
|D|(DH̃κκ + H̃κκD) + o(t) .(2.14)

Since

W̃ββ = t2τ2I + t2[H̃T
κβH̃κβ + H̃2

ββ ] ,

from (2.11) and (2.13), we obtain that

∆̃(t)2ββ = t2τ2I + t2H̃2
ββ + o(t2) .(2.15)

Furthermore, since ∆̃(τ)ββ is positive semidefinite (see the definition of ∆̃(t)), we

know from (2.15) that ∆̃(t)ββ is well defined and

∆̃(t)ββ = t
(
τ2I + H̃2

ββ + o(1)
)1/2

.(2.16)

Hence, from (2.14), (2.12), (2.16), and the continuity of (·)1/2,

lim
t↓0

∆̃(t)

t
=

[
L−1
|D|[DH̃κκ + H̃κκD] |D|−1DH̃κβ

H̃T
κβD|D|−1 ( τ2I + H̃2

ββ )1/2

]
,

which completes the proof of part(c).
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(d) Only the “only if” part needs a proof. Obviously ε2I + X2 is nonsingular
at ε �= 0. If Φ is differentiable at (0, X), then part (c) of this lemma shows that
Φ′((0, X); (τ,H)) is a linear function of (τ,H) only if β = ∅; i.e., only if X is nonsin-
gular.

Lemma 2.3 shows that the squared smoothing matrix function Φ is directionally
differentiable everywhere and globally Lipschitz continuous. It also shows that it is
differentiable at (ε,X) ∈ R× S if and only if ε2I +X2 is nonsingular.

The next result is vital in order to prove the strong semismoothness of Φ. By
noting the fact that I and X can be simultaneously diagonalized, we may extend the
proof used in [32, Lemma 4.12] from |X| to Φ. Here we follow the outline of a simpler
proof given in [5, Proposition 4.10].

Lemma 2.4. Let X ∈ S. Then, for any τ ∈ R and H ∈ S such that τ2I+(X+H)2

is nonsingular, Φ is differentiable at (τ,X +H) and

Φ(τ,X +H)− Φ(0, X)− JΦ(τ,X +H)(τ,H) = O(‖∆Z ‖2) ,(2.17)

where ∆Z := (τ,H).
Proof. Let D denote the space of n×n real diagonal matrices with nonincreasing

diagonal entries. For each Y ∈ S, define

OY : = {P ∈ O : PTY P ∈ D },
where O := {P ∈ Rn×n : PTP = I }.

Let λ1 ≥ · · · ≥ λn denote the eigenvalues of X. By [6, Lemma 3] or [33, Proposi-
tion 4.4], there exist scalars η > 0 and ρ > 0 such that

min
P ∈OX

‖P −Q ‖ ≤ η ‖Y −X ‖ whenever Y ∈ S, ‖Y −X ‖ ≤ ρ, Q ∈ OY .

If τ = 0, then the left-hand side of (2.17) reduces to Ψ(X+H)−Ψ(X)−JΨ(X+
H)(H), where for each Y ∈ S, Ψ(Y ) := |Y |. Then, it follows from [32, Lemma 4.12]
that (2.17) holds.

Suppose τ �= 0. Let µ1 ≥ · · · ≥ µn denote the eigenvalues of X +H, and choose
any Q ∈ OX+H . Then, by (2.18), there exists P ∈ OX satisfying

‖P −Q ‖ ≤ η‖H ‖ .
For simplicity, let R denote the left-hand side of (2.17), i.e.,

R : = Φ(τ,X +H)− Φ(0, X)− JΦ(τ,X +H)(τ,H) .

Letting C := Φ(τ,X+H) = ( τ2I+(X+H)2 )1/2 and noting that Q ∈ OC , we obtain
from Lemma 2.3 and the formula for L−1

C given in [35, Page 171] that

JΦ(τ,X +H)(τ,H) = L−1
C [(X +H)H +H(X +H) + 2τ2I]

= Q[Ξ ◦ (QT ((X +H)H +H(X +H))Q+ 2τ2I)]QT ,

where the matrix Ξ ∈ S has entries

Ξij = 1/(θi + θj)

and θi =
√
τ2 + µ2

i is the ith eigenvalue of C. Then, letting R̃ := QTRQ and

H̃ := QTHQ, we have that

R̃ = Σ− STΛS − Ξ ◦ (U + 2τ2I) ,(2.18)
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where Σ := diag (
√
τ2 + µ2

1, . . . ,
√
τ2 + µ2

n), Λ := diag (λ1, . . . , λn), S := PTQ, and

Uij := (µi + µj)H̃ij for all i, j.

Since diag (µ1, . . . , µn) = QT (X+H)Q = ST diag (λ1, . . . , λn)S+H̃, we have that

n∑
k=1

SkiSkjλk + H̃ij =

{
µi if i = j

0 else,
i, j = 1, . . . , n .(2.19)

Since S = PTQ = (P −Q)TQ+ I and ‖P −Q‖ ≤ η‖H‖, it follows that

Sij = O(‖H ‖) ∀ i �= j .(2.20)

Since P,Q ∈ O, we have S ∈ O so that STS = I. This implies

1 = S2
ii +

∑
k �=i

S2
ki = S2

ii + O(‖H ‖2), i = 1, . . . , n,(2.21)

and

0 = SiiSij + SijSjj +
∑
k �=i,j

SkiSkj

= SiiSij + SjiSjj +O(‖H ‖2) ∀ i �= j .

(2.22)

We now show that R̃ = O(‖∆Z ‖2), which, by ‖R‖ = ‖R̃‖, would prove (2.17).
For any i ∈ {1, . . . , n}, we have from (2.18) and (2.19) that

R̃ii =
√
τ2 + µ2

i −
n∑
k=1

S2
ki|λk| −

1

2θi
(2τ2 + 2µiH̃ii)

=
√
τ2 + µ2

i −
n∑
k=1

S2
ki|λk| −

τ2

θi
− µi
θi

(
µi −

n∑
k=1

S2
kiλk

)

=
√
τ2 + µ2

i − S2
ii|λi| −

τ2

θi
− µi
θi

(µi − S2
iiλi) +O(‖H‖2)

=
√
τ2 + µ2

i − (1 +O(‖H‖2))|λi| − τ2

θi
− µi
θi

(µi − (1 +O(‖H‖2))λi) +O(‖H‖2)

=
√
τ2 + µ2

i − |λi| −
τ2

θi
− µi
θi

(µi − λi) +O(‖H‖2)
= f(τ, µi)− f(0, λi)− Jf(τ, µi)(τ, µi − λi) +O(‖H‖2),

(2.23)

where the third and fifth equalities use (2.20), (2.21), and the fact that |µi/θi| ≤ 1.

The last equality follows by defining f(τ, µ) :=
√
τ2 + µ2. Since f is known to be

strongly semismooth and, by a result of Weyl [2, page 63],

|µi − λi | ≤ ‖H ‖ ∀ i,(2.24)

the right-hand side of (2.23) is O(‖∆Z‖)2. For any i, j ∈ {1, . . . , n} with i �= j, we
have from (2.18) and (2.19) that

R̃ij = −
n∑
k=1

SkiSkj |λk| − Ξij(µi + µj)H̃ij
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= −
n∑
k=1

SkiSkj |λk|+ Ξij(µi + µj)

n∑
k=1

SkiSkjλk

= −(SiiSij |λi|+ SjiSjj |λj |) + Ξij(µi + µj)(SiiSijλi + SjiSjjλj) +O(‖H‖2)

= − ((SiiSij + SjiSjj |λi|) + SjiSjj(|λj | − |λi|))

+ Ξij(µi + µj) ((SiiSij + SjiSjj)λi + SjiSjj(λj − λi)) +O(‖H‖2)

= −SjiSjj (|λj | − |λi| − Ξij(µi + µj)(λj − λi)) +O(‖H‖2)

= −SjiSjj
(
|λj | − |λi| − µj + µi

θj + θi
(λj − λi)

)
+O(‖H‖2),(2.25)

where the third and fifth equalities use (2.20), (2.22), and Ξij |µi + µj | ≤ 1. We have
that

|λj | − |λi | − µj + µi
θj + θi

(λj − λi)

= |λj | − |λi | − µj + µi
θj + θi

(µj − µi)− µj + µi
θj + θi

(λj − µj + µi − λi)

= |λj | − |λi | −
(τ2 + µ2

j )− (τ2 + µ2
i )√

τ2 + µ2
j +

√
τ2 + µ2

i

− µj + µi
θj + θi

(λj − µj + µi − λi)

= |λj | − |λi | −
(√

τ2 + µ2
j −

√
τ2 + µ2

i

)
− µj + µi
θj + θi

(λj − µj + µi − λi).(2.26)

Since |µj + µi|/(θj + θi) ≤ 1 and | |λk | −
√
τ2 + µ2

k | = | ‖(0, λk)‖ − ‖(τ, µk)‖ | ≤
| (0, λk) − (τ, µk) | ≤ |τ | + |λk − µk| for k ∈ {i, j}, we see from (2.24) that the right-
hand side of (2.26) is O(|τ |+‖H‖). This, together with (2.20), implies the right-hand
side of (2.25) is O(‖H‖(|τ |+ ‖H‖)). The proof is completed.

According to Theorem 2.2 and Lemmas 2.3 and 2.4, we obtain the following main
result of this section.

Theorem 2.5. The squared smoothing matrix function Φ is strongly semismooth
at (0, X) ∈ R× S.

The theorem above provides a basis for quadratic convergence of the squared
smoothing Newton method for the SDCP, which is to be discussed in section 5.

3. Properties of the B-subdifferential of Φ. In this section, we shall dis-
cuss some properties of the B-subdifferential of the squared smoothing function Φ
at (0, X) ∈ R × S. These properties play a key role in the proof of nonsingular-
ity of the Jacobians arising from the SDP and the SDCP. Assume that X has the
eigen-decomposition as in (2.4), i.e.,

X = PΛPT ,

where P is an orthogonal matrix and Λ is the diagonal matrix of eigenvalues of X
and has the form

Λ =

⎡
⎢⎣

Λα 0 0

0 Λγ 0

0 0 0

⎤
⎥⎦ .
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Partition the orthogonal matrix P according to

P = [Wα Wγ Wβ ] ,

with Wα ∈ Rn×|α|, Wγ ∈ Rn×|γ|, and Wβ ∈ Rn×|β|.
Recall that the critical cone of S+ := {X � 0 : X ∈ S } at X ∈ S is defined as

C(X;S+) := T (X+;S+) ∩ (X+ −X )⊥ ,

where T (X+;S+) is the tangent cone of S+ at X+ and (X+ −X)⊥ is the subset of
matrices in S that are orthogonal to (X+ − X) under the matrix Frobenius inner
product. The critical cone can be completely described [3, 9] by

C(X;S+) = {Y ∈ S : WT
γ YWγ = 0, WT

γ YWβ = 0, WT
β YWβ � 0 } .(3.1)

Consequently, the affine hull of C(X;S+), which we denote by L(X;S+), is the linear
subspace

{Y ∈ S : WT
γ YWγ = 0, WT

γ YWβ = 0 } .
Proposition 3.1. For any (0, H) ∈ R× S and V ∈ ∂BΦ(0, X), it holds that

V (0, H) = P (Ω ◦ PTHP )PT ,(3.2)

H + V (0, H) ∈ L(X;S+),(3.3)

and

[H − V (0, H)] • [H + V (0, H)] ≥ 0 ,(3.4)

where the matrix Ω ∈ S has entries

Ωij =

⎧⎪⎨
⎪⎩

t ∈ [−1, 1] if (i, j) ∈ β × β,
λi + λj
|λi|+ |λj | otherwise.

Proof. Let V ∈ ∂BΦ(0, X). By Lemma 2.3 and the definition of the elements
in ∂BΦ(0, X), it follows that there exists a sequence {(εk, Xk)} converging to (0, X)
with (εk)2I + (Xk)2 being nonsingular such that

V (0, H) = lim
k→∞

JΦ(εk, Xk)(0, H) = lim
k→∞

L−1
Ck (LXk(H)) ,

where Ck := Φ(εk, Xk). Let Xk = P k Λk (P k)T be the orthogonal decomposition of
Xk, where Λk is the diagonal matrix of eigenvalues of Xk and P k is a corresponding
orthogonal matrix. Without loss of generality, by taking subsequences if necessary,
we may assume that {P k} is a convergent sequence with limit P = limk→∞ P k and
Λ = limk→∞ Λk (clearly X = PΛPT ). Then,

lim
k→∞

Λkβ = 0 .

For any H ∈ S with H̃k := (P k)THP k, we have that

LCk

(
JΦ(εk, Xk)(0, H)

)
= LXk(H) ;
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i.e.,

(
(εk)2I + (Λk)2

)1/2
Ũk + Ũk

(
(εk)2I + (Λk)2

)1/2
= ΛkH̃k + H̃kΛk ,

where Ũk := (P k)T
[
JΦ(εk, Xk)(0, H)

]
P k. By denoting C̃k := ( (εk)2I + (Λk)2 )1/2,

we have that⎡
⎢⎢⎢⎣
C̃kααŨ

k
αα + ŨkααC̃

k
αα C̃kααŨ

k
αγ + ŨkαγC̃

k
γγ C̃kααŨ

k
αβ + ŨkαβC̃

k
ββ

C̃kγγŨ
k
γα + ŨkγαC̃

k
αα C̃kγγŨ

k
γγ + ŨkγγC̃

k
γγ C̃kγγŨ

k
γβ + ŨkγβC̃

k
ββ

C̃kββŨ
k
βα + ŨkβαC̃

k
αα C̃kββŨ

k
βγ + ŨkβγC̃

k
γγ C̃kββŨ

k
ββ + ŨkββC̃

k
ββ

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

ΛkαH̃
k
αα + H̃k

ααΛkα ΛkαH̃
k
αγ + H̃k

αγΛ
k
γ ΛkαH̃

k
αβ + H̃k

αβΛ
k
β

ΛkγH̃
k
γα + H̃k

γαΛkα ΛkγH̃
k
γγ + H̃k

γγΛ
k
γ ΛkγH̃

k
γβ + H̃k

γβΛ
k
β

ΛkβH̃
k
βα + H̃k

βαΛkα ΛkβH̃
k
βγ + H̃k

βγΛ
k
γ ΛkβH̃

k
ββ + H̃k

ββΛ
k
β

⎤
⎥⎥⎥⎦ .

For each k, define the matrix Ωk ∈ S with entries

Ωkij =

(√
(εk)2 + (λki )

2 +
√

(εk)2 + (λkj )
2

)−1

(λki + λkj ), i, j = 1, . . . , n .

Since {Ωk} is bounded, by taking a subsequence if necessary, we assume that {Ωk} is
a convergent sequence and that

lim
k→∞

Ωk = Ω .

Hence, it follows that

lim
k→∞

Ũk = lim
k→∞

Ωk ◦ H̃k = Ω ◦ PTHP ,

which proves (3.2). Let H̃ := PTHP . Then, we obtain that

PTV (0, H)P =

⎡
⎢⎢⎢⎣

H̃αα Ωαγ ◦ H̃αγ H̃αβ

H̃T
αγ ◦ ΩTαγ −H̃γγ −H̃γβ

H̃T
αβ −H̃T

γβ Ωββ ◦ H̃ββ

⎤
⎥⎥⎥⎦ .

Let E ∈ S be the matrix whose entries are all ones. Thus,

PT [H + V (0, H)]P

=

⎡
⎢⎢⎢⎣

2H̃αα (Ωαγ + Eαγ) ◦ H̃αγ 2H̃αβ

H̃T
αγ ◦ (Ωαγ + Eαγ)

T 0 0

2H̃T
αβ 0 (Ωββ + Eββ) ◦ H̃ββ

⎤
⎥⎥⎥⎦(3.5)
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and

PT [H − V (0, H)]P

=

⎡
⎢⎢⎢⎣

0 (Eαγ − Ωαγ) ◦ H̃αγ 0

H̃T
αγ ◦ (Eαγ − Ωαγ)

T 2H̃γγ 2H̃γβ

0 2H̃T
γβ (Eββ − Ωββ) ◦ H̃ββ

⎤
⎥⎥⎥⎦ .(3.6)

Hence, from (3.5), we get that

WT
γ [H + V (0, H)]Wγ = 0 and WT

γ [H + V (0, H)]Wβ = 0 ,

which proves (3.3).
By noting the fact that Ωij ∈ [−1, 1] for all i, j = 1, . . . , n, from (3.5) and (3.6)

we obtain that

[H − V (0, H)] • [H + V (0, H)]

=
(
PT [H − V (0, H)]P

) • (
PT [H + V (0, H)]P

)
=

∑
i∈α, j∈γ

2(1− Ωij)(1 + Ωij)H̃
2
ij +

∑
i∈β, j∈β

(1− Ωij)(1 + Ωij)H̃
2
ij

≥ 0 ,

which proves (3.4). This completes the proof.

4. The squared smoothing Newton method. Let Ψ : S(n1, . . . , nm) →
S(n1, . . . , nm) be locally Lipschitz continuous. Let G : R×S(n1, . . . , nm)→ S(n1, . . . ,
nm) be an approximate function of Ψ such that G is continuously differentiable at
(ε,X) ∈ R× S(n1, . . . , nm) unless ε = 0 and

lim
(ε,Y )→(0,X)

G(ε, Y ) = Ψ(X) .

The existence of such a G was proved in [31] for vector-valued functions. It can be
easily extended to matrix-valued functions by making use of the isometry between Rn

and S(n1, . . . , nm). For the SDP and the SDCP, there are many choices for G. In
particular, a computationally efficient form for the SDCP is

G(ε,X) : = X − [X − F (X) + Φ(ε,X − F (X))] /2 .(4.1)

The squared smoothing Newton method, in particular, solves the auxiliary equation

E(ε,X) :=

[
ε

G(ε,X)

]
= 0(4.2)

and uses the merit function φ(Z) := ε2 + ‖G(Z)‖2 for the line search, where Z :=
(ε,X).

Let ε̄ ∈ R++ and η ∈ (0, 1) be such that ηε̄ < 1. Define an auxiliary point Z̄ by

Z̄ : = (ε̄, 0) ∈ R× S(n1, . . . , nm)

and θ : R× S(n1, . . . , nm) �→ R+ by

θ(Z) : = ηmin{1, φ(Z)} .
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Let

N : = {Z = (ε,X) ∈ R× S(n1, . . . , nm) : ε ≥ θ(Z)ε̄ } .
Algorithm 4.1.

Step 0. Select constants δ ∈ (0, 1) and σ ∈ (0, 1/2). Let ε0 := ε̄, X0 ∈ S(n1, . . . , nm)
be an arbitrary point and k := 0.

Step 1. If E(Zk) = 0, then stop. Otherwise, let θk := θ(Zk).
Step 2. Compute ∆Zk := (∆εk,∆Xk) ∈ R× S(n1, . . . , nm) by

E(Zk) + JE(Zk)(∆Zk) = θkZ̄ .(4.3)

Step 3. Let lk be the smallest nonnegative integer l satisfying

φ(Zk + δl∆Zk) ≤ [ 1− 2σ(1− ηε̄)δl ]φ(Zk) .(4.4)

Define Zk+1 := Zk + δlk∆Zk.
Step 4. Replace k by k + 1 and go to Step 1.

Theorem 4.2. Assume that
(i) for every k ≥ 0, if εk ∈ R++ and Zk ∈ N , then JE(Zk) is nonsingular; and
(ii) for any accumulation point Z∗ = (ε∗, X∗) of {Zk}, if ε∗ > 0 and Z∗ ∈ N ,

then JE(Z∗) is nonsingular.
Then an infinite sequence {Zk} ⊂ N is generated by Algorithm 4.1 and each

accumulation point Z∗ of {Zk} is a solution of E(Z) = 0. Moreover, if E is strongly
semismooth at Z∗ and if all V ∈ ∂BE(Z∗) are nonsingular, then the whole sequence
{Zk} converges to Z∗,

‖Zk+1 − Z∗ ‖ = O(‖Zk − Z∗ ‖2),(4.5)

and

εk+1 = O((εk)2) .(4.6)

The vector version of the above convergence result is proved in [26], where the
smoothing parameter is a vector rather than a scalar. However, the proof was inde-
pendent of the dimension of the parameter vector. Therefore, with a slight revision
if necessary, its matrix version can be established similarly. For brevity we omit the
proof.

The key conditions for quadratic convergence of Algorithm 4.1 are: (a) the
strong semismoothness of the smoothing function E and (b) the nonsingularity of
all V ∈ ∂BE(Z∗). (In [26], ∂E(Z∗), rather than ∂BE(Z∗), was used. However, it is
easy to check whether the convergence properties are still valid if we replace ∂E(Z∗)
by ∂BE(Z∗) in the analysis.) In the subsequent sections we will provide sufficient con-
ditions for (b) to hold in the cases of SDP and SDCP where (a) is naturally implied
by the strong semismoothness of Φ.

5. Application to the SDP. In this section we shall show how to use Algorithm
4.1 to solve (1.4), which constitutes the optimality conditions of the SDP. For this
purpose, we assume that {Ai}mi=1 are linearly independent, i.e., any α ∈ Rm satisfying∑m
i=1 αiAi = 0 implies αi = 0, i = 1, . . . ,m.

Define A : S → R
m as

A(X) : =

⎡
⎢⎢⎣

A1 • X
...

Am • X

⎤
⎥⎥⎦ , X ∈ S .
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Then solving (1.4) is equivalent to finding a solution to

Ψ(X, y, S) : =

⎡
⎢⎢⎢⎣

A(X)− b
m∑
i=1

yiAi + S − C
X − [X − S]+

⎤
⎥⎥⎥⎦ = 0, (X, y, S) ∈ S × Rm × S .(5.1)

Define G : R× S × Rm × S → R
m × S × S as

G(ε,X, y, S) : =

⎡
⎢⎢⎢⎣

A(X)− b
m∑
i=1

yiAi + S − C
X − [X − S + Φ(ε,X − S)] /2

⎤
⎥⎥⎥⎦ .(5.2)

Then G is continuously differentiable at (ε,X, y, S) with ε �= 0. Let

E(ε,X, y, S) : =

[
ε

G(ε,X, y, S)

]
.(5.3)

Hence, finding a solution of Ψ(X, y, S) = 0 is equivalent to finding a solution of
E(ε,X, y, S) = 0.

Similar smoothing functions for the SDP were first used in [6] and very recently
in [15]. Based on these smoothing functions, smoothing Newton methods were also
designed in [6, 15]. The major differences between our method and those in [6, 15]
in the context of SDP are (i) our algorithm needs to solve only one linear system per
iteration while the methods in [6, 15] need to solve two; (ii) quadratic convergence
has been established for our algorithm while only superlinear convergence has been
established for methods in [6, 15]; and (iii) numerical results are reported in [6, 15]
while our paper is focused on theoretical analysis.

The next result shows that JE(ε,X, Y, S) is nonsingular at (ε,X, y, S) ∈ R×S ×
R
m × S with ε �= 0. Similar proofs can be found in [6, 15, 34].

Proposition 5.1. For any (ε,X, y, S) ∈ R×S×Rm×S with ε �= 0, JE(ε,X, Y, S)
is nonsingular.

Proof. By Lemma 2.3, we know that JE(ε,X, Y, S) exists. Suppose that there
exists (τ,H, z, T ) ∈ R× S × Rm × S such that

JE(ε,X, Y, S)(τ,H, z, T ) = 0 ;

i.e., ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

τ

A(H)

m∑
i=1

ziAi + T

H − [H − T + JΦ(ε,X − S)(τ,H − T )] /2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0,(5.4)

which implies that

τ = 0 and 2H − [H − T + JΦ(ε,X − S)(0, H − T )] = 0 .
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Hence, by Lemma 2.3,

2H −
[
H − T + L−1

Φ(ε,X−S)L(X−S)(H − T )
]

= 0 ,

which implies that

LΦ(ε,X−S)(H + T ) = L(X−S)(H − T ) ;

i.e.,

(
ε2I + (X − S)2

)1/2
(H + T ) + (H + T )

(
ε2I + (X − S)2

)1/2

= (X − S)(H − T ) + (H − T )(X − S) .

Since X − S ∈ S, there exist an orthogonal matrix P and a diagonal matrix Λ of
eigenvalues of X − S such that

X − S = PΛPT .

By denoting H̃ := PTHP and T̃ := PTTP , we have that

( ε2I + Λ2 )1/2 (H̃ + T̃ ) + (H̃ + T̃ )( ε2I + Λ2 )1/2 = Λ(H̃ − T̃ ) + (H̃ − T̃ )Λ .

Hence,

H̃ + T̃ = Ω ◦ (H̃ − T̃ ) ,

where the matrix Ω ∈ S has entries

Ωij =

(√
ε2 + λ2

i +
√
ε2 + λ2

j

)−1

(λi + λj), i, j = 1, . . . , n.

Thus,

H̃ = Ω̃ ◦ T̃ ,
where the matrix Ω̃ ∈ S has entries

Ω̃ij =

(
λi + λj −

√
ε2 + λ2

i −
√
ε2 + λ2

j

)−1 (
λi + λj +

√
ε2 + λ2

i +
√
ε2 + λ2

j

)
,

where i, j = 1, . . . , n. From (5.4), we know that

Ai • H = 0, i = 1, . . . ,m, and

m∑
i=1

ziAi + T = 0 ,

which implies that

T • H =

m∑
i=1

ziAi • H + T • H =

(
m∑
i=1

ziAi + T

)
• H = 0 .

Hence,

0 = T • H = T̃ • H̃ = T̃ • (Ω̃ ◦ T̃ ) ,
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which, together with the fact that Ω̃ij < 0 for all i and j, implies that T̃ = 0. Thus,

H̃ = Ω̃ • T̃ = 0 and T = H = 0 .

From the linear independence of {Ai}mi=1 and that fact
∑m
i=1 ziAi + T = 0, we can

conclude that z = 0. This shows that JE(ε,X, y, S) is nonsingular.
Proposition 5.1 shows that Algorithm 4.1 is well defined when it is applied to the

SDP. We state it formally in the following theorem. Its proof is a direct application
of Theorem 4.2 and Proposition 5.1.

Theorem 5.2. If Algorithm 4.1 is applied to the SDP, then an infinite sequence
{Zk} is generated and each accumulation point Z∗ of {Zk} is a solution of E(Z) = 0.

For local convergence analysis of Algorithm 4.1 for the SDP, we need the non-
singularity of ∂BE(Z∗) at a solution Z∗ of E(Z) = 0. Next, we discuss a sufficient
condition to guarantee the nonsingularity of ∂BE(Z∗) at a strict complementary and
nondegenerate solution Z∗ = (0, X∗, y∗, S∗) of E(Z) = 0; i.e., Z∗ satisfies the follow-
ing two conditions: (a) X∗ +S∗ � 0 and (b) for any (H, z, T ) ∈ S×Rm×S satisfying

A(H) = 0,
m∑
i=1

ziAi + T = 0, and X∗T + HS∗ = 0 ,

it holds that H = T = 0. Condition (a) is called the strict complementarity, under
which E is continuously differentiable at Z∗. Condition (b) was first introduced by
Kojima, Shida, and Shindoh [16] for local analysis of interior-point methods. Condi-
tions (a) and (b) are also used in noninterior-point methods for solving the SDP [6, 15].
See [1] for a discussion on strict complementarity and nondegeneracy conditions in
the SDP.

Proposition 5.3. Let Z∗ = (0, X∗, y∗, S∗) ∈ R × S × Rm × S be a strict com-
plementary and nondegenerate solution of E(Z) = 0. Then JE(Z∗) is nonsingular.

Proof. Since (X∗, y∗, S∗) is a solution to the SDP, we have that

X∗ � 0, S∗ � 0, X∗S∗ = S∗X∗ = 0 ,

which implies that there exists an orthogonal matrix P such that

X∗ = P ∆PT and S∗ = P ΣPT ,

where ∆ = diag (δ1, . . . , δn) and Σ = diag (σ1, . . . , σn) are two positive semidefinite
diagonal matrices and δiσi = 0, i = 1, . . . , n, where δ1, . . . , δn and σ1, . . . , σn are
eigenvalues of X∗ and S∗, respectively. By using the fact that X∗ + S∗ � 0, we also
have that

δi + σi > 0, i = 1, . . . , n .

Denote Λ := ∆− Σ. Then, Λ = diag (λ1, . . . , λn) is nonsingular and

X∗ − S∗ = P ΛPT ,

where λi = δi − σi, i = 1, . . . , n.
Suppose that there exists (τ,H, z, T ) ∈ R× S × Rm × S such that

JE(0, X∗, y∗, S∗)(τ,H, z, T ) = 0 .
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We have that τ = 0 and⎡
⎢⎢⎢⎢⎣

A(H)

m∑
i=1

ziAi + T

H + T − JΦ(0, X∗ − S∗)(0, H − T )

⎤
⎥⎥⎥⎥⎦ = 0 .(5.5)

In particular, from the third equality of (5.5), we obtain that

PT (H + T )P − PT JΦ(0, X∗ − S∗)(0, H − T )P = 0 ,

which, together with Proposition 3.1, implies that

H̃ + T̃ = PT JΦ(0, X∗ − S∗)(0, H − T )P = Ω ◦ (H̃ − T̃ ) ,

where H̃ := PTHP , T̃ = PTTP , and Ω ∈ S has entries

Ωij =
λi + λj
|λi | + |λj | , i, j = 1, . . . , n .

Hence,

(E − Ω) ◦ H̃ + T̃ ◦ (E + Ω) = 0 ,(5.6)

where E ∈ S denotes the matrix whose entries are all ones. Denote two index sets

α : = {λi : λi > 0 } and γ : = {λi : λi < 0 } .
By noting the fact that λi = δi if λi > 0 and λi = −σi if λi < 0 and α∪γ = {1, . . . , n},
from (5.6) we have that

T̃ij = 0 ∀ (i, j) ∈ α× α;

H̃ijσj + T̃ijδi = 0 ∀ (i, j) ∈ α× γ
and

H̃ij = 0 ∀ (i, j) ∈ γ × γ .
Thus,

∆T̃ + H̃Σ = 0 ;

i.e.,

X∗T + HS∗ = 0,

which, together with the first and second equalities of (5.5) and the nondegeneracy
assumption at Z∗, shows that

H = T = 0.

The linear independence of {Ai}mi=1 and the fact that T = 0 imply z = 0. Hence,
JE(Z∗) is nonsingular.
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We can now state quadratic convergence of Algorithm 4.1 for solving the SDP,
which does not require a proof.

Theorem 5.4. If an accumulation point Z∗ of {Zk} generated by Algorithm 4.1
for solving the SDP is a strict complementary and nondegenerate solution of E(Z) =
0, then the whole sequence {Zk} converges to Z∗ with

‖Zk+1 − Z∗ ‖ = O(‖Zk − Z∗ ‖2)(5.7)

and

εk+1 = O((εk)2) .(5.8)

In the above theorem for the SDP, we need the nondegeneracy to prove quadratic
convergence of Algorithm 4.1. In the next section, we shall show that, for the SDCP,
this assumption can be replaced by the positive definiteness of the Jacobian of the
problem on a certain subspace.

6. Application to the SDCP. In this section, we shall deduce quadratic con-
vergence of the squared smoothing Newton method in solving the SDCP. We first
prove a result on the generalized Jacobian for a composite function.

Proposition 6.1. Let S,S1, and S2 be symmetric block-diagonal matrix spaces.
Let F : S → S1 be continuously differentiable on an open neighborhood N of X and
Ψ : S1 → S2 be locally Lipschitz continuous and semismooth on an open neighborhood
of F (X). Then, for any H ∈ S, it holds that

∂BΥ(X)(H) ⊆ ∂BΨ(F (X))JF (X)(H),(6.1)

where for any X ∈ N , Υ(X) := Ψ(F (X)).
Proof. Since Υ is locally Lipschitz continuous, by Rademacher’s theorem (see [28,

page 403]), Υ is differentiable almost everywhere in N . For any V ∈ ∂BΥ(X), there
exists a sequence of differentiable points {Xk} ⊂ N of Υ converging to X such that

V = lim
k→∞

JΥ(Xk) .

Since Ψ is directionally differentiable on an open neighborhood of F (X), for any
H ∈ S,

JΥ(Xk)(H) = Ψ′(F (Xk);JF (Xk)(H)) .

Since Ψ is semismooth at F (Xk), there exists a W ∈ ∂BΨ(F (Xk)) such that [25]

Ψ′(F (Xk);JF (Xk)(H)) = W JF (Xk)(H).

Thus,

JΥ(Xk)(H) ∈ ∂BΨ(F (Xk))JF (Xk)(H) ,

which, together with the upper semicontinuity of ∂B (see [25]), implies that

lim
k→∞

JΥ(Xk)(H) ∈ ∂BΨ(F (X))JF (X)(H) .

This proves (6.1).
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In the following analysis, we assume that F : S → S is continuously differentiable
and E : R× S → R× S is defined as

E(ε,X) =

[
ε

G(ε,X)

]
, (ε,X) ∈ R× S ,(6.2)

where G : R× S → S is defined by (4.1); i.e.,

G(ε,X) = X − [X − F (X) + Φ(ε,X − F (X))] /2

and for any Y ∈ S,

Φ(ε, Y ) = ( ε2I + Y 2 )1/2 .

Then solving the SDCP is equivalent to solving the following equation:

E(ε,X) = 0 .(6.3)

The next result is on the nonsingularity of the B-subdifferential of E at (0, X) ∈
R× S.

Proposition 6.2. Suppose that for a given X ∈ S, the Jacobian JF (X) of F
at X is positive definite on the linear subspace L(X − F (X);S+), the affine hull of
C(X − F (X);S+). Then all U ∈ ∂BE(0, X) are nonsingular.

Proof. Let U be an element of ∂BE(0, X). Assume that (τ,H) ∈ R × S is such
that U(τ,H) = 0. Then, from the definition of the B-subdifferential of E, we know
that τ = 0 and there exists a W ∈ ∂BG(0, X) such that W (0, H) = 0. By Proposition
6.1, there exists a V ∈ ∂BΦ(0, X − F (X)) such that

W (0, H) = H − [H − JF (X)(H) + V (0, H − JF (X)(H))]/2 ,

which, together with the fact that W (0, H) = 0, implies that

2H − [H − JF (X)(H)]− V (0, H − JF (X)(H)) = 0 .

Let H := H − JF (X)(H). We have that

2H = H + V (0, H)(6.4)

and that

2
[
H + JF (X)

(
(H + V (0, H))/2

)]−H − V (0, H) = 0 ;

i.e.,

H − V (0, H) + JF (X)(H + V (0, H)) = 0 ,

which implies that

[H + V (0, H)] • [H − V (0, H)]

+[H + V (0, H)] • [JF (X)(H + V (0, H))] = 0 .(6.5)

By Proposition 3.1, (6.5), and the assumption that JF (X) is positive definite on
L(X − F (X);S+), we conclude that

H + V (0, H) = 0 ,

which, together with (6.4), implies that H = 0. This shows that for any (τ,H) ∈ R×S
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satisfying U(τ,H) = 0, one has (τ,H) = 0. Hence, U is nonsingular. The proof is
completed.

Finally, we can state quadratic convergence of the squared smoothing Newton
method for solving the SDCP.

Theorem 6.3. Suppose that F : S → S is continuously differentiable on S. Sup-
pose that for each X ∈ S, JF (X) is positive semidefinite. Then an infinite sequence
{Zk} is generated by Algorithm 4.1 for solving (6.3) and each accumulation point Z∗

of {Zk} is a solution of E(Z) = 0. Moreover, if JF (·) is Lipschitz continuous around
X∗ and JF (X∗) is positive definite on the linear subspace L(X∗ − F (X∗);S+), the
affine hull of C(X∗ − F (X∗);S+), then the whole sequence {Zk} converges to Z∗,

‖Zk+1 − Z∗‖ = O(‖Zk − Z∗‖2),(6.6)

and

εk+1 = O((εk)2) .(6.7)

Proof. For any ε �= 0 andX ∈ S, by Lemma 2.3, E is continuously differentiable at
(ε,X). It is easy to check that JE(ε,X) is nonsingular if and only if JG(ε,X)(0, H) =
0 implies H = 0. It has been shown by Chen and Tseng [6] that the latter is true.
Thus, for any ε �= 0 and X ∈ S, JE(ε,X) is nonsingular. By Theorem 4.2, an infinite
sequence {Zk} is generated by Algorithm 4.1 and each accumulation point Z∗ of {Zk}
is a solution of E(Z) = 0.

If JF (·) is Lipschitz continuous around X∗, then by Theorem 2.5 and a property
on the strong semismoothness of a composite function (originally due to Fischer [10];
for the matrix version, see [32, Theorem 3.10]), we know that E is strongly semismooth
at (0, X∗). Furthermore, by Proposition 6.2, all U ∈ ∂BE(0, X∗) are nonsingular.
Thus, by Theorem 4.2, the whole sequence {Zk} converges to Z∗, and (6.6) and (6.7)
hold.

7. Conclusions. We have studied quadratic convergence of a squared smoothing
Newton method for nonsmooth matrix equations. For the SDCP, the strong semi-
smoothness of G, together with the positive definiteness of JF (X∗) on the affine hull
of C(X∗ − F (X∗);S+), implies that the proposed algorithm has quadratic rate of
convergence without requiring the strict complementarity.

There are several possible directions to extend our work. One direction is to
study the strong semismoothness of other smoothing functions used in [6] and then
to improve the local analysis in [6]; another direction is to relax the nonsingularity
condition on the Jacobians. It is also possible to use some regularization techniques,
for example, the Tikhonov-type regularization, to get stronger global convergence
results as has been done for vector-valued complementarity problems [8, 30].

Acknowledgments. The authors are grateful to the referees for their very con-
structive comments. In particular, the present proof of Lemma 2.4 was suggested by
a referee.
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[34] M. J. Todd, K. C. Toh, and R. H. Tütüncü, On the Nesterov–Todd direction in semidefinite
programming, SIAM J. Optim., 8 (1998), pp. 769–796.

[35] P. Tseng, Merit functions for semidefinite complementarity problems, Math. Programming,
83 (1998), pp. 159–185.

[36] P. Tseng, Convergent infeasible interior-point trust-region methods for constrained minimiza-
tion, SIAM J. Optim., 13 (2002), pp. 432–469.

[37] G. Zhou, D. Sun, and L. Qi, Numerical experiments for a class of squared smoothing Newton
methods for box constrained variational inequality problems, in Reformulation: Nonsmooth,
Piecewise Smooth, Semismooth and Smoothing Methods, M. Fukushima and L. Qi, eds.,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 421–441.



CONVERGENCE OF APPROXIMATE AND INCREMENTAL
SUBGRADIENT METHODS FOR CONVEX OPTIMIZATION∗

KRZYSZTOF C. KIWIEL†

SIAM J. OPTIM. c© 2004 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, pp. 807–840

Abstract. We present a unified convergence framework for approximate subgradient methods
that covers various stepsize rules (including both diminishing and nonvanishing stepsizes), conver-
gence in objective values, and convergence to a neighborhood of the optimal set. We discuss ways
of ensuring the boundedness of the iterates and give efficiency estimates. Our results are extended
to incremental subgradient methods for minimizing a sum of convex functions, which have recently
been shown to be promising for various large-scale problems, including those arising from Lagrangian
relaxation.
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1. Introduction. We are interested in the convex constrained minimization
problem

f∗ := inf { f(x) : x ∈ S } with f :=

m∑
i=1

fi,(1.1)

where S �= ∅ is a closed convex set in the Euclidean space Rn with inner product 〈·, ·〉
and norm | · |, and each fi : Rn → R ∪ {∞} is a closed proper convex function finite
on S. Let S∗ := Arg minS f denote the optimal set of problem (1.1) and fS := f + IS
its extended objective, where IS is the indicator function of S (IS (x ) = 0 if x ∈ S,
∞ if x /∈ S). Then f∗ = inf fS and S∗ = Arg min fS ; note that fS is a closed proper
convex function.

The approximate subgradient projection method generates a sequence {xk}∞k=1 ⊂ S
via

xk+1 := PS(xk − νkgk), gk ∈ ∂εkfS(xk), k = 1, 2, . . . , x1 ∈ S,(1.2)

where PSx := arg minS |x−·| is the projector on S, νk > 0 is a stepsize, and εk ≥ 0 is an
error tolerance of an approximate subgradient gk that belongs to the εk-subdifferential
of fS at xk:

∂εkfS(xk) :=
{
g : fS(x) ≥ fS(xk) +

〈
g, x− xk〉− εk ∀x} .(1.3)

This method, introduced by Shor [Sho62] and first analyzed in [Erm66, Pol67] has
extensive literature; see, e.g., the books [Ber99, BSS93, DeV81, Min86, Nes89, Pol83,
Sho79] (and, e.g., [Erm76, MGN87, Nur79] for extensions to stochastic and nonconvex
problems). However, most authors tailor their analyses to particular stepsizes, such
as νk := λk|gk|−1 with

∑
k λk =∞.
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This paper presents a unified convergence framework for the method (1.2) that
covers various stepsize rules (including both diminishing and nonvanishing stepsizes),
convergence in the objective values f(xk), and convergence of {xk} to the optimal
set S∗ or its neighborhood for nonvanishing stepsizes. We discuss ways of ensuring
boundedness of the iterates and give efficiency estimates. Our results subsume those
in the literature.

Our analysis extends to the incremental subgradient projection method given by

xk1 := xk, xki+1 := PS(xki − νkgki ), gki ∈ ∂εki f
S
i (xki ), i = 1: m,(1.4a)

xk+1 := xkm+1,(1.4b)

where fSi := fi + IS . In other words, subgradient steps are taken for successive
objectives fi of (1.1), hoping that one iteration with m steps should be almost as
effective as m ordinary iterations (1.2), although it is much cheaper. This hope is
supported by the recent analysis and numerical results of [BTMN01, NeB01], where
this version is shown to be promising for certain large-scale problems, including those
arising from Lagrangian relaxation. The incremental version stems from [Kib79],
but for differentiable problems it is related to backpropagation methods in neural
networks; see, e.g., [Ber97, BeT00, Gai94, Gri94, Luo91, LuT94, MaS94].

The paper is organized as follows. In section 2 we recall some elementary results on
ergodic convergence and coercivity. General convergence results are given in section 3,
and the cases where fS is coercive or {xk} is bounded are studied in sections 4 and 5.
In section 6 we discuss techniques that ensure boundedness of {xk}, whereas in section
7 we analyze stepsize rules that do not need such techniques. (Unfortunately, they
do not extend to the incremental case.) Efficiency estimates for various stepsizes are
given in section 8. Finally, section 9 extends the preceding convergence and efficiency
results to the incremental case.

Our notation is fairly standard. Bρ := {x : |x| ≤ ρ} is the ball with center 0, and
radius ρ. dC(·) := infy∈C | · −y| is the distance function of a set C ⊂ Rn.

2. Technical preliminaries. We present the following three lemmas in order
to make the paper more self-contained.

Lemma 2.1. Suppose νk > 0 and νksum :=
∑k
j=1 νj → ∞ as k → ∞. Given

a scalar sequence {ak}, let āk :=
∑k
j=1 νjaj/ν

k
sum for all k. Then limk→∞ ak ≤

limk→∞ āk ≤ limk→∞ āk ≤ limk→∞ ak. In particular, if limk→∞ ak exists, then
limk→∞ āk = limk→∞ ak.

Proof. To show that a := limk ak ≤ limk āk, suppose a > −∞. For any ε > 0,
pick j̄ such that aj ≥ a− ε for all j ≥ j̄ and

∑j̄
j=1 νj(aj − a)/νksum ≥ −ε for all k ≥ j̄;

then

āk − a =

j̄∑
j=1

νj(aj − a)/νksum +

k∑
j=j̄+1

νj(aj − a)/νksum ≥ −ε− ε
k∑

j=j̄+1

νj/ν
k
sum ≥ −2ε

for all k ≥ j̄. Applying this to bk := −ak, b̄k := −āk gives − limk ak ≤
− limk āk.

Lemma 2.2 (Silverman–Toeplitz’s theorem [DuS88, p. 75]). Let akj ∈ R+, j =

1: k, k = 1, 2, . . . , be such that
∑k
j=1 akj = 1 for all k, limk→∞ akj = 0 for all
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j (e.g., akj = νj/ν
k
sum as in Lemma 2.1). If {uj} ⊂ R

n is a sequence such that

limj→∞ uj = u, then limk→∞
∑k
j=1 akju

j = u.
Lemma 2.3. Let {ak}, {bk}, and {ck} be sequences in R+ such that ak+1 ≤

ak(1 + bk) + ck for k = 1, 2, . . . ,
∑∞
k=1 bk <∞,

∑∞
k=1 ck <∞. Then {ak} converges

to some a∞ <∞.
Proof. See, e.g., [Pol83, Lem. 2.2.2], due to [Gla65].
Denote the trench (sublevel set) of the extended objective fS at any level α ∈ R

by

Tα := {x : fS(x) ≤ α }.(2.1)

Recalling that fS is closed and convex, note that the following are equivalent: (i) fS
is coercive, i.e., lim|x|→∞ fS(x) = ∞; (ii) fS is level-bounded; i.e., Tα is bounded for
all α ∈ R; (iii) the optimal set S∗ = Arg min fS is nonempty and bounded [Roc70,
Thm. 27.2].

We shall need some elementary properties of the trenches of fS and their neigh-
borhoods.

Lemma 2.4. Suppose that fS is coercive and its trench Tβ is nonempty for some
β ∈ R.

(i) For each level α ≥ β, let

ρ(α) := max
x∈Tα

dTβ
(x) = min {ρ ≥ 0 : Tα ⊂ Tβ +Bρ } and Tαβ := Tβ +Bρ(α);

(2.2)

thus ρ(α) is the distance between Tα and Tβ, whereas Tαβ is the smallest neighbor-
hood of Tβ containing Tα, so that Tβ ⊂ Tαβ ⊂ Tβ + Bρ whenever ρ ≥ ρ(α). Then
limα↓β ρ(α) = 0.

(ii) If fS is also continuous on its domain S (i.e., f is continuous on S), then
for every level ᾱ > β there exists a radius ρ̄ > 0 such that S ∩ (Tβ +Bρ̄) ⊂ Tᾱ.

Proof. (i) Since fS is closed and coercive, both Tβ and Tα are compact, and ρ(α)
is well defined by (2.2) (dTβ

is continuous) and nondecreasing (so is Tα by (2.1)).
To show that limα↓β ρ(α) = 0 by contradiction, suppose there are sequences αi ↓ β
and yi ∈ Tαi

such that dTβ
(yi) ≥ ρ > 0. Since Tβ+1 is bounded, we may assume

without loss of generality that yi → y∞. Then dTβ
(y∞) ≥ ρ, since dTβ

is continuous.
However, fS(yi) ≤ αi gives in the limit fS(y∞) ≤ β (fS is closed) and hence y∞ ∈ Tβ ,
contradicting dTβ

(y∞) ≥ ρ.
(ii) Otherwise there are ρi ↓ 0, yi ∈ S ∩ (Tβ + Bρi) \ Tᾱ, zi ∈ Tβ such that

|yi − zi| ≤ ρi. Since Tβ is compact, we may assume without loss of generality that
zi → z∞ ∈ Tβ . However, then yi → z∞ (since |yi−zi| → 0) with fS(yi) ≥ ᾱ (yi /∈ Tᾱ)
and the continuity of fS on S imply fS(z∞) ≥ ᾱ, which contradicts z∞ ∈ Tβ .

Lemma 2.5. Suppose that fS is coercive, σ ∈ [0,∞), and α ∈ R. Then the set

Tα,σ :=

{
x :

m∑
i=1

fSi (xi) ≤ α for some xi ∈ x+Bσ

}
(2.3)

is bounded.
Proof. For each i, let f̂i(x) := infy∈x+Bσ f

S
i (y) = infy{fSi (y) + IBσ (x − y)}

for all x. Since each fSi is closed proper convex, so is f̂i, and they have the same
recession function (cf. [Roc70, Cors. 9.2.1 and 9.2.2]). Hence (cf. [Roc70, Thm. 9.3])

fS =
∑
i f

S
i and f̂ :=

∑
i f̂i have a common recession function and a common recession
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cone. This cone is null because fS is coercive, so f̂ is coercive (cf. [Roc70, Thms. 8.4

and 8.7]); hence its level set {x : f̂(x) ≤ α} is bounded. This set coincides with Tα,σ,

since f̂i(x) ≤ αi iff fSi (xi) ≤ αi for some xi ∈ x + Bσ, because fSi is closed and the
ball x+Bσ is compact.

3. General convergence results. Throughout this section, and in the follow-
ing sections until section 9, {xk}, {νk}, {εk}, and {gk} denote the sequences involved
in the (ordinary) subgradient iteration (1.2).

3.1. Basic estimates. Our convergence analysis hinges on the following three
simple estimates.

Lemma 3.1. For each x and k ≥ 1, we have

|xk+1 − x|2 − |xk − x|2 ≤ −2νk
[
f(xk)− fS(x)− εk − 1

2 |gk|2νk
]
,(3.1)

∑k
j=1 νjf(xj)∑k

j=1 νj
− fS(x) ≤

1
2 |x1 − x|2 +

∑k
j=1

1
2ν

2
j |gj |2 +

∑k
j=1 νjεj∑k

j=1 νj
,(3.2)

|xk+1 − xk| ≤ νk|gk|.(3.3)

Proof. Let x ∈ S, rk := |xk−x|. Using the nonexpansiveness of PS and (1.2)–(1.3)
gives

r2k+1 ≤ |xk − νkgk − x|2 = r2k − 2νk
〈
gk, xk − x〉+ ν2

k |gk|2(3.4)

≤ r2k + 2νk
[
fS(x)− f(xk) + εk

]
+ ν2

k |gk|2,
and hence (3.1). Summing up (3.1) yields (3.2). For fS(x) =∞, (3.1)–(3.2) are trivial.
Finally, (3.3) follows from the nonexpansiveness of PS and the fact that xk ∈ S in
(1.2).

Denoting the quantities involved in the basic estimate (3.1) by

γk := 1
2 |gk|2νk and δk := γk + εk,(3.5)

we have

|xk+1 − x|2 − |xk − x|2 ≤ −2νk
[
f(xk)− fS(x)− δk

] ∀x.(3.6)

Thus xk+1 becomes closer than xk to points x such that f(xk) > fS(x) + δk, and it
is easy to see that the standard stepsize condition

∑
k νk = ∞ yields limk f(xk) ≤

fS(x)+δ for all x and hence limk f(xk) ≤ f∗+δ for δ := limk δk. (Of course, additional
assumptions are needed to ensure δ <∞.) In fact, stronger results are derived in the
next subsection by employing averages of {xk} and {δk} weighted by the stepsizes
{νk}.

3.2. Cesáro averages and ergodic convergence. Employing, as usual, an
unbounded summary stepsize

νksum :=

k∑
j=1

νj →∞ as k →∞,(3.7)
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we shall study the Cesáro averages of the sequences {xk} and {f(xk)} defined by

x̄k :=

k∑
j=1

νjx
j/νksum and f̄k :=

k∑
j=1

νjf(xj)/νksum.(3.8)

Note that, since νk > 0 and xk ∈ S, for all k, the convexity of f , S, and | · | yields

f(x̄k) ≤ f̄k, x̄k ∈ S, and |x̄k| ≤ max{ |xj | : j = 1: k }.(3.9)

Using the Cesáro averages of the sequences {γk}, {εk}, and {δk} (cf. (3.5)),

γ̄k :=

k∑
j=1

νjγj/ν
k
sum, ε̄k :=

k∑
j=1

νjεj/ν
k
sum, and δ̄k :=

k∑
j=1

νjδj/ν
k
sum = γ̄k + ε̄k,

(3.10)

we may rewrite the estimate (3.2) in the Cesáro average form

f̄k − fS(x) ≤ 1
2 |x1 − x|2/νksum + δ̄k ∀x.(3.11)

It is convenient to employ the shorthand notation

γ̄sup := lim
k→∞

γ̄k, ε̄sup := lim
k→∞

ε̄k, δ̄sup := lim
k→∞

δ̄k, and δ̄inf := lim
k→∞

δ̄k.

(3.12)

For each δ ≥ 0, denote the set of δ-optimal points of problem (1.1) by

Sδ := {x : fS(x) ≤ f∗ + δ } .(3.13)

We now show that the algorithm attempts asymptotically to find points in the set
Sδ̄sup

.

Theorem 3.2. Assuming
∑∞
k=1 νk = ∞, define δ̄sup and δ̄inf by (3.12) and

(3.10). Then we have the following statements:
(i) limk→∞ f(x̄k) ≤ limk→∞ f̄k ≤ f∗ + δ̄inf and limk→∞ f(xk) ≤ f∗ + δ̄inf .

(ii) limk→∞ f(x̄k) ≤ limk→∞ f̄k ≤ f∗ + δ̄sup and limk→∞ f(xk) ≤ f∗ + δ̄sup.
(iii) If δ̄sup = 0, then f(x̄k), f̄k, and inf l≥k f(xl) converge to f∗ as k →∞.
(iv) All the cluster points of {x̄k} (if any) lie in the δ̄sup-optimal set Sδ̄sup

.

(v) If S∗ = ∅ and δ̄sup = 0, then |x̄k| → ∞ and limk→∞ |xk| =∞.
(vi) δ̄sup ≤ γ̄sup + ε̄sup, δ̄sup ≤ limk→∞ δk, γ̄sup ≤ limk→∞ γk, and ε̄sup ≤

limk→∞ εk. In particular, γ̄sup = 0 if limk→∞ νk|gk|2 = 0 (e.g., limk→∞ νk = 0
and supk |gk| < ∞). If ν := limk→∞ νk and C := limk→∞ |gk| are finite, then
γ̄sup ≤ 1

2C
2ν <∞.

Proof. (i) Since by assumption νksum → ∞, taking lower limits in (3.11) gives
limk f̄k ≤ fS(x) + δ̄inf for each x, so f∗ := inf fS yields limk f̄k ≤ f∗ + δ̄inf . The
conclusion follows from the facts that f(x̄k) ≤ f̄k for all k (cf. (3.9)) and limk f(xk) ≤
limk f̄k (cf. Lemma 2.1).

(ii) Argue as for (i), replacing lower limits by upper limits.
(iii) This follows from (ii), since (cf. (3.8)–(3.9)) f(xk), f(x̄k), f̄k ≥ f∗.
(iv) If {x̄k} has a cluster point x̄∞, then fS(x̄∞) ≤ f∗ + δ̄sup by (ii), since fS is

closed.
(v) If |x̄k| �→ ∞, then {x̄k} has a cluster point x̄∞ in S0 = S∗ by (iv), i.e., S∗ �= ∅.

Hence if S∗ = ∅, then |x̄k| → ∞, with |x̄k| ≤ maxkj=1 |xj | by (3.9).
(vi) This follows from (3.12), (3.10), (3.5), (3.7), and Lemma 2.1.



812 KRZYSZTOF C. KIWIEL

Remark 3.3.

(i) Theorem 3.2 implies additional results for the record points

xkrec ∈ Arg min
{xj}k

j=1

f(xj) ⊂ S with f(xkrec) = min
j=1: k

f(xj) ≤ f̄k,(3.14)

where the inequality stems from (3.7)–(3.8). Specifically, xkrec may replace x̄k through-
out, also with δ̄sup replaced by δ̄inf in parts (iii)–(v). However, x̄k = (νkx

k +
νk−1
sum x̄

k−1)/νksum may be updated at negligible cost without evaluating f , in contrast
with xkrec.

(ii) Theorem 3.2 handles both diminishing stepsizes (ν = 0 in (vi)) and nonva-
nishing ones (ν > 0), for which νk|gk|2 → 0 is unlikely in the nonsmooth case.

(iii) The second part of Theorem 3.2(ii) subsumes [Ber99, Ex. 6.3.13(a)] (where
εk → ε̄ and νk|gk|2 → 0 so that δ̄sup = ε̄), which in turn generalizes [CoL93, Prop. 1.2]
(where ε̄ = 0); its first part subsumes [MiU82, Thm. 1] (where νk → 0, supk |gk| <∞,
and εk ≡ 0).

3.3. Full convergence. To ensure convergence of {xk}, we need stronger as-
sumptions (relative to Theorem 3.2).

Theorem 3.4. Suppose
∑∞
k=1 νk = ∞,

∑∞
k=1 νkδk < ∞ (cf. (3.5)). Then the

conclusions of Theorem 3.2(i–v) hold with δ̄sup = 0, and the following statements are
equivalent :

(i) The optimal set S∗ is nonempty.
(ii) {xk} is bounded (where “(i) ⇒ (ii)” does not require

∑
k νk =∞).

(iii) {xk} converges to some x∞ ∈ S∗.
Finally, if {xk} converges to a point x∞, then {x̄k} converges to the same point.

Proof. By (3.7), (3.10), and (3.12),
∑
k νkδk < ∞ yields δ̄sup = 0 for Theorem

3.2.
“(i) ⇒ (ii)”: Let x ∈ S∗. Then fS(x) ≤ f(xk), so the basic estimate (3.6) yields

|xk+1 − x|2 ≤ |xk − x|2 + 2νkδk ∀k.
Hence Lemma 2.3 with bk := 0 and ck := 2νkδk shows that ak := |xk − x| converges.
Thus {xk} is bounded. “(i) ⇐ (ii)”: If {xk} is bounded, then it has a cluster point
x∞ ∈ S∗, since limk fS(xk) = f∗ by Theorem 3.2(iii) and fS is closed.

“(i) ⇒ (iii)”: As in the proof of “(i) ⇒ (ii)”, |xk − x| converges for each x ∈ S∗,
and {xk} has a cluster point x∞ ∈ S∗. Taking x = x∞, we get limk |xk − x| = 0, and
then |xk − x| → 0, i.e., xk → x∞. “(i) ⇐ (iii)”: The proof is trivial.

Finally, since νksum → ∞, xk → x∞ yields x̄k :=
∑k
j=1 νjx

j/νksum → x∞ (cf.
Lemma 2.2).

Remark 3.5.

(i) The assumption
∑
k νkδk < ∞ of Theorem 3.4 holds if

∑
k ν

2
k |gk|2 < ∞

(e.g.,
∑
k ν

2
k <∞ and supk |gk| <∞) and

∑
k νkεk <∞.

(ii) For εk ≡ 0, Theorem 3.4 subsumes [Ber99, Ex. 6.3.13(b)] (where the typo∑
k ν

2
k < ∞ should be replaced by

∑
k ν

2
k |gk|2 < ∞), [Sch83, Thm. on p. 538] (in

which the claim f(xk) → f∗ is not proved), and [LPS96, Thm. 2.7] (where
∑
k ν

2
k <

∞, supk |gk| < ∞); the earliest and much cited [Pol78] result of [Lit68, Thm. 1]
(claiming that limk f(xk) = f∗ for

∑
k ν

2
k < ∞, supk |gk| < ∞) has gaps in its

proof, but a result similar to Theorem 3.4 follows from [ErS68] (with
∑
k ν

2
k < ∞,

supk |gk| < ∞). For S∗ �= ∅ and νk → 0, Theorem 3.4 concerning Theorem 3.2(iv)
recovers a part of [NeY78, Thm. (ii)]. Finally, Theorem 3.4 subsumes [LPS00, Thm. 8]
(with

∑
k ν

2
k <∞, supk |gk| <∞, εk → 0).
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For stepsizes such as νk := k−1, Theorem 3.4 may seem to require the boundedness
of {gk}; in fact, the norms |gk| may grow with xk, but not too fast, as shown below.

Theorem 3.6. Suppose that
∑∞
k=1 νk = ∞,

∑∞
k=1 ν

2
k < ∞,

∑∞
k=1 νkεk < ∞,

and the subgradients satisfy the linear growth condition: there exists a constant c <∞
such that |gk|2 ≤ c(1 + |xk|2) for all k. Then we have the following statements:

(i) limk→∞ f(xk) = f∗.
(ii) If S∗ �= ∅, then the assumptions of Theorem 3.4 are satisfied with supk |gk| <

∞; in particular, {xk} and {x̄k} converge to some x∞ ∈ S∗ and limk→∞ f(x̄k) = f∗.
Proof. Suppose there exist x ∈ S and k̄ such that f(xk) ≥ f(x) for all k ≥ k̄.

Employing this inequality and the linear growth condition in the basic estimate (3.1),
we obtain

|xk+1 − x|2 ≤ |xk − x|2 + ν2
kc
(
1 + |xk|2)+ 2νkεk − 2νk

[
f(xk)− f(x)

]
≤ |xk − x|2 + ν2

kc
(
1 + 2|xk − x|2 + 2|x|2)+ 2νkεk

= |xk − x|2 (1 + 2cν2
k

)
+
[
c(1 + 2|x|2)ν2

k + 2εkνk
]
,

where we used the facts that |xk| ≤ |xk − x| + |x| and (a + b)2 ≤ 2(a2 + b2). Hence
Lemma 2.3 with bk := 1+2cν2

k and ck := c(1+2|x|2)ν2
k+2εkνk shows that ak := |xk−x|

converges. Thus {xk} is bounded, and supk |gk|2 ≤ c(1+supk |xk|2) <∞ by the linear
growth condition. Then

∑
k ν

2
k <∞ implies

∑
k ν

2
k |gk|2 <∞. Thus the assumptions

of Theorem 3.4 are met, and Theorem 3.2(iii) yields limk f(xk) = f∗. Since x ∈ S
was arbitrary, we obtain limk f(xk) ≤ inf fS = f∗, i.e., (i). For (ii), use x ∈ S∗ above
and Theorem 3.4.

Remark 3.7. For S = R
n and εk ≡ 0, Theorem 3.6 recovers [PoT73, Thm. 9.1]

(in the finite-dimensional deterministic setting); note that in this case f(xk) → f∗
when xk → x∞ by continuity of f . Again, the earliest result of [Lit68, Thm. 2] has
gaps in its proof.

4. Convergence in the coercive case. We now consider the case where “ev-
erything is bounded,” including the solution set S∗ and the algorithmic quantities δk
and |xk+1 − xk|. It turns out that the asymptotic objective accuracy δ := limk δk
and steplength σ := limk |xk+1 − xk| determine the neighborhood Sδ∗ of S∗ (cf. (4.1))
to which {xk} converges. The size of this neighborhood depends on the asymptotic
steplength σ and on the shape of the δ-optimal set Sδ. The Cesáro averages {x̄k}
converge to the smaller set Sδ; thus averaging enhances stability.

Theorem 4.1. Suppose that
∑∞
k=1 νk = ∞, δ := limk→∞ δk < ∞, σ :=

limk→∞ |xk+1 − xk| < ∞, and fS is coercive. Then we have the following state-
ments:

(i) limk→∞ dSδ
(xk) = 0 and {xk} has a cluster point in Sδ. Further, the as-

sertions of Theorem 3.2(ii)–(iii) hold with δ̄sup ≤ δ.
(ii) limk→∞ dSδ∗(xk) = 0, where Sδ∗ is the neighborhood of S∗ defined by (cf.

Lemma 2.4(i))

Sδ∗ := S∗ +Bρδ+σ with ρδ := max { dS∗(x) : x ∈ Sδ } .(4.1)

Thus {xk} is bounded and its cluster points belong to Sδ∗.
(iii) {x̄k} is bounded, its cluster points lie in Sδ, and limk→∞ dSδ

(x̄k) = 0.
(iv) In general, for γ := limk→∞ γk, ε := limk→∞ εk, ν := limk→∞ νk, C :=

limk→∞ |gk|, and σ̄ := limk→∞ νk|gk|, we have δ ≤ γ + ε, γ ≤ 1
2C

2ν, and σ ≤ σ̄ ≤
min{Cν, (2γν)1/2}. In particular, γ = 0 if ν = 0 and C < ∞, whereas σ = 0 if
σ̄ = 0 (e.g., ν = 0 and C <∞, or γ = 0 and ν <∞).
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Proof. First, recall from section 2 that the closedness and coercivity of fS imply
that the sets S∗ ⊂ Sδ ⊂ S∗ + Bρδ ⊂ Sδ∗ are nonempty and compact (cf. (2.2), (3.13),
and (4.1)).

(i) By our assumptions and Theorem 3.2(vi), δ̄sup ≤ δ. Hence Theorem 3.2(ii)
gives limk fS(xk) ≤ f∗ + δ. Pick a subsequence {xkj} such that limj fS(xkj ) =
limk fS(xk). Since fS is coercive, {xkj} is bounded. Assume without loss of generality
that xkj → x∞. Then fS(x∞) ≤ f∗ + δ (fS is closed) gives x∞ ∈ Sδ (cf. (3.13)), so
dSδ

(xkj )→ dSδ
(x∞) = 0 by continuity of dSδ

. Thus limk dSδ
(xk) = 0.

(ii) Fixing ρ > 0, let

V2ρ := Sδ∗ +B2ρ =
{
x : dSδ∗(x) ≤ 2ρ

}
(4.2)

and

vρ := min { fS(x) : dSδ
(x) ≥ ρ } − ( f∗ + δ ) .(4.3)

Since fS is closed and coercive, whereas dSδ
is continuous, the minimum in (4.3) is

attained at some x, and vρ > 0. (Otherwise fS(x) ≤ f∗ + δ would give x ∈ Sδ and
hence dSδ

(x) = 0, contradicting ρ > 0 in (4.3).)
Since δ := limk δk and σ := limk |xk+1 − xk|, there is kρ <∞ such that

δk ≤ δ + vρ and |xk+1 − xk| ≤ σ + ρ ∀k ≥ kρ.(4.4)

Since limk dSδ
(xk) = 0 by (i), there exists k = k′ρ ≥ kρ such that xk ∈ Sδ + Bρ;

then Sδ ⊂ Sδ∗ implies xk ∈ V2ρ (cf. (4.2)).
Assuming xk ∈ V2ρ for some k ≥ k′ρ, we now show that xk+1 ∈ V2ρ. If dSδ

(xk) ≤ ρ,
then from Sδ ⊂ S∗ +Bρδ , (4.1), and the second inequality of (4.4) we get

xk+1 ∈ (Sδ +Bρ) +Bσ+ρ ⊂ S∗ +Bρδ +Bσ+2ρ = (S∗ +Bρδ+σ) +B2ρ = Sδ∗ +B2ρ,

so xk+1 ∈ V2ρ (cf. (4.2)). Thus suppose dSδ
(xk) > ρ. Then, by (4.3),

f(xk) ≥ vρ + f∗ + δ.(4.5)

Next, by (4.1) and (4.2),

V2ρ = S∗ +Bρδ+σ+2ρ,(4.6)

so, since xk ∈ V2ρ, |xk − x| ≤ ρδ + σ + 2ρ for x = PS∗x
k. Using the basic estimate

(3.6) with fS(x) = f∗, the bound (4.5), and the first inequality of (4.4) yields

|xk+1 − x|2 − |xk − x|2 ≤ −2νk [ vρ + δ − δk ] ≤ 0.

Thus |xk+1 − x| ≤ |xk − x| ≤ ρδ + σ + 2ρ with x ∈ S∗, so xk+1 ∈ V2ρ by (4.6).
Therefore, by induction for each k ≥ k′ρ, xk ∈ V2ρ and hence (cf. (4.2)) dSδ∗(xk) ≤

2ρ. Since ρ > 0 was arbitrary, dSδ∗(xk) → 0. Thus, since Sδ∗ is bounded, so is {xk},
and its cluster points must lie in Sδ∗ because dSδ∗(xk) → 0, dSδ∗ is continuous and Sδ∗
is closed.

(iii) Since {xk} is bounded by (ii), so is {x̄k} by (3.9). Pick x̄kj such that
limj dSδ

(x̄kj ) = limk dSδ
(x̄k). Extracting a subsequence if necessary, suppose x̄kj →

x̄∞. By Theorem 3.2(iv) with δ̄sup ≤ δ (cf. the proof of (i)), x̄∞ ∈ Sδ. Hence
limj dSδ

(x̄kj ) = 0 by the continuity of dSδ
, and thus limk dSδ

(x̄k) = 0.
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(iv) Recalling (3.3) and (3.5), use |xk+1−xk| ≤ νk|gk| and ν2
k |gk|2 = 2νkγk.

Corollary 4.2. Suppose that the sequences {νk}, {|gk|}, and {εk} are bounded,
and the extended objective fS is coercive. Then the sequence {xk} is bounded.

Proof. This follows from Theorem 4.1(ii), (iv) if
∑
k νk = ∞. Otherwise, i.e.,

if
∑
k νk < ∞, then by summing the inequality |xk+1 − xk| ≤ νk|gk| (cf. (3.3)) and

using the assumption that supk |gk| < ∞ we get
∑
k |xk+1 − xk| < ∞; hence {xk}

converges.
Remark 4.3.

(i) Theorem 4.1(ii) may be augmented as follows: (ii1) if δ = σ = 0, then Sδ∗ =
Sδ = S∗ and limk→∞ dS∗(x

k) = 0; (ii2) if f is continuous on S, then limk→∞ f(xk) ≤
maxS∩Sδ∗ f (so that limk→∞ f(xk) = f∗ if δ = σ = 0). Indeed, if δ = σ = 0, then

Sδ = S∗ by (3.13), ρδ = 0, and Sδ∗ = S∗ by (4.1), since S∗ is closed, whereas if
f is continuous on S, then by picking xkj such that limj f(xkj ) = limk f(xk) and
xkj → x∞ ∈ Sδ∗ , from xkj ∈ S we get x∞ ∈ S (since S is closed) and limk→∞ f(xk) =
f(x∞) ≤ maxS∩Sδ∗ f .

(ii) Theorem 4.1(ii) subsumes [LPS00, Thm. 3] (where εk → 0, νk → 0, and
νk|gk|2 → 0), a “stationary” version of [ShW96, Thm. 2.2] (where εk ↓ 0, νk|gk|2 → 0,
supk νk < ∞ yield δ = σ = 0), [Nur79, Thm. 2.8] (where S is bounded, δ = σ = 0)
and a convex version of [MGN87, Thm. 9.1] (where S = R

n, εk ≡ 0, νk → 0). Further,
it subsumes [KiA91, Thm. 2] (where εk → 0, νk → 0, supk |gk| < ∞); the latter is a
(mis)quotation of [NuZ77, Thm. 2], which, however, uses scaled stepsizes (cf. Remark
7.4(ii)).

5. Convergence when the iterates are bounded. We now show that the
case where all the algorithmic quantities (i.e., xk, gk, εk, and νk) are bounded is
analogous to the coercive case analyzed in Theorem 4.1. Only the statement of the
following result is fairly complicated, since it does not presume that S∗ �= ∅.

Theorem 5.1. Suppose that
∑∞
k=1 νk = ∞, ν := limk→∞ νk < ∞, ε :=

limk→∞ εk <∞, {xk} is bounded, and C := limk→∞ |gk| <∞. Then γ := limk→∞ γk
≤ 1

2C
2ν, σ := limk→∞ |xk+1 − xk| ≤ Cν, and δ := limk→∞ δk ≤ γ + ε. For any

R ≥ R := supk |xk|, consider the restricted problem

f ′∗ := inf f ′S with f ′S := fS + IBR
.(5.1)

Let S′ := S ∩ BR, S′
∗ := Arg min f ′S, S

′
δ := {x : f ′S(x) ≤ f ′∗ + δ}, and (cf. Lemma

2.4(i))

Sδ∗
′
:= S′

∗ +Bρ′δ+σ with ρ′δ := max
{
dS′∗(x) : x ∈ S′

δ

}
.(5.2)

Then f ′∗ ≥ f∗, S′
∗ ⊇ S∗∩BR, and S′

δ ⊇ Sδ∩BR, with equalities holding iff S∗∩BR �= ∅.
In fact, if S∗ is nonempty and bounded, and R is large enough (e.g., BR ⊃ Sδ), then

f ′∗ = f∗, S′
∗ = S∗, S′

δ = Sδ, ρ
′
δ = ρδ (cf. (4.1)), and Sδ∗

′
= Sδ∗ ∩ BR. Moreover, we

have the following statements:
(i) limk→∞ dSδ

(xk) = 0 and {xk} has a cluster point in Sδ. Further, the as-
sertions of Theorem 3.2(ii)–(iii) hold with δ̄sup ≤ δ.

(ii) limk→∞ dSδ∗
′(xk) = 0 and the cluster points of {xk} lie in Sδ∗

′
.

(iii) {x̄k} is bounded, its cluster points lie in Sδ, and limk→∞ dSδ
(x̄k) = 0.

(iv) If δ = 0, then S∗ �= ∅, and limk→∞ f(xk) = f∗ if f is continuous on S and
σ = 0.

Proof. By (5.1), f ′S is closed and convex (so are fS and BR), proper (since its
domain S′ := S∩BR contains {xk} by the choice of R), and coercive (S′ is bounded),
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so its optimal set S′
∗ ⊂ BR is nonempty and bounded. Of course, f ′S ≥ fS and f ′S

coincides with fS on BR. Hence f ′∗ ≥ f∗, S′
∗ ⊇ S∗ ∩ BR, and S′

δ ⊇ Sδ ∩ BR (cf.
(3.13)), with equalities holding throughout iff S∗ ∩ BR �= ∅. Indeed, if f ′∗ = f∗, then
∅ �= S′

∗ ⊂ S∗ ∩ BR and S′
δ ⊂ Sδ ∩ BR from f ′∗ + δ < ∞; conversely, if fS(x) = f∗ for

some x ∈ BR, then f∗ = f ′S(x) ≥ f ′∗ ≥ f∗ implies f ′∗ = f∗. Similarly, if S∗ is nonempty
and bounded, then, since Sδ is bounded, we may choose R such that BR ⊃ Sδ ⊃ S∗,
in which case S′

∗ = S∗ ∩ BR = S∗ and S′
δ = Sδ ∩ BR = Sδ, so that ρ′δ = ρδ and

Sδ∗
′
= Sδ∗ ∩BR by (4.1) and (5.2).
Next, we may replace S and fS in (1.2) by S′ := S ∩BR and f ′S , since {xk} ⊂ S′,

whereas gk ∈ ∂εkfS(xk) implies gk ∈ ∂εkf ′S(xk), using f ′S(xk) = fS(xk) and f ′S ≥ fS .
Thus the algorithm works as if applied to problem (5.1), for which the assumptions of
Theorem 4.1 hold with S∗ replaced by S′

∗ (since ν <∞ and C <∞). Therefore, the
conclusions of Theorems 4.1 and 3.2(ii)–(iii) are valid with fS replaced by f ′S , f∗ by
f ′∗, etc. In particular, assertion (ii) follows from Theorem 4.1(ii), whereas Theorem
4.1(i), (iii) implies the first part of (i) as well as (iii) with Sδ replaced by S′

δ. For
proving (i), (iii), and (iv), note that xk and fS(xk) = f ′S(xk) are independent of R,
for R ≥ R.

(i) Theorem 3.2(ii), (vi) with δ̄sup ≤ δ gives limk fS(xk) ≤ f ′∗ + δ, using fS(xk) =
f ′S(xk). Pick a subsequence {xkj} such that limj fS(xkj ) = limk fS(xk). Since {xkj}
is bounded, we may assume that xkj → x∞. Then by the closedness of fS , fS(x∞) ≤
f ′∗ + δ. Hence fS(x∞) ≤ f∗ + δ, since (cf. (5.1)) we can make f ′∗ arbitrarily close to
f∗ by increasing R. Thus x∞ ∈ Sδ (cf. (3.13)), so dSδ

(xkj ) → dSδ
(x∞) = 0. By a

similar argument, the assertions of Theorem 3.2(ii)–(iii) hold both with f∗ replaced
by f ′∗ and in their original form.

(iii) Since {xk} ⊂ BR, {x̄k} ⊂ BR by (3.9). Pick x̄kj such that limj dSδ
(x̄kj ) =

limk dSδ
(x̄k). Extracting a subsequence, if necessary, suppose x̄kj → x̄∞. As in the

proof of (i), invoking Theorem 3.2(iv) with δ̄sup ≤ δ we get x̄∞ ∈ S′
δ and then x̄∞ ∈ Sδ.

Hence limj dSδ
(x̄kj ) = 0 by the continuity of dSδ

, and thus limk dSδ
(x̄k) = 0.

(iv) If δ = 0, then in the proof of (i) we have x∞ ∈ S0 = S∗ (cf. (3.13)), i.e.,
S∗ �= ∅. If additionally σ = 0 and f is continuous on S, then limk f(xk) = f ′∗ by
(ii) (cf. Remark 5.2(i) below), with f ′∗ = f∗ for R large enough so that S∗ ∩ BR �=
∅.

Remark 5.2.

(i) Theorem 5.1(ii) may be augmented as follows: (ii1) if δ = σ = 0 (e.g.,

ν = ε = 0), then Sδ∗
′

= S′
δ = S′

∗ and limk→∞ dS∗(x
k) = 0; (ii2) if f is continuous

on S, then limk→∞ f(xk) ≤ maxS∩Sδ∗
′ f ′S (so that limk→∞ f(xk) = f ′∗ if δ = σ = 0).

Indeed, this follows as in Remark 4.3(i).
(ii) For S = R

n, Theorem 5.1(i)–(ii) subsumes [Nur91, Thms. 2.3 and 2.4] and
the results of [Nur82, sect. 6] (where νk → 0, either εk → 0 or εk ≡ ε > 0, S∗ �= ∅ is
assumed implicitly , and the proofs are more complicated).

6. Bounding strategies. Our further results require the following definition.
Definition 6.1. We say that the algorithm employs a locally bounded oracle if

gk = g(xk, εk) for all k, where the mapping S × R+ � (x, ε) �→ g(x, ε) ∈ ∂εfS(x) is
locally bounded (bounded on bounded subsets of its domain).

This concept is quite natural in view of the following comments.
Remark 6.2.

(i) In most applications, one has an oracle (black box ) that, given (x, ε) ∈
S × R+, delivers an approximate subgradient gf (x, ε) ∈ ∂εf(x). Recall that for a
fixed ε, ∂εf(·) is locally bounded on S if f is finite on a neighborhood of S, in which
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case ∂εf(S) is bounded if S is bounded; also ∂εf(S) is bounded if f is finite-valued
and polyhedral [HUL93, sect. XI.4.1]. In such cases one may use g := gf , since
∂εf(·) ⊂ ∂εfS(·) on S. For some applications [KLL99a, sect. 9.4] one may choose a
locally bounded gf even when ∂εf(·) is unbounded.

(ii) To handle the constraint x ∈ S more efficiently, one may use the subgradient
projection techniques of [KiU93], [Kiw96a, sect. 7], and [LPS96, sect. 3]. Thus, for
gf (x, ε) ∈ ∂εf(x), we may let g(x, ε) be the projection of gf (x, ε) onto the negative of
the tangent cone of S at x so that −g(x, ε) is a feasible direction when S is polyhedral;
e.g., for S := R

n
+, g(x, ε)j = min{gf (x, ε)j , 0} if xj = 0, gf (x, ε)j otherwise. Then

g(x, ε) ∈ ∂εfS(x), and the crucial property |g(x, ε)| ≤ |gf (x, ε)| ensures that g is locally
bounded if gf is bounded.

(iii) Note that if a locally bounded oracle is available, then f must be locally
Lipschitz continuous on S [KLL99b, Rem. 3.9(ii)].

Of course, for a locally bounded oracle, {gk} is bounded if {xk} and {εk} are
bounded. We now show that if the algorithm starts from any point in a fixed bounded
trench of fS and employs sufficiently small stepsizes and subgradient errors, then {xk}
is bounded.

Theorem 6.3. Suppose fS is coercive and the algorithm employs a locally
bounded oracle. Fix any point x̄ ∈ S and a bounding tolerance δ̄ ∈ (0,∞). Then
there exist stepsize and error thresholds ν̄max > 0 and ε̄max > 0 with the following
property : If the algorithm starts from a point x1 ∈ Tf(x̄) (e.g., x1 = x̄) and employs

stepsizes νk ≤ ν̄max and errors εk ≤ ε̄max for all k, then {xk} stays in the bounded
trench Tf(x̄)+δ̄ so that {gk} is bounded.

Proof. Let β := f(x̄), ᾱ := β + δ̄. Since the oracle is locally bounded, fS is
continuous on S (cf. Remark 6.2(iii)). By Lemma 2.4(ii), there exists ρ̄ > 0 such that
S∩(Tβ+B2ρ̄) ⊂ Tᾱ, whereas by Lemma 2.4(i) there is α > β such that Tαβ ⊂ Tβ+Bρ̄;
thus

S ∩ (Tαβ +Bρ̄
) ⊂ S ∩ (Tβ +B2ρ̄ ) ⊂ Tᾱ.(6.1)

Let

ε̄max := 1
2 (α− β),(6.2)

C := sup { |g(x, ε)| : x ∈ S ∩ (Tβ +B2ρ̄), ε ≤ ε̄max } ,(6.3)

ν̄max := min
{
ρ̄/C, (α− β)/C2

}
.(6.4)

Note that C <∞, since Tβ is bounded and ε̄max <∞.
Since {xk} ⊂ S and f(x1) ≤ f(x̄) =: β, we have x1 ∈ S ∩ (Tβ +B2ρ̄).
Assuming xk ∈ S∩(Tβ+B2ρ̄) for some k ≥ 1, we now show that xk+1 ∈ S∩(Tβ+

B2ρ̄). Using the bound |xk+1− xk| ≤ νk|gk| (cf. (3.3)) with |gk| = |g(xk, εk)| ≤ C (cf.
(6.3)) and νk ≤ ν̄max ≤ ρ̄/C (cf. (6.4)) gives |xk+1 − xk| ≤ ρ̄. Hence if xk ∈ Tα, then
from Tα ⊂ Tαβ (cf. (2.2)), the first inclusion of (6.1), and the fact that xk+1 ∈ S we
get

xk+1 ∈ S ∩ (xk +Bρ̄
) ⊂ S ∩ (Tα +Bρ̄ ) ⊂ S ∩ (Tαβ +Bρ̄

) ⊂ S ∩ (Tβ +B2ρ̄ ) .

Next, suppose xk /∈ Tα, i.e.,

f(xk) > α.(6.5)
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Since xk ∈ S ∩ (Tβ +B2ρ̄), we have |xk−x| ≤ 2ρ̄ for x = PTβ
xk. Next, by (6.2)–(6.4),

εk ≤ ε̄max ≤ 1
2 (α− β) and 1

2 |gk|2νk ≤ 1
2C

2ν̄max ≤ 1
2 (α− β).(6.6)

Using the estimate (3.1) with fS(x) ≤ β and the bounds (6.5) and (6.6), we obtain

|xk+1 − x|2 − |xk − x|2 ≤ −2νk
[
f(xk)− f(x)− εk − 1

2 |gk|2νk
] ≤ 0.

Thus |xk+1 − x| ≤ |xk − x| ≤ 2ρ̄ with x ∈ Tβ , so xk+1 ∈ S ∩ (Tβ +B2ρ̄).
Therefore, by induction, for all k we have xk ∈ S ∩ (Tβ + B2ρ̄), and hence (cf.

(6.3)) |gk| ≤ C and (cf. (6.1)) xk ∈ Tᾱ.
In view of Theorem 6.3, we may employ the following bounding strategy that

generates finitely many restarts indexed by l = 1, 2, . . . . Fixing x̄ ∈ S and δ̄ > 0, pick
positive sequences {νlmax} and {εlmax} such that νlmax → 0 and εlmax → 0 if l → ∞.
For the current l ≥ 1, start the algorithm from x̄ (or the best point found so far if
l > 1), using stepsizes νk ≤ νlmax and errors εk ≤ εlmax until for some k (if any) it is
discovered that

f(xk) > f(x̄) + δ̄,(6.7)

in which case increase l by 1, restart the algorithm, etc.
A special case of the above strategy consists of picking sequences νk → 0 and

εk → 0, and resetting xk+1 to x̄ (or the best point found so far) if (6.7) holds.
Ensuring that supk |gk| < ∞, this version meets the assumptions of Theorem 4.1
if
∑
k νk = ∞ and of Theorem 3.4 if additionally

∑
k ν

2
k < ∞ and

∑
k νkεk < ∞.

However, the general version allows us to satisfy the assumptions of Theorem 4.1
with limk νk > 0 and limk εk > 0.

To avoid calculating f(xk), the test (6.7) may be replaced by |xk| > R for R such
that Tf(x̄)+δ̄ ⊂ BR; this ensures the boundedness of {xk} and {gk} as before. How-
ever, finding such R may be difficult, so the following result motivates an alternative
bounding strategy.

Theorem 6.4. Suppose fS is coercive and the algorithm employs a locally
bounded oracle. Then for each β ∈ (f∗,∞) and ε̄max ∈ [0,∞) there exists ν̄max > 0
such that if fS(x1) ≤ β, νk ≤ ν̄max, and εk ≤ ε̄max for all k, then {xk} and {gk} are
bounded.

Proof. We show only how to modify the proof of Theorem 6.3. Let ᾱ := ∞,
α > β + 2ε̄max. Invoking Lemma 2.4(i), pick ρ̄ > 0 such that Tαβ ⊂ Tβ + Bρ̄. Then

we have (6.1), whereas (6.2) is replaced by ε̄max ≤ 1
2 (α − β); the rest goes on as

before.
In view of Theorem 6.4, we may use the following bounding strategy that generates

finitely many restarts indexed by l = 1, 2, . . . . Fixing x̄ ∈ S and ε̄max ≥ 0, pick positive
sequences νlmax → 0 and Rl → ∞. For the current l ≥ 1, start the algorithm from
x̄ (or the best point found so far if l > 1), using stepsizes νk ≤ νlmax and errors
εk ≤ ε̄max; if

|xk| > Rl(6.8)

for some k, then increase l by 1, restart the algorithm, etc.
The test (6.8) may be replaced by max{|xk − x1|, νk|gk|, |gk|} > Rl.
This strategy also meets the assumptions of Theorem 4.1, if

∑
k νk = ∞, and of

Theorem 3.4 if additionally
∑
k ν

2
k < ∞ and

∑
k νkεk < ∞. Note that, in contrast

with (6.7), its resetting test (6.8) does not require calculating f(xk).
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Yet another bounding strategy stems from the following extension of Corollary
4.2.

Theorem 6.5. Suppose that ν̂ := supk νk, γ̂ := supk γk, and ε̂ := supk εk are
finite and fS is coercive. Then {xk} is bounded.

Proof. We show only how to modify the proof of Theorem 6.3. Let β := f(x1),
ᾱ := ∞, α > β + 2 max{ε̂, γ̂}. Invoking Lemma 2.4(i), pick ρ̄ ≥ (2γ̂ν̂)1/2 such that
Tαβ ⊂ Tβ +Bρ̄. Then, by (3.3) and (3.5), we have |xk+1−xk|2 ≤ ν2

k |gk|2 = 2νkγk and

hence |xk+1 − xk| ≤ ρ̄, εk ≤ 1
2 (α − β) and 1

2 |gk|2νk ≤ 1
2 (α − β) as in (6.6); the rest

goes on as before.

Theorem 6.5 suggests the following bounding strategy with resets indexed by
l = 1, 2, . . . . Fixing x̄ ∈ S, ε̄max ∈ [0,∞), and γmax ∈ (0,∞), pick a positive sequence
νlmax → 0. For the current l ≥ 1, start the algorithm from x̄ (or the best point found
so far if l > 1), using stepsizes νk ≤ νlmax and errors εk ≤ ε̄max; if γk > γmax for some
k, then increase l by 1, restart the algorithm, etc. Under the assumptions of Theorem
6.4, only finitely many resets occur (otherwise we would have Ĝ := supk |gk| < ∞
and 1

2 Ĝ
2νlmax > γmax at each reset, contradicting νlmax → 0), so Theorem 6.5 implies

the boundedness of {xk}. (A special case of this strategy consists of using sequences
νk → 0 and εk ≤ ε̄max, and resetting xk+1 to x1 whenever γk > γmax.) Alternatively,
the test γk > γmax may be replaced by |gk| > Gl, where Gl → ∞ as l → ∞ (e.g.,
Gl+1 := max{|gk|, 10Gl}).

Remark 6.6. For S = R
n and εk ≡ 0, Theorem 6.3 subsumes in the convex

case [MGN87, Lem. 9.1] (which employs (6.7) with x̄ = x1), whereas Theorem 6.4
subsumes a result of [Sho79, p. 39]. We note that the proof of [MGN87, Lem. 9.1] is
quite complicated, whereas that of [Sho79, p. 39] does not extend to the constrained
case.

7. Using scaled stepsizes.

7.1. Extension of Ermoliev’s framework. We now highlight an idea that is
implicit in the pioneering paper of Ermoliev [Erm66, sect. 9]: to ensure convergence,
the stepsize νk may be chosen as νk := λkµk, where λk is fairly arbitrary (e.g.,
λk := k−1), but µk should damp the possible growth of |gk|. We first discuss general
conditions on the choice of µk and then provide several examples.

Theorem 7.1. Suppose that ε := limk→∞ εk < ∞ and the algorithm employs
stepsizes νk := λkµk with λk > 0,

∑∞
k=1 λk =∞, λ := limk→∞ λk <∞, and µk > 0

such that

γ̄ := lim
k→∞

1
2µk|gk|2 <∞,(7.1)

lim
k→∞

µk > 0 whenever {xk} is bounded.(7.2)

Then
∑∞
k=1 νk =∞ whenever {xk} is bounded. Further, we have the following state-

ments:

(i) limk→∞ f(xk) ≤ f∗+δ, where δ := limk→∞ δk ≤ γ+ε with γ := limk→∞ γk ≤
γ̄λ.

(ii) If fS is coercive and σ̄ := limk→∞ νk|gk| is finite, which holds if

lim
k→∞

µk|gk| <∞ or µ := lim
k→∞

µk <∞,(7.3)
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then the conclusions of Theorem 4.1 hold with ν := limk→∞ νk ≤ λµ and

σ := lim
k→∞

|xk+1 − xk| ≤ σ̄ ≤ λmin

{
lim
k→∞

µk|gk|, (2µγ̄)1/2
}
.(7.4)

(iii) If additionally
∑∞
k=1 λ

2
k < ∞ and the assumptions ε < ∞ and γ̄ < ∞

are replaced by
∑∞
k=1 νkεk < ∞ and supk µk|gk| < ∞ (retaining

∑∞
k=1 λk = ∞ and

(7.2)) then we have the following statements:
(iii1) limk→∞ f(xk) = f∗.
(iii2) S∗ �= ∅ iff {xk} is bounded.
(iii3) If S∗ �= ∅, then the assumptions of Theorem 3.4 hold ; in particular, {xk}

and {x̄k} converge to some x∞ ∈ S∗.
Proof. Note that

∑
k λk = ∞ and (7.2) imply

∑
k νk = ∞ whenever {xk} is

bounded.
(i) For contradiction, suppose there exist x ∈ S, v > 0, and kv such that f(xk) ≥

f(x) + δ + v for all k ≥ kv. Pick k′v ≥ kv such that δk ≤ δ + v for all k ≥ k′v. Then
(3.6) yields |xk+1−x| ≤ |xk−x| for all k ≥ k′v. Thus {xk} is bounded, so

∑
k νk =∞.

Hence Theorem 3.2(ii), (vi) gives δ̄sup ≤ δ and limk f(xk) ≤ f∗ + δ, a contradiction.
(ii) We have σ ≤ σ̄ < ∞ from |xk+1 − xk| ≤ νk|gk| (cf. (3.3)), σ̄ ≤ λ limk µk|gk|,

and σ̄2 ≤ λ2µ2γ̄ by the definitions of σ̄, νk, λ, γ̄, and µ. Using (i) in the proof of
Theorem 4.1(i) gives limk dSδ

(xk) = 0. Then the proof of Theorem 4.1(ii) yields the
boundedness of {xk}, so

∑
k νk = ∞. Hence we may invoke Theorem 3.2(ii), (vi) in

the proof of Theorem 4.1(i), and Theorem 3.2(iv) in the proof of Theorem 4.1(iii).
(iii) Since C̃ := supk µk|gk| < ∞, we have

∑
k ν

2
k |gk|2 ≤ C̃2

∑
k λ

2
k < ∞. (iii1)

Suppose limk f(xk) > f∗. Thus there are x ∈ S and k̄ such that f(xk) ≥ f(x) for
all k ≥ k̄. Then by the proof of “(i) ⇒ (ii)” in Theorem 3.4, {xk} is bounded, so∑
k νk = ∞ and Theorems 3.4 and 3.2(iii) yield limk f(xk) = f∗, a contradiction.

(iii2–iii3) If S∗ �= ∅, then {xk} is bounded by Theorem 3.4. On the other hand, if
{xk} is bounded, then

∑
k νk =∞, so the conclusion follows from Theorem 3.4.

Remark 7.2. When supk εk <∞, (7.2) holds if the oracle is locally bounded and

lim
k→∞

µk > 0 whenever {gk} is bounded.(7.5)

Next, we exhibit several choices of the scaling coefficients µk for Theorem 7.1
that ensure convergence without any indirect assumptions on the boundedness of
{gk} which are implicit in the results of sections 3 and 4, and hence do not need the
bounding techniques of section 6.

Example 7.3. For a locally bounded oracle (with supk εk < ∞) and a constant
G > 0, the requirements (7.1) and (7.3) of Theorem 7.1 and (7.5) are met by the
scaling coefficients

µk := max
{ |gk|, |gk|2/G}−1

= min
{

1, G/|gk|} |gk|−1,(7.6)

where G replaces |gk| if |gk| = 0 (with µk|gk|2 ≤ G, µk|gk| ≤ 1),

µk := max
{

1, |gk|2/G2
}−1

= min
{

1, G2/|gk|2 }(7.7)

(with µk|gk|2 ≤ G2, µk|gk| ≤ G), and

µk := max
{
G2, |gk|2 }−1

= min
{

1, G2/|gk|2 }G−2(7.8)
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(with µk|gk|2 ≤ 1, µk|gk| ≤ G−1); yet another choice of [NuZ77, Thm. 2] with G ≥ 1
is

µk :=

{
1 if |gk| ≤ G,
|gk|−2 otherwise.

(7.9)

The requirements (7.5), (7.3), and supk µk|gk| <∞ of Theorem 7.1(iii) are met by

µk := |gk|−1,(7.10)

the classical scaling of Shor [Sho62], and its popular variants

µk :=
(
G+ |gk| )−1

, µk := max
{
G, |gk|}−1

, or µk :=
(
G2 + |gk|2 )−1/2

(7.11)

(with µk|gk| ≤ 1), as well as by the choice of [Lis86]

µk := max
{
λk, |gk|

}−1
= min

{
λ−1
k , |gk|−1

}
(7.12)

(using supk λk < ∞ for (7.5)); note that if C := limk→∞ |gk| < ∞ (e.g., {xk} is
bounded), then also (7.1) holds with γ̄ ≤ 1

2C, as required in Theorem 7.1(i)–(ii) (and
σ̄ ≤ λ in (7.4)). Next,

µk := |gk|−2(7.13)

satisfies (7.1) (with γ̄ ≤ 1/2) and (7.5) as required in Theorem 7.1(i), as well as (7.3)
if limk |gk| > 0 (which typically holds in the nondifferentiable case). Thus (7.8) with
a “small” G may be regarded as a regularized version of (7.13) that ensures (7.3), but

µk := max
{
λ2
k, |gk|2

}−1
(7.14)

also meets the requirements of Theorem 7.1(i)–(ii) (with γ̄ ≤ 1/2, νk|gk| ≤ 1, σ̄ ≤ 1).
Note that (7.6)–(7.11) may use a variable G = Gk ∈ [Gmin, Gmax] ⊂ (0,∞).

Remark 7.4.

(i) Theorem 7.1(i) and its proof correct the proof of [Erm66, sect. 9], where the
assumption (7.2) was implicit (and the claim that f(xk)→ f∗ was not proved). Equa-
tion (7.2) is also implicit in [Erm76, Thm. I.3.5] (where supk µk|gk| < ∞ should be
replaced by (7.1)) and in [Erm76, Thm. I.3.6] (where supk µk <∞ is implicit); the lat-
ter is subsumed by Theorem 7.1(ii). Theorem 7.1(iii3) subsumes [Erm76, Thm. III.1.4]
(in the deterministic case).

(ii) Theorem 7.1(ii) subsumes [NuZ77, Thm. 2], which uses (7.9) and ε = λ = 0.
Theorem 7.1(iii) subsumes [Sch83, Lem. on p. 539] with µk := (G2 + |gk|2)−1/2 and
εk ≡ 0, and [AIS98, Thm. 1], in which µk := max{1, |gk|}−1 and εk ≤ Cελk with Cε <
∞. Theorem 7.1(iii1) subsumes [Lis86, Thm. on p. 70], which uses (7.12) and εk ≡ 0,
whereas Theorem 7.1(iii3) subsumes [LPS00, Thm. 10] (with µk := max{1, |gk|}−1,∑
k λkεk <∞, εk → 0) and [DeV81, Thm. III.4.5], which uses (7.10) and εk ≡ 0.

We also have an analogue of Theorem 5.1 for scaled stepsizes.
Theorem 7.5. Assume that ε := limk→∞ εk < ∞, {xk} is bounded, and C :=

limk→∞ |gk| < ∞ (e.g., the oracle is locally bounded). Suppose that the algorithm
employs stepsizes νk := λkµk with λk, µk > 0,

∑∞
k=1 λk =∞, λ := limk→∞ λk <∞,

limk→∞ µk > 0, such that γ̄ := limk→∞ 1
2µk|gk|2 <∞ and σ̄ := limk→∞ νk|gk| <∞.
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Let µ := limk→∞ µk and ν := limk→∞ νk. Then the conclusions of Theorem 5.1 hold
with γ ≤ γ̄λ, γ̄ ≤ 1

2C
2µ, σ ≤ σ̄ ≤ λmin{limk→∞ µk|gk|, (2µγ̄)1/2}, and ν ≤ λµ.

Proof. Invoke Theorem 7.1(ii) in the proof of Theorem 5.1.
Remark 7.6.

(i) For a locally bounded oracle, the requirements of Theorem 7.5 are met by
the scaling coefficients given by (7.6)–(7.12).

(ii) Theorem 7.5 subsumes [MGN87, Thm. 9.2] in the convex case with λ = ε =
0.

7.2. Analysis of Shor-type scalings. Additional results for the Shor-type
scalings (7.10)–(7.12) require the following assumption.

Assumption 7.7. The objective f is finite-valued and gk ∈ ∂εkf(xk) for all k.
Under Assumption 7.7, the objective f is continuous, as required for the following

basic estimates inspired by [Nes84, Lem. 1].
Lemma 7.8. Suppose Assumption 7.7 holds. Fixing a point x ∈ S, define the

function

ωx(ρ) := max
x+Bρ

f for ρ ≥ 0,(7.15)

and let ρ+
k be the distance from the point x to the halfspace {y :

〈
gk, xk − y〉 ≤ 0}:

ρ+
k := max { ρk, 0 } with ρk :=

{ 〈
gk/|gk|, xk − x〉 if gk �= 0,

0 otherwise.
(7.16)

The function ωx is continuous and nondecreasing, and we have the estimate

f(xk) ≤ ωx(ρ+
k ) + εk.(7.17)

The stepsize νk := λkµk with λk > 0 and µk ≤ |gk|−1 (as in (7.10)–(7.12)) produces

|xk+1 − x|2 − |xk − x|2 ≤ −2νk|gk|
(
ρk − 1

2νk|gk|
) ≤ −2λkµk|gk|

(
ρk − 1

2λk
)
.

(7.18)

Proof. Suppose f(x) < f(xk)− εk. (Otherwise (7.17) holds with ωx(ρ
+
k ) ≥ f(x).)

Then ρk > 0 (since gk ∈ ∂εkf(xk)). The point x̂ := x + ρk
|gk|g

k satisfies |x̂ − x| = ρk

and
〈
gk, xk − x̂〉 = 0, so f(x̂) ≤ ωx(ρk) and f(x̂) ≥ f(xk)− εk (from gk ∈ ∂εkf(xk));

thus (7.17) holds. For (7.18), rewrite (3.4) with νk := λkµk and use µk|gk| ≤ 1.
We have the following analogue of Theorem 7.1(i) for the scalings (7.10)–(7.12).
Theorem 7.9. Suppose Assumption 7.7 holds, ε := limk→∞ εk <∞, and the al-

gorithm employs stepsizes νk := λkµk with λk > 0,
∑∞
k=1 λk =∞, λ := limk→∞ λk <

∞, and µk chosen as in (7.10)–(7.12). Then we have the following statements:
(i) limk→∞ f(xk) ≤ infx∈S maxx+Bλ/2

f + ε.

(ii) If λ = 0 (i.e., limk→∞ λk = 0), then limk→∞ f(xk) ≤ f∗ + ε.
(iii) If S∗ �= ∅, then limk→∞ f(xk) ≤ infx∈S∗ maxx+Bλ/2

f+ε ≤ supS∗+Bλ/2
f+ε.

Proof. We need only to prove item (i), since (ii) and (iii) follow immediately from
(i).

First, suppose µk is chosen via (7.10). Then for x ∈ S and ρk defined by (7.16)
we have

lim
k→∞

ρk ≤ 1
2λ.(7.19)
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Indeed, summing up (7.18) with µk|gk| replaced by 1 produces the Cesáro estimate

ρ̄k :=

∑k
j=1 λjρj∑k
j=1 λj

≤ |x
1 − x|2 +

∑k
j=1 λ

2
j

2
∑k
j=1 λj

,(7.20)

which combined with
∑
k λk = ∞ yields limk ρk ≤ limk ρ̄k ≤ 1

2λ (cf. Lemma 2.1).
By (7.17) and (7.19), we have limk→∞ f(xk) ≤ maxx+Bλ/2

f + ε for each x ∈ S, as
required.

Similarly, for the remaining choices (7.11)–(7.12), assertion (i) is established if
(7.19) holds, so suppose limk ρk >

1
2λ for some x ∈ S. Thus, since λ := limk λk, we

have ρk >
1
2λk for large k and (7.18) shows that {xk} is bounded. We consider two

cases.
First, suppose limk |gk| = 0. Then a subsequence gkj → 0, and taking limits in the

subgradient inequality f(y) ≥ f(xkj )−εkj +
〈
gkj , y − xkj〉 gives limk f(xk) ≤ f(y)+ε

for each y; thus assertion (i) holds.

Second, suppose limk |gk| > 0. Write νk := λkµk as νk = λ̂kµ̂k with λ̂k :=

λkµk|gk| and µ̂k := |gk|−1. Note that λ̂k ≤ λk (since µk ≤ |gk|−1) and limk µk|gk| > 0
for the choices (7.11)–(7.12) (using limk |gk| > 0 and limk λk <∞ for (7.12)). The first

property gives λ̂ := limk λ̂ ≤ λ, whereas the second one combined with
∑
k λk = ∞

implies
∑
k λ̂k =∞. Hence by replacing λk, µk by λ̂k, µ̂k in the argument of the first

paragraph we obtain assertion (i) with λ replaced by λ̂; since λ̂ ≤ λ, (i) must hold for
λ as well.

A result on finite convergence is given in part (ii) of the following corollary.
Corollary 7.10. Under the assumptions of Theorem 7.9, suppose that the

optimal set S∗ is nonempty and εk ≡ 0 so that λ := limk→∞ λk determines the
asymptotic accuracy. Then we have the following statements:

(i) For every δ̂ > 0, if λ is small enough so that ωx(
1
2λ) < f∗ + δ̂ for some

x ∈ S∗ (cf. (7.15)), then limk→∞ f(xk) < f∗ + δ̂.
(ii) For every ρ > 1

2λ and x ∈ S∗, if ωx(ρ) > f∗ or the Shor scaling (7.10)

is used, then there is an iteration k̂ such that f(xk̂) = f(x̂) for a point x̂ satisfying
|x̂ − x| < ρ; in particular, if x + Bρ ⊂ S∗ and the Shor scaling (7.10) is employed,

then xk̂ ∈ S∗.
Proof. (i) By (7.15) and Theorem 7.9(iii), limk f(xk) ≤ ωx( 1

2λ).
(ii) The function ωx is increasing for ρ such that ωx(ρ) > f(x) = f∗ (since any

maximizer y of (7.15) satisfies |y − x| = ρ by convexity), so limk f(xk) ≤ ωx(
1
2λ) <

ωx(ρ) yields the existence of k̂ such that f(xk̂) < ωx(ρ). For the scaling (7.10), since

limk ρk ≤ 1
2λ < ρ by (7.19), for k̂ such that ρ+

k̂
< ρ we have f(xk̂) ≤ ωx(ρ

+

k̂
) by

(7.17). The existence of x̂ follows from the continuity of f in (7.15), with f(x̂) = f∗
if x+Bρ ⊂ S∗.

The Shor-type scalings (7.10)–(7.12) have the following analogue of Theorem
7.1(ii).

Theorem 7.11. Suppose Assumption 7.7 holds, ε := limk→∞ εk < ∞, the algo-
rithm employs stepsizes νk := λkµk with λk > 0,

∑∞
k=1 λk = ∞, λ := limk→∞ λk <

∞, µk chosen as in (7.10)–(7.12), and fS is coercive. Then σ := limk→∞ |xk+1−xk| ≤
λ. Let

δ̂ := γ̂ + ε with γ̂ := max
S∗+Bλ/2

f − f∗.(7.21)

Then we have the following statements:
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(i) limk→∞ dSδ̂
(xk) = 0 and {xk} has a cluster point in Sδ̂.

(ii) limk→∞ dSδ̂∗
(xk) = 0, where S δ̂∗ is the neighborhood of S∗ defined by (cf.

Lemma 2.4(i))

S δ̂∗ := S∗ +Bρδ̂+σ with ρδ̂ := max
{
dS∗(x) : x ∈ Sδ̂

}
.(7.22)

Thus {xk} is bounded and its cluster points belong to S δ̂∗.
(iii) C := limk→∞ |gk| is finite and the conclusions of Theorem 7.1(i)–(ii) hold

with γ̄ ≤ 1
2C; in particular, the conclusions of Theorem 4.1 hold with γ ≤ 1

2Cλ

and σ ≤ λ so that assertions (i) and (ii) hold with δ̂ replaced by min{δ, δ̂}, where
δ := limk δk ≤ 1

2Cλ+ ε.
Proof. As in the proof of Theorem 4.1, the closedness and coercivity of fS imply

that the sets S∗ ⊂ Sδ̂ ⊂ S∗ + Bρδ̂ ⊂ S δ̂∗ are nonempty and compact (with γ̂ < ∞
because f is continuous). Further, (3.3) implies |xk+1 − xk| ≤ λkµk|gk| ≤ λk, and
hence σ ≤ λ.

(i) By Theorem 7.9(iii) and (7.21), we have limk f(xk) ≤ f∗ + γ̂ + ε = f∗ + δ̂, so

the conclusion follows upon replacing δ by δ̂ in the proof of Theorem 4.1(i).
(ii) Fixing v > 0, let λv := λ + v, γv := maxS∗+Bλv/2

f − f∗, δv := γv + ε + v,
α := αv := f∗ + δv, ρα := maxTα dSδ̂

(so that Tα ⊂ Sδ̂ +Bρα ; cf. (2.1), (2.2)), and (cf.
(7.22))

Vv := S δ̂∗ +Bρα+v = S∗ +Bρδ̂+σ+ρα+v.(7.23)

By (7.21), γv ≥ γ̂, δv > δ̂, and αv > f∗ + δ̂. Since S∗ is compact and f is continuous,

for v ↓ 0 we have γv ↓ γ̂, δv ↓ δ̂, αv ↓ f∗ + δ̂, and ρα ↓ 0 (cf. Lemma 2.4(i) with

β := f∗ + δ̂).
Since λ := limk λk, ε := limk εk and σ := limk |xk+1 − xk|, there is kv < ∞ such

that

λk ≤ λv, εk ≤ ε+ v, and |xk+1 − xk| ≤ σ + v ∀k ≥ kv.(7.24)

Since limk dSδ̂
(xk) = 0 by (i), there exists k = k′v ≥ kv such that xk ∈ Sδ̂ + Bv;

then Sδ̂ ⊂ S δ̂∗ implies xk ∈ Vv (cf. (7.23)).
Assuming xk ∈ Vv for some k ≥ k′v, we now show that xk+1 ∈ Vv. If xk ∈ Tα,

then from the third inequality of (7.24), Tα ⊂ Sδ̂+Bρα , and Sδ̂ ⊂ S∗+Bρδ̂ (cf. (7.22))
we get

xk+1 ∈ Tα +Bσ+v ⊂ Sδ̂ +Bρα+σ+v ⊂ S∗ +Bρδ̂ +Bρα+σ+v = S∗ +Bρδ̂+σ+ρα+v,

so xk+1 ∈ Vv (cf. (7.23)). Thus suppose xk /∈ Tα. Then, by the second inequality of
(7.24),

f(xk)− εk > α− εk = f∗ + γv + ε+ v − εk ≥ f∗ + γv = max
S∗+Bλv/2

f,

so for x = PS∗x
k, by Lemma 7.8, we have ωx(

1
2λv) < f(xk)− εk ≤ ωx(ρ+

k ), ρk >
1
2λv,

and |xk+1 − x| ≤ |xk − x| because λk ≤ λv in (7.18) due to the first inequality of
(7.24). Since x ∈ S∗ and xk ∈ Vv, the inequality |xk+1−x| ≤ |xk−x| and (7.23) yield
xk+1 ∈ Vv.
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Therefore, by induction for each k ≥ k′v, xk ∈ Vv and hence (cf. (7.23)) dSδ̂∗
(xk) ≤

ρα + v. Since ρα ↓ 0 as v ↓ 0, dSδ̂∗
(xk) → 0. The rest follows as in the proof of

Theorem 4.1(ii).

(iii) We have supk |gk| <∞, since {xk} is bounded, supk εk <∞, and the oracle
is locally bounded under Assumption 7.7 (cf. Remark 6.2(i)). The conclusion follows
from Theorem 7.1 and the discussion of (7.10)–(7.12) in Example 7.3.

Remark 7.12.

(i) Theorem 7.11(ii) may be augmented as follows: (ii1) if λ = ε = 0, then

S δ̂∗ = Sδ̂ = S∗ and limk→∞ dS∗(x
k) = 0; (ii2) limk→∞ f(xk) ≤ maxS∩Sδ̂∗

f (so that

limk→∞ f(xk) = f∗ if λ = ε = 0). Indeed, this follows as in Remark 4.3(i).
(ii) For λ > 0 (i.e., nonvanishing stepsizes), the asymptotic accuracy determined

by γ̂ in (7.21) may depend on the behavior of f outside the feasible set S, whereas
the corresponding bound of Theorem 4.1 expressed by γ ≤ 1

2λ limk |gk| depends on
the properties of f seen by the algorithm inside S; the bound of Theorem 7.11(iii)

using min{δ, δ̂} combines the best of both worlds.
(iii) The estimate (7.17) extends [Nes84, Lem. 1] (to εk > 0). Theorem 7.9

subsumes [Pol67, Thm. 1] (which uses (7.10) and εk ≡ 0). For the Shor scaling (7.10),
Corollary 7.10 subsumes [Sho79, Thm. 2.1 and Cors. 1–2] (where λk ≡ λ > 0) and
[DeV81, Cor. III.4.1] (where λ = 0), whereas Theorem 7.11(i)–(ii) subsumes [DeV81,
Thms. III.4.1–4] and some results of [DeV81, sect. IV.5]; the proof of a related result
[LPS00, Thm. 6] is wrong.

7.3. Shor’s bounding strategy. The following result helps in analyzing the
bounding strategy of Shor [Sho79, Thm. 2.4].

Proposition 7.13. Suppose that Assumption 7.7 holds and fS is coercive. Fix
any point x̄ ∈ S, a step bound ρ̄ ∈ (0,∞), and an error threshold ε̄max ∈ [0,∞). If
fS(x1) ≤ f(x̄), νk|gk| ≤ ρ̄, and εk ≤ ε̄max for all k, then {xk} and {gk} are bounded.

Proof. Let α := maxx̄+Bρ̄ f + ε̄max. Since f(x1) ≤ f(x̄), we have x1, x̄ ∈ Tα (cf.
(2.1)). First, suppose xk ∈ Tα. Since |xk+1 − xk| ≤ νk|gk| ≤ ρ̄ by (3.3) and our
assumption,

|xk+1 − x̄| ≤ |xk − x̄|+ |xk+1 − xk| ≤ diam(Tα) + ρ̄ if xk ∈ Tα.(7.25)

Next, suppose xk /∈ Tα. Then f(xk) > maxx̄+Bρ̄
f + εk, since εk ≤ ε̄max. Thus for

x = x̄ in Lemma 7.8, we have f(xk) > ωx(ρ̄) + εk (cf. (7.15)), so (7.17) yields ρk > ρ̄,
and then (3.4) or, equivalently, the first inequality of (7.18) with νk|gk| ≤ ρ̄ gives
|xk+1 − x̄| ≤ |xk − x̄|. Combining this with (7.25) yields |xk − x̄| ≤ diam(Tα) + ρ̄ for
all k, since x1, x̄ ∈ Tα.

In the framework of Proposition 7.13, we may use the following bounding strategy
that generates finitely many restarts indexed by l = 1, 2, . . . . Fixing x̄ ∈ S, ρ̄ > 0,
and ε̄max ≥ 0, pick a positive sequence νlmax → 0. For the current l ≥ 1, start the
algorithm from x̄ (or the best point found so far if l > 1), using stepsizes νk ≤ νlmax

and errors εk ≤ ε̄max; if νk|gk| > ρ̄ for some k, then increase l by 1, restart the
algorithm, etc. Since the number of restarts is finite by Theorem 6.4, this strategy
ensures the boundedness of {xk} and {gk}. A special case of this strategy consists
of picking a sequence νk → 0 and resetting xk+1 to x1 whenever νk|gk| > ρ̄ (as in
[Sho79, Thm. 2.4]).

Remark 7.14. Proposition 7.13 also fills a gap in the proof of [Sho79, Thm. 2.4].
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7.4. Fejér-type stepsizes. We now highlight a property of the quadratic scal-
ings (7.6)–(7.9) and (7.13)–(7.14) based on |gk|2 which distinguishes them from the
linear scalings (7.10)–(7.12) that use |gk|.

Corollary 7.15. Suppose that ε := limk→∞ εk <∞ and the algorithm employs
a locally bounded oracle and stepsizes νk := λkµk with λk > 0,

∑∞
k=1 λk = ∞,

and µk chosen as in (7.6)–(7.9) or (7.13)–(7.14). If λ := limk→∞ λk is finite, then
limk→∞ f(xk) ≤ f∗+γ̄λ+ε, where (cf. (7.1)) γ̄ is at most 1

2G for µk chosen via (7.6),
and 1

2G
2 for (7.7), 1

2 for (7.8) and (7.13)–(7.14), and 1
2G

2 for (7.9). Consequently,
we have infk f(xk) ≤ f∗ + 1

2 γ̄λ+ ε if λ is finite whenever infk f(xk) > −∞.

Proof. This follows from Theorem 7.1(i) and the discussion in Example 7.3.

Remark 7.16.

(i) Corollary 7.15 says that for the quadratic scalings (7.6)–(7.9) and (7.13)–
(7.14), the asymptotic objective accuracy can be controlled by choosing the stepsize
value λ a priori. In contrast, the asymptotic accuracy for the linear scalings (7.10)–
(7.12) depends on the value of infx∈S maxx+Bλ/2

f (cf. Thm 7.9), which may be hard
to guess.

(ii) The following adaptive choice of λk meets the requirements of Corollary
7.15. Select λmin ∈ (0,∞), κ ∈ (0, 1), and λ1 ≥ λmin. For each k, letting fkrec :=
minkj=1 f(xj), choose

λk+1 ∈
{

[λmin,∞) if f(xk+1) ≤ fkrec − λmin,
[λmin,max {λmin, κλk}] if f(xk+1) > fkrec − λmin.

(7.26)

Clearly, either fkrec ↓ −∞ (and hence f∗ = −∞) or λk = λmin for all large k.

Our quadratic scalings are related to Fejér stepsizes that reduce the distance to
the solution set S∗. The latter stem from the observation that for x ∈ S∗ and εk = 0,
the optimal stepsize νk that minimizes the right-hand side of the estimate (3.1) has
the form νk = λkµk with λk = f(xk) − f∗ and µk = |gk|−2. Such stepsizes are
analyzed below.

Theorem 7.17. Suppose that f∗ > −∞ and the algorithm employs a locally
bounded oracle and stepsizes

νk := κk
[
f(xk)− f∗

] |gk|−2 with κk ∈ [κmin, κmax] ⊂ (0, 2).(7.27)

(i) If ε := limk→∞ εk is finite, then limk→∞ f(xk) ≤ f∗ + 2
2−κmax

ε.
(ii) If the solution set S∗ is nonempty and for all k

εk ≤ 1
2κε(2− κk)

[
f(xk)− f∗

]
with κε ∈ [0, 1),(7.28)

then {xk} converges to some solution x∞ ∈ S∗ and limk→∞ f(xk) = f∗.
Proof. (i) For contradiction, suppose 2−κmax

2 limk→∞ λk > ε, where λk := f(xk)−
f∗. Since ε := limk εk ≥ 0 and f∗ := infS f , there exist κ ∈ (0, 1), x ∈ S, and kε such
that

κ 2−κmax

2 λk ≥ f(x)− f∗ + εk ∀k ≥ kε.(7.29)

Using the fact that λk := f(xk) − f∗ ≥ 0, (7.27), (7.29), and again (7.27) in (3.1)



APPROXIMATE SUBGRADIENT METHODS 827

yields

|xk+1 − x|2 − |xk − x|2 ≤ −2νk
[
f∗ − f(x)− εk + f(xk)− f∗ − 1

2νk|gk|2
]

= −2νk
[
f∗ − f(x)− εk + λk − 1

2κkλk
]

≤ −2νk(1− κ) 2−κmax

2 λk

≤ −κmin(1− κ)(2− κmax)λ
2
k/|gk|2 < 0 ∀k ≥ kε.(7.30)

By (7.30), {xk} is bounded and
∑
k λ

2
k/|gk|2 <∞. Hence supk |gk| <∞ (because the

oracle is locally bounded and ε <∞) and λ2
k/|gk|2 → 0 yields λk → 0, a contradiction.

(ii) For any x ∈ S∗, using (7.28) and (7.27) as in (7.30) yields

|xk+1 − x|2 − |xk − x|2 ≤ −2νk
[

1
2 (2− κk)λk − εk

]
≤ −2νk(1− κε) 2−κmax

2 λk

≤ −κmin(1− κε)(2− κmax)λ
2
k/|gk|2 < 0 ∀k ≥ 1,(7.31)

so again {xk} is bounded and λk/|gk| → 0. Then ε := limk εk <∞ by (7.28) (since f is
continuous because the oracle is bounded), and as in (i) we get λk := f(xk)− f∗ → 0.
Further, {xk} has a cluster point x∞ ∈ S with f(x∞) ≤ f∗ (since S and f are
closed), i.e., x∞ ∈ S∗. Setting x = x∞ in (7.31) shows that |xk − x∞| ↓ 0, i.e., xk →
x∞.

Remark 7.18. In contrast to standard results, Theorem 7.17(i) does not assume
nonemptiness of the solution set S∗. Theorem 7.17(ii) subsumes [Pol69, Thm. 1]
(where εk ≡ 0) and [Brä95, Thm. 2.4] (for a special oracle). As in [Brä95, sect. 2],
condition (7.28) may be replaced by infk κk(2− κk − 2εk/λk) > 0 with (7.27) relaxed
to κk ∈ [0, 2].

Since the optimal value f∗ in (7.27) is usually unknown, it may be replaced by
a target level fklev := fkrec − δ̃k with δ̃k updated as in (7.26); the resulting scheme is
analyzed below.

Theorem 7.19. Suppose that ε := limk→∞ εk <∞ and the algorithm employs a
locally bounded oracle and stepsizes νk := λkµk with

λk := f(xk)− fklev, fklev := fkrec − δ̃k,(7.32)

µk := κk|gk|−2, κk ∈ [κmin, κmax],(7.33)

where fkrec := minkj=1 f(xj), 0 < κmin ≤ κmax ≤ 2, and δ̃k > 0 is such that δ̃ :=

limk→∞ δ̃k ∈ (0,∞) whenever f∞rec := infk f(xk) > −∞ (e.g., δ̃k ≡ δ̃ > 0). Then
either f∞rec = −∞ = f∗ or f∞rec ≤ f∗ + δ̃ + ε with δ̃ <∞.

Proof. If f∞rec = −∞, then f∗ ≤ infk f(xk) = −∞, so assuming f∞rec > −∞,
suppose f∞rec > f∗ + ε + δ̃. Then there exist x ∈ S and v > 0 such that fkrec ≥
f(x) + ε+ δ̃+ v for all k, so using (7.32) with δ̃ := limk δ̃k and ε := limk εk we deduce
the existence of kv such that

fklev − f(x)− εk = fkrec − f(x)− δ̃k − εk ≥ δ̃ − δ̃k + ε− εk + v ≥ 1
2v(7.34)

for all k ≥ kv. Since λk ≥ δ̃k > 0 by (7.32) and µk|gk|2 ≤ κmax by (7.33), we have
νk|gk|2 ≤ κmaxλk. Hence using (7.32), (7.34), and κmax ≤ 2 in the estimate (3.1)
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yields

|xk+1 − x|2 − |xk − x|2 ≤ −2νk
[
fklev − f(x)− εk + f(xk)− fklev − 1

2νk|gk|2
]

≤ −2νk
[
fklev − f(x)− εk + λk − 1

2κmaxλk
]

≤ −νk [ v + (2− κmax)λk ] ≤ −vνk < 0 ∀k ≥ kv.(7.35)

By (7.35), {xk} is bounded and
∑
k νk < ∞. Hence Ĝ := supk |gk| < ∞ (because

the oracle is locally bounded and ε < ∞) and limk νk = 0. However, νk := λkµk ≥
δ̃kκminĜ

−2 by (7.32)–(7.33), where κmin > 0, so we get δ̃ := limk δ̃k = 0, a contradic-
tion.

Remark 7.20.

(i) The following adaptive choice of δ̃k meets the requirements of Theorem 7.19.
Select δ̃min ∈ (0,∞), κ ∈ (0, 1), and δ̃1 ≥ δ̃min. For each k, choose

δ̃k+1 ∈
{

[δ̃min,∞) if f(xk+1) ≤ fkrec − δ̃min,[
δ̃min,max

{
δ̃min, κδ̃k

}]
if f(xk+1) > fkrec − δ̃min.

(7.36)

Clearly, either fkrec ↓ −∞ (and hence f∗ = −∞) or δ̃k = δ̃min for all large k.
(ii) A special case of (7.36) introduced in [NeB01, eq. (2.19)] is to set δ̃k+1 := ηδ̃k

if f(xk+1) ≤ fklev, δ̃k+1 := max{δ̃min, κδ̃k} otherwise, where η ∈ [1,∞). For this case
Theorem 7.19 subsumes [NeB01, Rem. 2.1] (where εk ≡ 0 and κmax < 2 in (7.33)). In
the exact case (εk ≡ 0) similar schemes with nonvanishing level gaps are considered in
[Kiw96b, Thm. 4.4], [Kiw98, Thm. 4.2], and [SCT00]; vanishing level gaps are studied
in [Brä93, GoK99, KLL99b, NeB01].

8. Efficiency estimates. In order to derive efficiency estimates, in this section
we assume that the optimal set S∗ is nonempty and that the sequences {xk}, {gk},
and {εk} are bounded.

For some stepsizes, sharper estimates may be derived by replacing the index j = 1
in (3.2), (3.7), (3.8), and (3.10) by j = k′, where k′ depends on k, e.g., k′ := � 12k�.
Thus for

f̄k :=

k∑
j=k′

νjf(xj)/νksum, x̄
k :=

k∑
j=k′

νjx
j/νksum, ε̄k :=

k∑
j=k′

νjεj/ν
k
sum, ν

k
sum :=

k∑
j=k′

νj ,

(8.1)

replacing 1 by k′ in (3.2) and using x := PS∗x
k′ yields the estimate

f̄k − f∗ ≤ ∆k + ε̄k with ∆k :=
d 2
S∗(x

k′) +
∑k
j=k′ ν

2
j |gj |2

2
∑k
j=k′ νj

.(8.2)

This is indeed an accuracy estimate, since we still have (cf. (3.9), (3.14))

f(x̄k) ≤ f̄k and min
{
f(xj) : j = k′ : k

} ≤ f̄k.(8.3)

Our efficiency estimates involve the (problem and algorithm-dependent) quanti-
ties

D̂ := supk dS∗(x
k) and Ĝ := supk |gk|.(8.4)
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To provide freedom for implementations, we allow for additional scaling factors

Dk ∈ [Dmin, Dmax ] ⊂ (0,∞) and Gk ∈ [Gmin, Gmax ] ⊂ (0,∞).(8.5)

For a fixed s ∈ [1/2, 1], we consider the following stepsizes and their efficiency factors:

νk :=
Dkk

−s

max{|gk|, |gk|2/Gk} with c(8.6) := max{Ĝ,Gmin, Ĝ
2/Gmin}D̂

2 +D2
max

Dmin
,(8.6)

νk :=
Dkk

−s

max{Gk, |gk|2/Gk} with c(8.7) := max{Gmax, Ĝ
2/Gmin}D̂

2 +D2
max

Dmin
,(8.7)

νk :=
Dkk

−s

|gk| with c(8.8) := max{Ĝ,Gmin}D̂
2 +D2

max

Dmin
,(8.8)

νk :=
Dkk

−s

Gk
with c(8.9) := Gmax

D̂2 +D2
max(Ĝ/Gmin)2

Dmin
,(8.9)

where |gk| is replaced by Gmin if |gk| = 0. For such stepsizes, the sums involved in
(8.2) may be bounded via the following lemma.

Lemma 8.1. For k ≥ 1 and s ∈ [1/2, 1], we have the following statements:

(i)
∑k
j=
 1

2k� j
−2s ≤ 1 + ln 2 and

∑k
j=
 1

2k� j
−s ≥ (2− 21/2)(k + 1)1−s.

(ii)
∑k
j=1 j

−2s ≤ min{ 2s
2s−1 , 1 + ln k} and

∑k
j=1 j

−s ≥ max{ln(k + 1), (2 −
21/2)(k + 1)1−s}.

Proof. For s ∈ (1/2, 1), this follows from standard integration arguments (cf.

[Nes89, p. 157]), using the facts that 2s−1−1
s−1 ≥ 2 − 21/2 for (i), k1−2s−1

1−2s ≤ ln k, and
(k+1)1−s−1

1−s ≥ ln(k + 1) for (ii); the rest follows by continuity.
We may now state our efficiency estimates for the stepsizes (8.6)–(8.9).
Theorem 8.2. For a fixed s ∈ [1/2, 1], consider any stepsize rule from (8.6)–

(8.9) and its efficiency factor c (e.g., c := c(8.6) for (8.6)). Then for each k we
have

f̄k − f∗ ≤ ε̄k +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + ln 2)c

(4− 23/2)(k + 1)1−s
if k′ =

⌈
1

2
k

⌉
,

min
{

2s
2s−1 , 1 + ln k

}
c

max
{
2 ln(k + 1), (4− 23/2)(k + 1)1−s

} if k′ = 1.

(8.10)

If the errors satisfy εk ≤ Cεk
−s for some constant Cε, and the stepsizes are chosen

via (8.7) or (8.9), then we also have

ε̄k ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + ln 2)Cεcε
(2− 21/2)(k + 1)1−s

if k′ =

⌈
1

2
k

⌉
,

min
{

2s
2s−1 , 1 + ln k

}
Cεcε

max
{
ln(k + 1), (2− 21/2)(k + 1)1−s

} if k′ = 1,

(8.11)

where cε := max{Gmax,Ĝ
2/Gmin}Dmax

GminDmin
for (8.7) and cε := DmaxGmax

DminGmin
for (8.9); also (8.11)

holds with cε := max{Gmin,Ĝ
2/Gmin}Dmax

GminDmin
for (8.6) and cε := max{Ĝ,Gmin}Dmax

GminDmin
for (8.8)

provided that |gk| is replaced by max{|gk|, Gmin} in the stepsizes of (8.6) and (8.8),
in which case the bound (8.10) remains valid.
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Proof. For (8.10), it suffices to bound ∆k in (8.2) by using dS∗(x
k′) ≤ D̂ (cf.

(8.4)), and then |gk| ≤ Ĝ and (8.5) together with Lemma 8.1 for the sums. For
(8.11), the sums of ε̄k (cf. (8.1)) are estimated in a similar way.

The estimates (8.10) and (8.11) combine nicely into an overall efficiency estimate.
Remark 8.3.

(i) It follows from general complexity results [BTMN01, Prop. 4.1] that for
εk ≡ 0 and n large enough, a lower bound on minkj=1 f(xj)− f∗ is of order O(k−1/2).
Since (8.3) and (8.10) imply an upper bound of the same order for s = 1/2 and
k′ = � 12k�, this choice is optimal from the complexity viewpoint. The switch from

k′ = � 12k� to k′ = 1 degrades the bound moderately to O(k−1/2 ln k), but the popular
choice of s = 1 has a much worse bound of O(1/ ln k). On the other hand, for
s = 1/2 we cannot have

∑
k ν

2
k <∞ as required for convergence of {xk} in Theorem

3.4; however, choosing s slightly larger than 1/2 combines the best of both worlds:
convergence of {xk} and efficiency of order O(ks−1) comparable to O(k−1/2).

(ii) The stepsize (8.6) corresponds to (7.6) (with λk := Dkk
−s), (8.7) corre-

sponds to both (7.7) and (7.8) (with λk := (Dk/Gk)k
−s and λk := DkGkk

−s, respec-
tively), and (8.8) corresponds to (7.10). For these stepsizes Theorems 7.1 and 7.11
ensure finiteness of D̂ and Ĝ in (8.4) under reasonable conditions. The stepsize (8.9)
may need the bounding strategies of section 6, e.g., for picking Dmax small enough.

(iii) The efficiency factors of (8.6)–(8.9) are of order 2ĜD̂ when Dmin ≈ Dmax ≈
D̂, Gmin ≈ Gmax ≈ Ĝ, but in general the values of D̂ and Ĝ in (8.4) are stepsize-
dependent.

In the language of Theorem 7.1(i), nonvanishing stepsizes ensure only asymptotic
objective accuracy of order δ̃ ≈ γ̄λ (for εk sufficiently small). In this context, efficiency
is understood in terms of bounds on the relative accuracy (∆k− δ̃)/δ̃ (cf. (8.2)–(8.3)).
Roughly speaking, for reasonable stepsizes such bounds have the form (∆̂/2δ̃)2/k,
where ∆̂ measures the variation of f ; a more precise statement is given below.

Proposition 8.4. For fixed λ > 0, G > 0, D := dS∗(x
1), and Ĝ := supk |gk|,

the stepsizes νk exhibited below have the following given efficiency bounds on ∆k (cf.
(8.2)–(8.3) with k′ = 1):

νk :=
λ

max{|gk|, |gk|2/G} ⇒ ∆k ≤ 1

2
Gλ

(
1 +

max{Ĝ,G}2D2

(Gλ)2k

)
,(8.12)

νk :=
λ

max{1, |gk|2/G2} ⇒ ∆k ≤ 1

2
G2λ

(
1 +

max{Ĝ,G}2D2

(G2λ)2k

)
,(8.13)

νk :=
λ

max{G2, |gk|2} ⇒ ∆k ≤ 1

2
λ

(
1 +

max{Ĝ,G}2D2

λ2k

)
,(8.14)

νk :=
λ

|gk|2 ⇒ ∆k ≤ 1

2
λ

(
1 +

Ĝ2D2

λ2k

)
,(8.15)

νk :=
λ

|gk| ⇒ ∆k ≤ 1

2
Ĝλ

(
1 +

Ĝ2D2

(Ĝλ)2k

)
,(8.16)

νk := λ ⇒ ∆k ≤ 1

2
Ĝ2λ

(
1 +

Ĝ2D2

(Ĝ2λ)2k

)
.(8.17)

Here we assume that |gk| is replaced by G in (8.12) and (8.15)–(8.16) whenever
|gk| = 0 and for (8.15)–(8.16) that G is reset to |gk| when |gk| becomes nonzero.
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Proof. Recalling the definition (8.2) of ∆k, simple calculations yield the conclu-
sion.

9. Analysis of the incremental subgradient method.

9.1. Basic incremental estimates. Throughout this section, {xk}, {νk}, {xki },
{εki }, and {gki } denote the sequences involved in the incremental subgradient iteration
(1.4). Further, for each k, we let

fkinc :=

m∑
i=1

fi(x
k
i ),(9.1)

εk :=

m∑
i=1

εki ,(9.2)

C̄k :=

m∑
i=1

C̄ik with C̄ik := max
{ |gki |, |ḡki |} for some ḡki ∈ ∂fSi (xk).

(9.3)

Note that the incremental objective value fkinc is a natural estimate for f(xk), and
the additional subgradients ḡki provide only bounds on f(xk)− fkinc (cf. (9.8), (9.11)).

We start by extending the basic estimates of Lemma 3.1 to the incremental case.
Lemma 9.1. For each x and k ≥ 1, we have

|xk+1 − x|2 − |xk − x|2 ≤ −2νk
[
f(xk)− fS(x)− εk − 1

2 C̄
2
kνk

]
,(9.4)

∑k
j=1 νjf(xj)∑k

j=1 νj
− fS(x) ≤

1
2 |x1 − x|2 +

∑k
j=1

1
2ν

2
j C̄

2
j +

∑k
j=1 νjεj∑k

j=1 νj
,(9.5)

|xk+1 − xk| ≤ νkC̄k,(9.6)

|xk+1 − x|2 − |xk − x|2 ≤ −2νk

[
fkinc − fS(x)− εk − 1

2νk

m∑
i=1

|gki |2
]
,(9.7)

f(xk)− fkinc ≤ νk
m∑
i=1

C̄ik

i−1∑
j=1

|gkj | ≤ νk
m∑
i=1

C̄ik

i−1∑
j=1

C̄jk,(9.8)

fkinc − f(xk)− εk ≤ νk
m∑
i=1

|gki |
i−1∑
j=1

|gkj | ≤ νk
m∑
i=1

C̄ik

i−1∑
j=1

C̄jk,(9.9)

|xki − xk| ≤ νk
i−1∑
j=1

|gkj | ≤ νk
i−1∑
j=1

C̄jk for i = 1: m+ 1.(9.10)
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Proof. Let x ∈ S, rik := |xki − x|. Using the nonexpansiveness of PS and (1.4)
gives

r2i+1,k ≤ |xki − νkgki − x|2 = r2ik − 2νk
〈
gki , x

k
i − x

〉
+ ν2

k |gki |2
≤ r2ik + 2νk

[
fi(x)− fi(xki ) + εki

]
+ ν2

k |gki |2;

sum up and use rk := |xk − x|, xk+1 := xkm+1, and (9.1)–(9.2) to get (9.7). Since
|xki+1−xk| ≤ |xki −xk|+ |xki+1−xki |, where |xki+1−xki | ≤ νk|gki | by (1.4), (9.10) follows
by induction. Summing fi(x

k)−fi(xki ) ≤
〈
ḡki , x

k − xki
〉

(cf. (9.3)) and using (9.1) and
(9.10), we obtain

f(xk)− fkinc =
∑
i

[
fi(x

k)− fi(xki )
] ≤∑

i

|ḡki ||xki − xk| ≤ νk
∑
i

C̄ik
∑
j<i

|gkj |
(9.11)

and hence (9.8); similarly, summing fi(x
k
i )−fi(xk)−εki ≤

〈
gki , x

k
i − xk

〉
(cf. (1.4)) gives

(9.9). Then (9.7), (9.8), and (9.3) yield (9.4), since 2
∑
i C̄ik

∑
j<i C̄jk+

∑
i C̄

2
ik = C̄2

k .
Summing up (9.4) gives (9.5). For fS(x) = ∞, (9.4), (9.5), and (9.7) are triv-
ial. Finally, (9.6) follows from (9.10) with i = m + 1, using xk+1 := xkm+1 and
(9.3).

9.2. General incremental convergence results. All the convergence results
of sections 3 and 4 extend easily to the incremental method.

Corollary 9.2. Theorems 3.2, 3.4, 3.6, 4.1, and Corollary 4.2 hold for the
incremental subgradient method (1.4) with |gk| replaced by C̄k (so that γk := 1

2 C̄
2
kνk

in (3.5) and C := limk→∞ C̄k in Theorems 3.2(vi) and 4.1(iv)).
Proof. Comparing (3.1)–(3.3) with (9.4)–(9.6), we may replace |gk| by C̄k in the

proofs of sections 3.2–3.3 and section 4.
We now give a more refined version of Corollary 4.2 for the incremental case that

employs a slightly weaker assumption (boundedness of |gki | instead of max{|gki |, |ḡki |}).
Lemma 9.3. Suppose that fS is coercive, ν̂ := supk νk < ∞, ε̂ := supk εk < ∞,

and Ci := supk |gki | <∞ for all i. Then {xk} and {xki } are bounded for all i.
Proof. Let x ∈ S∗, C :=

∑
i Ci, σ := Cν̂, and α := f∗ + ε̂ + 1

2C
2ν̂. Since

f(x) = f∗ and fS is coercive, x lies in the bounded set Tα,σ (cf. (2.3)). First, suppose
that fkinc ≤ α. By (9.10) with νk ≤ ν̂, we have maxi |xki − xk| ≤ νkC ≤ σ. Hence
xk ∈ Tα,σ (cf. (2.3) and (9.1)) and |xk+1 − xk| ≤ σ (since xk+1 := xkm+1). Thus

|xk+1 − x| ≤ |xk − x|+ |xk+1 − xk| ≤ diam(Tα,σ) + σ if fkinc ≤ α.(9.12)

Second, if fkinc > α, i.e., fkinc > f(x) + ε̂ + 1
2C

2ν̂, then by using the bounds νk ≤ ν̂,
εk ≤ ε̂, and

∑
i |gki |2 ≤

∑
i C

2
i ≤ C2 in (9.7), we obtain

|xk+1 − x|2 − |xk − x|2 ≤ −2νk
[

1
2C

2ν̂ + ε̂− εk − 1
2νkC

2
] ≤ 0 if fkinc > α.

(9.13)

Combining (9.12) and (9.13) gives |xk − x| ≤ max{diam(Tα,σ) + σ, |x1 − x|} for all k.
Thus {xk} is bounded, and so are {xki } for all i, since maxi |xki − xk| ≤ σ.

Of course, in the incremental case Definition 6.1 is replaced by the following
definition.
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Definition 9.4. We say that the algorithm employs a locally bounded oracle
if gki = gi(x

k, εki ) and ḡki = gi(x
k, 0) for all i and k, where the mappings S × R+ �

(x, ε) �→ gi(x, ε) ∈ ∂εfSi (x) are locally bounded.

The following result complements Lemma 9.3 and enables us to extend Theorem
5.1 to the incremental method.

Lemma 9.5. Suppose that {xk} is bounded and ν̂ := supk νk <∞. Then we have
the following statements:

(i) If the oracle is locally bounded and ε̂ := supk εk <∞, then {xki } is bounded
for all i, and supk C̄k <∞.

(ii) If supk C̄k <∞, then {xki } is bounded for all i.

Proof. (i) By Definition 9.4, {ḡki = gi(x
k, 0)} is bounded for all i. Assuming

Cj := supk C̄jk < ∞ for j < i, by (9.10) we have |xki − xk| ≤ ν̂
∑
j<i Cj (xki = xk if

i = 1). Thus {xki } is bounded, and so is {gki = gi(x
k
i , ε

k
i )} because the oracle is locally

bounded. Hence, by (9.3), Ci := supk C̄ik is finite. The rest follows by induction,
with supk C̄k ≤

∑
i Ci.

(ii) This follows from (9.3) and (9.10) with νk ≤ ν̂.
Corollary 9.6. Theorem 5.1 holds for the incremental subgradient method (1.4)

with |gk| replaced by C̄k (so that γk := 1
2 C̄

2
kνk) and R redefined as R := supi,k |xki |.

Proof. The assumptions of Theorem 5.1 and Lemma 9.5 yield R < ∞. Next, in
the proof of Theorem 5.1, we may replace S and fSi in (1.4) by S′ := S ∩ BR and

fS
′

i := fSi + IBR
, since {xki } ⊂ S′, whereas gki ∈ ∂εki fSi (xki ) implies gki ∈ ∂εki fS

′
i (xki ).

In view of Corollary 9.2, the proof may be finished as before.

Theorems 7.17 and 7.19 also may be extended to the incremental case.

Corollary 9.7. Theorems 7.17 and 7.19 hold for the incremental subgradient
method (1.4) if |gk| in (7.27) and (7.33) is replaced by a constant C ∈ (0,∞) such
that C ≥ supk C̄k.

Proof. Replace |gk| by C in the original proofs, invoking (9.4) instead of
(3.1).

Remark 9.8. Our framework is more general than that of [NeB01, sect. 2], where
each fi is finite-valued and gki ∈ ∂fi(x

k
i ) in (1.4); i.e., εki ≡ 0 and the oracle is

locally bounded. The basic assumption of [NeB01, Ass. 2.1] is supk C̄
k
i <∞ for all i.

Theorem 3.2(ii), (vi) subsumes [NeB01, Props. 2.1–2.2] (with C := supk C̄k), Theorem
3.4 subsumes [NeB01, Prop. 2.4], and Theorem 4.1(ii) subsumes [NeB01, Prop. 2.3]
(with ν = 0). Corollary 9.7 subsumes [NeB01, Props. 2.5–2.6].

9.3. Incremental bounding strategies. We now extend Theorems 6.3 and
6.4 to the incremental case.

Theorem 9.9. Suppose fS is coercive and the algorithm employs a locally
bounded oracle. Fix any point x̄ ∈ S and a tolerance δ̄ ∈ (0,∞). Then there exist
thresholds ν̄max > 0 and ε̄max > 0 with the following property : If the algorithm starts
from a point x1 ∈ Tf(x̄) (e.g., x1 = x̄) and employs stepsizes νk ≤ ν̄max and errors

εk ≤ ε̄max for all k, then xk stays in the bounded trench Tf(x̄)+δ̄ and fkinc ≤ f(x̄)+2δ̄

for all k, and there exist Ci < ∞ such that C̄ik := max{|gki |, |ḡki |} ≤ Ci and
|xki − xk| ≤ νk

∑
j<i Cj for all k and i.

Proof. Let β := f(x̄), ᾱ := β + δ̄. Since the oracle is locally bounded, fS is
continuous on S (cf. Remark 6.2(iii)). By Lemma 2.4(ii), there exists ρ̄ > 0 such
that S ∩ (Tβ + B3ρ̄) ⊂ Tᾱ, whereas by Lemma 2.4(i) there is α ∈ (β, ᾱ) such that
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Tαβ ⊂ Tβ +Bρ̄; thus

S ∩ (Tαβ +Bρ̄
) ⊂ S ∩ (Tβ +B2ρ̄ ) ⊂ S ∩ (Tβ +B3ρ̄ ) ⊂ Tᾱ.(9.14)

Let

ε̄max := 1
2 (α− β),(9.15)

C :=
∑
i

Ci with Ci := sup { |gi(x, ε)| : x ∈ S ∩ (Tβ +B3ρ̄), ε ≤ ε̄max } ,
(9.16)

ν̄max := min
{
ρ̄/C, (α− β)/C2

}
.(9.17)

Note that C <∞, since Tβ is bounded and ε̄max <∞.
Since {xk} ⊂ S and f(x1) ≤ f(x̄) =: β, we have x1 ∈ S ∩ (Tβ +B2ρ̄).
Assuming xk ∈ S ∩ (Tβ + B2ρ̄) for some k ≥ 1, we now show that xk+1 ∈

S ∩ (Tβ + B2ρ̄). First, note that, by induction as for (9.10), we have |gki | ≤ Ci for
i = 1: m and

|xki − xk| ≤ νk
∑
j<i

|gkj | ≤ ν̄max

∑
j<i

Cj ≤ ρ̄ for i = 1: m+ 1.(9.18)

Indeed, suppose (9.18) holds for some i ≤ m. (Recall that xk1 = xk.) Then |xki+1−xk| ≤
|xki −xk|+ |xki+1−xki |, where |xki+1−xki | ≤ νk|gki | by (1.4) with |gki | = |gi(xki , εki )| ≤ Ci
(cf. (9.16)) because εki ≤ ε̄max and xki ∈ Tβ+B3ρ̄ from xk ∈ Tβ+B2ρ̄ and |xki −xk| ≤ ρ̄.
Thus (9.18) holds for i increased by 1, with the final inequality due to (9.17). Further,
(9.3) and (9.16) give C̄ik ≤ Ci and C̄k ≤ C, using |ḡki | = |gi(xk, 0)| ≤ Ci. If xk ∈ Tα,
then Tα ⊂ Tαβ (cf. (2.2)), and the first inclusion of (9.14) and (9.18) with xk+1 := xkm+1

yield

xk+1 ∈ S ∩ (xk +Bρ̄
) ⊂ S ∩ (Tα +Bρ̄ ) ⊂ S ∩ (Tαβ +Bρ̄

) ⊂ S ∩ (Tβ +B2ρ̄ ) .

Next, suppose xk /∈ Tα, i.e.,

f(xk) > α.(9.19)

Since xk ∈ S∩ (Tβ +B2ρ̄), we have |xk−x| ≤ 2ρ̄ for x = PTβ
xk. By (9.15) and (9.17),

εk ≤ ε̄max ≤ 1
2 (α− β) and 1

2 C̄
2
kνk ≤ 1

2C
2ν̄max ≤ 1

2 (α− β).(9.20)

Using the estimate (9.4) with fS(x) ≤ β and the bounds (9.19) and (9.20), we obtain

|xk+1 − x|2 − |xk − x|2 ≤ −2νk
[
f(xk)− f(x)− εk − 1

2 C̄
2
kνk

] ≤ 0.

Thus |xk+1 − x| ≤ |xk − x| ≤ 2ρ̄ with x ∈ Tβ , so xk+1 ∈ S ∩ (Tβ +B2ρ̄).
Therefore, by induction, we have xk ∈ S ∩ (Tβ +B2ρ̄) ⊂ Tᾱ (cf. (9.14)), C̄ik ≤ Ci,

and (9.18) for all k. Finally, using (9.9) with f(xk) ≤ ᾱ and
∑
i C̄ik

∑
j<i C̄jk ≤ 1

2 C̄
2
k

together with (9.20) gives fkinc ≤ ᾱ+ α− β ≤ β + 2δ̄, since α < ᾱ := β + δ̄.
Theorem 9.10. Suppose fS is coercive and the algorithm employs a locally

bounded oracle. Then for each β ∈ (f∗,∞) and ε̄max ∈ [0,∞) there exists ν̄max > 0
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such that if fS(x1) ≤ β, νk ≤ ν̄max, and εk ≤ ε̄max for all k, then {xki }, {gki } and
{ḡki } are bounded for all i.

Proof. Modify the proof of Theorem 9.9 as in the proof of Theorem 6.4.

In view of Theorems 9.9–9.10, for the incremental method we may use the bound-
ing strategy with the resetting test (6.7) or the strategy inspired by Theorem 6.4 with
the test (6.8) replaced by maxi |xki | > Rl.

Yet another bounding strategy stems from the following result.

Lemma 9.11. Suppose that fS is coercive and there exist α ∈ R and σ ∈ R+

such that fkinc ≤ α and maxi |xki − xk| ≤ σ for all k. Then {xk} is bounded.

Proof. By (2.3) and (9.1), {xk} lies in the bounded set Tα,σ (cf. Lemma
2.5).

Lemma 9.11 suggests the following bounding strategy with resets indexed by
l = 1, 2, . . . . Fixing x̄ ∈ S, δ̄ ∈ (0,∞), and σ̄ ∈ (0,∞), pick positive sequences
νlmax → 0 and εlmax → 0 as l → ∞. For the current l ≥ 1, start the algorithm from
x̄ (or the best point found so far if l > 1), using stepsizes νk ≤ νlmax and errors
εk ≤ εlmax; if for some k

fkinc > f(x̄) + 2δ̄ or max
i
|xki − xk| > σ̄,(9.21)

then increase l by 1, restart the algorithm, etc. Under the assumptions of Theorem
9.9, only finitely many resets occur, so Lemmas 9.5(i) and 9.11 imply the boundedness
of {xki } and {C̄k}. (A special case of this strategy consists of using sequences νk → 0
and εk → 0, and resetting xk+1 to x1 whenever (9.21) holds.)

9.4. Incremental efficiency estimates. Following section 8, in this subsection
we assume that the optimal set S∗ is nonempty, and that the sequences {xk}, {C̄k}
(cf. (9.3)), and {εk} are bounded. Thus, replacing (8.4) by

D̂ := supk dS∗(x
k) and Ĝ := supk C̄k,(9.22)

we have

C̄k :=

m∑
i=1

C̄ik ≤ Ĝ ≤ mĜmax with |gki | ≤ C̄ik ≤ Ĝmax := maxi supk C̄ik.

(9.23)

We now give estimates for the Cesáro averages of the objective values f̄k (cf.
(8.1)), the Cesáro averages of the incremental objective values (cf. (9.1)) defined by

f̄kinc :=

k∑
j=k′

νjf
j
inc/ν

k
sum with νksum :=

k∑
j=k′

νj ,(9.24)

and the objective values of the incremental record points (cf. [BTMN01, sect. 5])

x̆k := xk̆ with k̆ ∈ Arg min{ f jinc : k′ ≤ j ≤ k }.(9.25)
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Lemma 9.12. In the notation of (8.1), (9.23), (9.24), and (9.25), we have

f̄k − f∗ ≤ ∆k + ε̄k, ∆k :=
d 2
S∗(x

k′) + Ĝ2
∑k
j=k′ ν

2
j

2
∑k
j=k′ νj

,(9.26)

f̄kinc − f∗ ≤ ∆̄k + ε̄k, ∆̄k :=
d 2
S∗(x

k′) + min{Ĝ2,mĜ2
max}

∑k
j=k′ ν

2
j

2
∑k
j=k′ νj

,(9.27)

f(x̆k)− f∗ ≤ ∆̆k + ε̄k, ∆̆k := ∆̄k +
m− 1

2m
Ĝ2 max

j=k′ : k
νj .(9.28)

Proof. Replace |gj | by C̄j in (8.2) (cf. (9.5) and the proof of Corollary 9.2) and
use (9.23) to get (9.26). Summing up (9.7) and using (9.24) and (8.1) (for ε̄k) yields

f̄kinc − fS(x) ≤ |x
k′ − x|2 +

∑k
j=k′ ν

2
j

∑m
i=1 |gji |2

2
∑k
j=k′ νj

+ ε̄k ∀x.(9.29)

Letting x := PS∗x
k′ in (9.29) and bounding

∑
i |gji |2 ≤ min{mĜ2

max, Ĝ
2} (cf. (9.23)),

we get (9.27). Next, we have f k̆inc = minkj=k′ f
j
inc ≤ f̄kinc by (9.24) and (9.25), whereas

by (9.8) and (9.23)

f(x̆k) = f(xk̆) ≤ f k̆inc + νk̆

m∑
i=1

C̄ik̆

i−1∑
j=1

C̄jk̆ ≤ f k̆inc + νk̆
1
2 Ĝ

2(1− 1
m )

(since
∑
i C̄

2
i,k̆
≥ 1

m C̄
2
k̆
); combining these bounds with (9.27) gives (9.28).

The estimate (9.26) bounds the objective values f(x̄k) ≤ f̄k and f(xkrec) ≤ f̄k of
the Cesáro points x̄k and the record points xkrec (cf. (3.14), (8.3)).

We may now present efficiency estimates for stepsizes analogous to those of (8.9).
Theorem 9.13. Consider the following two stepsize rules and their efficiency

factors:

νk :=
Dkk

−s

Gk
with c(9.30) := Gmax

D̂2 +D2
max(Ĝ/Gmin)2

Dmin
,(9.30)

νk :=
Dkk

−s

mGk
with c(9.31) := mGmax

D̂2 +D2
max(Ĝmax/Gmin)2

Dmin
,(9.31)

where s ∈ [1/2, 1], D̂, Ĝ and Ĝmax are defined by (9.22)–(9.23), and Dk and Gk are
scaling factors that satisfy (8.5). Then for each rule we have for all k

f̄k − f∗ ≤ ε̄k +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + ln 2)c

(4− 23/2)(k + 1)1−s
if k′ =

⌈
1

2
k

⌉
,

min
{

2s
2s−1 , 1 + ln k

}
c

max
{
2 ln(k + 1), (4− 23/2)(k + 1)1−s

} if k′ = 1,

(9.32)

where c := c(9.30) for the rule (9.30) and c := c(9.31) for the rule (9.31). Moreover,

for the incremental record points x̆k defined by (9.25) with k′ = � 12k�, we have for
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each k

f(x̆k)− f∗ ≤ ε̄k +
(1 + ln 2)c

(4− 23/2)(k + 1)1−s
+

Dmax

21−sGminks

{
m−1
m Ĝ2 for (9.30),

(m− 1)Ĝ2
max for (9.31),

(9.33)

f(x̆k)− f∗ ≤ ε̄k +
(1 + ln 2)c

(4− 23/2)k1/2
for s = 1/2,(9.34)

where c := 3
2c(9.30) for the rule (9.30) and c := c(9.31) for the rule (9.31). Further, if

Cε := supk k
sεk is finite, then the estimate (8.11) holds with cε := DmaxGmax

DminGmin
so that

ε̄k in (9.32)–(9.34) has the same order in k as its right neighbors.

Proof. It suffices to bound ∆k in (9.26) and ∆̆k in (9.28) by using dS∗(x
k′) ≤ D̂

(cf. (9.22)) and (8.5) together with Lemma 8.1 for the sums.

Remark 9.14.

(i) For both stepsize rules (9.30)–(9.31), Dk should be a guess for dS∗(x
k) (or

for the “diameter of the picture”), but for the first one Gk should be a guess for Ĝ
(e.g.,

∑
i |gk−1

i |), whereas for the second one Gk should be a guess for Ĝmax (e.g.,

maxi |gk−1
i |).

(ii) For comparisons, suppose the feasible set S is bounded and the subgradients
of each objective fi are exact (εki ≡ 0) and bounded by its Lipschitz constant Lfi on

S so that D̂ may be replaced by diam(S), Ĝ by
∑
i Lfi , and Ĝmax by maxi Lfi .

Further, assume that Dmin and Dmax are of order D̂, Gmin and Gmax are of order
Ĝ for (9.30) and Ĝmax for (9.31) so that c(9.30) ≈ 2 diam(S)

∑
i Lfi and c(9.31) ≈

2 diam(S)mmaxi Lfi . Under similar assumptions, the nonincremental version has
c(8.9) ≈ 2 diam(S)Lf , where Lf is the Lipschitz constant of f on S. Of course, Lf ≤∑
i Lfi ≤ mmaxi Lfi . Assuming that maxi Lfi ≤ Lf (as in [BTMN01, Thm. 5.1]),

the efficiency estimates for the incremental version given in Theorem 9.13 are at
most m times larger than those for the ordinary version stated in Theorem 8.2; yet
their ratio decreases when

∑
i Lfi gets closer to Lf ; i.e., all fi become “similar.”

Such “similarity” features help the incremental version to be competitive in practice
[BTMN01, NeB01].

(iii) Remark 8.3(i) on the choice of s and k′ remains valid.
(iv) In the exact case of εk ≡ 0, our estimate (9.34) for the stepsize rule (9.31)

is similar to that of [BTMN01, Thm. 5.1] (for the Euclidean norm).

For nonvanishing stepsizes νk ≡ ν, the asymptotic objective accuracy is of order
1
2 Ĝ

2ν ≤ 1
2m

2Ĝ2
maxν (cf. Corollary 9.2, Thm. 3.2, and (9.22)–(9.23)), and the relative

accuracy may be estimated as in Proposition 8.4 (cf. (8.17)).

Proposition 9.15. For a fixed stepsize νk ≡ ν > 0, we have the following
efficiency bounds on ∆k and ∆̆k defined by (9.26) and (9.28) with k′ = 1:

∆k ≤ 1

2
Ĝ2ν

(
1 +

Ĝ2D2

(Ĝ2ν)2k

)
,(9.35)

∆̆k ≤ 1

2
Ĝ2ν

(
1 +

m− 1

m
+

Ĝ2D2

(Ĝ2ν)2k

)
,(9.36)
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max
{

∆k, ∆̆k

}
≤ 1

2
m2Ĝ2

maxν

(
1 +

m2Ĝ2
maxD

2

(m2Ĝ2
maxν)

2k

)
,(9.37)

where D := dS∗(x
1), Ĝmax := supi,k C̄ik, and Ĝ := supk C̄k ≤ mĜmax.

Proof. This follows easily from the definitions (9.26) and (9.28).
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Abstract. The central path is an infinitely smooth parameterization of the nonnegative real
line, and its convergence properties have been investigated since the mid 1980s. However, the central
“path” followed by an infeasible-interior-point method relies on three parameters instead of one, and
hence is a surface instead of a path. The additional parameters are included to allow for simulta-
neous perturbations in the cost vectors and right-hand side vectors. This paper provides a detailed
analysis of the perturbed central path that is followed by infeasible-interior-point methods, and we
characterize when such a path converges. We develop a set (Hausdorff) convergence property and
show that the central paths impose an equivalence relation on the set of admissible cost vectors. We
conclude with a technique to test for convergence under arbitrary, simultaneous data perturbations.

Key words. interior point methods, sensitivity analysis, central path, linear programming
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1. Introduction. Interior point algorithms have “revolutionized” the field of
mathematical programming [25], and a class of these algorithms, known as path-
following interior-point algorithms, follows the central path toward the optimal set.
The central path has been studied extensively; thus, instead of citing the numerous
articles on the subject, we direct interested readers to the three texts of Roos, Ter-
laky, and Vial [18], Wright [26], and Ye [27], each of which contains an extensive
bibliography and a complete development of the central path.

With the amount of literature available on the central path, one may perceive
that there is little left to understand. However, this is not the case, especially in
semidefinite optimization, where the general convergence of the central path has only
recently been established [9]. One of the main goals of this paper is to characterize
the convergence of a central “path” that depends on multiple parameters. Several
researchers have investigated such convergence [1, 10, 14, 15] (also see [16]), but none
of their works completely characterized the convergence of the perturbed central path
followed by many interior-point algorithms. We approach the problem as a sensitivity
analysis question, and our analysis provides both a characterization of convergence,
which subsequently provides insight into algorithm design, and information about the
stability of solutions. Another strength of our analysis is that it is relatively simple,
requiring only an understanding of real analysis and linear programming (its weak-
ness is that the notation is a bit cumbersome). In related work, Yildirim and Todd
propose an interior-point approach to sensitivity analysis in linear and semidefinite
optimization [29]. They extend their approach to degenerate linear programs in [30].
The asymptotic analysis in the semidefinite case is the topic of [28].

Consider the primal and dual linear programs

(LP ) max{cx : Ax = b, x ≥ 0} and (LD) min{yb : yA+ s = c, s ≥ 0},(1.1)
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where A ∈ Rm×n has full row rank, b ∈ Rm, c ∈ Rn, and y, s, and c are row vectors.
The primal and dual feasible regions are denoted by P and D, respectively, and their
strict interiors are Po = {x ∈ P : x > 0} and Do = {(y, s) ∈ D : s > 0}. The primal
and dual optimal sets are P∗ and D∗. We assume throughout that Slater’s interiority
condition holds, i.e., Po �= ∅ and Do �= ∅. The necessary and sufficient conditions for
optimality are

Ax = b, x ≥ 0, yA+ s = c, s ≥ 0, xisi = 0, i = 1, 2, . . . , n.

The central path is formed by replacing the complementarity constraint, xisi = 0,
with xisi = µ > 0. The fact that A has full row rank implies that for each positive µ
there is a unique solution, denoted (x(µ), y(µ), s(µ)), to the system

Ax = b, x ≥ 0, yA+ s = c, s ≥ 0, xisi = µ, i = 1, 2, . . . , n.(1.2)

An important observation is that the equations in (1.2) are the necessary and sufficient
Lagrange conditions for the penalized linear programs

min

{
cx− µ

n∑
i=1

ln(xi) : x ∈ Po
}

and max

{
yb+ µ

n∑
i=1

ln(si) : (y, s) ∈ Do
}
.

(1.3)

The logarithmic barrier function in these programs is unique in that it is the only
barrier function that yields the Lagrange conditions in (1.2) [13]. The logarithmic
barrier function is also used to define the analytic center of a bounded polyhedron
in the following way. Let S = {x : Ax = b, x ≥ 0} be a bounded polyhedron,
and let I index the components of x that are positive for some feasible element, i.e.,
I = {i : xi > 0 for some x ∈ S}. The analytic center of S is the unique optimizer of

max

{∑
i∈I

ln(xi) : x ∈ S, xi > 0, i ∈ I
}
.

The analytic centers of P and D are denoted by x̄ and (ȳ, s̄), provided that either
P or D is bounded. Frisch [4] and Huard [11] were the first to develop algorithms
using analytic centers, and Sonnevend reintroduced this concept to the mathematical
programming community in [19, 20, 21, 22, 23, 24].

A result first proved by McLinden [12] is that the central path converges to an
optimal analytic center as µ ↓ 0. (Note that we distinguish between a ↓ and a →, the
former indicating that the limit is approached from above.) To make this precise, we
first define the optimal partition, denoted by (B|N), as

B = {i : xi > 0 for some x ∈ P∗} and N = {1, 2, 3, . . . , n}\B.
Allowing a set subscript on a vector (or matrix) to be the subvector (or submatrix)
comprised of the coordinates (or columns) corresponding to the elements in the set,
we have that the optimal partition characterizes the optimal sets

P∗ = {x ∈ P : xN = 0} = {x : ABxB = b, xB ≥ 0, xN = 0} and

D∗ = {(y, s) ∈ D : sB = 0} = {(y, s) : yAB = cB , yAN+sN = cN , sN ≥ 0, sB = 0}.
It is well known that the nonemptiness of the strict interiors of the primal and dual
feasible regions is equivalent to the boundedness of both P∗ and D∗ [18]. The central
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solution, written (x∗, y∗, s∗), is the analytic center of P∗ and D∗, which means that
x∗ and (y∗, s∗) are the unique solutions to

max

{∑
i∈B

ln(xi) : x ∈ P∗, xB > 0

}
,

max

{∑
i∈N

ln(si) : (y, s) ∈ D∗, sN > 0

}
.

McLinden showed in 1980 that the central path converges to (x∗, y∗, s∗) as µ ↓ 0, a
result that is stated in Theorem 1.1.

Theorem 1.1 (see McLinden [12]). We have that

lim
µ↓0

(x(µ), y(µ), s(µ)) = (x∗, y∗, s∗).

Furthermore, if P is bounded, limµ→∞ x(µ) = x̄, and if D is bounded, limµ→∞(y(µ),
s(µ)) = (ȳ, s̄).

Originally, interior-point algorithms assumed the existence of a strictly feasible
primal and dual pair. However, subsequent interior-point algorithms allowed infeasible
starting points, with the idea of starting with any (x0, y0, s0) such that both x0 and
s0 are positive and define the following primal and dual residuals:

rb = Ax0 − b and rc = y0A+ s0 − c.(1.4)

These residuals are scaled and added to b and c in (1.2) to obtain

Ax = b+ ρrb, x ≥ 0, yA+ s = c+ τrc, s ≥ 0, xisi = µ, i = 1, 2, . . . , n.
(1.5)

For ρ = τ = 1, (x0, y0, s0) is strictly feasible. The problem is that, unless the residuals
are zero, the right-hand side vector and cost vector are different from those of the
original problem. So, infeasible-interior-point algorithms start with the perturbed
data b+ ρrb and c+ τrc and then decrease ρ and τ to zero while decreasing µ to zero.
However, this means that the central path no longer relies on the single parameter µ
but on the three parameters µ, ρ, and τ . Unfortunately, convergence is not guaranteed
as µ, ρ, and τ decrease to zero, as shown in [10].

Explaining the convergence behavior of (x(µ), y(µ), s(µ)) under data perturba-
tions falls under the auspices of sensitivity analysis, and this is precisely the perspec-
tive from which we approach the problem. Because we are interested in how the central
path relies on b and c, we extend our notation so that (x(µ, b, c), y(µ, b, c), s(µ, b, c))
is the unique solution to the equations in (1.2). We point out that, because x(µ, b, c)
is the optimizer of the first math program in (1.3), we have for any positive α that
x(µ, b, c) = x(αµ, b, αc) (simply multiply the objective function by α). Similarly,
(y(µ, b, c), s(µ, b, c)) = (y(αµ, αb, c), s(αµ, αb, c)) for α > 0. For the data b and c, the
central path, primal central path, and dual central path are, respectively,

CP(b,c) ≡ {(x(µ, b, c), y(µ, b, c), s(µ, b, c)) : µ > 0},
PCP(b,c) ≡ {x(µ, b, c) : µ > 0},
DCP(b,c) ≡ {(y(µ, b, c), s(µ, b, c)) : µ > 0}.
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In general, we consider sequences bk and ck, the use of which allows for arbitrary,
simultaneous, and independent perturbations in b and c. Obviously, these data per-
turbations encompass the linear changes found in (1.5). Because x, y, and s no longer
depend on a single parameter, we are, technically, dealing with a surface and not a
path. However, for intuitive and geometric reasons, we refer to a perturbed central
path and choose sequences x(µk, bk, ck) from PCP(bk,ck).

As we shall see, allowing nonlinear perturbations in the cost coefficients
significantly increases the difficulty of characterizing the convergence of the perturbed
central path, and we often end up dealing with linear changes. When this is the case,
we let bk = b(ρk) = b + ρkδb and ck = c(τk) = c + τkδc, where the direction vec-
tors δb and δc are understood. Other notational extensions are described in Table 1.1.

Table 1.1

Notation accounting for the dependence on b and c.

Notation Explanation Notation Explanation

Pb Primal feasible region Dc Dual feasible region

Po
b Strict interior of Pb Do

c Strict interior of Dc

P∗
(b,c)

Primal optimal set D∗
(b,c)

Dual optimal set

(P∗
(b,c)

)o Strict interior of P∗
(b,c)

(D∗
(b,c)

)o Strict interior of D∗
(b,c)

x̄(b) Analytic center of Pb (ȳ(c), s̄(c)) Analytic center of Dc

x∗(b, c) Analytic center of P∗
(b,c)

(y∗(b, c), s∗(b, c)) Analytic center of D∗
(b,c)

(B(b, c)|N(b, c)) Optimal partition

All scalar sequences are in R∗
+ = {ν ∈ R : ν ≥ 0} ∪ {∞}, which means that every

scalar sequence has a cluster point (one of which may be ∞). The row, column, and
null spaces of a matrix are denoted by row(A), col(A), and null(A), respectively, and
the projection of v onto the vector space W is denoted by projW v. The capitalization
of a vector indicates the diagonal matrix formed from the vector. So, X is a diagonal
matrix whose diagonal components are x1, x2, . . . , xn. The vector e is the all ones
vector, where length is decided by the context of its use. The standard Big-O, o,
Ω, and Θ notation is used [17]. Other notation is consistent with the Mathematical
Programming Glossary [5].

We accomplish three primary goals in this paper. First, we characterize the con-
vergence of x(µk, bk, c+τkδc) as µk ↓ 0, bk → b, and τk ↓ 0 by providing necessary and
sufficient conditions on (µk, bk, τk). Notice that nonlinear perturbations in b are al-
lowed (but only linear changes in c). This result completely describes the convergence
of the perturbed central path followed by all infeasible-path-following-interior-point
algorithms. Second, we provide a set (Hausdorff) convergence result for the perturbed
Central path. This result shows that while the sequence x(µk, bk, c + τkδc) may not
converge, the sequence of perturbed central paths does converge. Third, we remove
the restriction that the perturbation in c must be linear, and we develop a process to
calculate the limit of x(µk, bk, ck).

Before we begin, we point out that partial solutions are found in the litera-
ture. In [14], Mizuno, Todd, and Ye provide necessary conditions for the cluster
points of the perturbed central path to be contained in the interior of the optimal
set and the boundary of the optimal set. Bonnans and Potra [1] consider the case
of a single shifted center within a specific algorithm environment for the horizontal
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linear complementarity problem. However, these results do not permit independent
changes in b and c because the single parameter that is used controls the perturba-
tions in b and c. Monteiro and Tsuchiya [15] show that x∗(µk, b, c + µkδc) converges
as µk ↓ 0 but, as in [1], this analysis relies on a single parameter. Holder, Sturm,
and Zhang [10] show that for any positive η, x(ηµk, b + ρkδb, c + µkδc) converges as
(µk, ρk) ↓ 0 and x(µk, b + ρkδb, c) converges as (µk, ρk) ↓ 0. Moreover, they prove
that if τk = o(µk), then x(µk, b + ρkδb, c + τkδc) converges as (µk, ρk, τk) ↓ 0. The
results in [10] and [15] provide the actual limit when convergence is guaranteed. As
one can see, there are many sufficient conditions that guarantee the convergence of
x(µk, b+ρkδb, c+τkδc). Our goal is different in that we want to characterize the conver-
gence of x(µk, bk, c+τkδc) by providing necessary and sufficient conditions. A strength
of our analysis is that we explain the entire set of cluster points of x(µk, bk, c+ τkδc).

2. Preliminary results. This section contains foundational material for subse-
quent sections, and several of the results in this section are simple to prove. While
many of these results are used in the literature, some proofs are not readily avail-
able, and we include such proofs for completeness. If a result is proven elsewhere, we
simply cite that reference. Readers familiar with the central path literature will feel
comfortable browsing through the notation and results of this section.

We begin with a study of the data that we are allowed to operate over. We say
that b and c are admissible if the strict interiors of the primal and dual are nonempty.
The admissible data sets are denoted by

G ≡ {(b, c) ∈ Rm × Rn : Pob �= ∅, Doc �= ∅},
G1 ≡ {b ∈ Rm : Pob �= ∅},
G2 ≡ {c ∈ Rn : Doc �= ∅}.

Our definition of admissible does not correspond with the traditional definition of
admissible, which states that (LP ) and (LD) have finite optimal solutions. Our def-
inition is more restrictive because only data for which Pob and Doc are not empty
are included. The first result shows that G is open, which subsequently implies that
arbitrarily small perturbations of b and c remain admissible.

Theorem 2.1. G is an open set.
Proof. Let (b̂, ĉ) ∈ G. Then, there exists x̂ and (ŷ, ŝ) such that Ax̂ = b̂, x̂ > 0,

ŷA + ŝ = ĉ, and ŝ > 0. Let U be an open set in Rn that contains x̂ and has the
property that x ∈ U implies x > 0. Since the rank of A is m, the linear transformation
T : Rn → R

m : x → Ax is onto. Furthermore, since T is a continuous mapping, the
open mapping theorem implies that T (U) is open. Let ε = min{ŝi : i = 1, 2, . . . ,m},
and define V = {c : ‖c− ĉ‖ < ε}. Then (b̂, ĉ) ∈ T (U)× V ⊂ G, and the result follows
since T (U)× V is open.

If x(µk, bk, ck) → x̂, we have that bk = Ax(µk, bk, ck) → Ax̂, which means that
the convergence of bk is a necessary condition of the convergence of x(µk, bk, ck). As
such, we make the following assumption throughout.

Assumption 1. We assume throughout that (b, c) and (bk, ck) are in G. Moreover,
we assume that bk → b (but we do not necessarily assume that ck → c).

Also, for notational convenience we assume that (B|N) is the optimal partition for
(b, c), i.e., (B|N) = (B(b, c)|N(b, c)). The dependence that the optimal partition has
on b and c is indicated only for the perturbed data bk and ck. Sonnevend [19] showed
that x(µ, b, c) is an analytic function over R++ × G (where we abuse the notation so
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that the 2-tuple (µ, (b, c)) is understood to be the 3-tuple (µ, b, c)). Hence,

µ0 > 0⇒ lim
(µk,bk,ck)→(µ0,b,c)

x(µk, bk, ck) = x(µ0, b, c).(2.1)

The next two results show that either the primal objective function is strictly
decreasing along the central path or that the central path degenerates to a single
element.

Theorem 2.2 (see Fiacco and McCormick [3]). For 0 < µ1 < µ2, we have that
c �∈ row(A) if and only if

cx∗(b, c) < cx(µ1, b, c) < cx(µ2, b, c) < cx̄(b).

Similarly, for 0 < µ1 < µ2, we have that b �= 0 if and only if

y∗(b, c)b > y(µ1, b, c)b > y(µ2, b, c)b > ȳ(c)b.

Theorem 2.3 (see Roos, Terlaky, and Vial [18]). The following are equivalent:
1. cx is constant on Pb.
2. x(µ1, b, c) = x(µ2, b, c) for all 0 < µ1 < µ2.
3. x(µ1, b, c) = x(µ2, b, c) for some 0 < µ1 < µ2.
4. c ∈ row(A).
5. s(µ, b, c) = µs(1, b, c) for all 0 < µ.

An observation that we use later is that if c ∈ row(A) and (b, c) ∈ G, then Pb is
bounded. This follows because Pb is bounded if and only if there does not exist dx
such that Adx = 0, dx ≥ 0, and dx �= 0. From Gordon’s theorem of the alternative (a
variant of Farkas’s lemma) this is the same as Pb being bounded if and only if there is
a row vector y such that yA > 0. Suppose that c ∈ row(A), so that ŷA = c for some ŷ.
Then, for any positive µ, we have that 0 < s(µ, b, c) = c−y(µ, b, c)A = (ŷ−y(µ, b, c))A,
and hence Pb is bounded.

We now direct our attention toward linear perturbations. Recall that, for the
understood directions of change δb and δc, we defined b(ρ) as b+ρδb and c(τ) as c+τδc.
Directions of change for which the optimal partition is invariant for sufficiently small
ρ and τ are of particular interest, and we define

H(b, c) = {(δb, δc) : there exists ρ̃ > 0 and τ̃ > 0 such that for all 0 ≤ (ρ, τ) < (ρ̃, τ̃),

(B(b(ρ), c(τ))|N(b(ρ), c(τ))) = (B(b, c)|N(b, c))},
H1(b, c) = {δb : (δb, 0) ∈ H(b, c)},
H2(b, c) = {δc : (0, δc) ∈ H(b, c)}.

Properties of these sets are found in [6] and [7]. The next lemma shows that the
optimal partition characterizes H(b, c), H1(b, c), and H2(b, c).

Lemma 2.4. We have that H1(b, c) = col(AB) and that H2(b, c) = {δc ∈ Rn :
δcB ∈ row(AB)}.

Proof. The partition (B|N) is optimal for the right-hand side b(ρ) if and only if
the following system is consistent:

ABxB = b(ρ), xB > 0, yAB = cB , and yAN < cN .

If δb ∈ col(AB), there exists x′ such that AB(ρx′) = ρδb. Since x∗B(b, c)−ρx′ is positive
for sufficiently small ρ, the above conditions remain consistent for arbitrarily small ρ.
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Hence, col(AB) ⊆ H1(b, c). If the optimal partition is invariant for sufficiently small ρ,
then there exists xB(ρ) such that ABxB(ρ) = b(ρ). Since AB(xB(ρ)−x∗B(b, c)) = ρδb,
we have that δb is in col(AB).

The argument for H2(b, c) is similar, with the difference being that the optimality
conditions are

ABxB = b, xB > 0, yAB = cB(τ), yAN < cN (τ).

The remainder of this section is concerned with establishing the existence of
limits. Lemmas 2.5 and 2.7 provide bounds so that sequences have cluster points, and
Lemma 2.6 and Theorem 2.9 use these bounds to establish limits. Consider the level
set

L(b, c,M) = {(x, y, s) ∈ Pb ×Dc : sx ≤M}.
The next lemma shows that the union over k of the level sets L(bk, ck,M) is bounded,
provided that ck is bounded. The level set argument is similar to Theorem I.4 in [18]
and Lemma 4.2 in [10], with the differences being that ck need not converge and that
independent, arbitrary perturbations in b and c are allowed. (Theorem I.4 does not
permit data perturbations, and Lemma 4.2 allows only linear changes in b and c that
converge.)

Lemma 2.5. If ck is bounded, then for M ≥ 0 we have that
⋃
k L(bk, ck,M) is

bounded.
Proof. Let M ≥ 0 and µ0 > 0. Also, let xk = x(µ0, bk, ck) and sk = s(µ0, bk, ck).

Then, for any x ∈ Pbk and (y, s) ∈ Dck , we have that xk−x ∈ null(A), sk−s ∈ row(A),
and

0 = (sk − s)(xk − x) = skxk − sxk − skx+ sx.(2.2)

So, for any (x, y, s) ∈ L(bk, ck,M), we have that

ski xi ≤ skx+ sxk = skxk + sx ≤ skxk +M.

Since sk > 0 and skxk = µ0n, we have that xi ≤ (M + µ0n)/ski . A similar argument
shows that si ≤ (M + µ0n)/xki . Since y relates to s in a one-to-one, linear fashion,
we have for each k that L(bk, ck,M) is bounded.

To establish that ∪kL(bk, ck,M) is bounded, we first show that x(µ0, bk, ck) and
s(µ0, bk, ck) are Ω(1). Suppose, for the sake of contradiction, that there is a subse-
quence (µ0, bkj , ckj ) such that xi(µ

0, bkj , ckj ) ↓ 0 for some i. Since ckj is bounded,
it contains a convergent subsequence, and we assume without loss of generality that
ckj → c. However, this provides a contradiction because from (2.1) we have that
x(µ0, bkj , ckj )→ x(µ0, b, c) > 0. Hence, x(µ0, bk, ck) = Ω(1). An analogous argument
shows that s(µ0, bk, ck) = Ω(1). We now have that there are positive λ1 and λ2 such
that xi(µ

0, bk, ck) > λ1 and si(µ
0, bk, ck) > λ2. So,

xi ≤ M + µ0n

ski
<

2(M + µ0n)

λ2
and si ≤ M + µ0n

xki
<

2(M + µ0n)

λ1
.

Since these bounds are independent of k, we have that
⋃
k L(bk, ck,M) is

bounded.
Lemma 2.5 does not require that ck converge but only that it be bounded. From

this result we have that if µk ↓ 0 and ck is bounded, then the sequence

(x(µk, bk, ck), y(µk, bk, ck), s(µk, bk, ck))
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has a cluster point. However, an example in [10] shows that these sequences need
not converge, which means that a straightforward extension of Theorem 1.1 is not
available. The next lemma shows that xN and sB approach zero with µ.

Lemma 2.6. If µk ↓ 0 and ck → c, we have that xN (µk, bk, ck) → 0 and
sB(µk, bk, ck)→ 0.

Proof. Lemma 2.5 implies that (x(µk, bk, ck), y(µk, bk, ck), s(µk, bk, ck)) has a con-
vergent subsequence, say,

lim
i→∞

(
x(µki , bki , cki), y(µki , bki , cki), s(µki , bki , cki)

)
= (x̂, ŷ, ŝ) .

Set xi = x(µki , bki , cki), yi = y(µki , bki , cki), and si = s(µki , bki , cki). Since

Axi = bki , xi > 0

yiA+ si = cki , si > 0

sixi = nµki

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ax̂ = b, x̂ ≥ 0

ŷA+ ŝ = c, ŝ ≥ 0

ŝx̂ = 0,

(2.3)

we have that x̂ ∈ P∗
(b,c) = {x ∈ Pb : xN = 0} and (ŷ, ŝ) ∈ D∗

(b,c) = {(y, s) ∈ Dc̄ : sB =

0}, which proves the result.
If µk ↓ 0, ck → c, and x(µk, bk, ck) → x̂, Lemma 2.6 identifies a subvector of x̂

that is zero. Unfortunately, this is not necessarily the largest subvector of x̂ that is
zero, an issue that we address in section 5.

The final objective of this section is to develop sufficient conditions for x(µk, bk, ck)
to converge to the analytic center of a polytope, a result that relies on Lemmas 2.7
and 2.8.

Lemma 2.7 (see Caron, Greenberg, and Holder [2]). If Pb is bounded,
⋃
k Pbk is

bounded.
From Lemma 2.7 we have that a bounded polytope remains bounded under right-

hand side perturbation. We now introduce the concept of set convergence [8] (typically
called Hausdorff convergence), an idea that we use now to establish the existence of a
particular sequence and use later to show that the central path converges as a set. We
say that a sequence of sets Hk converges to the set H if the following two conditions
hold:

1. If hk ∈ Hk and hk → h, then h must be in H.
2. If h ∈ H, then there exists hk ∈ Hk such that hk → h.

From [8] we know that bk → b implies Pbk → Pb, which is important because we
require that elements within the strict interior of the feasible set may be approached
by strictly positive elements. To see that this is true, let x ∈ Pob . Then, since
Pbk → Pb, there is a sequence xk ∈ Pbk such that xk → x, and because x is positive,
we have that xk is positive for sufficiently large k. We state this fact in Lemma 2.8.

Lemma 2.8. If x is in Pob , there exists a sequence xk ∈ Pobk such that xk → x.
The next theorem provides sufficient conditions for x(µk, bk, ck) to converge to

the analytic center of a polytope.
Theorem 2.9. Let Pb be bounded. Then, if the vector sequence ck/µk is bounded

and has the property that every cluster point is in row(A), we have that x(µk, bk, ck)→
x̄(b).

Proof. From Lemma 2.7 we have that x(µk, bk, ck) is bounded. So, there exists a
subsequence such that

x(µki , bki , cki)→ x̂ and
cki

µki
→ ĉ.
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Let xi = x(µki , bki , cki), yi = y(µki , bki , cki), and si = s(µki , bki , cki). Similar to (2.3),
we have that x̂ ∈ Pb. For any i, the necessary and sufficient conditions describing
(xi, yi, si) are

Ax = bki , x > 0, yA+ s = cki , s > 0, and Sx = µkie,

which means that

Axi = bki ,

− yi

µki
A = eT (Xi)−1 − cki

µki
,(2.4)

xi > 0.

From the full row rank of A, we have that

− yi

µki
=

(
eT (Xi)−1 − cki

µki

)
AT

(
AAT

)−1
.

We prove that x̂ is positive so that this last equality implies that the sequence yi/µki

has a limit. Then, since ĉ is in row(A), (2.4) implies that eT X̂−1 is in row(A).
Subsequently, we have that there is a ŷ such that

Ax̂ = b, ŷA = eT X̂−1, x̂ > 0,

and because these are the necessary and sufficient conditions describing x̄(b), the
result is established once we show that x̂ is positive.

From Lemma 2.8 there is a sequence, x̃i ∈ Po
bki

, such that x̃i → x̃ ∈ Pob . The

optimality of xi implies that

cki

µki
xi −

n∑
j=1

ln(xij) ≤
cki

µki
x̃i −

n∑
j=1

ln(x̃ij),

which is equivalent to
n∑
j=1

ln(x̃ij) ≤
cki

µki
(x̃i − xi) +

n∑
j=1

ln(xij).(2.5)

Since x̃i is Ω(1), the left-hand side of this last inequality is bounded from below.
Suppose, for the sake of contradiction, that as i → ∞, xij → 0 for some j. The

boundedness of xi implies that
∑n
j=1 ln(xij) → −∞. Hence, the inequality in (2.5)

implies that (cki/µki)(x̃i−xi)→∞. However, since ĉ ∈ row(A) and (x̃−x̂) ∈ null(A),
we have that

cki

µki
(x̃i − xi)→ ĉ(x̃− x̂) = 0.

Thus, no such j exists, and x̂ > 0.
Corollary 2.10. If Pb is bounded, ck → c, and µk → ∞, then x(µk, bk, ck) →

x̄(b).
Proof. The proof follows immediately from Theorem 2.9 because ck/µk → 0 ∈

row(A).
While only providing sufficient conditions for the convergence of x(µk, bk, ck),

Theorem 2.9 is used in the next section to develop necessary and sufficient conditions.
We point out that neither µk, ck, nor ck/µk had to converge for x(µk, bk, ck) to con-
verge. Because of this, Theorem 2.9 highlights the difficulty of allowing simultaneous
perturbations in µ, b, and c.
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3. Characterizing the convergence of the central path under simul-
taneous parameterization. The goal of this section is to develop necessary and
sufficient conditions on (µk, bk, c(τk)) so that x(µk, bk, c(τk)) converges as µk ↓ 0 and
τk ↓ 0. We assume throughout this section that τk ↓ 0. These conditions are stated
in Theorem 3.8 and they completely characterize the convergence of the perturbed
central path followed by an infeasible-path-following-interior-point algorithm. In this
section, we allow arbitrary perturbations in b and linear changes in c. The case of in-
dependent, arbitrary, nonlinear changes in both b and c is addressed in section 5. Our
first goal is to show that the objective function is constant on “cuts” of the feasible
region, which are defined for any k and positive µ as

C(µ, k) = {xB : ABxB = bk −ANxN (µ, bk, c(τk)), xB ≥ 0}.
C(µ, k) is the subpolyhedron of Pbk formed by fixing xN to be xN (µ, bk, c(τk)).
Lemma 3.1 shows that cBxB is constant on each C(µ, k).

Lemma 3.1. For any k and positive µ, cBxB is constant on C(µ, k). Conse-
quently, xB(µ, bk, c(τk)) is the unique solution to

min

{
τkδcBxB − µ

∑
i∈B

ln(xi) : ABxB = bk −ANxN (µ, bk, c(τk)), xB > 0

}
.(3.1)

Proof. By definition, x(µ, bk, c(τk)) is the unique solution to

min

{
cx+ τkδcx− µ

n∑
i=1

ln(xi) : x ∈ (Pbk)o

}
.

Holding the components of xN (µ, bk, c(τk)) constant, we have that xB(µ, bk, c(τk)) is
the unique solution to

min

{
cBxB + τkδcBxB − µ

∑
i∈B

ln(xi) : ABxB = bk −ANxN (µ, bk, c(τk)), xB > 0

}
.

So, the result follows once we show that cBxB is constant on C(µ, k). If the columns of
AB are linearly independent, the result is immediate because C(µ, k) contains a single
element. Otherwise, let x1

B and x2
B be in C(µ, k). Then, since x1

B − x2
B ∈ null(AB)

and cB ∈ row(AB), we have that cBx
1
B = cBx

2
B .

The fact that xB(µ, bk, c(τk)) is the unique optimal solution to the math program
in (3.1) is paramount in our analysis. To aid our development, for any positive η we
define zB(η, b, δcB) to be the unique solution to

min

{
δcBzB − η

∑
i∈B

ln(zi) : ABzB = b, zB > 0

}
,(3.2)

which means that {zB(η, b, δcB) : η > 0} is the central path for the linear program

min {δcBzB : ABzB = b, zB ≥ 0} .(3.3)

Because {zB(η, b, δcB) : η > 0} is a central path for fixed b and δcB , zB(η, b, δcB) has a
limit as η ↓ 0, which is denoted by z∗B(b, δcB). The feasible region of the math program
in (3.3) is equipotent to P∗

(b,c) (just remove xN ). Since (b, c) in G implies that P∗
(b,c) is
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Fig. 3.1. Four central paths associated with (LP 1) and how they intersect (note that b′ is
b−ANxN (µ, b, c(1))).

bounded, we have that the feasible region of (3.3) is bounded and, subsequently, that
zB(η, b, δcB) converges as η → ∞ to the analytic center of {zB : ABzB = b, zB ≥ 0}.
Since x∗B(b, c) is this analytic center, we have that limη→∞ zB(η, b, δcB) = x∗B(b, c).
In addition to the convergence properties of zB(η, b, δcB), we have from Lemma 3.1
that

xB(µ, bk, c(τk)) = zB(µ/τk, bk −ANxN (µ, bk, c(τk)), δcB).(3.4)

The following example illustrates the relationship between x(µ, b, c(τ)) and zB(η, b, δcB).
Example 3.1. Consider the linear program

(LP 1) min{x3 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1}.

Allowing x4, x5, and x6 to be the slack variables, we have that the optimal partition
is ({1, 2, 4, 5, 6}|{3}). Let bk = b, so there is no right-hand side perturbation, and
δc = (1, 1/10, 0, 0, 0, 0), so ck = c+ τkδc = (τk, τk/10, 1, 0, 0, 0). Figure 3.1 illustrates
four central paths associated with perturbations of (LP 1). The vertical line is the
unperturbed central path for (LP 1), and the curve in the x1, x2-plane is the central
path for

(LP 2) min{δcBxB : x ∈ P∗
(b,c)}

= min

{
x1 +

1

10
x2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, x3 = 0

}
.

The curve from (1/2, 1/2, 1/2) to (0, 0, 0) is the perturbed central path for τk = 1,
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and hence corresponds to the linear program

(LP 3) min

{
x1 +

(
1

10

)
x2 + x3 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1

}
.

The plane passing through the feasible region is C(1, k), where τk is 1, and the curve
on this subpolyhedron is the central path of

(LP 4) min

{
x1 +

(
1

10

)
x2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, x3 = x3(1, b, c(1))

}
.

The x1, x2, x4, x5, and x6 values of this central path form the z variables defined
by (3.2). Notice that the only difference between (LP 2) and (LP 4) is the value of x3.
This means that the central paths for (LP 2) and (LP 4) are the same except for the
shift in x3. Equation (3.4) shows how the shifted central path of (LP 4) intersects the
perturbed central path of (LP 3).

The equality in (3.4) is important because z has the perturbations in both b and
c modeled as right-hand side perturbations; i.e., there is no perturbation of the cost
vector δcB . This observation indicates that we need to understand the convergence
properties of a central path under right-hand side perturbation. Lemma 3.2 states
that the central solution is continuous with respect to b, and Lemma 3.4 shows that a
perturbed central path converges to the analytic center of the unperturbed optimal set
as long as there is no movement in c. We note that Lemma 3.4 is similar to Theorem
4.1 in [10], with the difference being that our result allows arbitrary perturbations
in b.

Lemma 3.2 (see Caron, Greenberg, and Holder [2]). The analytic center of a
bounded polyhedron is a continuous function of the right-hand side. That is, if bk → b
and Pb is bounded, limk→∞ x̄(bk) = x̄(b). (Note that this result is true for bounded
polyhedrons that are not fully dimensional.)

We note that since the central solution x∗(b, c) is the analytic center of the poly-
tope P∗

(b,c), we have that x∗(b, c) is a continuous function of b. This is stated in the
following corollary for future reference.

Corollary 3.3. The central solution x∗(b, c) is continuous with respect to the
right-hand side b.

Lemma 3.4. If µk ↓ 0, we have that x(µk, bk, c)→ x∗(b, c).
Proof. From Lemma 2.6 we have that xN (µk, bk, c)→ 0, and from Lemma 3.1 we

have that xB(µk, bk, c) is the unique solution to

max

{∑
i∈B

ln(xi) : ABxB = bk −ANxN (µk, bk, c), xB > 0

}
.

This means that xB(µk, bk, c) is the analytic center of {xB : ABxB = bk −ANxN (µk,
bk, c), xB ≥ 0}, and from Lemma 3.2 we have that this analytic center is a continuous
function of bk − ANxN (µk, bk, c). Since bk − ANxN (µk, bk, c) → b, we have that
xB(µk, bk, c) converges to the analytic center of P∗

b = {x : ABxB = b, xB ≥ 0}.
We take a moment to summarize what we have. If µk has a positive limit, we

have from (2.1) that x(µk, bk, c(τk)) converges. The more difficult situation is if µk

decreases to 0. From Lemma 2.6 we have that xN (µk, bk, c(τk)) decreases to zero as
well. So, what is left to know is whether or not xB(µk, bk, c(τk)) converges. Since

xB(µk, bk, c(τk)) = zB(µk/τk, bk −ANxN (µk, bk, c(τk)), δcB),
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we have from Lemma 3.4 that xB converges as long as µk/τk and bk −ANxN (µk, bk,
c(τk)) converge. Again, since xN (µk, bk, c(τk)) decreases to zero, we have that bk −
ANxN (µk, bk, c(τk)) → b. This means that xB(µk, bk, c(τk)) converges as long as
µk/τk converges, a result that is stated in Theorem 3.5. This sufficient condition
is “nearly” necessary for the sequence x(µk, bk, c(τk)) to converge, with the problem
being that if δc is in H2(b, c), then x(µk, bk, c(τk)) may converge even though µk/τk

does not converge.
Theorem 3.5. Let τk ↓ 0 and µk > 0 be such that µk → µ0. Then,

lim
k→∞

x(µk, bk, c(τk)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x(µ0, b, c) if µ0 > 0,

x∗(b, c) if µ0 = 0 and µk/τk →∞,
(zB(η, b, δcB), 0) if µ0 = 0 and µk/τk → η > 0,

(z∗B(b, δcB), 0) if µ0 = 0 and µk/τk → 0.

Proof. The case of µ0 being positive is an immediate consequence of (2.1). Assume
µ0 = 0. From Lemma 2.6 we have that xN (µk, bk, c(τk))→ 0. Consider the situation
of µk/τk → η > 0. Since µk/τk is bounded away from zero, we have from (2.1) that

xB(µk, bk, c(τk)) = zB(µk/τk, bk −ANxN (µk, bk, c(τk)), δcB)→ zB(η, b, δcB),

which establishes the third case. Suppose that µk/τk → 0. We have from Lemma 3.4
that

xB(µk, bk, c(τk)) = zB(µk/τk, bk −ANxN (µk, bk, c(τk)), δcB)→ z∗B(b, δcB).

So, the fourth case is established. Finally, suppose that µk/τk→∞. Then, δcB/(µ
k/τk)

= τkδcB/µ
k → 0 ∈ row(AB), and since P∗

(b,c) is bounded, we have from Theorem 2.9
that

xB(µk, bk, c(τk)) = zB(µk/τk, bk −ANxN (µk, bk, c(τk)), δcB)→ x∗B(b, c).

As previously stated, the reason why the conditions in Theorem 3.5 are not nec-
essary is because if δc is in H2(b, c), then x(µk, bk, c(τk)) may converge even if µk/τk

does not. Lemmas 3.6 and 3.7 address this issue.
Lemma 3.6. Let µk ↓ 0 and δc �∈ H2(b, c). Suppose that the sequence µk/τk does

not converge. Then, if µki/τki and µkj/τkj are two convergent subsequences, we have
that

lim
i→∞

µki/τki �= lim
j→∞

µkj/τkj ⇒ lim
i→∞

x(µki , bki , c(τki)) �= lim
j→∞

x(µkj , bkj , c(τkj )).

Proof. Without loss of generality, we assume that

lim
i→∞

µki/τki < lim
j→∞

µkj/τkj .

From Theorem 3.5 we have that

lim
i→∞

x(µki , bki , c(τki)) =

{
(z∗B(b, δcB), 0) if µki/τki → 0,

(zB(η1, b, δcB), 0) if µki/τki → η1 > 0,

and

lim
j→∞

x(µkj , bkj , c(τkj )) =

{
(zB(η2, b, δcB), 0) if µkj/τkj → η2 <∞,
x∗(b, c) if µkj/τkj →∞.
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Since δc �∈ H2, we have from Lemma 2.4 that δcB �∈ col(AB). The result follows
because from Theorem 2.2 we have that for any η1 < η2,

δcBz
∗
B(b, δcB) < δcBzB(η1, b, δcB) < δcBzB(η2, b, δcB) < δcBx

∗
B(b, c).

Lemma 3.7. If δc ∈ H2(b, c), we have for all positive η that

x∗B(b, c) = zB(η, b, δcB) = z∗B(b, δcB).

Proof. From Lemma 2.4 we have that δcB ∈ row(AB), and from Theorem 2.3
we have that zB(η1, b, δcB) = zB(η2, b, δcB) for all positive η1 and η2. Hence, for any
positive η0,

z∗B(b, δcB) = lim
η↓0

zB(η, b, δcB) = zB(η0, b, δcB) = lim
η→∞ zB(η, b, δcB) = x∗B(b, c).

Theorem 3.8 states the necessary and sufficient conditions for the convergence of
x(µk, bk, c(τk)).

Theorem 3.8. Let τk ↓ 0 and µk ↓ 0. If δc ∈ H2(b, c), then x(µk, bk, c(τk)) →
x∗(b, c). Otherwise, δc �∈ H2(b, c), and x(µk, bk, c(τk)) converges if and only if µk/τk

converges.
Proof. Suppose that δc ∈ H2(b, c). From Lemma 2.6 we have that xN (µk, bk, c(τk))→

0. Also, from Lemma 3.7 we have that

xB(µk, bk, c(τk)) = zB(µk/τk, bk −ANxN (µk, bk, c(τk)), δcB)

= z∗B(bk −ANxN (µk, bk, c(τk)), δcB).

From Lemma 3.2 we know that z∗B is a continuous function of the right-hand side
bk −ANxN (µk, bk, c(τk)). So, from Lemma 3.7 we have that

lim
k→∞

x(µk, bk, c(τk)) = lim
k→∞

(
z∗B(bk −ANxN (µk, bk, c(τk)), δcB), xN (µk, bk, c(τk))

)
= (z∗B(b, δcB), 0)

= x∗(b, c).

Assume that δc �∈ H2(b, c). If µk/τk converges, then Theorem 3.5 shows that
x(µk, bk, c(τk)) converges (and provides the limit). If µk/τk does not converge, this
sequence has at least two cluster points, and hence there are two convergent sub-
sequences, say, µki/τki and µkj/τkj , such that limi→∞ µki/τki �= limj→∞ µkj/τkj .
Theorem 3.5 implies that both

lim
i→∞

x(µki , bki , c(τki)) and lim
j→∞

x(µkj , bkj , c(τkj ))

exist, and Lemma 3.6 implies that these limits are different. Hence, x(µk, bk, c(τk))
does not converge.

We conclude this section by classifying the convergence of the perturbed central
path followed by infeasible-path-following-interior-point algorithms. We require the
dual counterpart of Theorem 3.8, which we state without proof.

Theorem 3.9. Let µk ↓ 0, ρk ↓ 0, and ck → c. If δb ∈ H1(b, c), then
(y(µk, b(ρk), ck), s(µk, b(ρk), ck)) → (y∗(b, c), s∗(b, c)). Otherwise, δb �∈ H1(b, c), and
(y(µk, b(ρk), ck), s(µk, b(ρk), ck)) converges if and only if µk/ρk converges.

As mentioned in section 1, the perturbed central path followed by an infeasible-
path-following-interior-point algorithm has linear perturbations in b and c, with the
directions of change defined by residuals. Table 3.1 shows the sequences whose con-
vergence characterizes the convergence of the perturbed central path.
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Table 3.1

Let δb and δc be defined by the residuals in (1.4). Depending on whether or not δb is in H1(b, c)
and δc is in H2(b, c), we have that the convergence of the indicated sequences is required for, and
guarantees, the convergence of (x(µk, b(ρk), c(τk)), y(µk, b(ρk), c(τk)), s(µk, b(ρk), c(τk))).

Cost perturbation

δc �∈ H2(b, c) δc ∈ H2(b, c)

� �
Right-hand side perturbation δcB �∈ row(AB) δcB ∈ row(AB)

δb �∈ H1(b, c) ⇔ δb �∈ col(AB) µk/ρk & µk/τk µk/ρk

δb ∈ H2(b, c) ⇔ δb ∈ col(AB) µk/τk

Must converge

4. Set convergence. The objective of this section is to establish a set (Haus-
dorff) convergence property for the perturbed central path. Theorem 4.1 shows how
the central path behaves as a set under simultaneous changes in b and c, provided that
the change in c is linear. We illustrate the set convergence result with the following
example.

Example 4.1. As in Example 3.1, consider the linear program

min{x3 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1}.

Let x4, x5, and x6 be the slack variables, bk = b (so there is no right-hand side
perturbation), and δc = (1/4, 1/2000, 0, 0, 0, 0). The central paths corresponding to b
and c(τk), for τk = 1, 0.8, 0.6, 0.4, 0.2, are shown in Figure 4.1. The vertical line is
the central path of the unperturbed problem, i.e., the vertical line is PCP(b,c). The
curve in the x1, x2-plane is the central path for the linear program

min{1/4x1 + 1/2000x2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, x3 = 0} = min{δcBxB : x ∈ P∗}.

Observe that the perturbed central paths converge to these two central paths.
Example 4.1 indicates, and Theorem 4.1 proves, that the perturbed central paths

converge to the union of two central paths. The first of these paths is PCP(b,c),
i.e., the central path of the unperturbed linear program. The second of these paths
is denoted by PCP ∗

(b,c,δc) and corresponds to minimizing δcx over the optimal face.
Hence, PCP ∗

(b,c,δc) is defined by the linear program

min{δcBxB : ABxB = b, xB ≥ 0, xN = 0}.

The elements of PCP ∗
(b,c,δc) have the form of (zB(η, b, δcB), 0), and hence PCP ∗

(b,c,δc)

is equipotent to {zB(η, b, δcB) : η > 0}. The closure of PCP(b,c) is PCP (b,c) and is
either PCP(b,c) ∪ {x∗(b, c)} ∪ {x̄(b)} or PCP(b,c) ∪ {x∗(b, c)}, depending on whether

or not the feasible region is bounded. The closure of PCP ∗
(b,c,δc) is PCP ∗

(b,c,δc) =

PCP ∗
(b,c,δc) ∪ {(z∗B(b, cB), 0)} ∪ {x∗(b, c)}.
Theorem 4.1. If τk ↓ 0, we have that PCP (bk,c(τk)) → PCP (b,c) ∪ PCP ∗

(b,c,δc).
Proof. We begin by establishing that

PCP(bk,c(τk)) → PCP (b,c)

⋃
PCP ∗

(b,c,δc).



856 A. HOLDER

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

xy

z

x
x

x

1
2

3

Fig. 4.1. The central paths of the perturbed data converge to the union of two central paths.

Let xk ∈ PCP(bk,c(τk)) be such that xk → x̂. Then, for each k there is a µk

such that xk = x(µk, bk, c(τk)). Let µki be a convergent subsequence of µk (re-
member that ∞ is a possible cluster point). We consider three cases to show that
x̂ ∈ PCP (b,c) ∪ PCP ∗

(b,c,δc).

Case 1. If µki → µ̂ > 0, we have from (2.1) that

x(µki , bki , c(τki))→ x(µ̂, b, c) = x̂ ∈ PCP (b,c).

Case 2. Suppose that µki ↓ 0. If δc ∈ H2, Theorem 3.8 shows that

x(µki , bki , c(τki))→ x∗(b, c) = x̂ ∈ PCP (b,c).

Otherwise, δc �∈ H2, and Theorem 3.8 shows that µki/τki must converge. From
Theorem 3.5 we have that

x(µki , bki , c(τki))→ x̂ =

⎧⎪⎨
⎪⎩
x∗(b, c) if µki/τki →∞,
(zB(η, b, δcB), 0) if µki/τki → η > 0,

(z∗B(b, δcB), 0) if µki/τki → 0.

Since x∗(b,c)∈PCP (b,c), and both (zB(η,b,δcB),0) and (z∗B(b,δcB),0) are in PCP ∗
(b,c,δc),

we have that x̂ is in PCP (b,c) ∪ PCP ∗
(b,c,δc).

Case 3. Suppose that µki → ∞. Then, c(τki)/µki → 0 ∈ row(A). If we knew
that Pb was bounded, we would have from Theorem 2.9 that

x(µki , bki , c(τki))→ x̂ = x̄(b) ∈ PCP (b,c).

So, our goal in this case becomes to use the fact that x(µki , bki , c(τki)) converges as
µki →∞ to show that Pb is bounded. Let xi=x(µki , bki , c(τki)), yi=y(µki , bki , c(τki)),
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and si = s(µki , bki , c(τki)). From Gordon’s theorem of the alternative, we have that Pb
is bounded if and only if there is a row vector y such that yA > 0. For j = 1, 2, . . . , n,
we have that xijs

i
j = µki , xij → x̂j , and µki →∞. Consequently, we have that sij →∞.

From the dual constraints we have that each component of (−yi)A = si − c(τki)
approaches infinity, and hence the system yA > 0 is consistent. So, Pb is bounded.

At this point we have established that if xk ∈ PCP(bk,c(τk)) converges, then the

limit of this sequence is in PCP (b,c) ∪ PCP ∗
(b,c,δc). We now show that any element

in PCP (b,c) ∪ PCP ∗
(b,c,δc) is the limit of a sequence in PCP(bk,c(τk)). Let x be in

PCP (b,c) ∪ PCP ∗
(b,c,δc). Then, x is one of x̄(b) (if Pb is bounded), x(µ̂, b, c) (for some

positive µ̂), x∗(b, c), (zB(η, b, δcB), 0) (for some positive η), or (z∗B(b, δcB), 0). From
Theorems 2.9 and 3.5 we have for τk = 1/k that

x(µ̂+ 1/k, bk, c(τk))→ x(µ̂, b, c), x
(√
τk, bk, c(τk)

)→ x∗(b, c),

x(ητk, bk, c(τk))→ (zB(η, b, δcB), 0), x((τk)2, bk, c(τk))→ (z∗B(b, δcB), 0),

x(k, bk, c(τk))→ x̄(b) (if Pb is bounded).

Since all four of these sequences are in PCP(bk,c(τk)), we have that

PCP(bk,c(τ)) → PCP (b,c) ∪ PCP ∗
(b,c,δc).

What remains to be shown is that if the sequence xk ∈ PCP (bk,c(τk)) converges and

contains either x∗(bk, c(τk)) or, in the case that Pb is bounded, x̄(bk) infinitely many
times, the limit of this sequence is in PCP (b,c)∪PCP ∗

(b,c,δc). If Pb is bounded, we have
from Lemma 2.7 that Pbk is bounded for sufficiently large k. Furthermore, Lemma 3.2
shows that x̄(b) is a continuous function of b. So, if xk ∈ PCP (bk,c(τk)) contains x̄(bk)

infinitely many times and converges to x̂, we have that x̂ = x̄(b) ∈ PCP (b,c). Suppose

that xk ∈ PCP (bk,c(τk)) converges to x̂ and that this sequence contains x∗(bk, c(τk))
infinitely many times. Without loss of generality, we assume that xk = x∗(bk, c(τk)).
First, because (B|N) need not be the same as (B(bk, c(τk))|N(bk, c(τk))), we do
not automatically know that xkN = x∗N (bk, c(τk)) → 0 (Lemma 2.6 does not apply).
However, xkN does converge to 0 as the following argument shows. Let ε > 0. For
each k we have that

xkN = x∗N (bk, c(τk)) = lim
µ↓0

xN (µ, bk, c(τk)).

So, there is a positive µ̂k such that µ ∈ (0, µ̂k) implies that ‖xN (µ, bk, c(τk)) −
x∗N (bk, c(τk))‖ < ε/2. Choose µk ∈ (0, µ̂k) so that µk ↓ 0. From Lemma 2.6 we
have that xN (µk, bk, c(τk)) → 0. Hence, there exists a natural number K such that
for k ≥ K, we have ‖xN (µk, bk, c(τk))‖ < ε/2. Hence, for k ≥ K,

‖x∗N (bk, c(τk))‖ ≤ ‖x∗N (bk, c(τk))− xN (µk, bk, c(τk))‖+ ‖xN (µk, bk, c(τk))‖ < ε.

So, xkN = x∗N (bk, c(τk))→ 0. Using this fact, Lemma 3.2 to establish the fifth equality,
and Lemma 3.4 to establish the fourth equality, we have that

x̂B = lim
k→∞

x∗B(bk, c(τk)) = lim
k→∞

(
lim
µ↓0

xB(µ, bk, c(τk))
)

= lim
k→∞

(
lim
µ↓0

zB(µ/τk, bk −ANxN (µ, bk, c(τk)), δcB)
)

= lim
k→∞

z∗B(bk −ANx∗N (bk, c(τk)), δcB)

= z∗B(b, δcB).
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Hence, we have that xk = x∗(bk, c(τk)) → (z∗B(b, δcB), 0) ∈ PCP ∗
(b,c,δc), which com-

pletes the proof.
A corollary to Theorem 4.1 is that the perturbed central path is continuous over

H2(b, c), meaning that as long as δc ∈ H2(b, c), PCP (bk,c(τk)) → PCP (b,c). This follows
because if δc ∈ H2(b, c), we have from Lemma 3.7 that

PCP ∗
(b,c,δc) = {x∗(b, c)} ⊂ PCP (b,c).

This result is stated in the following corollary.
Corollary 4.2. We have that if δc ∈ H2(b, c) and τk ↓ 0, then PCP (bk,c(τk)) →

PCP (b,c).
We conclude this section by showing why our results are stated from the primal

perspective. This is because it is possible for bk, c(τk), and x(µk, bk, c(τk)) to converge,
while the dual elements diverge. For example, suppose that c ∈ row(A), which implies
that

• Pb is bounded;
• (B|N) = ({1, 2, . . . , n}|∅);
• x(µk, bk, c(τk)) = xB(µk, bk, c(τk)) = zB(µk/τk, bk, δcB);
• x∗(b, c) = x̄(b).

Let τk ↓ 0 and µk be the sequence 1, 2, 1, 2, 1, 2, . . . . Then, µk/τk → ∞, and we
have from Corollary 2.10 that x(µk, bk, c(τk)) = zB(µk/τk, bk, δcB)→ x∗(b, c) = x̄(b).
However, Theorem 2.3 implies that the corresponding dual sequence s(µk, bk, c(τk))
has the two cluster points of s(1, b, c) and s(2, b, c) = 2s(1, b, c). The problem here is
that si(µ

k, bk, c(τk)) = µk/xi(µ
k, bk, c(τk)), and we see that the dual elements fail to

converge because the sequence µk does not converge. To guarantee the convergence
of s(µk, bk, c(τk)), one needs to guarantee the convergence of µk/xi(µ

k, bk, c(τk)),
i = 1, 2, . . . , n (which is not implied by the convergence of µk and x(µk, bk, c(τk))).
While Theorem 4.3 does not completely resolve this issue, it does show when the
convergence of µk is guaranteed.

Theorem 4.3. Let τk ↓ 0. Then, the convergence of x(µk, bk, c(τk)) implies the
convergence of µk if and only if c �∈ row(A).

Proof. Assume that c ∈ row(A). Then, as discussed after Theorem 2.3, Pb is
bounded. Let µk = 1, 2, 1, 2, . . . and τk = 1/k. Then, µk/τk → ∞, and as just
discussed, x(µk, bk, c(τk)) → x̄(b). Hence, the convergence of x(µk, bk, c(τk)) cannot
guarantee the convergence of µk.

Assume that c �∈ row(A) and suppose, for the sake of contradiction, that µk does
not converge. Then there exist subsequences µki and µkj such that

0 ≤ lim
i→∞

µki < lim
j→∞

µkj ≤ ∞.

If µki → µ1 > 0, we have from (2.1) that x(µki , bki , c(τki)) → x(µ1, b, c). From (2.1)
and Corollary 2.10 we have that

x(µkj , bkj , c(τkj ))→
{
x(µ2, b, c) if µkj → µ2 <∞,
x̄(b) if µkj →∞.

However, Theorem 2.2 shows that cx(µ1, b, c) < cx(µ2, b, c) < cx̄(b), where the last
inequality is included only when x̄ exists. This is a contradiction since it implies that

lim
i→∞

x(µki , bki , c(τki)) �= lim
j→∞

x(µkj , bkj , c(τkj )).
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The only situation left is that of µki ↓ 0. However, if µki ↓ 0, we have the contradiction
from Lemma 2.6 that

0 = lim
i→∞

xN (µki , bki , c(ki)) �= lim
j→∞

xN (µkj , bkj , c(τkj )) > 0.

In this section, we have shown that while the limit of a central path is not con-
tinuous in b and c, the perturbed central paths are well behaved if viewed as a set.
Moreover, from Corollary 4.2 we have that the central path is continuous overH2(b, c).

5. Independent, nonlinear perturbations. In this section we remove the re-
striction that the perturbation in c must be linear. The analysis increases in difficulty,
and characterizing the convergence of the perturbed central path under arbitrary, si-
multaneous, and independent perturbations in b and c remains an open question. We
provide sufficient conditions to guarantee the convergence of x(µk, bk, ck) and develop
a process to find the limit. An example illustrates the difficulties of establishing
exactly when x(µk, bk, ck) converges.

The sufficient conditions require that G2 be partitioned into equivalence classes.

For any b ∈ G1, we say that c1 and c2 in G2 are “A-similar,” denoted by c1
A∼ c2,

if PCP(b,c1) ∩ PCP(b,c2) �= ∅. The first goal of this section is to show that
A∼ is an

equivalence relation on G2. We begin by showing that central paths may not intersect
unless they are equal. The first lemma provides sufficient conditions for two primal
central paths to be equivalent.

Lemma 5.1. Let c10 = projnull(A) c
1 and c20 = projnull(A) c

2. Then, PCP(b,c10)
=

PCP(b,c1) and PCP(b,c20)
= PCP(b,c2). Moreover, if c10 = αc20 for some positive α,

PCP(b,c1) = PCP(b,c2).

Proof. Let c1R = projrow(A) c
1 and c2R = projrow(A) c

2 so that c1 = c10 + c1R and

c2 = c20 + c2R. Let α > 0 be such that c10 = αc20. Since c1R and c2R are in row(A),
we have from Theorem 2.3 that c1Rx and c2Rx are constant on Pb. This means that
x(µ, b, c1) and x(µ, b, c2) are, respectively, the unique solutions to

min

{
c10x− µ

n∑
i=1

ln(xi) : x ∈ Pob
}

and min

{
c20x− µ

n∑
i=1

ln(xi) : x ∈ Pob
}
.

Hence, PCP(b,c10)
= PCP(b,c1) and PCP(b,c20)

= PCP(b,c2). Multiplying the objective

function of the second math program by α shows that x(αµ, b, c1) = x(µ, b, c2), which
implies that PCP(b,c1) = PCP(b,c2).

The following corollary is stated for future reference.
Corollary 5.2. If projnull(A) c

1 = α projnull(A) c
2 for some α > 0, then

x(µ, b, c1) = x(µ, b,projnull(A) c
1) = x(αµ, b,projnull(A) c

2) = x(αµ, b, c2).

Proof. The result is immediate from the proof of Lemma 5.1.
The next theorem establishes that the central paths within a polyhedron are either

the same or disjoint. Since PCP(b,c) contains only those elements that correspond to
a positive µ, this does not say that two different central paths may not terminate at
the same point. However, it does say that two different central paths may not cross
en route to either x∗(b, c) or x̄(b).

Theorem 5.3. If PCP(b,c1) ∩ PCP(b,c2) �= ∅, PCP(b,c1) = PCP(b,c2).
Proof. From Corollary 5.2 we know that there is no loss of generality by assuming

that c1 and c2 are in null(A). Let µ1 and µ2 be positive such that x(µ1, b, c1) =
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x(µ2, b, c2). Since s(µ1, b, c1)X(µ1, b, c1) = µ1eT and s(µ2, b, c1)X(µ2, b, c1) = µ2eT ,
we have that s(µ1, b, c1) = µ1eTX−1(µ1, b, c1) and s(µ2, b, c1) = µ2eTX−1(µ2, b, c1).
From the dual feasibility constraints we have that

c1 − µ1eTX−1(µ1, b, c1)− y(µ1, b, c1)A = 0,

c2 − µ2eTX−1(µ2, b, c2)− y(µ2, b, c2)A = 0.

Multiplying the first equation by 1/µ1, the second equation by 1/µ2, and subtracting
yields

(1/µ1)c1 − (1/µ2)c2 = ((1/µ1)y(µ1, b, c1)− (1/µ2)y(µ2, b, c2))A.

Since the left-hand side is in the null(A) and the right-hand side is in the row(A),
both must be zero. Hence, c1 = (µ1/µ2)c2, and from Lemma 5.1 we have that
PCP(b,c1) = PCP(b,c2).

Two important corollaries follow.

Corollary 5.4. If c1
A∼ c2, PCP(b,c1) = PCP(b,c2).

Corollary 5.5. We have that projnull(A) c
1 = α projnull(A) c

2, for some positive
α if and only if PCP(b,c1) = PCP(b,c2).

Proof. The sufficiency is established by Lemma 5.1. The necessity follows because
if PCP(b,c1) = PCP(b,c2), then there are a positive µ1 and µ2 such that x(µ1, b, c1) =
x(µ2, b, c2), and from the proof of Theorem 5.3 we have that projnull(A) c

1 =

α projnull(A) c
2 for some positive α.

Theorem 5.6 states that
A∼ is indeed an equivalence relation.

Theorem 5.6.
A∼ is an equivalence relation on G2. Furthermore, the equivalence

class of c1 is

[c1]A = {c : projnull(A) c
1 = α projnull(A) c for some positive α}.

Proof. Clearly c1
A∼ c1 and, if c1

A∼ c2, then c2
A∼ c1. So

A∼ is reflexive

and symmetric. From Corollary 5.4 we have that if c1
A∼ c2 and c2

A∼ c3, then

PCP(b,c1) = PCP(b,c2) = PCP(b,c3), which implies that c1
A∼ c3. Hence,

A∼ is transitive
and an equivalence relation. From Theorem 5.3 and Corollary 5.5 we have that the
equivalence classes hold as stated.

Our conditions that guarantee the convergence of x(µk, bk, ck) rely on two new
types of convergence. For a sequence xk, we let C(xk) be the set of cluster points of
xk. Furthermore, for any sequence ck, we set dk = ck/‖ck‖ as long as ck �= 0, and we
define F(ck) to be

F(ck) = C(ck) ∪C(dk).

In addition to the cluster points of ck, the set F contains the “limiting directions”
of the cost vectors. For example, if ck is (1/k, 1/k) for k even and (k, k2) for k
odd, C(ck) = {(0, 0)} and C(dk) = {(1/√2, 1/

√
2), (0, 1)}. We say that ck is class

convergent if the cluster points of ck and the limiting directions of ck are contained
in the same equivalence class.

Definition 5.7. The sequence ck is class convergent to [c]A if F(ck) ⊆ [c]A.
Definition 5.8. The sequence (µk, ck) is proportionately convergent if for any

two subsequences, say cki and ckj , having the property that

lim
i→∞

projnull(A) c
ki/‖cki‖ = α lim

j→∞
projnull(A) c

kj/‖ckj‖,
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we subsequently have that

lim
i→∞

µki/‖cki‖ = α lim
j→∞

µkj/‖ckj‖.

We point out that a proportionately convergent sequence may have the property that
ck contains a subsequence of zeros; however, this subsequence is not a candidate for
either cki or ckj .

The next theorem provides sufficient conditions for x(µk, bk, ck) to converge to an
element of a central path. The sequence ck is not required to converge but is instead
required to be class convergent. As Example 5.1 demonstrates, this weaker condition
on ck is still too restrictive for necessity.

Theorem 5.9. We have that x(µk, bk, ck) converges to an element of PCP(b,c)

provided that
1. ck is class convergent to [c]A,
2. (µk, ck) is proportionately convergent,
3. ck �= 0 for k = 1, 2, 3, . . . , and
4. µk/‖ck‖ = Θ(1).

Proof. Since µk/‖ck‖ = Θ(1) and x(µk, bk, ck) = x(µk/‖ck‖, bk, ck/‖ck‖), we have
from Lemma 2.5 that x(µk, bk, ck) is bounded. The result is established by showing
that all cluster points of x(µk, bk, ck) are equal. Consider the subsequences

x(µki , bki , cki)→ x̂1, x(µkj , bkj , ckj )→ x̂2, cki/‖cki‖ → ĉ1, and ckj/‖ckj‖ → ĉ2.

From the class convergence we have that there is a positive α1 and α2 such that

lim
i→∞

α1 projnull(A) c
ki/‖cki‖ = α1 projnull(A) ĉ

1

= projnull(A) c

= α2 projnull(A) ĉ
2

= lim
j→∞

α2 projnull(A) c
kj/‖ckj‖.

From the proportional convergence of (µk, ck) and the assumption that µk/‖ck‖ is
bounded away from zero, we have that

0 < µ̂ = lim
i→∞

α1µki/‖cki‖ = lim
j→∞

α2µkj/‖ckj‖.

From Corollary 5.2 we see that

x(µki , bki , cki) = x(α1µki/‖cki‖, bki , α1 projnull(A) c
ki/‖cki‖),

x(µkj , bkj , ckj ) = x(α2µkj/‖ckj‖, bkj , α2 projnull(A) c
kj/‖ckj‖).

We now have from (2.1) that

x̂1 = lim
i→∞

x(µki , bki , cki)

= lim
i→∞

x(α1µki/‖cki‖, bki , α1 projnull(A) c
ki/‖cki‖)

= x(µ̂, b,projnull(A) c)

= lim
j→∞

x(α2µkj/‖ckj‖, bkj , α2 projnull(A) c
kj/‖ckj‖)

= lim
j→∞

x(µkj , bkj , ckj )

= x̂2.
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Hence, x(µk, bk, ck) converges to an element in PCP(b,c).
We point out that Theorem 5.9 guarantees convergence only to an element of

PCP(b,c), and hence every component of the limit is positive. This is guaranteed in

the proof by the condition that µk/‖ck‖ = Θ(1). The situation is more complicated
if µk/‖ck‖ ↓ 0, and we illustrate the increased complication in the following example.
This example has the desirable property that ck converges, but even with this property
the convergence of x(µk, bk, ck) requires the analysis of several nested linear programs.
The example shows how we construct the induced sequences of (µk, bk, ck).

Example 5.1. Consider the linear program

min{(1/k)x1 + (1/
√
k)x2 + (1/

√
k)x3 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1}.

Let µk = 1/k, and let x4, x5, and x6 be the slack vectors. We point out that Theo-
rem 5.9 does not apply because µk/‖ck‖ = 1/

√
1 + 2k ↓ 0. We consider a sequence of

linear programs to analyze the convergence of x(µk, bk, ck). The idea is to iteratively
reduce the original problem by “linearizing” the cost-coefficient perturbations and
then use the results from section 3 to identify a collection of variables that must be
zero.

The “root” problem is defined by the limit of ck, which is 0, and is

(LP 0) min{0x1 + 0x2 + 0x3 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1}.
The optimal partition for (LP 0) is (B1|N1) = ({1, 2, 3, 4, 5, 6}|∅). We linearize ck by
rewriting it as

ck = 0 + ‖ck − 0‖
(

ck − 0

‖ck − 0‖
)

= 0 +

√
2k + 1

k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2k + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√
k
√
k

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We let ĉ = 0, τk = ‖ck − 0‖, and δck = (ck − 0)/‖ck − 0‖ so that

x(µk, bk, ck) = x(µk, bk, ĉ+ τkδck).

The constant term ĉ is used in the root problem to identify the optimal partition
(B1|N1), and from Lemma 2.6 we know that the variables indexed by N1 are zero for
every cluster point of x(µk, bk, ck). Unfortunately, these may or may not be the only
variables that are zero (and in this example none of the zero variables are indexed
by N1 because it is empty). The variables in N1 are essentially removed from the
problem by redefining the right-hand side to be bk−AN1xN1(µk, bk, ck), which in this
case is simply bk. If N1 had not been empty, this would have reduced the number of
variables in the problem. The first induced subsequence of (µk, bk, ck) is (µk/τk, bk −
AN1xN1(µk, bk, ck), δckB1) = (µ(1,k), b(1,k), δc

(1,k)
B1 ), where the first superscript indicates

that this is the first induced subsequence. From (3.4) we have that

xB1(µk, bk, ĉ+ τkδck) = xB1(µk/τk, bk −AN1xN1(µk, bk, ck), δckB1),
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where the function on the right-hand side is the z function. We now have that

xB1(µk, bk, ck) = xB1(µk, bk, ĉ+ τkδck)

= xB1(µk/τk, bk −AN1xN1(µk, bk, ck), δckB1)

= xB1

(
µ(1,k), b(1,k), δc

(1,k)
B1

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.1)

If δckB1 had been constant, we could have established the limit of x(µk, bk, ck) from
Theorems 3.5 and 3.8, and this limit would have been on the central path defined by
minimizing δckB1xB1 over the optimal face of the root problem. However, δckB1 is not

constant, and we repeat the process by linearizing the new cost coefficients δc
(1,k)
B1 .

Notice that the sequence δc
(1,k)
B1 does not converge to zero, but rather δc

(1,k)
B1 →

(0, 1/
√

2, 1
√

2, 0, 0, 0)T = δ̂cB1 . The first subproblem is defined by this limit and is

(LP 1) min{(1/
√

2)x2 + (1/
√

2)x3 : 0 ≤ xi ≤ 1, i = 1, 2, 3}.
The optimal partition for LP 1 is (B2|N2) = ({1, 4, 5, 6}|{2, 3}), which partitions B1.

As before, we linearize δc
(1,k)
B1 by rewriting it as

δc
(1,k)
B1 = δ̂cB1 + ‖δc(1,k)B1 − δ̂cB1‖

(
δc

(1,k)
B1 − δ̂cB1

‖δc(1,k)B1 − δ̂cB1‖

)
.

If we let τ (2,k) = ‖δc(1,k)B1 − δ̂cB1‖ and δc
(2,k)
B1 = (δc

(1,k)
B1 − δ̂cB1)/‖δc(1,k)B1 − δ̂cB1‖, then

similar to (5.1) we have that

xB2(µk, bk, ck) = xB2

(
µ(1,k), b(1,k), δc

(1,k)
B1

)
= xB2

(
µ(1,k), b(1,k), δ̂cB1 + τ (2,k)δc

(2,k)
B1

)
= xB2

(
µ(1,k)/τ (2,k), b(1,k) −AN2xN2(µk, bk, ck), δc

(2,k)
B2

)
.

From Lemma 2.6 we have that the components indexed by N2 are zero in every cluster
point of x(µk, bk, ck), and we have moved these variables to the right-hand side in the
last equality (this is the first reduction for this example because N1 was empty). The
remaining components are indexed by B2 ⊆ B1. The second induced sequence of

(µk, bk, ck) is (µ(1,k)/τ (2,k), b(1,k)−AN2xN2(µk, bk, ck), δc
(2,k)
B2 ) = (µ(2,k), b(2,k), δc

(2,k)
B2 ).

It is easily checked that µ(2,k) =
√

2/(2 + 2/(
√

2k +
√

2k + 1)2)→1, which is im-

portant because µ(2,k) does not converge to zero. The second subproblem requires

only the B2 components of the limit of δc
(2,k)
B1 , and it is easy to check that δc

(2,k)
B2 →

(1, 0, 0, 0) (the first component corresponds to x1 and the zero elements correspond
with the slack variables x4, x5, and x6). The second subproblem is

(LP 2) min{x1 : 0 ≤ x1 ≤ 1}.
Since µ(2,k) → 1, we have from (2.1) that

xB2(µk, bk, ck) = xB2

(
µ(2,k), b(2,k), δc

(2,k)
B1

)→ xB2(1, b, δ̂cB2).

We have that x1(1, b, δ̂cB2) is the unique solution to min{x1 +ln(x1)+ ln(1−x1) : 0 ≤
x1 ≤ 1}, and a straightforward calculation shows that x1(1, b, δ̂cB2) = (3−√5)/2. We
conclude that

x(µk, bk, ck)→ ((3−
√

5)/2, 0, 0, (
√

5− 1)/2, 1, 1)T .
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Table 5.1

The process for constructing the induced sequences of (µk, bk, ck).

Step 1 Set j = 0, (B0|N0) = ({1, 2, . . . , n}|∅) and (µk, bk, ck) = (µ(0,k), b(0,k), δc
(0,k)

B0 ).
Step 2 Stop with exit code 0 if any of the following are true:

• Bj = ∅,
• (µ(j,k), b(j,k), δc

(j,k)

Bj ) satisfies conditions (1)–(4) of Theorem 5.9, or

• j ≥ 1 and µ(j,k)/‖δc(j,k)

Bj ‖ → ∞.

Step 3 If we have that ‖δc(j,k)

Bj ‖ �= 0, µ(j,k)/‖δc(j,k)

Bj ‖ ↓ 0, and that there exists a ĉj
Bj such

that δc
(j,k)

Bj is class convergent to [ĉj
Bj ]A

Bj
, then continue with Step 4. Otherwise,

stop with exit code 1.
Step 4 Solve the linear program

(LP j) min
{
ĉj
BjxBj : ABjxBj = b, xBj ≥ 0

}
and let (Bj+1|Nj+1) be the optimal partition.

Step 5 Set

τ (j+1,k) = ‖δc(j,k)

Bj − ĉj
Bj ‖,

µ(j+1,k) = µ(j,k)/τ (j+1,k),

b(j+1,k) = b(j,k) −ANj+1x
j

Nj+1 (µ(j,k), b(j,k), δc
(j,k)

Bj ),

δc
(j+1,k)

Bj = (1/τ (j+1,k))(δc
(j,k)

Bj − ĉj
Bj ).

Step 7 Let j = j + 1 and go to Step 2.

The technique used in Example 5.1 suggests an algorithmic manner for calculating
the limit of x(µk, bk, ck). Instead of trying to calculate this limit directly, we instead
calculate the limit of ck and use this limit to form the root problem. The N set of the
corresponding optimal partition indexes a collection of variables that must decrease
to zero, and in fact, this is the entire collection of zero variables if µ(1,k) has a positive
limit. However, if µ(1,k) decreases to zero, the variables whose value must be zero

are moved to the right-hand side, and the limit of δc
(1,k)
B1 is calculated to form the

first subproblem. Again, we know that any variables listed in the corresponding N
set of the optimal partition are zero in the limit. The process repeats until either all
variables are found to be zero or until µ(j,k) does not converge to zero for some j.

Example 5.1 has the property that the cost coefficients converge at each step,
but the proof of Theorem 5.9 shows that this need not be the case. Instead, at each
step of the procedure we need the cost coefficients to be class convergent. As long
as this is true, we continue to form the induced sequences until we have a criterion
that guarantees either convergence or divergence. The process in Table 5.1 describes
how to construct the induced sequences, and Theorem 5.11 shows that x(µk, bk, ck)
converges if this process terminates with an exit code of 0. In support of this result,
Lemma 5.10 extends Lemma 2.6 to allow the class convergence of ck.

Lemma 5.10. Let (B|N) be the optimal partition for min{cx : Ax = b, x ≥ 0}.
If ck is a nonzero sequence that is class convergent to [c]A and µk/‖ck‖ ↓ 0, then
xN (µk, bk, ck) ↓ 0.

Proof. We have from Theorem 5.6 that there is no loss of generality by assuming
that c is in null(A). Since x(µk, bk, ck) = x(µk/‖ck‖, bk, ck/‖ck‖) and ck/‖ck‖ is
bounded, we have from Lemma 2.5 that x(µk, bk, ck), y(µk, bk, ck), and s(µk, bk, ck)
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are bounded. So, there is a subsequence (µki , bki , cki) such that

x(µki , bki , cki) = x(µki/‖cki‖, bki , cki/‖cki‖)→ x̂,

y(µki/‖cki‖, bki , cki/‖cki‖)→ ŷ,

s(µki/‖cki‖, bki , cki/‖cki‖)→ ŝ,

cki/‖cki‖ → ĉ.

For notational ease, we let

xi = x(µki/‖cki‖, bki , cki/‖cki‖), yi = y(µki/‖cki‖, bki , cki/‖cki‖),
and si = s(µki/‖cki‖, bki , cki/‖cki‖).

From the assumption that ck is class convergent to [c]A, we have that there is a
positive α such that α projnull(A) ĉ = c. Since

Axi = bki ,

yiA+ si = cki/‖cki‖,
sixi = nµki/‖cki‖

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ax̂ = b,

ŷA+ ŝ = ĉ,

ŝx̂ = 0,

we have that x̂ is an optimal solution to min{ĉx : Ax = b, x ≥ 0}. Let ỹ be such
that ỹA = projrow(A) ĉ, from which we have that ĉ = projnull(A) ĉ + projrow(A) ĉ =
projnull(A) ĉ+ ỹA. Substituting this into ŷA+ ŝ = ĉ, we have that

Ax̂ = b, x̂ ≥ 0, α(ŷ − ỹ)A+ αŝ = α projnull(A) ĉ = c, αŝ ≥ 0, and ŝx̂ = 0.

Hence, x̂ is also an optimal solution to min{cx : Ax = b, x ≥ 0}, which implies that
xN (µk, bk, ck)→ x̂N = 0.

Theorem 5.11. If the process in Table 5.1 stops with an exit code of 0, then
x(µk, bk, ck) converges.

Proof. If the process terminates with j = 0 and an exit code of 0, then we have

that (µk, bk, ck) = (µ(0,k), b(0,k), δc
(0,k)
B0 ) satisfies conditions 1–4 of Theorem 5.9, which

implies that x(µk, bk, ck) converges. Suppose that the process in Table 5.1 terminates

with an exit code of 0 and that the induced sequences are (µ(j,k), b(j,k), δc
(j,k)
Bj−1) for

j = 1, 2, . . . , J . The proof follows with a careful inspection of how the sequence
x(µk, bk, ck) partitions itself as the process continues. From the definition of the first
induced sequence, we have that

x(µk, bk, ck)=xB0

(
µ(0,k), b(0,k), δc

(0,k)
B0

)
=

⎛
⎜⎜⎜⎝

xB1(µ(0,k), b(0,k), ĉ0B0 + τ (1,k)δc
(1,k)
B0 )

xN1(µ(0,k), b(0,k), δc
(0,k)
B0 )

⎞
⎟⎟⎟⎠ .

From (3.4) we have that

xB1(µ(0,k), b(0,k), ĉ0B0 + τ (1,k)δc
(1,k)
B0 ) = xB1(µ(1,k), b(1,k), δc

(1,k)
B1 ).

Using the second induced sequence, we have that

xB1

(
µ(1,k), b(1,k), δc

(1,k)
B1

)
=

⎛
⎜⎜⎜⎝

xB2(µ(1,k), b(1,k), ĉ1B1 + τ (2,k)δc
(2,k)
B1 )

xN2(µ(1,k), b(1,k), δc
(1,k)
B1 )

⎞
⎟⎟⎟⎠ ,
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which implies that

x(µk, bk, ck) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xB2(µ(1,k), b(1,k), ĉ1B1 + τ (2,k)δc
(2,k)
B1 )

xN2(µ(1,k), b(1,k), δc
(1,k)
B1 )

xN1(µ(0,k), b(0,k), δc
(0,k)
B0 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Again, from (3.4) and the definition the third induced sequence, we have that

xB2

(
µ(1,k), b(1,k), ĉ1B1 + τ (2,k)δc

(2,k)
B1

)
= xB2

(
µ(2,k), b(2,k), δc

(2,k)
B2

)

=

⎛
⎜⎜⎜⎝

xB3(µ(2,k), b(2,k), ĉ2B2 + τ (3,k)δc
(3,k)
B2 )

xN3(µ(2,k), b(2,k), δc
(2,k)
B2 )

⎞
⎟⎟⎟⎠ .

The process continues until

x(µk, bk, ck) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xBJ (µ(J,k), b(J,k), δc
(J,k)

BJ )

xNJ (µ(J−1,k), b(J−1,k), δc
(J−1,k)

BJ−1 )

...

xN2(µ(1,k), b(1,k), δc
(1,k)
B1 )

xN1(µ(0,k), b(0,k), δc
(0,k)
B0 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The fact that the first induced sequence was created implies that δc
(0,k)
B0 �= 0, µ(0,k)/

‖δcB0‖ ↓ 0, and δc
(0,k)
B0 is class convergent to [ĉ0B0 ]AB0 . By assumption we have that

b(0,k) = bk → b. So, from Lemma 5.10 we have that x0
N1(µ(0,k), b(0,k), δc

(0,k)
B0 ) ↓ 0,

which subsequently implies that b(1,k) = b(0,k) − AN1x0
N1(µ(0,k), b(0,k), δc

(0,k)
B0 ) → b.

By the same logic, and repeated applications of Lemma 5.10, we find that⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xNJ (µ(J−1,k), b(J−1,k), δc
(J−1,k)

BJ−1 )

...

xN2(µ(1,k), b(1,k), δc
(1,k)
B1 )

xN1(µ(0,k), b(0,k), δc
(0,k)
B0 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↓ 0,
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which subsequently implies that b(j,k) → b for j = 1, 2, . . . , J . At this point we
have that if the process terminated because BJ = ∅, then x(µk, bk, ck) ↓ 0. Suppose

that (µ(J,k), b(J,k), δc
(J,k)

BJ ) satisfies conditions 1–4 of Theorem 5.9; then we have that

xJBJ (µ(J,k), b(J,k), δc
(J,k)

BJ ) converges, and hence so does x(µk, bk, ck).

Suppose that µ(J,k)/‖δc(J,k)
BJ ‖→∞, which subsequently implies that δc

(J,k)

BJ /µ(J,k)→
0 ∈ row(A). The set {xBJ−1 : ABJxBJ = b, xBJ ≥ 0, xNJ = 0} is bounded
because it is the optimal set of (LP J−1). So, from Theorem 2.9 we have that

xBJ (µ(J,k), b(J,k), δc
(J,k)

BJ ) converges.

We conclude by pointing out that x(µk, bk, ck) can converge if the process in
Table 5.1 terminates with an exit code of 1. As an example, let bk = 1, µk = 1/k,
A = [1, 1], and ck be (1, 1) if k is even and (1/k, 1/k) if k is odd. Then, for all k we
have that ck ∈ row(A), and from Theorem 2.3 we know that x(µk, bk, ck) = x̄(b) =
(1/2, 1/2)T . However, µk/‖ck‖ is 1/(k

√
2) if k is even and is 1/

√
2 if k is odd. Hence,

the sequence µk/‖ck‖ does not decrease to zero and is not Θ(1), and the process
terminates with an exit code of 1.

6. Conclusions and future research. We have accomplished three goals in
this paper. First, we have completely characterized the convergence of the perturbed
central path followed by many infeasible-interior-point methods. This result is suc-
cinctly depicted in Table 3.1. Second, we have shown that the perturbed central path
converges as a set as long as the cost vector perturbation is linear. In fact, the central
path is continuous over the set of cost directions for which the optimal partition is
invariant. Third, we provided sufficient conditions for the perturbed central path to
converge under arbitrary, simultaneous changes in b and c. These are the first results
in the literature that deal with this complicated situation; however, characterizing
the convergence under such data perturbations remains an open question.

Acknowledgments. The author is grateful to an anonymous referee for metic-
ulously reading an earlier draft of this work.
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Abstract. In this paper, we present a bundle method for solving a generalized variational
inequality problem. This problem consists of finding a zero of the sum of two multivalued operators
defined on a real Hilbert space. The first one, F , is monotone and the second is the subdifferential
of a lower semicontinuous proper convex function. Our method is based on the auxiliary problem
principle due to Cohen, and our strategy is to approximate, in the subproblems, the nonsmooth
convex function by a sequence of convex piecewise linear functions, as in the bundle method for
nonsmooth optimization. This makes the subproblems more tractable. First, we explain how to
build, step by step, suitable piecewise linear approximations by means of a bundle strategy, and we
present a new stopping criterion to determine whether the current approximation is good enough.
This criterion is the same as that commonly used in the special case of nonsmooth optimization.
Second, we study the convergence of the algorithm for the case when the stepsizes are chosen going
to zero and for the case bounded away from zero. In the first case, the convergence can be proved
under rather mild assumptions: the operator F is paramonotone and possibly multivalued. In the
second case, the convergence needs a stronger assumption: F is single-valued and satisfies a Dunn
property. Finally, we illustrate the behavior of the proposed algorithm by some numerical tests.
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ple, bundle method, gap functions, paramonotone operator, Dunn property
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1. Introduction. Let F be a monotone multivalued operator defined on a real
Hilbert space H with inner product 〈·, ·〉, let C be a nonempty closed convex subset
of H, and let ϕ : H → R ∪ {+∞} be a lower semicontinuous (l.s.c.) proper convex
function. We consider the following general variational inequality problem:

(P )

⎧⎨
⎩

Find x∗ ∈ C and r(x∗) ∈ F (x∗) such that, for all x ∈ C,

〈r(x∗), x− x∗〉+ ϕ(x)− ϕ(x∗) ≥ 0.

In this paper, we assume that C ⊆ int(dom ϕ). Moreover, we suppose that there
exists at least one solution to this problem. Existence results for problem (P ) can be
found, for example, in [3, 13, 15].

This problem can also be expressed in an inclusion form as follows: Find x∗ such
that 0 ∈ F (x∗) + ∂(ϕ+ ψC)(x∗), where ψC denotes the indicator function associated
with C (i.e., ψC(x) = 0 if x ∈ C and +∞ otherwise) and ∂(ϕ+ ψC)(x∗) denotes the
subdifferential of the convex function ϕ + ψC at x∗. So, problem (P ) is a particular
case of the problem that consists of finding a zero of the sum of two operators.

A large variety of problems can be seen as special instances of problem (P ). For
example, when F is the subdifferential of a finite-valued convex continuous function
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f defined on H, problem (P ) reduces to the nondifferentiable convex optimization
problem

(OP ) min
x∈C
{f(x) + ϕ(x)}.

On the other hand, in the particular case where F is single-valued and ϕ = 0, problem
(P ) reduces to the following classical variational inequality problem:

(V IP )

⎧⎨
⎩

Find x∗ ∈ C such that, for all x ∈ C,

〈F (x∗), x− x∗〉 ≥ 0.

Important research has been devoted to finding the solution to problem (V IP ) (see,
for example, [12, 15, 16, 17, 19, 20, 24, 30]). However, variational inequalities with a
multivalued mapping F and a function ϕ 	= 0 are encountered in many applications,
in particular, in mechanical problems (see, e.g., [29]) and equilibrium problems (see,
e.g., [9, 21, 28]). So it is worth studying implementable methods for solving such
problems. That is the purpose of this paper.

Algorithms that can be applied for solving problem (P ) or one of its variants are
very numerous. For the case when F is maximal monotone, the most famous method
is the proximal method (see, e.g., [14, 26, 34, 35]) which consists of finding a zero of
the operator F + ∂(ϕ+ ψC) by using the scheme

xk+1 = [I + µk(F + ∂(ϕ+ ψC))]−1(xk),(1.1)

where {µk}k∈N is a sequence of positive real numbers. Splitting methods have also
been studied to solve problem (P ). Here the multivalued operators F and ∂(ϕ+ψC)
play separate roles. The simplest splitting method is the forward–backward scheme
(see, e.g., [40]), whose iteration is given by

xk+1 ∈ [I + µk∂(ϕ+ ψC)]−1[I − µkF ](xk),(1.2)

where {µk}k∈N is a sequence of positive real numbers. When ϕ = 0, we obtain a
projection method in the following sense: First, one element r(xk) is computed in
F (xk) and then the vector xk − µkr(xk) is projected onto the closed convex set C.

Cohen developed in [10] a general algorithmic framework for solving problem (P ),
based on the so-called auxiliary problem principle. The corresponding method is a
generalization of the forward–backward method. More precisely, let Ω be a strongly
monotone and Lipschitz continuous auxiliary operator on H, and let {µk}k∈N be
a sequence of positive real numbers. The problem considered at iteration k is the
following:

xk+1 ∈ [Ω + µk∂(ϕ+ ψC)]−1[Ω− µkF ](xk),

i.e., ⎧⎨
⎩

choose r(xk) ∈ F (xk) and find xk+1 ∈ C such that, for all x ∈ C,

〈r(xk) + µ−1
k [Ω(xk+1)− Ω(xk)], x− xk+1〉+ ϕ(x)− ϕ(xk+1) ≥ 0.

In this paper, Ω is chosen as the gradient of some continuously differentiable and
strongly convex function h with Lipschitz continuous gradient. In that case, the
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subproblem can also be equivalently written in the following minimization form:

(AP k)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = argminx∈C{ϕ(x) + 〈r(xk), x− xk〉

+µ−1
k [h(x)− h(xk)− 〈∇h(xk), x− xk〉]},

with r(xk) ∈ F (xk).

The assumptions imposed on the function h ensure that this problem has one and
only one solution.

The convergence of the sequence {xk}k∈N generated by solving subproblems (AP k)
was first studied in the literature for the case when the sequence of stepsizes {µk}k∈N

is bounded away from zero and later for the case when this sequence converges to
zero. In the first situation, the convergence was obtained for the case when F is
single-valued and F is required either to be strongly monotone (see, e.g., [10]) or to
satisfy the (pseudo) Dunn property (see, e.g., [27, 36, 42]). In the second situation for
the case when the sequence {µk}k∈N converges to zero Cohen proved in [10] the strong
convergence of the scheme for the case when F is multivalued and strongly monotone.
More recently, in [41] Zhu obtained convergence results under weaker monotonicity
assumptions. He proves weak convergence under a condition satisfied, for example, if
the operator is either paramonotone and compact-valued or is the subdifferential of
an l.s.c. proper convex function.

When ϕ is a nonsmooth convex function, subproblems (AP k) may be very hard
to solve. Several authors proposed approximating the function ϕ by a sequence of
more tractable convex functions; see, e.g., [22, 25, 37, 38, 39].

When F = 0 and C = H, problem (P ) reduces to minimizing the nondifferentiable
convex function ϕ on H. This problem can be solved by the so-called bundle method
introduced in the 1980s by Correa and Lemaréchal [11]. In this method, the effective
domain of ϕ is supposed to be the whole space H, and the strategy is to approximate
the function ϕ, at the proximal iteration k, by a piecewise linear convex function,
built step by step, and to move to the next iterate only when the approximation is
suitable. This gives the following algorithm.

Bundle algorithm to minimize ϕ on H. Let an initial point x0 be given,
together with a tolerance m ∈]0, 1[ and a positive sequence {µk}k∈N. Set y0 = x0 and
k = 0, i = 1.

Step 1. Choose a piecewise linear convex function θi ≤ ϕ and solve

min
x∈H
{ θi(x) + (2µk)

−1‖x− xk‖2}(1.3)

to obtain the unique optimal solution yi.
Step 2. If the decrease is sufficient, i.e., if

ϕ(xk)− ϕ(yi) ≥ m [ϕ(xk)− θi(yi)],(1.4)

then set xk+1 = yi and increase k by 1.
Step 3. Increase i by 1 and go to Step 1.
Let xk be the current outer iterate. The solution yi of subproblem (1.3) with the

current approximation θi is called a trial point. If the decrease between ϕ(xk) and
ϕ(yi) is sufficient in the sense that the stopping test (1.4) is verified, then the current
outer iterate xk is updated and the resulting step is called a serious-step. Otherwise,
the iterate xk is kept fixed for the next inner iteration. We say that a null-step has
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been made, and the new trial point yi will be used to improve the next approximation
θi+1 of ϕ. As proven in [11], this method can be seen as a practical implementation
of the classical proximal method in convex optimization. Our purpose in this paper is
to use these ideas to solve problem (P ). In our case, the subproblem to solve at Step
1 will be (AP k) with ϕ replaced by some approximation θi, and the stopping test in
Step 2 will be adapted to take into account the contribution of the operator F .

So, we will first show how to build, step by step, suitable piecewise linear ap-
proximations θi ≤ ϕ by means of a bundle strategy and how to adapt the stopping
criterion. Then we study the convergence of the resulting algorithm by separating the
case where the stepsizes go to zero from the case where they are bounded away from
zero. When the stepsizes go to zero (but not too fast), we prove that the sequence
{xk}k∈N generated by the algorithm is bounded and that each weak limit point of
this sequence is a solution of problem (P ) if F is paramonotone, weakly closed on
C, and Lipschitz continuous on bounded subsets of C; or if F is the subdifferential
of a convex continuous function and is bounded on bounded subsets of C; or if F is
strongly monotone on C and bounded on bounded subsets of C. It results in a very
general convergence theorem, not only for the weak limit points of {xk}k∈N but also
for the weak convergence (where, in addition, ∇h is weakly continuous) and the strong
convergence (where F is strongly monotone) of the sequence {xk}k∈N. When ϕ = 0,
our results generalize those obtained by Zhu in [41]. Note that if we take F = 0
and C = H, our scheme reduces to the classical bundle method for optimization.
This method is known to have a slow convergence rate when the stepsizes converge to
zero. For this reason, we study separately the case where the stepsizes are bounded
away from zero. In that case, we have to impose stronger assumptions on F to get
convergence: F is restricted to be single-valued and to satisfy the (pseudo) Dunn
property. Consequently, these last results can be applied for F = 0, and the classical
convergence results for the optimization case can be recovered.

Other contributions to the construction of bundle methods for monotone varia-
tional inequalities (or for the equivalent problem of finding zeroes of monotone point-
to-set operators) have appeared in the literature. For instance, in [6], a bundle method
is presented for finding a zero of a maximal monotone operator T defined on H. This
method is based on the paper [5] by the same authors, where an ε-enlargement of
the operator T is defined. The main difference between the two methods is that our
method takes into account the special structure of T = F + ∂(ϕ + ψC) by using the
bundle technique not on the operator T but directly on the function ϕ.

The paper is organized as follows. In section 2, we specify the bundle scheme
proposed for solving problem (P ) and we prove that if only null-steps are made after
some xk has been reached, then xk actually solves problem (P ). In sections 3 and
4, we suppose that the bundle algorithm generates an infinite sequence {xk}k∈N and
we prove the boundedness of {xk}k∈N and the weak and strong convergence of this
sequence to a solution of problem (P ). Section 3 is devoted to the case where the
stepsizes go to zero and the operator F is possibly multivalued, while section 4 deals
with stepsizes bounded away from zero and a single-valued operator F . Finally, in
section 5 we present the results of some numerical tests designed to illustrate the
behavior of the bundle algorithm. Throughout this paper, we denote by Γ0(H) the
set of l.s.c. proper convex functions from H into R ∪ {+∞}. Any other undefined
term or usage should be taken as in the books [3] and [33].

2. Bundle strategy. The bundle algorithm designed to minimize ϕ on H can
be adapted for solving problem (P ) in the following way.
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Bundle algorithm for solving problem (P ). Let an initial point x0 be
given, together with a tolerancem ∈ ]0, 1[ and a positive sequence {µk}k∈N. Compute
r(x0) ∈ F (x0). Set y0 = x0, k = 0, i = 1.

Step 1. Choose a piecewise linear convex function θi ≤ ϕ and solve

(P ki ) min
x∈C
{θi(x) + 〈r(xk), x− xk〉+ µ−1

k [h(x)− h(xk)− 〈∇h(xk), x− xk〉]},

to obtain the unique optimal solution yi ∈ C.
Step 2. If the trial point yi is suitable, i.e., if

ϕ(xk)− ϕ(yi) ≥ m [ϕ(xk)− θi(yi)] + (1−m) 〈r(xk), yi − xk〉,(2.1)

then set xk+1 = yi, compute r(xk+1) ∈ F (xk+1), and increase k by 1.
Step 3. Increase i by 1 and go to Step 1.
Each trial point yi ∈ C is obtained by solving the approximate auxiliary sub-

problem (P ki ), namely, subproblem (AP k), with the function ϕ replaced by the ap-
proximation θi ≤ ϕ. This approximation is suitable if the stopping criterion (2.1) is
satisfied. This criterion is obtained from (1.4) by comparing the optimization case
with the variational inequality case. In the optimization case, the proximal iteration
is approximated to obtain subproblem (1.3), while in the variational inequality case,
subproblem (AP k) is approximated to obtain (P ki ). By comparing these two situa-
tions, we observe that we pass from the optimization case to the variational inequality
case by replacing the functions ϕ and θi with ϕ+〈r(xk), ·−xk〉 and θi+〈r(xk), ·−xk〉,
respectively. If these updates are set in criterion (1.4), we obtain the new criterion
(2.1). So, when the stopping criterion holds, the outer iterate xk is updated and we
say that a serious-step is made. Otherwise, xk is kept fixed for the next inner iter-
ation, which will be performed with an improvement of the approximation θi. This
step is called a null-step. In what follows, we call ik the inner iteration that has
produced xk (with i0 = 0).

In order to prove the convergence of this algorithm, we have to impose conditions
on the functions θi, i = 1, 2, . . . . Before presenting these conditions, first we observe
that, by optimality of yi ∈ C, we have

γi ≡ µ−1
k [∇h(xk)−∇h(yi)]− r(xk) ∈ ∂[θi + ψC ](yi).(2.2)

Then we define the aggregate affine function li by

li(y) = θi(yi) + 〈γi, y − yi〉, y ∈ C.(2.3)

We have li(yi) = θi(yi) and, using (2.2) and (2.3),

li(y) ≤ θi(y) for all y ∈ C.(2.4)

Now we require the following conditions on the functions θi:
(C1) θi ≤ ϕ on C for all i = 1, 2, . . . ,
(C2) li ≤ θi+1 on C for all i ∈]ik, ik+1[,
(C3) ϕ(yi) + 〈s(yi), · − yi〉 ≤ θi+1 for all i ∈]ik, ik+1[,
(C3) ϕ(yik) + 〈s(yik), · − yik〉 ≤ θi for all i ∈]ik, ik+1],

where s(yi) denotes a subgradient of ϕ at yi. Here we suppose that, at each point of
C, one subgradient of ϕ is available. Note that ϕ admits a subgradient at each point
of C since C ⊆ int(dom ϕ) (see [3, Chapter 4, section 3, Theorem 17]).
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The first three conditions are similar to those introduced in [11] within the frame-
work of nonsmooth convex optimization. Condition (C4) will be used in the next
section to show the weak convergence of the sequence {xk}k∈N generated by the bun-
dle algorithm when the operator F is multivalued.

Let us now mention a few examples of functions θi satisfying (C1)–(C4). For the
first function, we can take θ1 = ϕ(y0) + 〈s(y0), · − y0〉, and for i = 1, 2, . . ., we can
choose

θi+1 = max
0≤j≤i

{ϕ(yj) + 〈s(yj), · − yj〉}.(2.5)

It is easy to see that (C1), (C3), and (C4) are satisfied. Since θi ≤ θi+1, (C2) follows
from (2.4). Other choices are possible, e.g., for all i ≥ ik,

θi+1 = max
j∈{ik,i}

{θi(yi) + 〈γi, · − yi〉, ϕ(yj) + 〈s(yj), · − yj〉}.(2.6)

Indeed, (C2), (C3), and (C4) are obvious, and (C1) is satisfied because γi ∈ ∂(θi +
ΨC)(yi) and s(yi) ∈ ∂ϕ(yi).

In what follows we will also need to consider the following functions:

l̃i(y) = li(y) + 〈r(xk), y − xk〉+ µ−1
k [ h(y)− h(xk)− 〈∇h(xk), y − xk〉 ],

θ̃i(y) = θi(y) + 〈r(xk), y − xk〉+ µ−1
k [ h(y)− h(xk)− 〈∇h(xk), y − xk〉 ].

Using (2.2) and (2.3), it is easy to see that, for all y ∈ C,

l̃i(y) = l̃i(yi) + µ−1
k [ h(y)− h(yi)− 〈∇h(yi), y − yi〉 ].(2.7)

Moreover, we have

θ̃i(xk) = θi(xk) and l̃i(yi) = θ̃i(yi),(2.8)

and, by condition (C2),

l̃i ≤ θ̃i+1 on C.(2.9)

We can now study the convergence of the bundle algorithm. In what follows, we
will assume that the following conditions hold.

Assumption A.
• Problem (P ) admits at least one solution;
• F is a monotone operator defined on H;
• ϕ ∈ Γ0(H);
• C is a nonempty closed convex subset of H such that C ⊆ int(dom ϕ);
• ∂ϕ is bounded on bounded subsets of C;
• h : H → R is continuously differentiable and strongly convex over C with

modulus β > 0, and its gradient ∇h is Lipschitz continuous over C with
modulus Λ > 0;
• the sequence {θi}i∈N0 satisfies conditions (C1)–(C3).

Remark 1. Since ϕ ∈ Γ0(H), ϕ is also weakly l.s.c. over H (see [15, Chapter 1,
Corollary 2.2]) and continuous over int(dom ϕ) (see [15, Chapter 1, Corollary 2.5]).

Remark 2. We know that a monotone mapping is locally bounded at interior
points of its domain (see [31, Chapter 3, section 2.2]). Since int(dom ϕ) = int(dom
∂ϕ), we deduce that ∂ϕ is locally bounded at any point of int(dom ϕ) (see [31,
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Chapter 1, section 2.6]). Hence, when H is finite dimensional, ∂ϕ is always bounded
on bounded subsets of C. This is not necessarily the case in a general Hilbert space.
However, a sufficient condition for ∂ϕ to be bounded on bounded subsets of C is that
|ϕ| be bounded on bounded subsets of C (see [1, p. 3]).

Proposition 2.1. Suppose that Assumption A holds. If the stopping test is
suppressed in the bundle algorithm after some outer iterate xk has been reached, then
[ϕ(yi) − θi(yi)] → 0 and yi → z(xk), where z(xk) denotes the unique solution of
problem (AP k), i.e., z(xk) = argminx∈C{ϕ(x)+ 〈r(xk), x−xk〉+µ−1

k [ h(x)−h(xk)−
〈∇h(xk), x− xk〉 ]}.

Proof. Since ik denotes the inner iteration that has produced xk, and only null-
steps are made after reaching xk, all the inequalities below have to be understood for
i > ik, i.e., for i large enough.

First, in order to show that ϕ(yi)− θi(yi)→ 0, we proceed in three steps.
1. The sequence {l̃i(yi)}i∈N is convergent and [yi+1 − yi]→ 0. For all i we have

ϕ(xk) ≥ θi+1(xk) (by (C1))

= θ̃i+1(xk) (by (2.8))

≥ θ̃i+1(yi+1) (by definition of yi+1)

= l̃i+1(yi+1) (by (2.8))

≥ l̃i(yi+1) (by (2.9))

= l̃i(yi) + µ−1
k Dh(y

i+1, yi) (by (2.7))

≥ l̃i(yi) + (2µk)
−1 β ‖yi+1 − yi‖2 (since h is strongly convex (β))

≥ l̃i(yi),
where Dh(y, z) = h(y)− h(z)− 〈∇h(z), y − z〉.

From these relations, we deduce that the sequence {l̃i(yi)}i is nondecreasing and
bounded above by ϕ(xk). So it is convergent. Moreover, we also obtain that

l̃i+1(yi+1)− l̃i(yi) ≥ (2µk)
−1β ‖yi+1 − yi‖2 ≥ 0,

and then [yi+1 − yi]→ 0 (strongly) because the left-hand side tends to zero.
2. The sequence {yi}i∈N is bounded.
Let y ∈ C be fixed. Using successively (C1), the definition of θ̃i+1, (2.9), (2.7),

and the strong convexity of h, we have

ϕ(y) + 〈r(xk), y − xk〉+ µ−1
k [ h(y)− h(xk)− 〈∇h(xk), y − xk〉 ] ≥ θ̃i+1(y)

≥ l̃i(yi) + µ−1
k Dh(y, y

i) ≥ l̃i(yi) + (2µk)
−1β ‖y − yi‖2.

Since the sequence {l̃i(yi)}i is convergent, the sequence {y − yi}i must be bounded
and thus also the sequence {yi}i∈N.

3. [ϕ(yi+1)− θi+1(yi+1)]→ 0.
Using successively (C3), (C1), and the definition of the subgradient s(yi+1), we

obtain

〈s(yi), yi+1 − yi〉 ≤ θi+1(yi+1)− ϕ(yi) ≤ ϕ(yi+1)− ϕ(yi) ≤ 〈s(yi+1), yi+1 − yi〉.
Since the subdifferential ∂ϕ is bounded on the bounded sequence {yi}i∈N, the sequence
{s(yi)}i∈N is bounded and, as ‖yi+1 − yi‖ → 0, the opposite sides of the previous
inequalities tend to zero. Hence

[θi+1(yi+1)− ϕ(yi)]→ 0 and [ϕ(yi+1)− ϕ(yi)]→ 0,
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and thus ϕ(yi+1) − θi+1(yi+1) = ϕ(yi+1) − ϕ(yi) + ϕ(yi) − θi+1(yi+1) → 0. This
establishes that [ϕ(yi)− θi(yi)]→ 0.

Second, we show that yi → z(xk). Using successively (C1), (2.4), (2.3), and (2.2),
we have for all y ∈ C

ϕ(y) ≥ θi(y) ≥ li(y) = θi(yi) + 〈γi, y − yi〉
= θi(yi) + µ−1

k 〈∇h(xk)−∇h(yi), y − yi〉 − 〈r(xk), y − yi〉.
(2.10)

Since the sequence {yi}i is bounded, we can extract a subsequence that weakly con-
verges in C. Without loss of generality, let us suppose that yi ⇀ ȳ ∈ C. If we take
y = ȳ in (2.10) and if we use the strong monotonicity of ∇h, we obtain

µk(ϕ(ȳ)− θi(yi)) ≥ 〈∇h(xk)−∇h(yi), ȳ − yi〉 − µk〈r(xk), ȳ − yi〉
= −µk〈r(xk), ȳ − yi〉+ 〈∇h(xk)−∇h(ȳ), ȳ − yi〉

+〈∇h(ȳ)−∇h(yi), ȳ − yi〉
≥ −µk〈r(xk), ȳ − yi〉+ 〈∇h(xk)−∇h(ȳ), ȳ − yi〉

+β‖ȳ − yi‖2.

(2.11)

Since ϕ is weakly l.s.c. and [ϕ(yi) − θi(yi)] → 0, we have directly that limi[ϕ(ȳ) −
θi(yi)] ≤ 0. Then passing to the superior limit in (2.11) gives that limi‖yi − ȳ‖2 = 0,
and thus yi → ȳ. Now, from (2.10), we have, for all y ∈ C,

ϕ(y) ≥ [θi(yi)− ϕ(yi)] + [ϕ(yi)− ϕ(ȳ)]

+ϕ(ȳ) + µ−1
k 〈∇h(xk)−∇h(yi), y − yi〉 − 〈r(xk), y − yi〉.

If we take the limit in this last inequality and if we use the facts that [ϕ(yi)−θi(yi)]→
0, yi → ȳ, ϕ, and ∇h are continuous on C, we obtain that, for all y ∈ C,

ϕ(y) ≥ ϕ(ȳ) + µ−1
k 〈∇h(xk)−∇h(ȳ), y − ȳ〉 − 〈r(xk), y − ȳ〉.

This means that

µ−1
k (∇h(xk)−∇h(ȳ))− r(xk) ∈ ∂(ϕ+ ψC)(ȳ),

and consequently that ȳ = z(xk). This completes the proof.
This basic result gives information on what happens in the bundle algorithm if

only null-steps are made after some outer iterate has been reached. So, it will be used
to prove the following first convergence property of the bundle algorithm.

Theorem 2.2. Consider the bundle algorithm for solving problem (P ). Suppose
that Assumption A holds. If some iterate xk is reached and, from then on, k remains
fixed, i.e., only null-steps are performed, then xk actually solves problem (P ).

Proof. The iteration that has produced xk is denoted by ik. From xk, we make
only null-steps. Thus, for all i > ik,

ϕ(xk)− ϕ(yi) < m [ϕ(xk)− θi(yi)] + (1−m) 〈r(xk), yi − xk〉.

If we pass to the limit on i in this inequality, and if we use the facts that [ϕ(yi) −
θi(yi)]→ 0, yi → z(xk), and ϕ is continuous on C, we obtain

ϕ(xk)− ϕ(z(xk)) ≤ m [ϕ(xk)− ϕ(z(xk))] + (1−m) 〈r(xk), z(xk)− xk〉.
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Since 1−m > 0, this means that

ϕ(xk) ≤ ϕ(z(xk)) + 〈r(xk), z(xk)− xk〉.(2.12)

On the other hand, by definition of z(xk), we have for all y ∈ C
ϕ(z(xk)) + 〈r(xk), z(xk)− xk〉+ µ−1

k [h(z(xk))− h(xk)− 〈∇h(xk), z(xk)− xk〉]

≤ ϕ(y) + 〈r(xk), y − xk〉+ µ−1
k [h(y)− h(xk)− 〈∇h(xk), y − xk〉].

If we take y = xk in this last inequality, we deduce that

ϕ(z(xk)) + 〈r(xk), z(xk)− xk〉
≤ ϕ(xk) + µ−1

k [h(xk)− h(z(xk)) + 〈∇h(xk), z(xk)− xk〉].
Since h is strongly convex with modulus β > 0, we have

h(xk)− h(z(xk)) + 〈∇h(xk), z(xk)− xk〉 ≤ −(β/2)‖z(xk)− xk‖2.
Hence,

ϕ(z(xk)) + 〈r(xk), z(xk)− xk〉
≤ ϕ(xk)− β (2µk)

−1‖z(xk)− xk‖2 ≤ ϕ(xk).
(2.13)

Combining (2.12) and (2.13), we deduce easily that z(xk) = xk. From the definition
of z(xk), this means that 0 ∈ r(xk)+∂(ϕ+ψC)(xk), i.e., xk solves problem (P ). This
completes the proof.

When the case considered in this theorem does not occur, k tends to +∞ and
the bundle algorithm generates an infinite sequence {xk}k∈N. We now study the
convergence of this sequence. That is the purpose of sections 3 and 4.

3. Convergence when stepsizes go to zero. In this section, we suppose that
the bundle algorithm generates an infinite sequence {xk}k∈N. The operator F is
multivalued and the sequence {µk}k∈N is chosen to be of the following form:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

µk = λk/ηk for all k ∈ N, with {λk}k∈N a sequence of positive numbers;

ηk =

⎧⎨
⎩

max{1, ‖r(x0)‖} if k = 0;

max{ηk−1, ‖r(xk)‖} if k ≥ 1.

The introduction of the sequence {ηk}k∈N allows us to prove that the sequence {xk}k∈N

is bounded without any additional assumption on the mapping F . Moreover, as it
is classically assumed in the multivalued case (see, e.g., [10]), the positive sequence
{λk}k∈N will be such that

∑+∞
k=0 λ

2
k < +∞ and

∑+∞
k=0 λk = +∞. This rule is also

considered in the literature for nonsmooth minimization problems; see, e.g., [1, 4,
8, 32]. We proceed in three steps to prove the convergence of the algorithm. First,
we study the boundedness of the sequence {xk}k∈N, then its weak convergence, and
finally its strong convergence.

In the convergence proofs, we consider the sequence {Γk(x∗, ·)}k∈N of Lyapunov
functions defined on C by

Γk(x∗, x) = h(x∗)− h(x)− 〈∇h(x), x∗ − x〉

+ λk (mηk)
−1[〈r(x∗), x− x∗〉+ ϕ(x)− ϕ(x∗)],

(3.1)
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where x∗ ∈ C denotes a solution of problem (P ) and r(x∗) is the element in F (x∗)
such that 〈r(x∗), x−x∗〉+ϕ(x)−ϕ(x∗) ≥ 0 for all x in C. Since h is strongly convex
with modulus β > 0, we have immediately that, for all x ∈ C,

Γk(x∗, x) ≥ (β/2)‖x− x∗‖2.(3.2)

The next lemma gives an upper bound on Γk+1(x∗, xk+1)− Γk(x∗, xk), which will be
often used in what follows.

Lemma 3.1. Suppose that Assumption A holds and that {λk}k∈N is a nonincreas-
ing sequence of positive numbers. Then we have for all k ∈ N,

Γk+1(x∗, xk+1)− Γk(x∗, xk) ≤ −c‖xk+1 − xk‖2 + λ2
ku

+ (λk/ηk)[〈r(xk), x∗ − xk〉+ ϕ(x∗)− ϕ(xk)],
(3.3)

with c, u > 0.
Proof. First observe that the optimality conditions satisfied by xk+1 ∈ C are

〈η−1
k r(xk) + λ−1

k (∇h(xk+1)−∇h(xk)), x− xk+1〉

+ η−1
k (θik+1(x)− θik+1(xk+1)) ≥ 0 for all x ∈ C,

(3.4)

where r(xk) ∈ F (xk). Using the definition of the Lyapunov function and noticing
that λk+1 ≤ λk, and ηk+1 ≥ ηk for all k ∈ N, we can write

Γk+1(x∗, xk+1)− Γk(x∗, xk) ≤ Γk(x∗, xk+1)− Γk(x∗, xk) = s1 + s2 + s3,(3.5)

with

s1 = h(xk)− h(xk+1) + 〈∇h(xk), xk+1 − xk〉,
s2 = 〈∇h(xk)−∇h(xk+1), x∗ − xk+1〉,
s3 = λk (mηk)

−1[〈r(x∗), xk+1 − xk〉+ ϕ(xk+1)− ϕ(xk)].

For s1, we derive easily from the strong convexity of h that

s1 ≤ −(β/2)‖xk+1 − xk‖2.(3.6)

Using (3.4) with x = x∗, we obtain

s2 ≤ (λk/ηk)[〈r(xk), x∗ − xk+1〉+ θik+1(x∗)− θik+1(xk+1)]

= (λk/ηk)[〈r(xk), x∗ − xk〉+ ϕ(x∗)− ϕ(xk)

+ 〈r(xk), xk − xk+1〉
+ θik+1(x∗)− ϕ(x∗) + ϕ(xk)− θik+1(xk+1)].(3.7)

From the stopping test (2.1), we deduce that

ϕ(xk)− θik+1(xk+1) ≤ 1

m
[ϕ(xk)− ϕ(xk+1)]− 1−m

m
〈r(xk), xk+1 − xk〉.(3.8)

Combining the fact that θik+1 ≤ ϕ with (3.7) and (3.8), we derive that

s2 + s3 ≤ (λk/ηk)[〈r(xk), x∗ − xk〉+ ϕ(x∗)− ϕ(xk)

+ (1/m)〈r(xk)− r(x∗), xk − xk+1〉]
≤ (λk/ηk)[〈r(xk), x∗ − xk〉+ ϕ(x∗)− ϕ(xk)]

+ (1/m) [(1/2τ) (λ2
k/η

2
k)‖r(xk)− r(x∗)‖2 + (τ/2)‖xk − xk+1‖2],(3.9)
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where τ is any positive constant.
From the definition of the sequence {ηk}k∈N, we have

(1/η2
k)‖r(xk)− r(x∗)‖2 ≤ (1/η2

k) [‖r(xk)‖2 + ‖r(x∗)‖2 + 2‖r(xk)‖ ‖r(x∗)‖]
≤ 1 + ‖r(x∗)‖2 + 2‖r(x∗)‖
= [1 + ‖r(x∗)‖]2.

(3.10)

Combining inequalities (3.5), (3.6), (3.9), (3.10), we obtain

Γk+1(x∗, xk+1)− Γk(x∗, xk)
≤ −(1/2)(β − τ/m) ‖xk+1 − xk‖2 + (2mτ)−1[1 + ‖r(x∗)‖]2 λ2

k

+ (λk/ηk)[〈r(xk), x∗ − xk〉+ ϕ(x∗)− ϕ(xk)].

(3.11)

If we choose τ such that 0 < τ < βm, then we obtain that inequality (3.3) holds
with

c = (1/2)(β − τ/m) > 0,

u = (2mτ)−1[1 + ‖r(x∗)‖]2 > 0.

The next theorem gives conditions to ensure boundedness of the sequence {xk}k∈N.
Theorem 3.2. Assume that the assumptions of Lemma 3.1 hold. If

∑+∞
k=0 λ

2
k <

+∞, then the sequence {Γk(x∗, xk)}k∈N is convergent, the sequence {xk}k∈N is bounded,∑+∞
k=0 ‖xk+1 − xk‖2 < +∞, and

+∞∑
k=0

(λk/ηk)[〈r(xk), xk − x∗〉+ ϕ(xk)− ϕ(x∗)] < +∞.(3.12)

Proof. Since x∗ is a solution of problem (P ), r(xk) ∈ F (xk) for all k, and F is
monotone, we have that

(λk/ηk)[〈r(xk), x∗ − xk〉+ ϕ(x∗)− ϕ(xk)] ≤ 0.

So, we derive from (3.3) that

Γk+1(x∗, xk+1)− Γk(x∗, xk) ≤ λ2
k u.

Since the series
∑+∞
k=0 λ

2
k is convergent, it follows that {Γk(x∗, xk)}k∈N is a convergent

sequence. Using inequality (3.2), we conclude that the sequence {xk}k∈N is bounded.
Then, rearranging the terms of inequality (3.3) as

c‖xk+1 − xk‖2 + (λk/ηk)[ 〈r(xk), xk − x∗〉+ ϕ(xk)− ϕ(x∗) ]

≤ Γk(x∗, xk)− Γk+1(x∗, xk+1) + λ2
ku,

we obtain, using the convergence of the sequence {Γk(x∗, xk)}k∈N and of the series∑+∞
k=0 λ

2
k, that

∑+∞
k=0 ‖xk+1 − xk‖2 < +∞ and that (3.12) holds.

To prove that any weak limit point of the sequence {xk}k∈N is a solution of
problem (P ), we will use the concept of gap function (see, e.g., [2]). We recall that a
function l : C −→ R ∪ {+∞} is a gap function with respect to problem (P ) if

for all x ∈ C, l(x) ≥ 0 and l(x̄) = 0 if and only if x̄ is a solution of (P ).
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In our context, the usefulness of the gap functions appears in the next proposition.
Proposition 3.3. Let l be a gap function with respect to problem (P ). If l is a

weakly l.s.c. function on C and if l(xk)→ 0, then any weak limit point of the sequence
{xk}k∈N generated by the algorithm is a solution of (P ).

Proof. First, notice that the sequence {xk}k∈N is contained in C. Then, let x̄ be
a weak limit point of this sequence. We have xkp ⇀ x̄ and, by assumption, that

0 = lim
k→+∞

l(xk) = lim inf
p→+∞ l(xkp) ≥ l(x̄) ≥ 0,

i.e., l(x̄) = 0 and x̄ is a solution of (P ).
To prove that l(xk)→ 0, we will use the following lemma due to Cohen and Zhu

[8, Lemma 4].
Lemma 3.4. If l is a Lipschitz continuous function on {xk| k ∈ N}, and if {λk}

is a sequence of positive numbers such that
(a)

∑
λk = +∞;

(b)
∑
λkl(x

k) < +∞;
(c) ∃ δ > 0 such that for all k ∈ N, ‖xk+1 − xk‖ ≤ δλk,

then l(xk)→ 0.
First we give three existence results of gap functions weakly l.s.c. on C and Lips-

chitz continuous on bounded subsets of C. Then we prove that assumptions (b) and
(c) of Lemma 3.4 are satisfied for our algorithm. However, before giving these results,
we need to recall some definitions and properties concerning multivalued operators.
A multivalued operator F is said to be Lipschitz continuous on a subset B of C if

∃L > 0 such that for all x, y ∈ B, e(F (x), F (y)) ≤ L ‖x− y‖,

where e(F (x), F (y)) = supr∈F (x) infs∈F (y) ‖r − s‖. The next lemma will be used in
what follows.

Lemma 3.5. Let B be a bounded subset of C. If F is Lipschitz continuous on
B, and if there exists ȳ ∈ B such that F (ȳ) is bounded, then F is bounded on B, i.e.,
there exists α > 0 such that ‖r(x)‖ ≤ α for all x ∈ B and r(x) ∈ F (x).

Proof. Let ε > 0. Then, by assumption, e(F (x), F (ȳ)) ≤ L‖x− ȳ‖ for all x ∈ B,
i.e.,

for all x ∈ B, for all r(x) ∈ F (x), ∃ r(ȳ) ∈ F (ȳ) such that ‖r(x)−r(ȳ)‖ ≤ L‖x−ȳ‖+ε.

Since B and F (ȳ) are bounded, there exist α1 > 0 and α2 > 0 such that ‖x‖ ≤ α1 for
all x ∈ B and ‖r(ȳ)‖ ≤ α2 for all r(ȳ) ∈ F (ȳ). Then, for all x ∈ B and r(x) ∈ F (x),
we have successively

‖r(x)‖ ≤ ‖ r(x)− r(ȳ) ‖+ ‖ r(ȳ) ‖
≤ L [ ‖x‖+ ‖ ȳ ‖ ] + ε+ α2

≤ L [α1 + ‖ ȳ ‖ ] + ε+ α2,

i.e., what we have to prove.
A multivalued operator F is said to be weakly closed on C if

zk ⇀ z̄, zk ∈ C and rk ⇀ r̄, rk ∈ F (zk) =⇒ r̄ ∈ F (z̄).

In particular, when F is weakly closed on C, F (z) is a weakly closed subset of H for
each z ∈ C.
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A multivalued operator F is paramonotone on C if F is monotone on C and, for
all x, y ∈ C, and, r(x) ∈ F (x), r(y) ∈ F (y),

〈r(x)− r(y), x− y〉 = 0 =⇒ r(y) ∈ F (x) and r(x) ∈ F (y).

This notion was introduced by Bruck [7] and further studied in [18]. Let us mention
the following result due to Iusem [18]: If F is paramonotone, and if x∗ is a solution
of (P ), then x̄ is a solution of (P ) if and only if

x̄ ∈ C and ∃ r̄ ∈ F (x̄) such that 〈r̄, x∗ − x̄〉+ ϕ(x∗)− ϕ(x̄) ≥ 0.(3.13)

Proposition 3.6. Let x∗ denote any solution of problem (P ).
(a) If F is paramonotone on C, and F (x) is a bounded and weakly closed subset

of H for all x ∈ C, then l(x) = infr(x)∈F (x)〈r(x), x − x∗〉 + ϕ(x) − ϕ(x∗) is a gap
function.

(b) If, in addition, F and ϕ are Lipschitz continuous on bounded subsets of C,
then l is Lipschitz continuous on bounded subsets of C.

(c) If, in addition, F is weakly closed on C, then l is weakly l.s.c. on C.
Proof. (a) Since F is monotone and x∗ is a solution of (P ), for each x ∈ C and

r(x) ∈ F (x), we have

〈r(x), x− x∗〉+ ϕ(x)− ϕ(x∗) = 〈r(x)− r(x∗), x− x∗〉
+ 〈r(x∗), x− x∗〉+ ϕ(x)− ϕ(x∗) ≥ 0.

So, using the definition of l, we obtain that l(x) ≥ 0. Now if x̄ is a solution of (P ),
then we have immediately that

l(x̄) ≤ 〈r(x̄), x̄− x∗〉+ ϕ(x̄)− ϕ(x∗) ≤ 0 ≤ l(x̄).
So, l(x̄) = 0. Conversely, suppose that l(x̄) = 0. Then, by definition of the infimum,
there exists a sequence {rk}k∈N contained in F (x̄) such that, for all k ≥ 1,

0 ≤ 〈rk, x̄− x∗〉+ ϕ(x̄)− ϕ(x∗) < 1/k.

Since the subset F (x̄) is bounded and weakly closed, there exists a subsequence of
{rk}k∈N that weakly converges to some r ∈ F (x̄). Then 0 ≤ 〈r, x̄−x∗〉+ϕ(x̄)−ϕ(x∗) ≤
0, and by (3.13), x̄ is a solution of (P ) because F is paramonotone.

(b) Let B be a bounded subset of C and α1 > 0 be such that ‖x‖ ≤ α1 for all
x ∈ B. Since ϕ is Lipschitz continuous on B, it is sufficient to prove that there exists
L1 > 0 such that, for all x, y ∈ B,

inf
r∈F (x)

〈r, x− x∗〉+ sup
s∈F (y)

〈s, x∗ − y〉 ≤ L1‖x− y‖.(3.14)

Let x, y ∈ B, ε > 0, and s ∈ F (y). Since e(F (y), F (x)) ≤ L‖x− y‖, we have

inf
r∈F (x)

‖r − s‖ ≤ L‖x− y‖.

So, there exists r ∈ F (x) such that ‖r − s‖ ≤ L‖x− y‖+ ε/(α1 + ‖x∗‖). Then

〈r, x− x∗〉+ 〈s, x∗ − y〉 = 〈r, x− y〉+ 〈r − s, y − x∗〉
≤ ‖r‖‖x− y‖+ ‖r − s‖‖y − x∗‖
≤ ‖r‖‖x− y‖+ L‖x− y‖(α1 + ‖x∗‖) + ε.

(3.15)
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Moreover, by Lemma 3.5, F is bounded on B and, consequently, there exists α > 0
such that ‖r‖ ≤ α for all x ∈ B and r ∈ F (x). Then, from (3.15), we deduce that

inf
r∈F (x)

〈r, x− x∗〉+ 〈s, x∗ − y〉 ≤ L1‖x− y‖+ ε,

where L1 = α + L(α1 + ‖x∗‖). Since this inequality is satisfied for all s ∈ F (y) and
ε > 0, we obtain (3.14).

(c) Suppose that F is weakly closed on C. Since ϕ is weakly l.s.c. on C, we have
only to prove that

l1(x) ≡ inf
r(x)∈F (x)

〈r(x), x− x∗〉

is weakly l.s.c. on C. Let xk ⇀ x̄ with xk ∈ C, and let l̄1 be a limit point of the
sequence {l1(xk)}k∈N. We have to prove that l̄1 ≥ l1(x̄). Without loss of generality,
we can assume that l1(xk)→ l̄1. Let ε > 0. By definition of the infimum, for each k,
there exists r(xk) ∈ F (xk) such that

〈r(xk), xk − x∗〉 ≤ l1(xk) + ε.(3.16)

Since the sequence {xk}k∈N is bounded and contained in C, and since F is bounded
on bounded subsets of C, the sequence {r(xk)}k∈N is bounded, and thus there exists
a subsequence {r(xk′)}k′∈K weakly converging to some r̄. Since F is weakly closed, it
follows that r̄ ∈ F (x̄). Now, F being monotone, we have that 〈r(xk′)−r(x̄), xk′−x̄〉 ≥
0, and thus that

〈r(xk′), xk′ − x∗〉 ≥ 〈r(x̄), xk′ − x̄〉+ 〈r(xk′), x̄− x∗〉.(3.17)

Combining (3.16) and (3.17), we obtain

l1(xk
′
) + ε ≥ 〈r(x̄), xk′ − x̄〉+ 〈r(xk′), x̄− x∗〉.(3.18)

Passing to the limit in (3.18) and noticing that 〈r̄, x̄ − x∗〉 ≥ l1(x̄), we have that
l̄1 + ε ≥ l1(x̄). Since ε is arbitrary, we have that l̄1 ≥ l1(x̄) and, consequently, l is
weakly l.s.c. on C.

Proposition 3.7. Let x∗ denote any solution of problem (P ). If F = ∂f, f ∈
Γ0(H), and C ⊆ int(domf), then l(x) = f(x)+ϕ(x)−f(x∗)−ϕ(x∗) is a gap function
such that, for all x ∈ C and r(x) ∈ F (x),

〈r(x), x− x∗〉+ ϕ(x)− ϕ(x∗) ≥ l(x).
The function l is convex and weakly l.s.c. on C and, if in addition f and ϕ are
Lipschitz continuous on bounded subsets of C, then l is also Lipschitz continuous on
bounded subsets of C.

Proof. For all x ∈ C, r(x) ∈ F (x) = ∂f(x), we have f(x∗) ≥ f(x)+ 〈r(x), x∗−x〉.
So, we obtain

〈r(x), x− x∗〉+ ϕ(x)− ϕ(x∗) ≥ f(x)− f(x∗) + ϕ(x)− ϕ(x∗) = l(x).

The remainder of the proof is obvious.
Proposition 3.8. If F is strongly monotone of modulus α > 0 on C, then

l(x) = ‖x− x∗‖2 is a gap function such that, for all x ∈ C and r(x) ∈ F (x),

〈r(x), x− x∗〉+ ϕ(x)− ϕ(x∗) ≥ αl(x),
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where x∗ denotes the unique solution of (P ). Moreover, l is strongly convex, weakly
l.s.c. on H, and Lipschitz continuous on bounded subsets of C.

Proof. Since x∗ is the unique solution of problem (P ), it is obvious that l is a
gap function and that l is strongly convex and weakly l.s.c. on H. Moreover, for all
x ∈ C, we have

〈r(x), x−x∗〉+ϕ(x)−ϕ(x∗) = 〈r(x)− r(x∗), x−x∗〉+ 〈r(x∗), x−x∗〉+ϕ(x)−ϕ(x∗).

Since F is strongly monotone of modulus α and x∗ is the solution of (P ), we obtain
immediately that the right-hand side of the previous equality is not less than αl(x).
Finally, let B be a bounded subset of C. Then there exists α1 > 0 such that ‖z‖ ≤ α1

for all z ∈ B. So, for x, y ∈ B, we have successively

‖x− x∗‖2 − ‖y − x∗‖2 = ‖x− y‖2 + 2〈x− y, y − x∗〉
≤ ‖x− y‖[ ‖x− y‖+ 2‖y − x∗‖ ]

≤ ‖x− y‖[ 4α1 + 2‖x∗‖ ];

i.e., l is Lipschitz continuous on B.
In order to get a more general convergence result, we put together, in the same as-

sumption, the properties requested on the gap function. These properties are satisfied
in the three situations described in Propositions 3.6, 3.7, and 3.8.

Assumption I.
(i) ∃α > 0, ∃ l : C → R ∪ {+∞} such that

for all x ∈ C, for all r(x) ∈ F (x), 〈r(x), x− x∗〉+ ϕ(x)− ϕ(x∗) ≥ α l(x);

(ii) for all x ∈ C, l(x) ≥ 0 and l(x̄) = 0⇔ x̄ is a solution of (P );
(iii) l is weakly l.s.c. on C and Lipschitz continuous on bounded subsets of C.
The purpose of the next proposition is to prove that conditions (b) and (c) of

Lemma 3.4 are satisfied.
Proposition 3.9. (a) Assume that the assumptions of Theorem 3.2 and As-

sumption I(i), (ii) are satisfied. If F is bounded on bounded subsets of C, then∑
λkl(x

k) < +∞.
(b) Assume that Assumption A holds and that the sequence {θi}i∈N0 satisfies

condition (C4). Then there exists δ > 0 such that, for all k ≥ 1, ‖xk+1− xk‖ ≤ δλk.
Proof. (a) Since the sequence {xk}k∈N is bounded and F is bounded on bounded

subsets of C, the sequences {r(xk)}k∈N and also {ηk}k∈N are bounded. Then, using
successively Theorem 3.2 and Assumption I(i), (ii), we have

+∞∑
k=1

λk[〈r(xk), xk − x∗〉+ ϕ(xk)− ϕ(x∗)] < +∞ and

+∞∑
k=1

λkl(x
k) < +∞.

(b) From the optimality conditions (3.4) applied to x = xk, we obtain

〈∇h(xk+1)−∇h(xk), xk+1 − xk〉
≤ (λk/ηk)[〈r(xk), xk − xk+1〉+ θik+1(xk)− θik+1(xk+1)].

(3.19)

Since h is strongly convex and ‖r(xk)‖ ≤ ηk, we derive from (3.19) that

β‖xk+1 − xk‖2 ≤ λk‖xk+1 − xk‖+ (λk/ηk)[θ
ik+1(xk)− θik+1(xk+1)].(3.20)
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Now since θik+1 ≤ ϕ and, by construction (see condition (C4)),

θik+1(x) ≥ ϕ(xk) + 〈s(xk), x− xk〉 for all x ∈ C,
we have

θik+1(xk)− θik+1(xk+1) ≤ ϕ(xk)− ϕ(xk)− 〈s(xk), xk+1 − xk〉
= 〈s(xk), xk − xk+1〉
≤ ‖s(xk)‖ ‖xk+1 − xk‖.

Hence, since ∂ϕ is bounded on bounded subsets of C, we have that the sequence
{‖s(xk)‖}k∈N is bounded and there exists δϕ > 0 such that, for all k,

θik+1(xk)− θik+1(xk+1) ≤ δϕ ‖xk+1 − xk‖.(3.21)

Finally, from (3.20), (3.21), and since ηk ≥ 1, we deduce that ‖xk+1 − xk‖ ≤ δλk for
all k, with δ = (1/β)[ 1 + δϕ ].

We are now ready to state our main convergence result.
Theorem 3.10. Suppose that the following conditions are satisfied:
• Assumptions A and I hold.
• F is bounded on bounded subsets of C.
• {λk}k∈N is nonincreasing and

∑
λk = +∞, ∑λ2

k < +∞.
Then the sequence {xk}k∈N is bounded, l(xk)→ 0, and any weak limit point of {xk}k
is a solution of problem (P ). If, in addition, ∇h is weakly continuous on C, then
{xk}k weakly converges to a solution of (P ). If, in addition, the gap function l is
strongly convex on an open set containing C, then xk → x∗, the unique solution of
(P ).

Proof. The first part of the theorem follows immediately from Lemma 3.1, The-
orem 3.2, Proposition 3.9, Lemma 3.4, and Proposition 3.3. Suppose now that ∇h is
weakly continuous on C and that the sequence {xk}k∈N has two different weak limit
points x1 and x2. Let {xm(k)}k∈N be the subsequence of {xk}k∈N weakly converging
to x1 and {xn(k)}k∈N be the subsequence weakly converging to x2. By the first part
of the theorem, x1 and x2 are solutions of problem (P ). Then, by Theorem 3.2, the
sequences of Lyapunov functions {Γk(x1, xk)}k∈N and {Γk(x2, xk)}k∈N are convergent
in R. We denote their limits by Γ1 and Γ2, respectively. By definition of the Lyapunov
function, we have

Γn(k)(x1, xn(k))− Γn(k)(x2, xn(k))

= h(x1)− h(x2)− 〈∇h(xn(k)), x1 − x2〉
+ λn(k) (mηn(k))

−1[〈r(x1), xn(k) − x1〉 − 〈r(x2), xn(k) − x2〉+ ϕ(x2)− ϕ(x1)].

Since ∇h is weakly continuous on C, since ηk ≥ 1 for all k, and since λk → 0, we
obtain, taking the limit on k in the last equality, that

Γ1 − Γ2 = h(x1)− h(x2)− 〈∇h(x2), x1 − x2〉.(3.22)

Since the roles of x1 and x2 can be reversed, we also have that

Γ1 − Γ2 = h(x1)− h(x2)− 〈∇h(x1), x1 − x2〉.(3.23)

Comparing (3.22) and (3.23), we obtain 〈∇h(x1) − ∇h(x2), x1 − x2〉 = 0. Since ∇h
is strongly monotone, this inequality implies that x1 = x2. So the sequence {xk}k∈N

weakly converges to a solution of (P ).
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If the gap function l is strongly convex with constant s > 0 on an open convex
set containing C, then x∗ is the unique solution of problem (P ), ∂l(x∗) is nonempty,
and for any e∗ ∈ ∂l(x∗),

l(xk)− l(x∗)− 〈e∗, xk − x∗〉 ≥ (s/2)‖xk − x∗‖2.(3.24)

Since l(xk) → 0, l(x∗) = 0, and xk ⇀ x∗, we obtain, passing to the limit in (3.24),
that ‖xk − x∗‖ → 0, i.e., xk → x∗ strongly. This completes the proof.

Remark. For example, if h(x) = (1/2)xTx for all x ∈ H, then ∇h is weakly
continuous on H. Moreover, when H is a finite dimensional space, ∇h is continuous
in the strong topology and thus in the weak topology.

Using Propositions 3.6, 3.7, and 3.8, which give sufficient conditions to ensure
that Assumption I is satisfied, we can particularize our main result (Theorem 3.10)
to get two more precise convergence theorems. However, before presenting them, we
prove a preliminary lemma.

Lemma 3.11. Let g ∈ Γ0(H) and let B be a bounded subset of int(dom g). If ∂g
is bounded on B, then g is Lipschitz continuous on B.

Proof. Let x, y ∈ B. Since B ⊆ int(dom g), the subdifferentials ∂g(x) and ∂g(y)
are nonempty. Let s(x) ∈ ∂g(x) and s(y) ∈ ∂g(y). Then

g(x)− g(y) ≤ 〈s(x), x− y〉 ≤ ‖s(x)‖ ‖x− y‖,
g(y)− g(x) ≤ 〈s(y), y − x〉 ≤ ‖s(y)‖ ‖y − x‖.

So |g(x) − g(y)| ≤ L‖x − y‖, where L = sup{‖s(z)‖ | z ∈ B, s(z) ∈ ∂g(z)}. Since
∂g is bounded on B, this constant L is finite, and thus g is Lipschitz continuous on
B.

Theorem 3.12. Suppose that Assumption A holds, ∇h is weakly continuous on
C, {λk}k∈N is nonincreasing, and

∑
λk = +∞,

∑
λ2
k < +∞.

(a) If F is paramonotone, weakly closed on C, and Lipschitz continuous on
bounded subsets of C, and if F (x) is a bounded subset of H for all x ∈ C, then
the whole sequence xk ⇀ x̄, where x̄ is a solution of (P ).

(b) If F = ∂f with f ∈ Γ0(H) and C ⊆ int(dom f), and if ∂f is bounded on
bounded subsets of C, then the whole sequence xk ⇀ x̄, where x̄ is a solution of (P ).

When H is a finite dimensional space, the assumption on ∂f is always true.
Proof. By Theorem 3.10, it is sufficient to prove that Assumption I holds and

that F is bounded on bounded subsets of C.
(a) Since ∂ϕ is bounded on bounded subsets of C, it follows from Lemma 3.11

that ϕ is Lipschitz continuous on bounded subsets of C. All the assumptions of
Proposition 3.6 are then satisfied, and thus Assumption I is satisfied. Finally, using
Lemma 3.5, F is bounded on bounded subsets of C.

(b) By Lemma 3.11, f and ϕ are Lipschitz continuous on bounded subsets of C.
So, using Proposition 3.7, Assumption I is satisfied. The conclusion follows because
F = ∂f is bounded on bounded subsets of C.

Theorem 3.13. Suppose that Assumption A holds, ∇h is weakly continuous
on C, {λk}k∈N is nonincreasing, and

∑
λk = +∞,

∑
λ2
k < +∞. If F is strongly

monotone on C and bounded on bounded subsets of C, then the whole sequence xk

strongly converges to x∗, the unique solution of (P ).
Proof. From Proposition 3.8, we have that Assumption I is satisfied. Then the

conclusion follows from Theorem 3.10 because F is bounded on bounded subsets of
C and the gap function l(x) = ‖x− x∗‖2 is strongly convex on H.
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Remark. When ϕ = 0, these results generalize those obtained by Zhu in [41].
When F = 0 and C = H, our scheme reduces to the bundle algorithm to minimize ϕ
on H. If we particularize our convergence results to that case, we do not recover the
classical results for the proximal method because of the assumption on the sequence
{µk}k∈N. The fact that the stepsizes converge to 0 entails that the convergence rate
will be slow (at best sublinear) (see [35]). In consequence, it is important to present
convergence results when the stepsizes are bounded away from 0 even if we have to
impose some restrictions on the mapping F .

4. Convergence when stepsizes are bounded away from zero. Here, con-
trary to the last section, the stepsizes are assumed to be bounded away from zero.
This allows us to take, for example, constant stepsizes. In order to prove the con-
vergence of the algorithm in this case, we have to impose stronger conditions on the
mapping F . The first restriction is that the operator F be single-valued so that the
subproblem (P ki ) can be written

(P ki ) min
x∈C
{θi(x) + 〈F (xk), x− xk〉+ µ−1

k [ h(x)− h(xk)− 〈∇h(xk), x− xk〉 ] }.

The next theorem is a first step toward the convergence study of the general
iterative scheme. It highlights the minimal assumptions under which each weak limit
point of the sequence {xk}k∈N, if it exists, is a solution of problem (P ).

Theorem 4.1. Suppose that Assumption A holds. Moreover, assume that the
following conditions are satisfied:

• F : H → H is single-valued and weakly continuous on C;
• µk ≥ µ > 0 for all k ∈ N;

• the sequence {xk}k∈N is bounded and is such that the sequence
{‖xk+1 − xk‖}k∈N converges to zero.

Then every weak limit point of the sequence {xk}k∈N is a solution of problem (P ).
Proof. Let x∗ be a weak limit point of {xk}k∈N and let {xk}k∈K⊂N be a sub-

sequence weakly converging to x∗. Since {‖xk+1 − xk‖}k∈N → 0, we have that
{xk+1}k∈K ⇀ x∗.

From the monotonicity of F , we deduce that for all j,

〈F (xk), y − xk+1〉 = 〈F (xk), y − x∗〉+ 〈F (xk), xk − xk+1〉+ 〈F (xk), x∗ − xk〉
≤ 〈F (xk), y − x∗〉+ 〈F (xk), xk − xk+1〉+ 〈F (x∗), x∗ − xk〉.

Since F is weakly continuous on C and ‖xk+1 − xk‖ → 0, we obtain that

lim supk∈K〈F (xk), y − xk+1〉 ≤ 〈F (x∗), y − x∗〉.(4.1)

Since ∂ϕ is bounded on bounded subsets, {xk}k∈N is bounded, and ‖xk+1−xk‖ → 0,
we deduce that [ϕ(xk) − ϕ(xk+1)] → 0. Moreover, from the stopping test (2.1), we
have that

0 ≤ ϕ(xk+1)− θik+1(xk+1)

≤ 1−m
m [ϕ(xk)− ϕ(xk+1)− 〈F (xk), xk+1 − xk〉].

If we pass to the limit in these last inequalities on k ∈ K, and if we use the facts that
[ϕ(xk)−ϕ(xk+1)]→ 0, ‖xk+1−xk‖ → 0, and F is weakly continuous, we deduce that
limk∈K [ϕ(xk+1)− θik+1(xk+1)] = 0. Therefore, since ϕ is weakly l.s.c., we derive that

lim inf
k∈K

θik+1(xk+1) = lim inf
k∈K

[θik+1(xk+1)− ϕ(xk+1) + ϕ(xk+1)] ≥ ϕ(x∗).(4.2)
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Now, by definition of {xk}k∈N, we have that, for all k ∈ N,

0 ≤ 〈F (xk) + µ−1
k (∇h(xk+1)−∇h(xk)), y − xk+1〉+ θik+1(y)− θik+1(xk+1).

Passing then to the superior limit on k ∈ K in the above inequality and using the
Lipschitz continuity of ∇h together with relations (4.1), (4.2) and the facts that
µk ≥ µ > 0 and θik+1 ≤ ϕ, we obtain the following inequality:

0 ≤ 〈F (x∗), y − x∗〉+ ϕ(y)− ϕ(x∗),

which means that x∗ is a solution of (P ).
We now study under which conditions the sequence {xk}k∈N is bounded and the

sequence {‖xk+1 − xk‖}k∈N converges to zero.
Theorem 4.2. Suppose that Assumption A holds and that the following condi-

tions are satisfied:
• There exist µ and µ such that, for all k ∈ N,

0 < µ ≤ µk+1 ≤ µk ≤ µ.

• F satisfies the following pseudo-Dunn property with some modulus γ > µ/
(2βm2), i.e., for all x, y ∈ C,

If 〈F (x), y − x〉+ ϕ(y)− ϕ(x) ≥ 0 holds, then

〈F (y), y − x〉+ ϕ(y)− ϕ(x) ≥ γ‖F (y)− F (x)‖2.

Then, the sequence {xk}k∈N is bounded. Moreover, limk→+∞ ‖xk+1 − xk‖ =
0 and limk→+∞ ‖F (xk)− F (x∗)‖ = 0.

Proof. Let x∗ be the solution of problem (P ). We consider the sequence of
Lyapunov functions {Γk(x∗, ·)}k∈N defined on H by

Γk(x∗, x) = h(x∗)− h(x)− 〈∇h(x), x∗ − x〉
+ (µk/m)[〈F (x∗), x− x∗〉+ ϕ(x)− ϕ(x∗)].(4.3)

By the same process as in the proof of Lemma 3.1, we obtain (3.5), (3.6), and (3.9)
such that

Γk+1(x∗, xk+1)− Γk(x∗, xk) ≤ µk[〈F (xk), x∗ − xk〉+ ϕ(x∗)− ϕ(xk)]

+ (1/m) (1/2τ)µ2
k ‖F (xk)− F (x∗)‖2 − (1/2)(β − τ/m) ‖xk+1 − xk‖2,

(4.4)

where τ is any positive constant.
Since 〈F (x∗), xk − x∗〉+ ϕ(xk)− ϕ(x∗) ≥ 0, we have that

〈F (xk), xk − x∗〉+ ϕ(xk)− ϕ(x∗) ≥ γ‖F (xk)− F (x∗)‖2.

Hence, since µk ≤ µ̄ for all k ∈ N,

µk[〈F (xk), x∗ − xk〉+ ϕ(x∗)− ϕ(xk)] + (2τm)−1 µ2
k ‖F (xk)− F (x∗)‖2

≤ −µkγ‖F (xk)− F (x∗)‖2 + (2τm)−1 µ2
k ‖F (xk)− F (x∗)‖2

≤ −µk (γ − µ̄/2τm) ‖F (xk)− F (x∗)‖2.
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Since γ > µ/2m2β, we can choose τ such that (γ−µ̄/2τm) > 0 and (β−τ/m) > 0.
Consequently, (4.4) becomes

Γk+1(x∗, xk+1)− Γk(x∗, xk) ≤ −c1 µ ‖F (xk)− F (x∗)‖2 − c2 ‖xk+1 − xk‖2,(4.5)

with c1 = γ − µ̄/2τm > 0 and c2 = (1/2)(β − τ/m) > 0.
It follows from (4.5) that {Γk(x∗, xk)}k∈N is a Cauchy sequence. Hence, it is

convergent in H. Then using (3.2), we deduce that the sequence {xk}k∈N is bounded
and, passing to the limit in (4.5), that the sequences {‖xk+1−xk‖}k∈N and {‖F (xk)−
F (x∗)‖}k∈N converge to zero.

We can now state the main convergence result.
Theorem 4.3. Let us suppose that all assumptions of Theorem 4.2 are fulfilled

such that the sequence {xk}k∈N is bounded. The following conclusions can be derived:
1. If F is weakly continuous on C, then each weak limit point of the sequence
{xk}k∈N is a solution of problem (P ).

2. If ∇h is weakly continuous on C, then the whole sequence {xk}k∈N weakly
converges to some solution of problem (P ).

3. If, moreover, F is strongly monotone on C, then {xk}k∈N strongly converges
to the unique solution x∗ of problem (P ).

Proof. Conclusion 1 follows directly from Theorems 4.2 and 4.1. To prove con-
clusion 2, we have to show that the sequence {xk}k∈N has a unique weak limit point.
Assume that {xk}k∈N has two weak limit points x̄ and x̃. By conclusion 1, these two
points are solutions of problem (P ) and, from the proof of Theorem 4.2, the sequences
{Γk(x̃, xk)}k∈N and {Γk(x̄, xk)}k∈N are convergent. Let Γ̃ and Γ̄ be their respective
limits.

On the other hand, by the definition of the Lyapunov function, we have, for all
k ∈ N and x ∈ C,

Γk(x̃, x)− Γk(x̄, x)

= (h(x̃)− h(x̄)− 〈∇h(x), x̃− x̄〉)

+ (µk/m) (〈F (x̃), x̄− x̃〉+ ϕ(x̄)− ϕ(x̃) + 〈F (x̃)− F (x̄), x− x̄〉).
Let {xk}k∈K⊂N be a subsequence of {xk}k∈N converging to x̄. If we set x = xk in the
above inequality, we can write

Γk(x̃, xk)− Γk(x̄, xk)

= (h(x̃)− h(x̄)− 〈∇h(xk)−∇h(x̄), x̃− x̄〉 − 〈∇h(x̄), x̃− x̄〉)

+ (µk/m)(〈F (x̃), x̄− x̃〉+ ϕ(x̄)− ϕ(x̃) + 〈F (x̃)− F (x̄), xk − x̄〉).
From the strong convexity of h and since x̃ is a solution of problem (P ), we deduce
that

Γk(x̃, xk)− Γk(x̄, xk) ≥ (β/2)‖x̃− x̄‖2
−〈∇h(xk)−∇h(x̄), x̃− x̄〉
+ (µk/m)〈F (x̃)− F (x̄), xk − x̄〉.

Then, if we take the limit on k ∈ K, the weak continuity of ∇h implies that

Γ̃− Γ̄ ≥ (β/2)‖x̃− x̄‖2.
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Since the roles of x̄ and x̃ can be reversed, we also have that

Γ̄− Γ̃ ≥ (β/2)‖x̄− x̃‖2.
Combining these two inequalities, we conclude that x̄ = x̃, which proves the unique-
ness of the weak limit point for {xk}k∈N.

Let x∗ denote this weak limit point. To obtain conclusion 3, we will show that
when F is strongly monotone on C, we also have that ‖xk − x∗‖ → 0. If we put
together relations (3.5), (3.6), (3.9) from the proof of Lemma 3.1, we obtain that

Γk+1(x∗, xk+1)− Γk(x∗, xk)

≤ −(β/2) ‖xk+1 − xk‖2

+ µk [〈F (xk), x∗ − xk〉+ ϕ(x∗)− ϕ(xk)

+ (1/m)〈F (xk)− F (x∗), xk − xk+1〉].
When F is strongly monotone on C (with constant ᾱ > 0), since x∗ is a solution of
problem (P ), we have that

〈F (xk), xk − x∗〉+ ϕ(xk)− ϕ(x∗) ≥ ᾱ‖xk − x∗‖2.
We deduce that

Γk+1(x∗, xk+1)− Γk(x∗, xk)

≤ −(β/2) ‖xk+1 − xk‖2 − µk ᾱ ‖xk − x∗‖2

+ (µk/m)〈F (xk)− F (x∗), xk − xk+1〉.

Let us now pass to the limit on k in this inequality. Since {Γk(x∗, xk)}k∈N is con-
vergent, {‖xk+1 − xk‖}k∈N converges to zero, F is weakly continuous, and 0 <
µ ≤ µk ≤ µ, we conclude that {‖xk − x∗‖}k∈N converges to zero. This completes
the proof.

Remark 3. If we particularize Theorem 4.3 to the finite dimensional case, we
obtain the (strong) convergence of the sequence {xk}k∈N to some solution of problem
(P ) provided that all assumptions of Theorem 4.2 are satisfied.

Remark 4. When ϕ is not approximated, our results generalize those obtained
by Zhu and Marcotte in [42]. When F = 0 and C = H, our scheme amounts to
the bundle algorithm to minimize ϕ on H, and our convergence results reduce to
well-known ones (see, e.g., [11]).

5. Numerical tests. The computational experience reported here has been per-
formed with the software MATLAB. Five examples of operator F have been tested.
The first example is F = 0 so that problem (P ) amounts to minimizing ϕ over C. For
the other examples, F is of the form F (x) = Qx, where Q is an (n×n) nonsymmetric
matrix chosen in such a way that F satisfies the Dunn property, i.e.,

∃σ > 0 such that for all x ∈ Rn, xT Qx ≥ σ xT QT Qx.
In the examples, the matrices Q1 and Q3 are positive definite, while the matrices
Q2 and Q4 are singular. The function ϕ is defined on Rn as the maximum of five
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quadratic functions. This classical nonsmooth test function is taken from [23, Test
Problem 1: MAXQUAD, p. 151]. Except when F = 0, where we take C = R

n, the
following constraint set is used in the other cases:

C =

{
x ∈ Rn :

n∑
i=1

xi ≥ 1, −5 ≤ xi ≤ 5, i = 1, . . . , n

}
.

In the bundle algorithm, we choose h(x) = (1/2)‖x‖2 and

θi = max
ik≤j≤i−1

{ϕ(yj) + 〈s(yj), · − yj〉} for all i : ik < i ≤ ik+1.

Consequently, each subproblem (P ki ) can be equivalently written under the following
form:

(P ki )

⎧⎨
⎩

minx∈C,v∈R{ v + 〈r(xk), x− xk〉+ 1
2µk
‖x− xk‖2}

subject to v ≥ ϕ(yj) + 〈s(yj), x− yj〉, j = ik, . . . , i− 1.

Observe that, at the solution (yi, vi), we have that vi = θi(yi). Note also that
subproblem (P ki ) amounts to a quadratic minimization problem. Moreover, for fixed
k, each quadratic subproblem is the previous one with an additional linear inequality
constraint. The computation of the trial points yi can thus be made very efficiently.

For the sake of clarity, we adapt the algorithm by taking into account the above
considerations.

Bundle algorithm to solve problem (P ). Let an initial point x0 be given,
together with tolerances m ∈ ]0, 1[, ε > 0, and a positive sequence {µk}k∈N. Set
y0 = x0 and k = 0, i = 1, i0 = 0.

Step 1. Compute (yi, vi) as the unique solution of the quadratic problem

(P ki )

⎧⎨
⎩

minx∈C,v∈R{ v + 〈F (xk), x− xk〉+ 1
2µk
‖x− xk‖2}

subject to v ≥ ϕ(yj) + 〈s(yj), x− yj〉, j = ik, . . . , i− 1.

Step 2. If ϕ(xk) − ϕ(yi) ≥ m [ϕ(xk) − vi] + (1 −m) 〈F (xk), yi − xk〉, then set
xk+1 = yi.

If ‖xk+1 − xk‖ ≤ ε, then STOP.

Otherwise set ik+1 = i and increase k by 1.

Step 3. Increase i by 1 and go to Step 1.
Table 5.1 reports the results obtained with the following choices for the parame-

ters: (x0)i = 1 for all i = 1, . . . , n; m = 0.4; ε = 10−4; µk = µ = 0.05 for all k. From
this table, we can observe that the number of quadratic programming subproblems
per outer iteration is relatively small. The efficiency of the algorithm depends on the
values taken for the parameters m and µ. Indeed, the stopping test in Step 2 will be
all the more difficult to satisfy as m approaches 1. Our numerical experience shows
that it becomes prohibitive relating to the cpu time if m is chosen too close to 1. A
good compromise between the number of outer iterations and the number of inner
iterations seems to be m ≈ 0.4. Relating to the choice for µ, we note that if µ is cho-
sen too large, too many null-steps are made between two serious-steps, and the cpu
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Table 5.1

Number of inner iterations for each outer iteration denoted by k and cpu time in seconds.

n = 10 n = 20

k F = 0 F (x) = Q1x F (x) = Q2x F (x) = Q3x F (x) = Q4x

C = R
n C = C C = C C = C C = C

1 3 3 3 5 5
2 3 3 3 6 6
3 4 4 4 9 9
4 4 5 5 8 8
5 6 6 5 9 9
6 7 7 7 12 12
7 8 8 8 12 11
8 8 9 8 43 12
9 9 9 8 16
10 16 11 10
11 16 22 11
12 11 13 12
13 19 15 13
14 13 17 14
15 10 17 15
16 14 18 16
17 22 20 17
18 14
19 14
20 20
21 16

cpu 37 34 29 41 36

time increases drastically. This comes from the fact that the term (1/2µk) ‖x− xk‖2
in subproblem (P ki ) grows slowly when ‖x− xk‖ increases. In consequence, the trial
points yi are far from xk, and the model is not suitable. On the contrary, when µ
is chosen too small, too many serious (but small) steps are taken and the process
stagnates. This can be justified by the fact that the term (1/2µk) ‖x − xk‖2 grows
rapidly when ‖x − xk‖ increases such that the trial points yi are close to xk. The
stopping test is then rapidly satisfied, but the corresponding serious-step is small. A
good compromise seems to be µ ≈ 0.05.
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1. Introduction. The linear min cost flow (MCF) problem is the following linear
program (LP):

min{cx : Ex = b, 0 ≤ x ≤ u},(1.1)

where E is the node-arc incidence matrix of a directed graph G = (N,A), c is the
vector of arc costs, u is the vector of arc upper capacities, b is the vector of node
deficits, and x is the vector of flows. This problem has a huge set of applications,
either in itself or, more often, as a submodel of more complex and demanding prob-
lems [1]. This is evidenced by the enormous amount of research that has been devoted
to developing efficient solution algorithms for MCF problems [1], either by specializing
LP algorithms—such as the simplex method—to the network case, or by developing
ad hoc approaches.

Recently, interior point (IP) methods for linear programming have established a
reputation as efficient algorithms for large-scale problems; a detailed description of
the IP algorithms and their underlying theory can be found in the extensive literature
on the subject and in many recent linear programming textbooks, e.g., [19, 24]. At
each iteration of these methods, linear systems of the form(

EΘET
)
∆y = d(1.2)

have to be solved, where Θ and d are an m × m diagonal matrix (m = |A|) with
positive entries and a vector of Rn (n = |N |), respectively, which depend on the cur-
rent solution and on the IP algorithm chosen. These systems are often referred to as
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KKT systems, because they represent the computational core of a “slackened” KKT
system for the problem. Although the form (1.2) is not, strictly speaking, the most
general, it has the advantage of being the same for many variants of IP algorithms.
Furthermore, in the MCF case, the matrix M = EΘET has close relationships with
several extensively studied objects in both linear algebra and graph theory. When
Θ = I, the matrix M is closely related to the Laplacian of the undirected version
of G [2, 7], which has been exploited to explore topological properties of graphs
through the spectral properties of some associated matrices [6]. Conversely, the
graph G can be thought of as a combinatorial representation of certain algebraic
properties of M [20], some of which will be recalled below.

The solution of (1.2) typically represents by far the main computational burden
of IP algorithms. Thus, developing a specialized approach for the solution of (1.2) for
specially structured matrices E can substantially improve the performance of an IP
method. Since the form of the KKT system is independent of the specific variant of
IP algorithm used, the same specialized solver for (1.2) can be used to implement all
the variants of IP algorithms.

As M = EΘET is symmetric and positive semidefinite, (1.2) is often solved
through a Cholesky factorization, which is computationally effective and numerically
stable. That is, a lower triangular Cholesky factor L with all diagonal entries equal
to 1 and a diagonal matrix D with a positive (nonnegative) diagonal are found such
thatM = LDLT ; this can be done in O(n3), and, once the factorization has been com-
puted, systems involving M can be solved in O(n2) with two backsolves on L. How-
ever, a well-known drawback of the Cholesky factorization is the fill-in phenomenon:
a sparse matrix M may have a dense Cholesky factor L. The density of the Cholesky
factor may vary by reordering the rows of the matrix E; hence, IP codes usually
make an effort at finding a permutation of the rows of E which (approximately) min-
imizes the fill-in effect. This is only done at the beginning of the algorithm, since
the structure of the nonzeros in M (and therefore of its Cholesky factor) does not
depend on Θ and therefore does not change with the iterations. The problem of
finding the reordering which produces the least fill-in is known to be NP-hard [25];
however, several effective heuristics have been developed for computing a “good” such
permutation [19]. Yet, in general the fill-in phenomenon cannot be avoided [4] ex-
cept in some specific cases, so that alternative methods have been proposed for MCF
[17, 15, 13, 14, 23] and other network-structured problems [4]. Most of these methods
solve the system using a preconditioned conjugate gradient (PCG) method. The crit-
ical choice is therefore that of the preconditioner: it must be inexpensive to compute
and invert while delivering a consistent reduction of the number of conjugate gradient
iterations required to (approximately) solve (1.2).

The first PCG-based IP algorithm specifically tailored for MCF problems was
proposed in [17]. Following suggestions from [12] and [22], the tree preconditioner was
defined, which is a preconditioner of the form

MS = ESΘSE
T
S ,(1.3)

where S is a spanning tree of G, ES is the node-arc incidence matrix of S, and ΘS is
the restriction of Θ to the arcs in S. In particular, S is chosen as an (approximate)
maximum-weight spanning tree, the weight of each arc (i, j) being the correspond-
ing θij . Such a tree can be constructed in O(m) with a variant of the classical Kruskal
algorithm where arcs are only approximately sorted using a “bucket” data structure
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with m buckets. The linear systems involving MS can then be solved in O(n), at
each step of the PCG method, by considering the three linear systems with coeffi-
cient matrix ES , ΘS , and ETS , respectively; it is well known [1] that these systems
can be solved by visiting the tree S. The preconditioner MS can be expected to be
spectrally effective, especially in the final iterations of an IP algorithm; in fact, the
analysis of IP methods shows that, if the optimal solution of the underlying MCF is
unique, the weights θij tend to zero on all arcs, except on those corresponding to the
basic optimal solution [19] that form a spanning tree; hence MS ≈ EΘET in the last
iterations of the IP method. The analysis in [10] and the experimental results show
that the tree preconditioner in fact has good spectral properties in the final iterations
of an IP algorithm even in the degenerate case. Finally, a different rationale for the
choice of S as a maximum-weight spanning tree has been given in [7].

Unfortunately, tree preconditioners are less effective in the first iterations; this
has suggested a hybrid preconditioning technique [17], where the diagonal precondi-
tioner is used in the first iterations, and then some heuristic rules are used to switch
to the tree preconditioner in a later stage. The implementation of this approach,
refined with better stopping criteria [18] and a custom primal-infeasible/dual-feasible
IP algorithm [15], has shown to be competitive with well-known combinatorial MCF
codes.

In [13], the tree preconditioner is “extended” by using

M ′
S = MS + ρdiag(M −MS)(1.4)

as the preconditioner, where diag(X) is the diagonal matrix having as the diagonal
elements those of X. This has the advantage of incorporating information about all
arcs, rather than about only those in S. The parameter ρ can be chosen according
to the structure of the MCF problem at hand, with different values proposed in [13]
for different classes of MCF problems. The relationships between M ′

S and MS , from
the spectral viewpoint, have been analyzed in [10]. Finally, a different preconditioner
has been proposed in [14] for the special case of transportation problems, based on
an incomplete QR factorization of M , that has been reported as being more effective
than the tree preconditioner for this particular class of MCF instances in the early
iterations of the algorithm. For a more detailed description of these preconditioners
and their relationships the interested reader is referred to [16] and [10].

Our aim is to improve the effectiveness of IP methods for MCF problems by
designing new classes of preconditioners. The basic idea is that of extracting a proper
subgraph S = (N,AS) of G (AS ⊆ A) which contains—possibly strictly—a spanning
tree, but such that the corresponding matrix MS defined as in (1.3) can still be
efficiently factored. We will refer to these preconditioners as subgraph based, and
to S as the support of MS . One way for ensuring efficient factorization is to select S
as a triangulated (also known as chordal) graph [20], so that there exists an ordering
of the nodes for which MS has no fill-in. Other ideas can then be exploited for
further improving the effectiveness of these preconditioners, yielding a large variety of
preconditioners, some of which provide a better trade-off between the cost of finding S
and factoring MS and the cost of the PCG iterations.

The structure of the paper is the following: in section 2 we introduce and prove the
properties of a large family of new preconditioners. In sections 3 and 4 the algorithmic
issues related to this new family of preconditioners are discussed. In section 5 the
results of a computational experience aimed at assessing the effectiveness of the new
preconditioners are presented. Finally, conclusions are drawn in section 6.
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2. Subgraph-based preconditioners. We propose to choose S as a triangu-
lated graph [20], i.e., such that every cycle of length at least 4 has an edge joining
two nonconsecutive vertices in the cycle. Such an edge is called a chord, whence the
alternative name of chordal graphs. Since MS has the same nonzero structure of the
node-node adjacency matrix of S, there exists a “good” ordering of the nodes, i.e.,
an n × n permutation matrix Pn, such that the reordered matrix PnMSP

T
n has a

Cholesky factorization without fill-in. This is in fact a generalization of the result
that is exploited when tree preconditioners are used: a Pn exists such that PnES is
lower triangular. For the case of trees, Pn corresponds to any permutation P of the
nodes such that if (i, j) is an arc of S with i father of j, then row j precedes row i
in P; these permutations include reverse depth-first visit and reverse breadth-first
visit. Note that the definition of a father-son relationship implies that a root has
been chosen for the spanning tree.

Thus, a natural way to generalize the tree preconditioner would be to choose S as
a maximum-weight triangulated subgraph of G. Unfortunately, this does not appear
to be an easy problem; although no conclusive evidence is known, the problem is
conjectured in [11] to be NP-hard.

However, choosing a maximum-weight triangulated subgraph of G, even if it were
computationally feasible, would not necessarily be a good idea in this application.
This is due to the fact that, as shown in section 5, for MCF problems the tree pre-
conditioner is already very effective, and only a limited (although sizable) increase
of the spectral efficiency of the method can be expected, especially in the last IP
iterations. Thus, it is crucial that the extra cost of finding and factoring a “fatter”
preconditioner MS is kept low for the approach to have some chance of improving on
the tree preconditioner. Indeed, the most efficient implementations of IP methods for
MCF based on the tree preconditioner use an approximate algorithm for finding the
maximum-weight spanning tree, even though the optimal tree could be found in (low)
polynomial time.

Hence, a generalization of the tree preconditioner is sought for finding a large-
weight triangulated graph with only slightly more effort than that required for finding
an approximate maximum-weight spanning tree. We remark here that, for our appli-
cation, finding the graph S is not enough; the “good” permutation P also has to be
provided. This can always be done in linear time [21], but in general it is not free.

Not much along these lines has been done in the literature. In [11], a class of
triangulated graphs, the k-windmills, is defined in the context of finding the “best”
Markov network model of manageable size which “explains” some observed data, a
problem that can be recast as that of finding a maximum-weight triangulated subgraph
with “small” cliques of a given graph. An approximation algorithm with guaranteed
performance is given for the maximum-weight k-windmill problem, but the algorithm
requires the solution of an LP and a rounding operation and is therefore not feasible
for our application.

A different way to achieve similar results has been proposed in the more general
setting of M-matrices; the preconditioners are constructed by adding “a few” extra
arcs to a spanning tree T , carefully balancing the extra cost of the incurred fill-in with
the gain in the number of iterations [22, 3, 5]. This can be done, e.g., by splitting the
node set into a small number k of disjoint components of size about n/k, each one
spanned by a subtree of T , and then adding to S the arc with largest weight connecting
any two of the components. The approach in [9] is similar although more involved
and is mostly motivated by the need for finding a preconditioner that parallelizes
well: since the graph is recursively subdivided into smaller graphs of roughly equal
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size, the workload can be evenly divided among parallel processors. In both cases, a
small number of components ensures a “limited” increase in the cost for factoring the
preconditioner, given that fill-in is expected.

2.1. Brother-connected trees. We now define a new family of preconditioners
of the form (1.3), based on the characterization of a new class of triangulated graphs,
strictly containing spanning trees.

Definition 2.1. A subgraph S=(N,AS) of G is a brother-connected tree (BCT)
if it is either a spanning tree T = (N,AT ) of G or it contains a spanning tree T
of G such that the subgraph S′ = (N,AS \ AT ) obtained by removing all the arcs
of T from S is formed of a certain number k ≥ 1 of node-disjoint connected components
S′

1 = (N1, A1), . . . , S
′
k = (Nk, Ak) such that all the nodes in Ni are “brothers” (sons

of the same node) in T , and each S′
i is a BCT.

Definition 2.1 is inherently recursive and operational in nature; a BCT can be
constructed by iteratively taking a family of BCTs (which may be ordinary trees) and
joining all their nodes in a tree, where all the nodes of any one of the original BCTs
are sons of the same node. Note that, conversely, it is not required that all the sons
of the same node in T belong to the same connected component. In particular, the
connected components can be composed by only one node; in this case, we consider
the empty set of arcs to be a spanning tree (and, therefore, a BCT) for the component.
In other words, the arc set AS of a BCT S is the union of the arc sets of a family
T = {T1, . . . , Tq} of arc-disjoint subtrees Ti of G. The family T itself has a tree
structure, where a tree Ti is the son of a tree Tj in T if all the nodes in Ti are
brothers in Tj .

Thus, an important characteristic of a BCT S is its depth, which is the depth
of the associated tree T , i.e., the number of times that the composition operation
has to be applied, starting from an empty graph, in order to construct S. A BCT
of depth 1 is an ordinary tree, a BCT of depth 2 contains a spanning tree T such
that the removal of all the arcs in T leaves a forest, and so on. For example, consider
the graph of Figure 2 in section 3: solid arcs define T , dashed arcs are the forest at
the second level, and dotted arcs do not belong to the BCT. The BCT depicted on
the left side of Figure 2 has a family T = {T1, T2, T3}, where T1 = T are the solid
arcs, T2 is composed of the dashed arcs linking nodes 1, 2, 3, 4, and 5, and T3 is only
the dashed arc (6, 7). The tree structure of T is simply that T1 is father of both T2

and T3; therefore, the depth of the BCT is 2.

It is easy to show that BCTs are triangulated graphs by induction on the depth.
A BCT of depth 1 is a tree, hence a triangulated graph. When building a BCT of
depth k + 1 out of a number of disjoint BCTs of depth at most k, all newly created
cycles have length 3. Thus, there exists a permutation P of the nodes that allows
us to factor ES without fill-in if S is a BCT. Something more, however, can be said:
the “good” ordering is “embedded” in the description of the BCT in terms of the
associated tree T . Thus, if the description is—as in the case of the heuristics that we
propose—available “for free,” then the BCT immediately provides all the necessary
information for factoring the associated preconditioner without fill-in. This is what
we are going to prove in the following.

A well-known property of the Cholesky factorization is that, given a matrix M ′

with Cholesky factor L′, any symmetric positive definite matrix

M =

[
M ′ m
mT µ

]
has a Cholesky factor of the form L =

[
L′ 0
lT 1

]
.
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Furthermore, the values in a row of the Cholesky factor L depend only on the values
on the same row and on the previous ones. Therefore, if M ′ is a matrix with no fill-in,
then M can have fill-in only in its final row.

In graph terms, the above operation corresponds to adding to the graph repre-
senting the nonzero structure of the matrix M a new node, possibly connected with
all other nodes. Therefore, the following result easily follows.

Lemma 2.2. Consider any finite number k ≥1 of node-disjoint triangulated graphs
Gi = (Ni, Ai) and their corresponding “good” orderings Pi; the graph G = (N,A)
obtained as the union of all the graphs Gi plus a new node u linked by an arc to each
node in each of the graphs Gi is triangulated, and the corresponding “good” order-
ing P is obtained by composing the permutations Pi in arbitrary order and placing
the new node u as the last node in the ordering.

Proof. Apply the above observations: M ′ corresponds to all the Gi, and the new
row l in the Cholesky factor of M is dense (completely nonzero), but this corresponds
to the fact that S has n − 1 arcs more than S′; i.e., the row [mTµ] is completely
nonzero too.

We can now prove the main result.

Theorem 2.3. Given a brother-connected tree S in G, its representation as a
tree T allows us to compute a “good” ordering of the nodes of G (such that MS has
a Cholesky factor L with no fill-in).

Proof. We will proceed by double nested induction: the first on the depth of S,
the second on the number of nonterminal nodes in the tree T contained in the BCT.

The basic step of the (outer) induction corresponds to depth 1; i.e., S is a tree.
As we already recalled, any ordering of the nodes such that node j precedes node i
if (i, j) is an arc of S and i is the father of j has the desired property. This ordering
can be found in linear time.

For the inductive step, we assume that the ordering is available for any BCT with
depth at most h and show how to construct it for BCTs of depth h+1. Once again we
proceed by induction, this time on the number of nonterminal nodes of the spanning
tree T included in S.

The basic step of the (inner) induction corresponds to the case where there is
only one nonterminal node u; i.e., T is a “star tree,” where any other node but u is a
leaf. Since S is a BCT, the subgraph S′ obtained by removing u (and all its incident
arcs) from S is formed of k ≥ 1 node-disjoint BCTs of depth at most h. Therefore,
for the (outer) inductive hypothesis we know a good ordering for S′, and we can find
the one for S as shown in Lemma 2.2.

For the (inner) inductive step, consider a nonterminal node u such that all its
sons are leaves of T ; call V the set of the sons of u. Let S′ be the subgraph of S
induced by the nodes V ∪ {u} and let S′′ be the subgraph of S induced by the nodes
in N \ V ; note that both subgraphs contain node u. Now we can apply the (inner)
inductive hypothesis to S′′, as we have reduced the number of nonterminal nodes by
one unit; hence, we can find a good ordering P ′′ of N \ V . Furthermore, since S is
a BCT, then S′ \ {u} is a set of node-disjoint BCTs of depth at most h, and, as in
the basic step of the (inner) induction, we can find a good ordering P ′ of V ∪ {u},
where u must be the last node. We can then construct an ordering P of N by simply
joining P ′ and P ′′ in a sequence that corresponds to P ′ on V and to P ′′ on N \ V
such that all the nodes in V precede those in N \ V . Therefore, the corresponding
reordered MS can be written as
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MS =

⎡
⎢⎢⎢⎢⎣
MS′\{u} 0 m 0

0 0 0 0

mT 0 µ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎣

0 0 0 0

0
0
0

MS′′

⎤
⎥⎥⎦ ,

where [mT , µ] is the (completely nonzero) row corresponding to node u in the ma-
trix MS′ . The two matrices in the right-hand side share only one nonzero position
in the row and column associated with u. Hence, the first part of the Cholesky
factor L of MS is equal to that of MS′ , and so it is the part of the factorization
relative to the nondiagonal elements in row u. Thus, the Cholesky factorization of
(the reordered) MS in the first |V | rows/columns has no fill-in. As S′ is a graph, the
associated matrix MS′ is rank deficient and the value d′u for its LDLT factorization is
zero. Hence, the value du for the factorization of MS is equal to d′′u computed in the
factorization of MS′′ . Therefore, the second part of the factorization of MS is exactly
the factorization of MS′′ . For the inductive hypothesis we know that the Cholesky
factor of MS′′ (reordered with P ′′) has no fill-in, and this finally allows us to conclude
that P is a good ordering for MS .

The above result can be easily generalized with the following proposition.
Proposition 2.4. Let M be a positive definite matrix with a BCT support; then,

the ordering of Theorem 2.3 is “good” for M .
Proof. In the general case, the computation of the element du in the proof of

Theorem 2.3 may depend on the submatrix associated with S′. Let d′u and d′′u be the
values computed in the factorization of MS′ and MS′′ , respectively. The first part
of the factorization of MS is equal to the factorization of MS′ for rows in S′ \ {u},
and the rest can be obtained as the factorization of MS′′ , but starting from the value
du = d′u + d′′u. Therefore, M can be factored without fill-in.

To summarize, for a BCT with depth 2, P must be such that
• The matrix ET associated with its spanning tree T is lower triangular; i.e.,

if (i, j) is an arc of T with i father of j, then row j of ES precedes row i in P;
• For each nonterminal node u of T , each subset of its sons which belong to

the same subtree Th = S′
h (once the arcs of T have been removed) is ordered in the

permutation according to the order defined by Th; i.e., if (i, j) is an arc of Th with i
father of j, then row j precedes row i in P. The roots of the subtrees and the sequence
of the trees can be arbitrarily chosen.

In general, P can be recursively constructed by ordering the nodes of the BCTs
of depth h and then composing these orders into orders for the BCTs of depth h+ 1.
This can be done with a bottom-up postvisit of the tree T associated with the BCT,
i.e., by visiting the tree T from the leaves to the root with the constraint that each
node of T can be visited only after all of its sons.

The induction process in Theorem 2.3 suggests an algorithm that performs the
Cholesky factorization of MS without fill-in in O(nh2), where h is the depth of the
BCT. All the trees at the same depth q can be represented with a unique predecessor
function Pred[q] defined on the nodes, such that Pred[q][u] = v if v is the father
of u at depth q, and Pred[q][u] = nil (null value) if u is a root, i.e., it has no father.
For instance, in a BCT of depth 2 the function Pred[1] represents the spanning
tree T whose removal leaves a forest F , which is represented by the function Pred[2].
The algorithm for computing the LDLT factorization of a matrix MS with a BCT
support S is shown with the pseudocode in Figure 1. It requires a description of the
BCT (of depth h) in terms of the predecessor functions Pred[q], and a description
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Procedure CholeskyFactorBCT (h, n,M,Pred,Order, L,D)
begin

for i = j, . . . , n; i = 1, . . . , j − 1 do
L[i, j] = M [i, j];

for i = 1 . . . n do
D[i] = M [i, i];
L[i, i] = 1;

for i = 1 . . . n− 1 do
u = Order[i];
for q = h . . . 1 do

w = Pred[q][u];
if w �= nil then

L[w, u] = L[w, u]/D[u];
D[w] = D[w]− L[w, u]2 ∗D[u];

for q = h . . . 1 do
w = Pred[q][u];
if w �= nil then

for r = q − 1 . . . 1 do
y = Pred[r][w];
if y �= nil then

L[y, w] = L[y, w]− L[w, u] ∗ L[y, u] ∗D[u];
end.

Fig. 1. Pseudocode for factorization of a matrix with BCT support.

of a “good” ordering P in an array Order[]. By performing a bottom-up visit of the
tree T , it outputs the Cholesky factor L and the diagonal matrix D. The algorithm is
similar to the usual procedure for the Cholesky factorization, but it exploits the fact
that the fill-in cannot be produced, so nonzero elements of L correspond to pairs (y, w)
such that y = Pred[s][w] for some level s. Indeed, the Cholesky factorization using
the ordering P would be

L[y, w] =
1

D[w]

[
M [y, w]−

∑
u<Pw

L[w, u]L[y, u]D[u]

]
,

D[w] = M [w,w]−
∑
u<Pw

L[w, u]2D[u],

where “<P” is the ordering contained in Order[].
Using the same data structures, Pred and Order, an O(nh) algorithm that solves

systems of the form MSr = v—which is what is actually required if MS is used as
a preconditioner in a PCG algorithm—can be constructed; any iteration of a PCG
algorithm which uses a BCT-based preconditioner has a complexity of O(nh + m).
In our implementation, we have considered only the case of BCTs of depth 2; this
simplifies and streamlines the algorithms, while still leaving room for almost doubling
the number of arcs to be put in S with respect to a standard tree preconditioner (a
BCT of depth 2 can have up to 2n− 3 arcs).

Thus, BCT preconditioners can be easily integrated with standard tree precondi-
tioners, and they do not need general-purpose Cholesky factorization routines; in fact,
the construction and factorization of the preconditioner are easily and efficiently per-
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Fig. 2. Two maximal BCTs on the same graph with different cardinality.

formed using the data structures naturally produced by the construction of the BCT.

3. Finding brother-connected trees. The complexity of the problem of find-
ing the maximum-weight BCT in a given graph G is not known to us. However,
the exact solution of this problem is not crucial in this application; even in the case
of tree preconditioners, an approximate solution is usually preferred although the
exact solution can be obtained in low polynomial time. It is very unlikely that a
maximum-weight BCT can be found with a comparable efficiency, because BCTs are
not matroids. This is shown by the two BCTs S1 and S2 in Figure 2, where the solid
arcs belong to the first level, the dashed ones belong to the second level, and, finally,
the dotted ones are in the complements G \S1 and G \S2. It is easy to check that S1

and S2 are maximal BCTs (of level two) with different cardinality.

3.1. A class of heuristics for maximum-weight BCT. For all the above
reasons, we will resort to heuristics to find the BCT to be applied in the PCG method.
A large number of different heuristics can be proposed, by combining different variants
of two basic ingredients:

(i) how a spanning tree T is chosen;
(ii) how extra arcs forming trees among brothers in T are chosen.

Some results can be proved about the worst-case performances of this kind of
heuristics if T is chosen to be a maximum-weight spanning tree for the graph.

Proposition 3.1. Let G be a graph; denote by w(MBCT ) the weight of the
maximum-weight BCT with depth 2 on G and by w(MST ) the weight of the maximum
weight spanning tree on G. Then w(MBCT ) ≤ 2w(MST ).

Proof. Consider the following problem: given a graph G, find a connected sub-
graph S = (N,AS) of maximum weight with the property that S contains at least a
spanning tree T = (N,AT ) of G such that the residual graph S \ T = (N,AS \ AT )
is acyclic. Obviously, this problem is a relaxation of the maximum-weight BCT with
depth 2. Moreover, its optimal objective function value is less than 2w(MST ): in
fact, w(MST ) is an upper bound on both w(T ) and w(S \ T ) as the latter one is
acyclic.

Corollary 3.2. All heuristics for constructing a BCT which augment the
maximum-weight spanning tree are 2-approximated.

Thus, choosing the initial tree as an (approximate) maximum-weight spanning
tree appears to be a promising choice. In fact, we have experimented with several
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different ways for finding an initial spanning tree, described in [8] and not reported
here to save on space, but they were almost invariably outperformed by the “standard”
maximum-weight spanning tree.

The above bound is asymptotically tight even if we find the maximum-weight
spanning tree T on G and then compute a maximum-weight spanning tree on each
connected component induced by the sets of brothers in T , as the following example
shows.

Example 3.3. Let us consider the graph with n nodes and the following two types
of arcs:

• (i, i+ 1) for i = 1, . . . , n− 1 with weight 1;
• (1, j) for j = 3, . . . , n with weight 1− ε.

Clearly, the maximum spanning tree T is the path from 1 to n composed of the arcs
of the first type; hence, there are no brothers in T and the heuristic stops. However,
the whole graph is a BCT of depth two, with the arcs connecting 1 with each of the
other nodes in the first level and the other arcs in the second level with total weight
2n− 3− (n− 2)ε.

3.2. Enlarging the tree to a BCT. When a tree T is selected, extra arcs
forming trees among brothers in T must be chosen (point (ii)). For this task we
propose three different variants:

(ii.a) When the tree is selected, the final ordering of the nodes to be considered
in the factorization is also arbitrarily fixed as any “good” ordering for T . Then, the
arcs out of T are scanned in (approximated) order of decreasing weight and added to
the tree if they are compatible with the fixed ordering and they satisfy the condition
that the trees on the second level are paths among brothers.

(ii.b) As in case (ii.a), the arcs are scanned in (approximated) order, and the
trees in the second level of the BCT are restricted to being paths; however, the
ordering between brothers can be changed. The final ordering is found by considering
one of the two possible permutations for each path among brother nodes, and then
composing these orders, respecting the tree structure of T .

(ii.c) This variant is analogous to case (ii.b), but the trees in the second level of
the BCT are not restricted to being paths.

These three variants require different data structures and amounts of computa-
tional time (how many times the list of arcs is scanned), and they find different BCTs.
Variant (ii.a) is the cheapest one, but it usually adds fewer new arcs. Variant (ii.c) is
the most complex, as it requires a new union-find structure to find trees in the second
level and to select the corresponding orders, but it may add more arcs. Variant (ii.b)
is something in between.

For variants (ii.b) and (ii.c), it is actually possible to modify the original spanning
tree T as the algorithm proceeds, in order to add even more arcs. One way to do
that is to apply an operation, which we call promotion, whereby a node connected
with its grandfather is “promoted” as a brother of its former father. That is, let j
be a node, k its father in T , and i the father of k in T . If the arc (i, j) is selected
from the (approximated) ordering, it is possible, under some conditions, to modify
the tree T in such a way that j becomes a son of i and brother of k. This is done
by making (i, j) an arc of T (i.e., in the first level of the BCT), while (k, j) becomes
an arc of the second level, as shown in Figure 3. In order to apply the promotion,
node j must not have incident arcs (j, l) in the second level of the BCT, as after the
promotion j and l are no longer brothers. Moreover, for variant (ii.b) the node k must
also have at most one connected brother in the second level of the BCT, for otherwise



904 A. FRANGIONI AND C. GENTILE

j

k k

i i

j

Fig. 3. The BCT before (left) and after (right) the promotion.

the tree in the second level would no longer be a path. Note that using the promotion
operation in Example 3.3 allows one to discover that the complete graph is indeed
a BCT.

In all the above heuristics, an initial ordering of the nodes is assumed that is
“good” for the initial tree T ; this is done by selecting a root node and performing a
visit of the tree. Since this order impacts the heuristics (especially (ii.a), where it is
fixed), the selection of the root node is potentially critical. We considered two possible
strategies for selecting the root node: choosing the node with the largest adjacency
list (“static”) or choosing the node with the largest total weight of the set of incident
arcs (“dynamic”).

Let us remark here that the matrix M = EΘET has rank equal to n minus the
number of connected components in G, i.e., at most n − 1. It is always possible to
assume that G is connected, as otherwise the original MCF problem can be partitioned
into a set of smaller subproblems, one for each of the connected components; hence, we
can assume that the rank of M is n−1. When solving the KKT system, it is therefore
possible to work with full-rank matrices by just deleting one row of E; alternatively,
it is possible to work with the rank-deficient KKT system, although in this case MS

is rank deficient, too. The choice of the row (node) to be eliminated is arbitrary, yet
it may have some consequences; when a node (row of the matrix E) is deleted, we
choose it as the one associated with the root node of the tree T , although in principle
different choices would be possible.

4. Further improvements. All the preconditioners that we have proposed so
far can be further improved by applying two kinds of operations that attempt to in-
corporate in MS information regarding arcs which have been left out of the support S.

The first operation amounts to adding to S all arcs (i, j) which are “parallel”
to arcs already belonging to S, i.e., every other arc (i, j) or (j, i) belonging to G; we
will denote these as “tree/BCT+parallel,” or “T/BCT+P” for short, preconditioners.
Clearly, this cannot generate fill-in other than that already present in the original MS ,
as the support of the two matrices is the same. Note that “parallel” arcs, i.e., multiple
copies of the same arc (or of its reverse arc) with different costs and capacities, are
often present in MCF problems, e.g., to model piecewise linear convex separable flow
cost functions [1]. This kind of operation has not been explicitly described before in
the literature of IP approaches for MCF problems, while it is taken for granted when
M-matrices are approached; our computational experience shows that the option has
to be kept open. In fact, when “many” parallel arcs are present, it is useful to set the
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weight of each edge {i, j} in the MST computation equal to the sum of the weights of
all parallel arcs (i, j) or (j, i), in order to correctly estimate the importance of adding
any of those parallel arcs (and, therefore, all the others) to the support. However,
when “few” parallel arcs are present, the extra computational burden required for
computing the weights of the edges is not worth the corresponding improvement in
the PCG convergence.

The second operation, proposed in [13] for the tree preconditioner, consists of
using as preconditioner the matrix

M ′
S = MS + ρdiag(M −MS).

This cannot have more fill-in than MS , and it contains at least some information
about all arcs. We will denote these as “tree/BCT+diagonal,” or “T/BCT+D” for
short, preconditioners. Of course, combining the two ideas gives “T/BCT+P+D”
preconditioners.

Adding the diagonal can be very useful for some classes of instances, but, as re-
ported in [10] and essentially confirmed by our experience, it is not always convenient,
so the option has to be kept open. Note that this operation adds some complexity
to the Cholesky factorization of the preconditioner. This is more clearly seen in the
case of T+D preconditioners; while the pure tree preconditioner basically does not
need any factorization (it can be factored by just permuting the rows), the T+D
preconditioner does need a true—although simple—factorization phase. Analogously,
the factorization of BCT+D preconditioners requires the modification described by
Proposition 2.4. It may also be worth remarking that the factorization routine can
be somewhat simplified if ρ = 1, which is significant in light of the results reported in
the next section.

5. A computational comparison of preconditioners. In this section, we
present the results of a large-scale computational test aimed at assessing the effec-
tiveness of our new family of preconditioners.

For our tests, we selected three well-known random generators of MCF problems:
goto (GridOnTOrus), gridgen, and netgen.1 For each generator, we generated a
total of 12 classes of instances, with n = 2k for k = 8, 10, 12, 14, and 16 and up to
three different densities. In particular, for k = 8 we generated instances with density
8, 16, and 32, for k = 10 we generated instances with density 8, 32, and 64, for k = 12
we generated instances with density 8, 64, and 256, for k = 14 we generated instances
with density 8 and 64, and for k = 16 we generated only instances with density 8. In
the following, we will use the form genX.Y to refer to the class of instances generated
by the generator gen (goto, grid, or net), with k = X and density equal to Y. In
each class, five different instances were generated by simply changing the seed of the
pseudorandom number generator.

For all the above instances, we ran an implementation of a primal-dual IP method,
using a standard tree preconditioner, in order to collect the data for reproducing the
matrices M at the IP iterations. Then, the different preconditioners were tested on
these matrices, and an estimate of the total time that would be spent by an IP method
if using each preconditioner is computed. This way, we ensure that for every precon-
ditioner we solve exactly the same sequence of linear systems; since the systems are

1Source code for these generators can be downloaded, e.g., at http://www.di.unipi.it/di/
groups/optimize/Data/MMCF.html; parameters for reproducing the instances are available upon
request from the authors.
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only approximately solved, the sequence of systems solved by different preconditioners
within an IP approach would in general be different, so that directly comparing the
total time spent in the solution of the linear systems during an IP method using each
given preconditioner would have been unfair. The impact of the choice of the precon-
ditioner on the overall optimization process will be analyzed in depth in a forthcoming
paper, also taking into account many important details such as the different choices
of IP algorithm (primal, dual, primal-dual) with several variants each (affine, barrier,
predictor-corrector, etc.), and the required precision in the solution of the systems.

We remark that each one of the preconditioner procedures has been carefully
implemented. In particular, during the factorization phase we have exploited as much
as possible the structure of the preconditioner in order to speed up operations. For
instance, T/T+P preconditioners have a Cholesky factor with entries in {1,−1, 0} and
where the entries in matrix D depend only on the predecessor arcs of each node; these
matrices need not be directly constructed as such, so that both the factorization phase
and the solution of the linear systems at each PCG iteration are faster in this case.
Analogously, for BCT/BCT+P preconditioners the entries in the Cholesky factor
depend only on the brothers and on the predecessor, but they do not depend on the
sons in the first level of the BCT, which leads to some simplification in the factorization
routine. Since the efficiency of these procedures is crucial, all efforts have been made
to obtain the best possible implementation for all the tested preconditioners.

We also remark that we have used an adaptive stopping rule for the PCG: the
algorithm for solving (1.2) is stopped when a vector ∆y is found such that

|di −Mi∆y| ≤ ε1 max(|bi − Eix̄|, ε2 max(|bi|, 1))

for all components i, where x̄ is the current primal solution of the IP algorithm.
It is easy to check that this stopping rule allows early termination in the initial IP
iterations, thereby improving the overall efficiency of the IP approach, by ensuring
that the PCG is stopped as soon as the system is solved with enough precision to
decrease the infeasibility of the primal solution, if it is not feasible yet, or that the
violation of the primal constraints is not worsened too much, if the primal solution is
already feasible (usually, because of cancellation of errors this is enough to keep the
primal solution feasible until termination). The tolerance ε1 is set to 0.1, while ε2 is
the relative feasibility precision required to the constraints satisfaction, typically set
to 1e-6. We have also tested the alternative “cosine” stopping rule proposed in the
literature [18], but we have found it to be less reliable from the IP viewpoint; this
is probably due to the fact that we have used a standard primal-dual IP algorithm
rather than a primal-infeasible/dual-feasible one [15].

The computational experiments were performed in three phases. In the prelim-
inary phase, a significant subset of the instances were tested with all the over 200
possible variants of preconditioners obtained by implementing the ideas presented in
sections 3 and 4 and in [8]. This allowed us to discover that certain choices were
consistently outperformed, thus reducing the set of promising preconditioners to only
eight. In the second phase these preconditioners were tested on the full set of in-
stances, in order to develop automatic rules for choosing the right preconditioner for
each instance. Finally, in the third phase we compared the performances of the code
having the automatic preconditioner selection rule with that of the corresponding
T/T+D (whichever of the two was better) preconditioner. We will report the results
of the three phases separately.
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5.1. Preliminary experiments. In the preliminary phase, we were able to
establish with a high degree of confidence the following facts:

• As already mentioned, using approximated maximum-weight spanning trees
as the basis for the heuristics is consistently the best choice.

• The T+D and BCT+D preconditioners were found to be preferable to their
“pure” counterparts for the grid and net classes, while the converse happens for
the goto problems (except in the very first iteration when Θ = Im); this basically
confirms the results reported in [10].

• When a “+D” preconditioner is used, ρ = 1 seems to be the best option in
general, at least for the classes of instances at hand.

• Working with the full rank-deficient system M is consistently better than
eliminating one row when a “+D” preconditioner is used (this is reasonable, since then
the preconditioner is nonsingular even if the whole system is not), while eliminating
the row and working with a nonsingular system is preferable if the diagonal is not
added.

• When one row (node) has to be removed from the system, the best choice
appears to be the one with the largest total weight of the set of incident arcs.

• When working with the rank-deficient system, the choice of the root node—
which impacts the heuristics for the maximum-weight BCT computation—has little
effect.

We are not reporting the tables relative to the experiments in the preliminary
phase in order to save space.

At the end of the preliminary phase, we were therefore able to decide that all
preconditioners should find the initial tree with an approximated maximum-weight
spanning tree computation. Furthermore, for goto problems we did not use the “+D”
preconditioners, and therefore we eliminated one row and worked with the full-rank
subsystem, while for grid and net problems we did use the “+D” preconditioners,
therefore working with the rank-deficient system M . The remaining choices were
about which heuristic was used for finding the BCT ((ii.a), (ii.b), (ii.c), or none, i.e.,
the tree preconditioner) and whether or not “+P” preconditioners are used, for a
grand total of eight different variants. For those we ran the code on all the instances,
obtaining the results reported in the next section.

5.2. The second phase. The complete results of the second phase are shown in
Table 5.1. There are seven groups of two columns. The first three, labeled B-a, B-b,
and B-c, report the results relative to BCT preconditioners where the BCT is found
with heuristic (ii.a), (ii.b), and (ii.c), respectively. The fourth group, labeled TP,
reports the results relative to the T+P preconditioner. Finally, the last three groups,
labeled BP-a, BP-b, and BP-c, report the results relative to BCT+P preconditioners.
For grid and net problems only, these preconditioners have to be intended as “+D”
also. All the results in the tables are normalized with respect to those obtained by
the tree preconditioner (without “+P”, and with or without “+D” according to the
problem class); that is, the numbers in the columns Iter and Time are, respectively,

Iter =
number of iterations of the corresponding preconditioner

number of iterations of the tree preconditioner

and

Time =
running time of the corresponding preconditioner

running time of the tree preconditioner

(averaged among the five instances of each class). This makes it easier to spot where
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Table 5.1

Comparison of the most promising preconditioners.

B − a B − b B − c TP BP − a BP − b BP − c

goto Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

8.8 0.97 * 0.87 * 0.87 * 0.90 * 0.88 * 0.80 * 0.79 *

8.16 0.97 * 0.84 * 0.84 * 0.82 * 0.78 * 0.69 * 0.68 *

8.32 0.96 * 0.82 * 0.82 * 0.78 * 0.75 * 0.64 * 0.63 *

10.8 0.99 * 0.86 * 0.85 * 0.77 * 0.76 * 0.70 * 0.70 *

10.32 0.97 0.98 0.81 0.85 0.80 0.86 0.77 0.78 0.74 0.77 0.62 0.68 0.62 0.67

10.64 0.98 1.00 0.86 0.90 0.84 0.88 0.74 0.75 0.69 0.71 0.62 0.66 0.62 0.65

12.8 0.99 1.01 0.86 0.93 0.86 0.92 0.84 0.84 0.82 0.86 0.79 0.85 0.78 0.84

12.64 0.98 0.99 0.84 0.88 0.84 0.87 0.73 0.67 0.71 0.67 0.64 0.62 0.64 0.61

12.256 0.97 0.97 0.80 0.84 0.79 0.83 0.72 0.71 0.68 0.71 0.50 0.56 0.50 0.56

14.8 0.99 1.00 0.76 0.83 0.76 0.83 0.33 0.37 0.33 0.37 0.30 0.39 0.30 0.38

14.64 0.98 1.00 0.78 0.83 0.78 0.83 0.63 0.64 0.62 0.65 0.53 0.62 0.53 0.59

16.8 1.01 1.01 0.72 0.74 0.71 0.74 0.22 0.24 0.22 0.24 0.19 0.22 0.19 0.22

grid Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

8.8 1.00 * 0.99 * 0.99 * 0.87 * 0.87 * 0.87 * 0.87 *

8.16 0.99 * 0.99 * 0.98 * 0.97 * 0.97 * 0.95 * 0.95 *

8.32 0.99 * 1.00 * 1.00 * 0.97 * 0.96 * 0.97 * 0.97 *

10.8 1.00 * 1.00 * 1.00 * 0.82 * 0.82 * 0.82 * 0.82 *

10.32 0.99 1.07 0.98 1.12 0.98 1.11 0.94 0.96 0.94 1.02 0.94 1.12 0.94 1.13

10.64 1.00 1.12 0.98 1.28 0.98 1.31 0.99 0.99 0.98 1.09 0.98 1.24 1.00 1.29

12.8 1.00 1.05 1.00 1.08 1.00 1.09 0.63 0.70 0.63 0.73 0.63 0.77 0.63 0.76

12.64 1.00 1.12 1.00 1.29 1.00 1.34 1.00 0.94 1.00 1.05 0.99 1.20 0.99 1.29

12.256 1.00 1.08 0.99 1.26 0.99 1.39 0.97 0.94 0.97 1.06 0.76 1.07 0.96 1.35

14.8 1.00 0.94 1.00 0.98 1.00 1.00 0.38 0.40 0.38 0.41 0.38 0.44 0.38 0.44

14.64 1.00 1.08 1.00 1.20 1.00 1.25 0.91 0.97 0.91 1.03 0.91 1.14 0.92 1.20

16.8 1.00 1.00 1.00 1.03 1.00 1.02 0.31 0.33 0.31 0.34 0.31 0.35 0.31 0.36

net Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

8.8 0.99 * 1.00 * 1.00 * 1.00 * 1.00 * 1.00 * 1.00 *

8.16 1.00 * 0.99 * 0.98 * 1.00 * 1.00 * 0.99 * 0.99 *

8.32 1.00 * 1.00 * 1.01 * 1.00 * 1.00 * 1.00 * 1.00 *

10.8 0.99 * 0.99 * 0.99 * 1.00 * 0.99 * 0.99 * 0.99 *

10.32 1.00 1.08 1.00 1.15 1.00 1.17 1.00 1.09 1.00 1.14 1.00 1.19 0.99 1.19

10.64 0.99 1.04 1.00 1.15 1.01 1.21 1.00 0.94 0.99 1.02 1.00 1.12 1.00 1.11

12.8 1.05 1.05 1.00 1.09 1.00 1.09 0.99 1.00 1.03 1.06 1.02 1.14 1.02 1.13

12.64 1.00 1.11 1.00 1.19 1.00 1.25 1.00 1.02 0.99 1.16 0.99 1.21 0.99 1.28

12.256 0.99 1.13 0.99 1.27 0.99 1.35 1.00 1.01 0.99 1.18 0.99 1.33 0.99 1.36

14.8 1.00 0.94 1.00 1.02 1.00 1.11 1.00 1.11 1.00 1.06 1.00 1.13 1.00 1.17

14.64 1.00 1.05 1.00 1.15 1.00 1.19 1.00 0.97 1.00 1.06 1.00 1.16 1.00 1.22

16.8 1.00 1.06 1.00 1.13 1.00 1.15 1.00 1.01 1.00 1.06 1.00 1.13 1.00 1.16

the new preconditioners improve upon the known ones (entries < 1), and it highlights
some interesting trends, as we will see later on. However, for the smaller instances
we elected not to report running times, as each system was timed separately, and the
time required to solve one system was too near to the precision of the timing routines,
and therefore too affected by errors, to be significant.

We will now comment on the results for the three classes of problems separately.

goto instances. For these instances, the new preconditioners are quite competi-
tive with the tree one, obtaining, when parallel arcs are added, improvements of up
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Table 5.2

More detailed results for 10.32 instances.

goto 10.32 grid 10.32 net 10.32

T B-b TP BP-b T B-b TP BP-b T B-b TP BP-b

0 729 0.78 0.37 0.26 12 0.95 0.95 0.95 10 1.00 0.98 1.00

1 95 0.78 0.85 0.69 10 0.98 0.96 0.96 11 0.98 1.00 0.98

k/4 77 0.81 0.77 0.62 11 1.00 0.98 0.98 11 1.00 0.98 0.98

k/2 47 0.82 0.86 0.68 16 0.98 0.94 0.93 15 1.00 1.00 1.00

3k/4 27 0.87 0.92 0.80 14 0.99 0.94 0.93 15 1.00 1.00 1.00

k-1 16 0.95 1.00 0.92 7 1.00 0.85 0.85 7 1.00 1.00 1.00

k 16 0.95 1.00 0.92 3 1.00 0.87 0.87 3 1.00 1.00 1.00

to a factor of five in iterations count, and only slightly less so in time. Among BCT
preconditioners, the more complex heuristics (ii.b) and (ii.c) clearly outperform the
simpler (ii.a), with the most complex one, (ii.c), oftentimes slightly outperforming
(ii.b). There does not seem to be a clear trend regarding graph density, with denser
graphs sometimes benefiting more and other times benefiting less from BCT precon-
ditioners than sparse ones; however, there is a clear positive trend with graph size, in
that larger problems benefit most from BCT preconditioners.

grid instances. Even for these instances, enriching the support graph by adding
more arcs turns out to be in general a good strategy; this time, however, it is the
addition of parallel arcs that makes up the largest part of the improvement. In
fact, although improvements of up to a factor of three are still obtained, the T+P
preconditioner is the most competitive one. BCT preconditioners often obtain smaller
iteration counts than the corresponding tree one, but only slightly so, and this does
not pay for the extra cost of finding the preconditioner. Among BCT preconditioners,
the more complex heuristics (ii.b) and (ii.c) fail, on this class of instances, to obtain
more than minor improvements with respect to the simpler (ii.a), so that the most
complex one, (ii.c), is usually the slowest one. The same positive trend with graph
size as in the goto case shows up; this time, however, there appears to be something
of a more defined trend with density, too, as improvements tend to be more consistent
for problems on sparser graphs.

net instances. For this class of instances, the new preconditioners are not compet-
itive with the tree one. Although enriching the support graph fairly often decreases
the iterations count, the decrease is always minimal, and adding parallel arcs does not
help; for these instances, all the mechanisms for enriching the support graph actually
increase the total running time required for solving the systems.

In order to better understand the behavior of the preconditioners, it is worth-
while to examine some of the results in greater detail. In Table 5.2 we report some
data about the number of iterations required to solve problems of the same size (the
class 10.32) generated by the three different generators. For each generator, we re-
port seven rows corresponding to the systems solved at IP iterations 0, 1, k/4, k/2,
3k/4, k− 1, and k, where k is the index of the last iteration; this is a significant sam-
ple of the matrices generated during the IP algorithm. In particular, the systems of
iteration 0 are those solved to find an initial interior solution, for which Θ = Im (i.e.,
M = EET [7]). For each generator, the column T reports the number of PCG itera-
tions required for solving the system using the tree preconditioner, while the columns
TP, B-b, and BP-b have the same meaning as the columns Iter in the corresponding
sections of Table 5.1.
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Table 5.3

Number of arcs added to the support graph.

T B − a B − b B − c

goto #TP #B #BP #B #BP #B #BP

0 927 2 0 410 8 410 8

1 927 2 0 384 8 384 8

k/4 843 54 14 385 33 385 33

k/2 724 86 27 370 72 371 73

3k/4 722 88 26 368 72 369 73

k − 1 721 87 26 367 70 367 70

k 721 84 26 354 69 354 69

grid #TP #B #BP #B #BP #B #BP

0 15 5 2 13 6 13 6

1 401 96 35 145 53 188 67

k/4 569 5 1 14 3 14 3

k/2 546 5 1 12 3 12 3

3k/4 544 5 2 13 3 13 3

k − 1 528 2 1 6 2 6 2

k 498 0 0 1 0 1 0

net #TP #B #BP #B #BP #B #BP

0 5 29 0 41 0 41 0

1 4 8 0 24 0 24 0

k/4 4 9 0 23 0 23 0

k/2 6 9 0 20 0 20 0

3k/4 6 11 0 20 0 20 0

k − 1 6 7 0 13 0 13 0

k 5 4 0 8 0 8 0

The results show that the systems corresponding to goto instances are consider-
ably more difficult to solve than those corresponding to either grid or net instances.
The effect of the BCT preconditioner on goto instances is larger in the first iterations,
where the tree preconditioner is less effective, and diminishes as the IP algorithm pro-
ceeds; for grid and net instances the effect is very limited across the board, and no
clear trend emerges. The effect of the “+P” variant is less easy to characterize, with a
decreasing trend showing up for goto instances and no clear trend emerging for grid
instances. It is, however, interesting to note that, for the goto instances, in the very
final iterations of the IP algorithm the “+P” variant alone does not seem to produce
any improvement to the tree preconditioner, while it is capable of helping out, albeit
slightly, the BCT one.

The above results can be better understood by looking at Table 5.3, where the
number of arcs added to the spanning tree in the different variants of preconditioners is
reported. In the table, the three groups of two columns labeled B−a, B−b, and B−c
correspond to the heuristics (ii.a), (ii.b), and (ii.c), respectively, for the maximum-
weight BCT computation. In each group, the column #B reports the number of arcs
in the second level of the BCT found by the heuristic, and the column #BP reports
the number of arcs “parallel” to those in the second level of the BCT. Finally, the
column #TP reports the number of arcs “parallel” to those of the original spanning
tree. The table shows the (averaged) results for the 10.8 instances for the three
different generators; these results can be considered typical. For each generator, we
report seven rows corresponding to the systems at the same seven “snapshots” of the
optimization process as in Table 5.2.
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These results show that the effectiveness of the new preconditioners—at least,
relative to that of the tree one—is directly related to the number of arcs that are
added to the support graph. In particular, for goto instances the heuristic (ii.a)
adds considerably fewer arcs than (ii.b) or (ii.c), and in fact it is less effective; fur-
thermore, a large number of “parallel” arcs are added to the support graph, and in
fact the corresponding preconditioners improve upon those where this is not done.
For grid instances, the BCT heuristics are not capable of adding many arcs to the
support graph (except in the second iteration), while a large number of “parallel”
arcs are added; indeed, adding parallel arcs is what makes the difference for these
instances. Finally, for net instances very few arcs are added to the support graph by
both methods, and this directly translates into the inferior performances of the new
preconditioners.

These results lead us to the following conclusions:

• Of all heuristics for finding the BCT, (ii.b) is the one that obtains the best
performances, being far more efficient than (ii.a) in adding arcs to the support graph
and only slightly less so than (ii.c), but is, however, much more costly; this confirms
that balancing the effort for finding/factoring the preconditioner with the improve-
ment in the convergence rate of the PCG is crucial.

• Enriching the support graph turns out to be a good strategy for those prob-
lems that are not easily solved by the tree preconditioner, whereas it is less useful for
systems that are already very efficiently solved by the tree preconditioner.

• The relative efficiency of the new subgraph-based preconditioners with re-
spect to the tree one is well predicted by the number of arcs added to the spanning
tree; this has been confirmed by the analysis of data for all the instances, which we
do not report here to save space.

5.3. Final results. Given the results of the previous section, we have tested the
effect of an automatic rule for choosing the preconditioner. Sticking to heuristic (ii.b)
for finding the BCT, we initially start by using both BCT and “+P” preconditioners.
The number of arcs added to the support graph S by both operations are counted; if
this number is larger than a fixed threshold, the preconditioner actually includes those
arcs; otherwise the operation is disabled in that and all the following IP iterations.
This choice is motivated by the fact that the tree preconditioner becomes more and
more efficient as the IP algorithm proceeds; hence if adding arcs to the support graph
is not likely to help at a given iteration, it is somewhat unlikely that is it going to
help later. Permanently disabling the rule is simple and has the advantage of avoiding
the cost for finding a BCT and/or parallel arcs that are not going to be used (the
cost for factoring MS is not paid anyway because the decision is taken before the
factorization).

The analysis of the obtained results has shown that reasonable thresholds are 45%
for the BCT and 10% for “+P”; that is, using the BCT is disabled if it does not add
at least as many as 0.45(n− 1) arcs, and using parallel arcs is disabled if it does not
add at least as many as 0.10(n− 1) arcs. These thresholds appear to work well for all
three classes of instances.

The results of using these rules are shown in Table 5.4; as for the previous tables,
the results are relative to those obtained by the tree preconditioner (“+ D” or not,
according to the class of instances).

The table shows that the rules are, at least in these instances, capable of choosing
the right preconditioner at the right time. Most often the chosen preconditioner is
always the same for all the IP iterations, but in some cases a switch happens during
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Table 5.4

Results with the automatic selection rule.

goto grid net

Iter Time Iter Time Iter Time

8.8 0.80 * 0.87 * 1.00 *

8.16 0.69 * 0.97 * 1.00 *

8.32 0.64 * 0.97 * 1.00 *

10.8 0.70 0.84 0.82 0.90 1.00 1.00

10.32 0.62 0.68 0.94 0.96 1.00 1.00

10.64 0.62 0.66 0.99 0.99 1.00 0.99

12.8 0.79 0.85 0.63 0.70 1.00 1.00

12.64 0.64 0.62 1.00 0.97 1.00 1.00

12.256 0.50 0.56 0.97 0.94 1.00 1.00

14.8 0.30 0.39 0.38 0.40 1.00 1.00

14.64 0.53 0.59 0.91 0.97 1.00 1.00

16.8 0.19 0.22 0.31 0.33 1.00 1.00

the optimization process which may modify the running time w.r.t. the case where
the same preconditioner is used throughout the IP algorithm, either decreasing it (as
for goto 14.64 and net 10.64) or increasing it (as for grid 12.64) but always by a
relatively small amount. More sophisticated selection rules may further improve the
results, but the obtained ones already show that BCT preconditioners, if carefully
implemented and paired with appropriate automatic selection rules, can effectively
complement tree preconditioners as a solution tool for the linear systems arising in
IP methods for MCF problems.

6. Conclusion and directions for future work. We have proposed a new
family of subgraph-based preconditioners for the solution of the KKT systems arising
in the solution of MCF problems through IP methods. For some families of instances,
these preconditioners improve on those known in the literature both in iterations
count and total time. Also, the new family of preconditioners offers some flexibility
in the way to select the subgraph, thereby allowing us to tune the trade-off between
the cost of computing and using the preconditioner and the corresponding reduction
in the number of PCG iterations. Therefore, we believe that our new preconditioners
can be a valuable tool for constructing efficient IP algorithms for MCF problems.
Furthermore, they may find broader application for the solution of linear systems
with M-matrices [3].

Further work along this line of research will involve perfecting our implementa-
tion of an IP method for MCF problems and testing it against efficient MCF codes
from the literature; the results will be presented in a forthcoming paper, where all
the issues relative to the effectiveness of the different variants of preconditioners for
different IP algorithms will be discussed. Also, other fast heuristics for the maximum-
weight BCT problem will be tested, trying to find an optimal compromise between
the quality of the BCT found and the extra cost involved in finding it; that is a
critical parameter for the overall efficiency of the approach. Finally, theoretical in-
vestigations on the class of BCT graphs may pay off in terms of better heuristics,
characterization of some classes of graphs where “large” BCTs can be easily found,
and a better understanding of the complexity class of the maximum-weight BCT
computation.
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Abstract. We consider the computation of rigorous lower and upper error bounds for the
optimal value of linear programming problems. The input data of the lp-problem may be exactly
given or may vary between given lower and upper bounds. The results are then verified for the family
of lp-problems with input data inside these bounds. In many cases only a small computational effort
is required. For problems with finite simple bounds, the rigorous lower bound of the optimal value can
be computed with O(n2) operations. The error bounds can be used as well to perform a sensitivity
analysis, provided the width of the uncertainties is not too large. Some numerical examples are
presented.
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1. Introduction. Linear programming problems have been solved very success-
fully during the last decades, and many efficient algorithms have been developed.
However, due to rounding errors and/or uncertainties in the input data, the com-
puted approximations sometimes may be unsatisfactory. Especially for ill-conditioned
problems, the results may be quite inaccurate.

Ill-conditioning is not a rare phenomenon. In the recent paper of Ordóñez and
Freund [22] it is stated that 72% of the lp-instances in the NETLIB linear program-
ming library [18] are ill-conditioned. They used a condition number which is a scale-
invariant reciprocal of the smallest data perturbation that renders the perturbed data
instance either primal or dual infeasible. After applying CPLEX 7.1 presolve (a pre-
processing heuristic for linear programming), still 19% maintain the property of being
ill-conditioned. The NETLIB library contains many industrial problems so that the
computation of rigorous error bounds can be valuable in practice.

Beeck [2], Krawczyk [13], and Rump [26] have developed methods for computing
rigorous error bounds for lp-problems in which the optimal solution is unique and not
degenerate. The common basic idea is to use the simplex method for the computation
of an optimal basic index set. Then the optimality of this index set is verified a
posteriori with interval methods, and rigorous error bounds for the optimal vertex
and the optimal value are calculated. Moreover, these algorithms also can be applied
to the calculation of bounds for the family of lp-problems in which the input data vary
between given lower and upper bounds. These error bounds require O(n3) operations,
where n denotes the number of variables of the linear programming problem. In
Jansson [8] the degenerate case is also considered by applying the well-known graph
search method to an appropriately defined graph of degenerate basic index sets. For
each basic index set, a linear interval system must be solved, and for all optimal
vertices, rigorous error bounds are computed. The computational work is k · O(n3),
where k is greater than or equal to the number of (degenerate) optimal basic index sets.
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The approaches above have in common that for each lp-problem of the family,
the existence of optimal solutions is proved. At first, error bounds for the optimal
vertices are computed by solving linear interval systems, and then these bounds are
used for the computation of error bounds for the optimal value.

The major emphasis in this paper is on the fast computation of rigorous error
bounds for the optimal value without using or computing bounds for the optimal ver-
tices. The algorithm presented here avoids the solution of linear interval systems and
needs O(n2) operations for the lower bound, provided that all variables are bounded
and an approximate optimal solution is known. Nothing is assumed about the quality
of this approximate solution. The computational work for the upper bound requires
O(mn+ p3) operations, where m is the number of inequalities and p is the number of
equations of the lp-problem, and, beyond that, requires the computational costs for
applying the lp-solver to a slightly perturbed problem using the known approximate
solution as a starting point.

In the following, we do not consider the standard linear programming problem.
Our reasons are that transformations to the standard problem may lead to more
computational work, and they cause data dependencies in the input data, which may
lead to worse error bounds. Therefore, the inequalities are not transformed into
equations so that in many cases the number p of equations is small compared to mn,
implying only O(mn) operations to compute the upper bound.

It turns out that the lower bound and the upper bound for the optimal value
can be computed for both degenerate and large (sparse) problems, provided the lp-
routine in use is suited for these problems. The lower bound is based on some duality
arguments and is computable even for ill-posed problems. The upper bound uses a
technique for underdetermined nonlinear systems of equations which is proposed in
Hansen [6] and further investigated by Kearfott [11].

For the large radii of the interval input data and the large absolute value of
the simple bounds, the methods presented in [2], [13], and [26] may compute better
rigorous bounds, provided that (i) the lp-problems within the interval input data are
well-posed and have unique nondegenerate optimal solutions, and (ii) the large n× n
interval linear system corresponding to the optimal basic index set can be solved with
narrow bounds.

Rigorous error bounds are not only useful for problems which can be modeled
as lp-problems, but also can be used, for example, in global optimization and mixed
integer programming whenever linear relaxations must be solved. Independently and
at the same time, Neumaier and Shcherbina [21] have developed results which overlap
in part with results presented here. However, there are several differences. Their em-
phasis is more on branch and cut methods for linear mixed integer problems, whereas
we discuss problems with uncertain input data, simple bounds which may be infinite,
and a different upper bound.

Our paper is organized as follows. In section 2 examples are presented in which a
commercial lp-solver computes incorrect approximations, although the problems look
simple. Section 3 contains notation, including intervals and their operations. We
stress that the main parts of this paper can be understood without knowledge of in-
terval arithmetic (see the hint at the end of section 3). In the subsequent section some
comments about solving linear interval systems are given. In section 5 an algorithm for
computing a rigorous upper bound of the global minimum value is considered. Then,
in section 6 a rigorous lower bound is presented. After some applications in section
7, we present numerical results in section 8. Finally, in section 9 some conclusions
are given.
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2. Examples. For many practical lp-problems the input data are integer (and
therefore exactly representable on a computer), the problem is well-conditioned, and
together with an appropriate pivoting rule (for example, Bland’s rule) the optimal
solution can be computed in a finite number of steps, even in the degenerate case.
In addition to implying the linearity of the problem, we may argue that these strong
assumptions should imply that the computed approximation is satisfactory. But the
following example shows that the commercial lp-solver linprog in MATLAB [14] fails,
even though all the above assumptions are satisfied.1 This solver is a variant of the
well-known Mehrotra’s predictor-corrector algorithm [15].

The problem

min−5x1 − 4x2 − 6x3 subject to
x1 − 6x2 + x3 ≤ 20,

3x1 + 2x2 + 4x3 ≤ 42,
3x1 + 2x2 ≤ 30,

(1)

with 0 ≤ xi ≤ xi for i = 1, 2, 3, is bounded from above by the value 21 for every
variable; this can be seen by a short inspection of the second inequality. The optimal
solution is x∗ = (0, 15, 3)T with optimal value f∗ = −78. Hence, the three upper
bounds x = (30, 30, 30)T , x = (1010, 1010, 1010)T , and x = (+∞,+∞,+∞)T change
neither the set of feasible solutions nor the optimal solution. The MATLAB routine
linprog computes in all three cases the optimal solution and the optimal value with
accuracy of about 11 decimal digits. Now, to the above constraints, we add the linear
equation

x1 + x2 + x3 = 10(2)

and apply linprog for this problem with the previous three upper bounds. Notice that
the resulting set of feasible solutions has a nonempty relative interior, and for all three
upper bounds the optimal solution is x∗ = (0, 0, 10) with optimal value f∗ = −60.

For the upper bounds x = (30, 30, 30)T and x = (+∞,+∞,+∞)T , linprog calcu-
lates the optimal solution but, surprisingly, for the upper bound x = (1010, 1010, 1010),
the message

both the primal and the dual appear to be infeasible

is displayed. In the case of a warning, the routine linprog also provides the last
iteration point before the routine stops. For this example, this point is equal to
x = (0.0045, 5.6042, 10.4218), which does not satisfy (2).

In the second example, we tried to solve with linprog the problem

min
n∑
i=1

si subject to

Ax + s = e1,
0 ≤ xi, si ≤ 1000 for i = 1, . . . , n,

(3)

where x, s ∈ Rn, e1 is the first unit vector, and A is the inverse of the n × n Pascal
matrix. Notice that the Pascal matrix and its inverse have integer entries. A short

1By accident, this example was discussed during a course of lectures about optimization for
students studying electrical engineering. During this course, branch and bound strategies for linear
mixed integer problems and the influence of the simple bounds were investigated. We used the
MATLAB routine linprog and, surprisingly, by increasing the upper bounds, the set of feasible
solutions became empty. Unfortunately, I cannot find the reference for the data of this lp-problem.
It could be that it was originally presented in a book borrowed on interlibrary loan.
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calculation shows that the optimal solution is x = A−1e1 (which is 1 in every com-
ponent of x), and s = 0. The basis matrix corresponding to the optimal solution is
A. For n = 9 the 2-norm condition number of A is 2.9 × 108. Because MATLAB
uses double precision, one would expect that about 8 decimal places of the optimal
solution are correct. In fact, this is true if the solution of the linear system Ax = e1 is
computed by the linear system solver in MATLAB. However, the MATLAB routine
linprog displays the message

the primal appears to be infeasible (and the dual unbounded).

We mention that, for our first example, the results of MATLAB Versions 5.3 and 6.0
are identical. For the second example they differ slightly. The message above comes
from Version 5.3. Version 6.0 displays, after 86 iterations, the message

maximum number of iterations exceeded,

and the component x(9) of x in the last iteration is 4.858 × 10−15, even though the
optimal component is 1. Increasing the maximum number of iterations to 1000 does
not change anything. For n = 10 the 2-norm condition number of A is 4.2× 109, and
also in Version 6.0 the message

the primal appears to be infeasible (and the dual unbounded)

is displayed.
We have investigated the examples above by using the NAG-solver E04MBF [17],

which is an implementation of the simplex-method. This solver has produced good
approximations in these cases.

A further example can be found in Neumaier and Shcherbina [21]. They give an
innocent-looking mixed linear integer problem, where the commercial, high quality
solver CPLEX [7] and several others failed. The reason is that the linear programming
relaxations are not solved correctly by the lp-algorithm.

In backward error analysis it is described that many algorithms are backward
stable; that is, the computed solution is the exact result of a problem with slightly
perturbed input data. A main assumption in most proofs for backward stability of
algorithms is that the perturbations of the input data vary componentwise indepen-
dently. But this assumption is not fulfilled for many real-life problems.

A short inspection of our examples shows that linprog is not backward stable. But
even backward stable results may be unsatisfactory in applications. This is pointed
out by Neumaier and Shcherbina in [21] as follows:

However, backward error analysis has no relevance for integer linear
programs with integer coefficients, since slightly perturbed coefficients
no longer produce problems of the same class.

Algorithms for solving optimization problems search for an optimal solution.
Sometimes the optimum cannot be found, although a convergence theory is well-
elaborated and a well-known termination criteria is implemented. However, a linkage
of search algorithms with rigorous error bounds makes it possible to obtain mathe-
matically correct results for the optimal value of linear programming problems with
limited computational work. It turns out that the computation of error bounds can
be added a posteriori in the form of a subroutine at the end of each linear program-
ming code. Even in some cases (see the following examples) where unsatisfactory



918 CHRISTIAN JANSSON

approximations are computed, useful bounds can be obtained. Hence, non–state-of-
the-art solvers can also be used in a safe manner if postprocessing of the computed
approximation with rigorous bounds is done.

3. Notation. Throughout this paper we use the following notation. We denote
by R, Rn, and Rm×n the sets of real numbers, real vectors, and real m×n matrices,
respectively. Comparisons≤ and absolute value |.| are used entrywise. The coefficients
of a real m×n matrix A are denoted by Aij , its columns by A:j , its rows by Ai:, and
its transpose by AT .

We require only some basic definitions of interval arithmetic that are described in
this paper. There are a number of textbooks on interval arithmetic and self-validating
methods that we highly recommend to readers. These include Alefeld and Herzberger
[1], Kearfott [11], Moore [16], and Neumaier [19], [20].

If V is one of the spaces R, Rn, Rm×n, and v, v ∈ V, then the box

v := [v, v] := {v ∈ V : v ≤ v ≤ v}(4)

is called an interval quantity in IV with lower bound v and upper bound v. In
particular, IR, IRn, and IRm×n denote the set of real intervals a = [a, a], the set
of real interval vectors x = [x, x], and the set of real interval matrices A = [A,A],
respectively. The real operations A ◦ B with ◦ ∈ {+,−, ·, /} between real numbers,
real vectors, and real matrices can be generalized to interval operations. The result
A ◦B is defined as the interval hull of all possible real results, that is,

A ◦B :=
⋂
{C ∈ IV : A ◦B ∈ C for all A ∈ A, B ∈ B}.(5)

All interval operations can be easily executed by working appropriately with the
lower and upper bounds of the interval quantities. For example, in the simple case of
addition, we obtain

A + B = [A+B,A+B].(6)

For interval quantities A,B ∈ IV we define

Ǎ := (A+A)/2 as the midpoint,(7)

rad(A) := (A−A)/2 as the radius,(8)

|A| := sup{|A| : A ∈ A} as the absolute value,(9)

A+ := {A ∈ V : A ∈ A, A ≥ 0},(10)

A− := {A ∈ V : A ∈ A, A ≤ 0}.(11)

Moreover, the comparison in IV is defined by

A ≤ B iff A ≤ B,

and other relations are defined analogously.
Real quantities are embedded in the interval quantities by identifying v = [v, v],

and sometimes they are called point quantities or point intervals. For point quantities
the real matrix-vector operations, comparisons, and absolute value coincide with the
interval operations, interval comparisons, and interval absolute value. Therefore, a
reader not familiar with interval arithmetic can read the main parts of this paper
just by (i) interpreting each interval quantity (fat symbols) as a real quantity, and
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(ii) replacing the statement that a real quantity is contained in an interval quantity
with the statement that the real quantity is equal to the interval quantity.

In general, due to data dependencies, interval arithmetical expressions may lead
to overestimation. Even interval matrix-vector expressions (defined as the interval hull
of all possible real results) may cause overestimation, since matrices transform interval
vectors onto parallelograms. However, for the special cases of interval inner products
and for the multiplication of an interval matrix with a point vector, overestimation is
absent. Hence, for two vectors c,x the equality

sup(cTx) = sup{cTx : c ∈ c, x ∈ x}
holds.

4. Linear interval systems. Linear systems of equations with inexact input
data are treated in interval arithmetic by working with an interval matrix A ∈ IRn×n

and an interval right-hand side b ∈ IRn. The aim of this treatment is to compute an
interval vector x ∈ IRn containing the solution set

Σ(A,b) := {x ∈ Rn : Ax = b for some A ∈ A, b ∈ b}.(12)

If all A ∈ A are nonsingular, then the solution set is bounded and satisfies, by
definition, the property

for all A ∈ A, for all b ∈ b ∃x ∈ x : Ax = b.(13)

Computing an enclosure x of the solution set is an NP-hard problem, but there are
several methods that compute x with O(n3) operations for certain types of interval
matrices. A precise description of such methods, required assumptions, and approxi-
mation properties can be found, for example, in Neumaier [19]. Roughly speaking, it
turns out that for interval matrices with ‖I −RA‖ < 1 (R is an approximate inverse
of the midpoint Ǎ) there are several methods which compute an enclosure x, and
the radius rad(x) decreases linearly with decreasing radii rad(A) and rad(b). For the
computation of enclosures in the case of large linear systems, the reader is referred to
Rump [27].

The computation of rigorous lower and upper bounds for the optimal value re-
quires considering a modified problem. There, a nonsquare interval matrix A ∈
IRm×n with m < n and a right-hand side b ∈ IRm are given, and the goal is to
compute an interval vector x ∈ IRn such that property (13) is fulfilled.

Since m < n (in most cases m is much smaller than n), the solution set Σ(A,b)
is in general unbounded, whereas property (13) requires finding only an enclosure of
a part of the solution set.

Obviously, there are many possibilities for computing such a part of the solution
set. We need to compute such an enclosure x with respect to a given vector x̃ and an
index set I := (β1, . . . , βm) ⊆ {1, . . . , n}, and proceed as follows:

1. Set A:I := (A:β1 , . . . ,A:βm), and denote the remaining matrix A by A:N :=
(A:γ1 . . . . ,A:γn−m), where N := {γ1, . . . , γn−m} = {1, . . . , n}\I.

2. Set xγ1 := x̃γ1 , . . . ,xγn−m := x̃γn−m .
3. Compute an enclosure (xβ1 , . . . ,xβm)T ∈ IRm of the solution set with square

interval matrix A:I and right-hand side

b−
n−m∑
j=1

A:γj x̃γj(14)

by using an algorithm for square linear interval systems.
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This algorithm yields for every A ∈ A and b ∈ b a real vector x ∈ x with

xi ∈ xβj
if i = βj and xi = x̃γj if i = γj(15)

such that Ax = b, i.e., property (13) is satisfied, and the part of the solution set match-
ing x̃γj for all γj ∈ N is filtered out. Because the components x̃γj are point quantities,
the right-hand side of (14) can, in principle, be computed without overestimation.

Hansen [6, Chapter 12] proposed a general technique to prove existence of a
feasible point form nonlinear equations within a bounded box in Rn, wherem ≤ n and
m−n variables are held fixed as above. This technique was modified and investigated
numerically by Kearfott [9], [10] and is also described in his book [11, Chapter 5].
Corresponding algorithms are implemented in his software package GlobSol. In the
following, for computing a rigorous upper bound in linear programming, we adapt this
technique to the linear case but with particular attention to uncertain input data. In
particular, this causes a special choice of deflation parameters, other fixed variables,
and an iterative process.

5. A rigorous upper bound for the optimal value. In this section we in-
vestigate the computation of a rigorous upper bound for the optimal value and the
certificate of existence of optimal solutions for linear programming problems. Fre-
quently, the transformations to the standard lp-problem lead to data dependencies of
the interval input data. For example, describing an unsigned variable as the differ-
ence of two nonnegative variables introduces two dependent columns into the system
matrix. For interval input data, such dependencies lead to overestimations.

Therefore, we consider the nonstandard problem

min
x∈F

cTx, F := {x ∈ Rn : Ax ≤ a, Bx = b, x ≤ x ≤ x},(16)

where A ∈ Rm×n, B ∈ Rp×n, c, x ∈ Rn, a ∈ Rm, and b ∈ Rp.
F is called the set of (primal) feasible solutions, F ∗ denotes the set of optimal

solutions, and f∗ is the optimal value. If F is empty, f∗ := +∞. This problem is
described by the input data

P = (A,B, a, b, c) ∈ R(m+p+1)n+m+p(17)

and the simple bounds x < x, which may be infinite; that is, xj := −∞ or xj := +∞
for some j ∈ {1, . . . , n}. Hereafter we use the arrangement 0 · (+∞) = 0 · (−∞) = 0.
The set of indices in which the simple bounds are both infinite is denoted by

J∞ := {j ∈ {1, . . . , n} : xj = −∞ and xj = +∞},(18)

and its complement is

Jr := {1, . . . , n} \ J∞.(19)

In many applications J∞ is empty or contains only a few indices. A feasible point
x ∈ F is called degenerate if more than n constraints in F are active, that is, at least
n+ 1 constraints hold as equations in x.

Some or all input data of a linear programming problem may be uncertain. We
describe these uncertainties by considering a family of lp-problems P , where P ∈ P
and

P := (A,B,a,b, c) ∈ IR(m+p+1)n+m+p.(20)
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To indicate the dependency of the notation above from P ∈ P, we sometimes write
F (P ), F ∗(P ), f∗(P ), x(P ), etc.

The basic idea for computing a rigorous upper bound is the determination of an
interval vector x which contains for every lp-problem of the family a feasible solution
being in the relative interior of F . This solution must be close to an optimal solution
but sufficiently far away from degeneracy and infeasibility. The next theorem gives
favorable characteristics of x.

Theorem 5.1. Let P := (A,B,a,b, c) be a family of lp-problems with input data
P ∈ P and simple bounds x < x. Suppose that there exists an interval vector x ∈ IRn

such that

Ax ≤ a, x ≤ x ≤ x,(21)

and

for all B ∈ B, for all b ∈ b ∃x ∈ x : Bx = b.(22)

Then for every P ∈ P there exists a primal feasible solution x(P ) ∈ x, and the
inequality

sup
P∈P

f∗(P ) ≤ f∗ := sup(cTx)(23)

is satisfied. Moreover, if the objective function is bounded from below for every lp-
problem with input data P ∈ P, then each problem has an optimal solution.

Proof. Let P = (A,B, a, b, c) ∈ P be a fixed chosen problem. The condition (22)
implies that there exists an x(P ) ∈ x with B · x(P ) = b, and from condition (21) it
follows that x(P ) is a primal feasible solution. Hence, c(P )Tx(P ) ≥ f∗(P ), and (23)
follows. If the objective function c(P )Tx is bounded from below by a finite number
f∗, then the theory of linear programming proves the existence of optimal solutions
for P .

In the next section we show how a rigorous lower bound for the optimal value f∗

can be calculated. Now, it remains to describe the algorithm for computing a rigorous
upper bound f

∗
and an appropriate interval vector x satisfying the conditions (21)

and (22). We assume that an approximate solution x̃ of the midpoint problem P̌ is
known. Nothing is assumed about the quality of x̃. The algorithm consists of the
following seven steps:

(1) Let ε be the adjusted accuracy of the lp-solver, let η be a number greater
than the smallest positive floating point number, let 1.5 ≤ α ≤ 5, and let e
be the vector which is equal to 1 in every component. Compute the deflation
parameters

εa := α(rad(a) + rad(A)|x̃|+ ε(|ǎ|+ |Ǎ||x̃|)) + η · e(24)

and εs, εs which are defined componentwise by

(εs)j :=

{
0 if xj = −∞,

ε|xj |+ η otherwise,
(25)

(εs)j :=

{
0 if xj = +∞,

ε|xj |+ η otherwise.
(26)
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(2) Define the perturbed problem P (ε) := (Ǎ, B̌, ǎ−εa, b̌, č) with simple bounds
x(ε) := x+ εs and x(ε) := x− εs.

(3) Compute an approximate optimal solution ˜̃x of the perturbed problem P (ε)
using the starting point x̃.
If the lp-solver cannot find an approximate feasible solution, then STOP:
Upper bound infinity.

(4) Redefine ˜̃x; that is, every component of ˜̃x smaller than the corresponding
component of x(ε) is set equal to this lower bound, and every component of
˜̃x larger than the corresponding component of the simple bound x(ε) is set
equal to this upper bound. Then x(ε) ≤ ˜̃x ≤ x(ε).
Set x̃ := ˜̃x.

(5) For p = 0 set x := x̃.
Otherwise, choose an index set I = {β1, . . . , βp} such that the submatrix
B̌I is (approximately) nonsingular (for example, by performing an LU or QR
decomposition of the midpoint of B). For the nonsquare linear interval system
via input data B,b compute via the algorithm of section 4, with respect to
x̃ and I, the interval vector x such that condition (22) is fulfilled.
If this algorithm does not compute an enclosure x, then STOP: Upper bound
infinity.

(6) If the conditions Ax ≤ a, x ≤ x ≤ x are satisfied, then STOP: Upper bound

f
∗

= sup(cTx).
(7) Increase the deflation parameters by setting εa := α(εa + 2 max(rad(x))),

εs := α(εs + 2 max(rad(x))), εs := α(εs + 2 max(rad(x))).
(8) If the lp-solver gave no warning in step (3), then goto step (2).
It follows that in each iteration (i.e., one execution of steps (2)–(8)) the deflation

parameters εa, εs, εs are increased relatively and absolutely by adding positive val-
ues rad(x) and η. Hence, in each iteration the set of primal feasible solutions of the
perturbed problems P (ε) is contained in the relative interior of the set of feasible so-
lutions in the previous iteration. Therefore, these sets are shrinking in each iteration.
Either the primal feasible set of P (ε) becomes empty (then the algorithm terminates
in step (3) because the lp-solver cannot find an approximate optimal solution), or
the algorithm terminates in step (5) or (6) with an appropriate x. If the algorithm
terminates in step (5), then one may choose another method for solving linear interval
systems, or the radius rad(P) must be decreased. In our present implementation of
the algorithm we stop after at most 10 iterations.

In the case of sufficiently small rad(P), ε, η, and under the assumption that the
lp-solver and the solver for linear interval systems work appropriately, the algorithm
computes an upper bound f

∗
if F (P̌) has a nonempty relative interior; i.e., the linear

system of equations and inequalities

Ǎx < ǎ, B̌x = b̌, x < x < x(27)

has a solution x. The property that the relative interior of system (27) is nonempty
holds for small data perturbations; that is, the set of feasible solutions must be well-
posed. On the other hand, degeneracy does not affect the practicability of this algo-
rithm because we search for an interval vector contained in the relative interior of F .
However, the number of iterations may increase for degenerate problems.

If several iterations are executed, then in step (3) the previous approximate op-
timal solution always can be used as a starting point, and good warm-start facilities
of the lp-solver limit the computational effort. We remark that the simplex method
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has very good warm-start strategies, but up to now interior point methods have no
comparable strategies for perturbed problem instances.

It is not required that the perturbed problem P (ε) be contained in P, but the
crucial property is that the linear inequalities in step (6) hold for x. This latter
property implicitly demands that the deflation parameters be chosen such that the
set of feasible solutions F (P (ε)) is contained in the relative interior of F (P ) for every
P ∈ P.

The index set I = {β1, . . . , βp} in step (5) is chosen such that the components of
x with diameter greater than zero are far away from the simple bounds. Then the
test x ≤ x ≤ x is easier to satisfy.

The deflation parameters affect the computational work and the error bound.
For example, large values of α decrease the number of iterations, but the quality of
the bound becomes worse because x will be moved towards the relative interior of
F (P̌) and away from optimality. In our present implementation the value α = 2.5 is
used. The other parameters εa, εs, and εs are chosen in a heuristic manner in order
to comprise the interval input data and the rounding errors.

The deflation parameters are used for shrinking the set of feasible solutions. We
mention that in interval arithmetic a contrary technique was used by Caprani and
Madsen [4]. This technique widens intervals such that the existence and uniqueness
of fixed point problems can be proved with Brouwer’s fixed point theorem. It is called
epsilon-inflation by Rump [25], and it is theoretically and practically analyzed in many
subsequent papers.

Example. For the purpose of illustration we consider a degenerate lp-problem,
where the constraints are taken from Vanderbei [29, page 36]

min − x1 − x2 − 4x3 subject to
x1 + 2x3 ≤ 2,

x2 + 2x3 ≤ 2,
0 ≤ x1, x2, x3 ≤ 2,

(28)

and which is illustrated in Figure 5.1.
Obviously, x∗ = (0, 0, 1) is optimal with value f∗ = −4. The point x∗ is the

intersection of four of the facets, not of three facets as one would normally expect;
i.e., x∗ is degenerate. Moreover, it is not a simple degeneracy caused by redundant
constraints, since deleting only one of the above constraints changes the set of feasible
solutions.

Now, we replace each nonzero coefficient c of the objective function and the
constraints by an interval [c − r, c + r] with 0 ≤ r ≤ 1

2 , yielding an interval problem
P. Then (28) is the midpoint problem of P.

To simplify the following illustration of the previous algorithm, we assume that
the lp-solver calculates the exact optimal solution, and we set ε := 0, η := 0, α = 3

2 ,
and x̃ := x∗. Then in step (1) we obtain

εa =
3

2

⎛
⎝( r

r

)
+

(
r 0 r
0 r r

)
·
⎛
⎝ 0

0
1

⎞
⎠
⎞
⎠ =

(
3r
3r

)
, εs = εs = 0,

yielding in step (2) the constraints of the perturbed problem

x1 + 2x3 ≤ 2− 3r, x2 + 2x3 ≤ 2− 3r.
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Fig. 5.1. The set of feasible solutions for the degenerate problem.

The optimal solution of this perturbed problem is ˜̃x = (0, 0, 1− 3
2r). In step (5) p = 0

and x = (0, 0, 1− 3
2r). Since 0 ≤ x ≤ 2 and, furthermore, the inequality

[1− r, 1 + r] · 0 + [2− r, 2 + r]

(
1− 3

2
r

)
=

[
2− 4r +

3

2
r2, 2− 2r − 3

2
r2
]

≤ [2− r, 2 + r]

holds for r ≤ 1
2 , all conditions in step (6) are fulfilled. Hence,

f∗ = sup

(
[−4− r,−4 + r] ·

(
1− 3

2
r

))
= −4 + 7r − 3

2
r2.(29)

6. A rigorous lower bound for the optimal value. Closely related to prob-
lem (16) is the dual problem

max aT y + bT z + xTu+ xT v subject to
AT y +BT z + u+ v = c,
y ≤ 0, u ≥ 0, v ≤ 0.

(30)

A vector (y, z, u, v)T ∈ R2n+m+p satisfying the constraints in (30) is called a (dual)
feasible point, G denotes the set of dual feasible points in (30), G∗ is the set of optimal
points, and g∗ denotes the optimal value. Observe that with our arrangement the
objective value of a dual feasible point (y, z, u, v)T is finite iff uj = 0 for xj = −∞
and vj = 0 for xj = +∞.

The dual problem is described by the same input data as problem (16), and the
theory of linear programming shows that both optimal values f∗ and g∗ are finite and
equal, provided that optimal solutions exist. A feasible solution (y, z, u, v)T ∈ G is
called (dual) degenerate if less than n of its components are nonzero.
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The following theorem provides a rigorous lower bound of f∗(P ) for all P ∈ P by
using the dual problem.

Theorem 6.1. Let P := (A,B,a,b, c) be a family of lp-problems with input data
P ∈ P and simple bounds x < x. Suppose that there exist interval vectors y ∈ IRm

and z ∈ IRp such that
(i) the sign condition

y ≤ 0(31)

holds;
(ii) the equations

for all A ∈ A, B ∈ B, c ∈ c ∃ y ∈ y, z ∈ z :

(A:j)
T y + (B:j)

T z = cj for j ∈ J∞(32)

are fulfilled;
(iii) and further, for the intervals

dj := cj − (A:j)
Ty − (B:j)

T z for j ∈ Jr(33)

the inequalities

dj ≤ 0, if xj = −∞ and j ∈ Jr,(34)

dj ≥ 0, if xj = +∞ and j ∈ Jr(35)

are satisfied.
Then the inequality

inf
P∈P

f∗(P ) ≥ f∗ := min

⎛
⎜⎜⎝aTy + bT z +

∑
j∈Jr

dj>0

xjd
+
j +

∑
j∈Jr

dj<0

xjd
−
j

⎞
⎟⎟⎠(36)

is fulfilled, and f∗ is a finite lower bound of the global minimum value. Moreover, if
(a) all input data are point data (i.e., P = P);
(b) P has an optimal solution (y∗, z∗, u∗, v∗);
(c) y := y∗, z := z∗;
(d) the quantities in (33) and (36) are calculated exactly,

then conditions (i), (ii), and (iii) are satisfied, and the optimal value f∗(P ) = f∗; that
is, this lower error bound is sharp for point input data and exact computations.

Proof. Let y, z be interval vectors satisfying conditions (i), (ii), and (iii), and
let y ∈ y, z ∈ z be vectors which satisfy (32) for a fixed chosen problem P =
(A,B, a, b, c) ∈ P. By definition (33),

dj := cj − (A:j)
T y − (B:j)

T z ∈ dj(37)

for every j ∈ Jr. We define componentwise for j = 1, . . . , n two vectors u, v ∈ Rn by

uj :=

{
dj for j ∈ Jr with dj > 0,
0 otherwise,

(38)

vj :=

{
dj for j ∈ Jr with dj < 0,
0 otherwise.

(39)
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Using (32), (37), (38), and (39), it follows immediately that the vector (y, z, u, v)
satisfies

(A:j)
T y + (B:j)

T z + uj + vj = cj for j = 1, . . . , n.

The sign condition (31) and the definitions above yield y ≤ 0, u ≥ 0, and v ≤ 0,
implying that this vector is dual feasible. Hence, using the inequalities and equations
in (16), we obtain for every primal feasible x ∈ F

aT y + bT z + xTu+ xT v
≤ xTAT y + xTBT z + xTu+ xT v
= xT c.

Noting that uj = vj = 0 for j ∈ J∞, it follows that the corresponding terms xjuj and
xjvj vanish in the dual objective function, and

f∗(P ) = min
x∈F

cTx ≥ aT y + bT z +
∑
j∈Jr

xjuj +
∑
j∈Jr

xjvj .(40)

The bounds (33) yield dj ∈ dj for every j ∈ Jr, and definitions (38) and (39) imply

xjuj = 0 or xjuj ∈ xjd+
j for j ∈ Jr,(41)

xjvj = 0 or xjvj ∈ xjd−
j for j ∈ Jr.(42)

If we put (41) and (42) into (40), and if we consider all P ∈ P, we obtain the rigorous
lower bound (36). The inequalities (34) and (35) imply that no infinite terms appear
in (36). Hence, the lower bound is finite.

For the point input data let (y∗, z∗, u∗, v∗) be a dual optimal solution. Then define
y := y∗, z := z∗. If the dj are calculated exactly, then (38), (39) yield u = u∗, v = v∗

and the constructed vector (y, z, u, v) is the optimal vector of the dual problem. A
short inspection shows the validity of (i), (ii), and (iii), and the duality theorem of
linear programming proves the last assertion.

A consequence is the following error bound for standard linear programming
problems.

Corollary 6.1. Let B ∈ Rp×n, c ∈ Rn, b, z ∈ Rp, and d := c − BT z. Then
the optimal value f∗ of the standard lp-problem

min
x∈F

cTx, F := {x ∈ Rn : Bx = b, 0 ≤ x ≤ x}(43)

with simple upper bound x ∈ Rn, 0 < x, satisfies the inequality

f∗ ≥ bT z +

n∑
j=1
dj<0

xj · dj .(44)

Proof. This follows from Theorem 6.1 by noticing that A is empty, all simple
bounds are finite, and x = 0. Definition (33) yields the vector d for given z.

Obviously, the bound (44) depends only on the quality of z. If z is close to a dual
optimal solution of (43), then f∗ is close to the right-hand side of (44). This follows
immediately from the dual problem of (43), which is

max bT z + xT v subject to c−BT z = v, v ≤ 0.(45)
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More generally, the lower bound f∗ in Theorem 6.1 depends mainly on the radius
r of the interval input data and on the chosen interval vectors y and z. From the
duality theory, it follows that the quality of this bound is improved if y and z are
close to or contain the corresponding parts y∗, z∗ of the dual optimal solution.

At first we discuss the algorithm for computing f∗ in the case where all simple
bounds are finite. Later the general case is treated.

We assume that approximations ỹ, z̃ of a dual optimal solution (y∗, z∗, u∗, v∗) of
the midpoint problem of P are already computed.

(1) Redefine ỹ by setting all positive components equal to zero.
(2) Set y := ỹ and z := z̃.
(3) Compute d := c−ATy −BT z.
(4) Compute f∗ with formula (36).
Since all simple bounds are finite, conditions (ii) and (iii) are fulfilled by definition,

and because y ≤ 0 (see steps (1) and (2)), condition (i) is also satisfied, yielding
the rigorous bound f∗. This bound requires only linear operations between interval
quantities. Since rad(y) = rad(ỹ) = 0 and rad(z) = rad(z̃) = 0, the bound is linearly
decreasing for increasing radius r as long as no additional terms xjd

+
j or xjd

−
j occur

in the two sums. For large values |xj | and |xj |, the bound may be poor if one of

the products xjd
+
j or xjd

−
j appears in the sums. In this case we recommend putting

these indices into J∞. Then the few equations corresponding to these indices must
be added, but the bound will be better.

The additional computational costs for computing f∗ are of order 0((m+ p) · n).
The computed solution (ỹ, z̃, ũ, ṽ) approximates an optimal vertex of the dual problem
yielding at most n nonzero components. Hence, at most n components of y and z are
nonzero, and the lower bound needs only O(n2) operations.

The approximate solution can be computed by any lp-method for large or sparse
systems. Since the lower bound requires only a few matrix-vector operations, the
sparse structure can be easily utilized. Moreover, degeneracy of the lp-problem does
not cause difficulties at all.

Example. We consider the dual problem of (28):

max 2y1 + 2y2 + 2υ1 + 2υ2 + 2υ3 subject to⎛
⎝ 0 1

1 0
2 2

⎞
⎠ · ( y1

y2

)
+

⎛
⎝ u1

u2

u3

⎞
⎠+

⎛
⎝ υ1

υ2

υ3

⎞
⎠ =

⎛
⎝ −1
−1
−4

⎞
⎠ ,(46)

y1, y2, υ1, υ2, υ3 ≤ 0, u1, u2, u3 ≥ 0.

A short inspection shows that a dual optimal solution is given by y∗1 = y∗2 = −1 and
all other variables are set equal to zero. The optimal value is g∗ = −4 = f∗. Also the
dual problem is degenerate, since less than three components of the optimal solution
are nonzero, and the dual optimal solution is not unique. For example, the point
y∗1 = − 1

2 , y
∗
2 = − 1

2 , υ1
∗ = − 1

2 , υ2
∗ = − 1

2 is also optimal.
To obtain a lower bound f∗, we set

y :=

(
y∗1
y∗2

)
=

( −1
−1

)
≤ 0,

and a short computation for the interval problem as defined in the previous section
yields

d1 = [−2r, 2r], d2 = [−2r, 2r], d3 = [−3r, 3r]
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and the lower bound

f∗ = [2− r, 2 + r]y1 + [2− r, 2 + r]y2

+2[−2r, 0] + 2[−2r, 0] + 2[−3r, 0](47)

= −4− 16r.

Example. In order to illustrate some other effects, we consider the lp-problem

min cTx subject to a11x ≤ a1, a21x ≤ a2, x ≤ x ≤ x,(48)

with integer coefficients and simple bounds

c = 100, a11 = 100, a1 = 102, a21 = −90, a2 = −90, x = −2, x = 2.(49)

Because of the two inequalities 100x ≤ 102, −90x ≤ −90 the set of feasible solutions
satisfies 1 ≤ x ≤ 1.02. Hence, this is a bounded and well-conditioned problem with
optimal solution x∗ = 1 and optimal value f∗ = 100. Now, we allow that all coeffi-
cients a of this problem (with the exception of the simple bounds) can vary within a
radius r; that is, we consider intervals of the form [a− r, a+ r].

For r ≥ 1 this is a slightly complicated one-dimensional interval problem. The
difficulties arise because some point problems within the interval input data contain
no feasible solutions, some contain feasible solutions, and some are degenerate and
ill-posed. Choosing

c = 100, a11 = 101, a1 = 101, a21 = −89, a2 = −91(50)

yields coefficients within the radius r = 1, and the inequalities 101x ≤ 101, −89x ≤
−91 are contradictory. Hence, this problem is not feasible. If we change two coeffi-
cients within the interval input data to

a21 = −90, a2 = −90,(51)

then we obtain an ill-posed degenerate problem which has exactly one feasible solution
x = 1.

The dual problem of (49) is

max 102y1 − 90y2 − 2u+ 2v subject to
100y1 − 90y2 + u+ v = 100, y1, y2, v ≤ 0, u ≥ 0,

(52)

yielding the dual optimal solution

y∗1 = u∗ = v∗ = 0, y∗2 = −10

9
.(53)

Assume that the approximate solution coincides with the dual optimal solution. Then
step (2) of our algorithm yields

y1 = y∗1 = 0,y2 = y∗2 = −10

9
and

d = [100− r, 100 + r]− [−90− r,−90 + r] ·
(
−10

9

)
=

[
−19r

9
,
19r

9

]
.

(54)
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Now with formula (36) we obtain the lower bound

inf
P∈[P ]

f∗(P ) ≥ min

(
[−90− r,−90 + r] ·

(
−10

9

)
− 2

19r

9
+ 2

(
−19r

9

))
= 100−86r

9
.

(55)

The lower bound decreases linearly for increasing radius r and coincides with the
optimal value in the case r = 0. This is consistent with Theorem 6.1. Moreover, the
influence of the simple bounds can be seen. In the example case of x := 0, x := 2 the
lower bound is 100−48r/9, demonstrating that some constraint propagation heuristic
for improving the simple bounds can be very useful.

We remark that none of the O(n3) methods mentioned in section 1 can compute
any bounds for this example, since these methods additionally verify that all real
problems within the interval problem have optimal solutions and are well-posed, which
is not true for this example.

The previous example starts with a midpoint problem which is well-posed and
has a finite optimal value. The assumptions of Theorem 6.1 do not require that even
one real problem P ∈ P have primal feasible solutions. It is interesting to see what
happens with the lower bound (36) in such situations.

Example. We consider again example (48) with input data (50). This problem
has an empty set of feasible solutions, and f∗ = +∞. If we apply linprog to this
problem, then we get the correct message

the primal appears to be infeasible (and the dual unbounded)

and the approximate values2

f̃ = 1.015200942446940× 102, x̃ = 1.015200942446940

for the primal problem, and

ỹ1 = −7.846817927076620× 107, ỹ2 = −8.904815962188074× 107,

ũ = 2.039165444641289× 10−10, ˜̃v = −7.434652599734950× 10−9

for the dual problem. Obviously, the calculated approximations f̃ , x̃ are completely
wrong. But surprisingly, the approximations of the dual problem satisfy the dual con-
straint very sharply and, consequently, we obtain the lower bound 1.780964192437591×
108 which is clearly nearer to f∗ = +∞ than f̃ . In a branch and bound framework
such a bound can serve to eliminate a subproblem. For a varying radius of the in-
terval input data, the lower bound (36) is of the same order of magnitude for all
radii 0 ≤ r ≤ 0.21. But for r = 0.22 we get −6.171554418163598 × 106, the sign has
changed, and this bound is poor. The reason is that for values r ≤ 0.21 the first two
terms in (36) remain much larger than the last two sums. This behavior changes for
values close to or greater than r = 0.22.

In the following we consider the algorithm for computing the rigorous lower bound
in the general case. This algorithm is very similar to the algorithm for computing an
upper bound. Condition (ii) of Theorem 6.1 requires the solution of a linear interval
system, which can be carried out as before.

Additionally, variables xj with j ∈ Jr may occur which are bounded only on
one side. Then the inequalities (34) and (35) must be satisfied. In order to obtain

2In this example we display all decimal digits because cancellation occurs in the dual constraint.
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appropriate interval vectors y and z, we solve a slightly perturbed linear programming
problem. If we take the midpoint problem P̌ := (Ǎ, B̌, ǎ, b̌, č) and change č to c(ε)
componentwise by

cj(ε) :=

⎧⎨
⎩

čj + εj if xj = −∞,
čj − εj if xj = +∞,
čj otherwise,

(56)

where εj > 0, then the exact dual optimal solution (y(ε)∗, z(ε)∗, u(ε)∗, v(ε)∗) of this
perturbed problem P (ε) (provided the solution exists) satisfies for xj = −∞ the
equation

čj + εj = (Ǎ:j)
T y(ε)∗ + (B̌:j)

T z(ε)∗ + vj(ε)
∗.(57)

Notice that uj
∗(ε) must be zero because of the term xjuj in the objective function of

the dual problem. Hence,

dj(ε) := čj − (Ǎ:j)
T y(ε)∗ + (B̌:j)

T z(ε)∗ = vj(ε)
∗ − εj < 0,(58)

and similarly for xj = +∞ we obtain

dj(ε) := čj − (Ǎ:j)
T y(ε)∗ + (B̌:j)

T z(ε)∗ = uj(ε)
∗

+ εj > 0.(59)

Summarizing, for the perturbed problem P (ε) the conditions (34) and (35) are ful-
filled, provided εj > 0 and a sufficiently good approximation ỹ, z̃, ũ, ṽ of the optimal
solution of P (ε) is known. In order for these conditions to also hold for the interval
problem P, we have to comprise the interval input data and the rounding errors into
εj as for the upper bound in the previous section.

We assume that approximate dual solutions ỹ, z̃ of the midpoint problem P̌ are
known. Nothing is assumed about the quality of these approximations. The algorithm
consists of the following steps:

(1) Compute the deflation parameters

εj = α(rad(cj) + rad(A:j)
T |ỹ|+ rad(B:j)|z̃|)

+α · ε(|čj |+ |(Ǎ:j)
T | |ỹ|+ |(B̌:j)

T | |z̃|) + η
(60)

for j with xj = +∞ or xj = −∞.

(2) Define the perturbed problem P (ε) := (Ǎ, B̌, ǎ, b̌, c(ε)), where c(ε) is given
by (56).

(3) Compute an approximate dual solution ˜̃y, ˜̃z of the perturbed problem P (ε)
using the starting point ỹ, z̃.
If the lp-solver cannot find an approximate solution, then STOP: Lower bound
minus infinity.

(4) Redefine ˜̃y by setting all positive components equal to zero, and set ỹ :=
˜̃y, z̃ := ˜̃z.

(5) If |J∞| = 0, set y := ỹ and z := z̃. Otherwise, choose an index set
I = {β1, . . . , β|J∞|} consisting initially of the indices corresponding to the
components of z̃, and if more indices for I are required (i.e., |J∞| > p), then
choose those following indices which correspond to the components of y with
largest absolute values. For ỹ, z̃, and I compute via the algorithm for non-
square linear interval systems (cf. section 4) interval vectors y and z such that
condition (ii) of Theorem 6.1 is satisfied. If this algorithm does not compute
enclosures y and z, then STOP: Lower bound minus infinity.
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(6) If the conditions (i) and (iii) of Theorem 6.1 are satisfied, then STOP: Lower
bound is f∗.

(7) Set εj = α(εj + η) for j with xj = +∞ or xj = −∞.
(8) If the lp-solver gave no warning in step (3), then goto step (2).
The linear interval system (32) must be solved with m + p variables and |J∞|

equations. Notice that in many applications, m + p is much larger than the number
of unbounded variables |J∞|, yielding only a small quadratic linear interval system.

Several modifications of this algorithm are possible and may yield improvements,
at least for special classes of problems. For example, in cases where some of the simple
bounds are zero and some are very large, it is advantageous to choose the perturbed
problem by defining

cj(ε) :=

{
čj + εj if |xj | ≥ |xj |,
čj − εj if |xj | < |xj |.(61)

Also other choices of the deflation parameters may improve the computing time
and the bounds.

Last, we want to mention that a seemingly good modification of the above algo-
rithm would be to convert free variables as the difference of two nonnegative variables.
Then the computation of an enclosure for the linear interval system corresponding to
the free variables would be avoided. However, such a transformation leads to an ill-
posed linear programming problem which contains in each neighborhood of the input
data problems with an empty dual feasible domain. This would imply the trivial lower
bound minus infinity.3

7. Applications. A frequently used approach for solving global optimization
problems is to use a branch and bound framework together with relaxations; see, for
example, Floudas [5], Quesada and Grossmann [23], and the literature cited therein.
A linear relaxation is an lp-problem such that each feasible solution of the global
optimization problem is also feasible for the linear relaxation, and the linear objective
function is an underestimator of the original objective function. Hence, a linear
relaxation provides a lower bound for the global minimum value.

In order to discard subproblems in a branch and bound algorithm, it is important
to have fast methods available for computing rigorous lower bounds for the optimal
value of a linear relaxation. If this lower bound is greater than a known upper bound
for the global minimum value, then this subproblem can be eliminated because it
cannot contain a global minimizer.

Therefore, computing rigorous upper bounds of the optimal value and certifying
that optimal solutions exist are also important. But in contrast to the rigorous lower
bound, which has to be computed in each branching step, the computation of the
rigorous upper bound and the certification of existence of optimal solutions is only
necessary once for the best approximate solution at the end of the branch and bound
algorithm. However, it is also important that the upper bound should be computable
in the degenerate case and for large systems.

A similar situation occurs for mixed integer problems. There the linear relaxation
is defined by relaxing the integer variables, i.e., the integer variables are treated
as continuous variables. Rigorous bounds of linear programming problems are also
required for verification methods of nonlinear minimax problems. For details the
reader is referred to the recent manuscript of Kearfott [12].

3I wish to thank Arnold Neumaier who told me this observation at a conference in Dagstuhl
(2003).
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8. Numerical experiments. The following results were obtained by using MAT-
LAB [14] and the interval toolbox INTLAB (see Rump [28]). In all experiments in-
terval input data P are considered with rad(P) = r · P̌; that is, relative perturbations
with respect to the midpoint problem are treated.

At first, we look at the two examples of section 2. For the first example, defined
by (1) and (2), we obtain for the simple upper bounds x = (30, 30, 30)T and r =

1.0 × 10−5 the rigorous upper bound f
∗

= −5.99982 × 101 and the rigorous lower
bound f∗ = −6.00042 × 101. Since both bounds are finite, Theorem 5.1 shows that
all lp-problems within the interval data have optimal solutions and, moreover, the
computed enclosure

x =

⎛
⎜⎜⎜⎜⎝

[
2.421003440006751× 10−14, 2.421003440006753× 10−14

]
[
7.477872102096182× 10−16, 7.477872102096187× 10−16

]
[9.999799997799970, 1.000020000219998]

⎞
⎟⎟⎟⎟⎠

contains for every lp-problem a primal feasible solution that is close to optimality.
For r = 1.0× 10−2, the lower bound f∗ = −6.4200× 101 and the upper bound f

∗
=

−5.8174×101 are computed. In the case of simple upper bounds x =(1010, 1010, 1010)T

and r as before, although linprog gives the warning that both the primal and the dual
appear to be infeasible, we obtain, somewhat surprisingly, f∗ = −2.42318 × 103 and

f
∗

= −4.88103 × 101, and thus the certification that for all lp-problems within the
interval data there exist optimal solutions. The computed enclosure is

x =

⎛
⎜⎜⎜⎜⎝

[
4.631674545609419× 10−3, 4.631674545609423× 10−3

]
[5.591684607388289, 5.591684607388292]

[4.403483715866093, 4.403883720266105]

⎞
⎟⎟⎟⎟⎠ .

Typically, in branch and bound algorithms a subproblem is discarded if the lp-solver
detects infeasibility (see, for example, Borchers and Mitchell [3]). Observe that the
previous lower bound, although very poor when compared with the optimal value,
would prevent a branch and bound algorithm from discarding subproblems which
contain optimal points.

For the second example (cf. (3)) we display in Table 8.1 below, for the dimensions
n = 8, . . . , 12 and fixed radius r = 1.0 × 10−12, the 2-norm condition number of A;
the symbol ∗ if linprog gives the warning that the primal appears to be infeasible (and

the dual unbounded); and the error bounds f∗ and f
∗
.

Table 8.1

Results for the second example (3).

n Condition Warning f∗ f
∗

8 2.0 × 107 −3.3600 × 10−18 2.1816 × 10−28

9 2.9 × 108 * −9.0261 × 10−4 9.2276 × 10−20

10 4.5 × 109 * −3.6902 × 107 4.1743 × 10−13

11 6.0 × 1010 * −1.1294 × 108 3.3209 × 10−15

12 8.7 × 1011 * −3.4427 × 108 +∞
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Rigorous upper and lower bounds are computed until dimension n = 11, imply-
ing the existence of optimal solutions for all lp-problems within the interval input
data and, furthermore, the upper bound is close to the optimal value. The lower
bound is poor for n ≥ 10, which is caused by the unsatisfactory dual approximation
computed by linprog. However, the primal approximation and the enclosure x are
rather fair regarding the large condition number. Below we display the components
x(1),x(11), s(1), and s(11) in the case of dimension n = 11:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0.9999986005449631, 1.000001399410638]

[0.9902735279885911, 1.009726272224163]

[
1.779069799688461× 10−15, 1.779069799688465× 10−15

]
[
1.623200692326961× 10−21, 1.623200692326963× 10−21

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the optimal solution for the midpoint problem xi
∗ = 1, si

∗ = 0 for i =
1, . . . , n is close to this enclosure. It is only for dimension n ≥ 12 that an upper
bound cannot be computed, and the existence of optimal solutions cannot be proved.
This is not surprising since the radius is almost equal to the reciprocal of the condition
number.

Last, we consider some random test problems, whose construction is given in
Rosen and Suzuki [24]. All components of the primal solution x∗ are uniformly dis-
tributed in the interval (0, 1). The lower and upper bounds xi and xi are set equal to
zero and one for every component xi, respectively. The dual vector y∗ is generated by
uniformly distributing n− p components in (−1, 0), while the remaining components
are set equal to zero. The coefficients of z∗, A, and B are uniformly distributed in
(−1, 1). The right-hand side a is chosen such that the first n − p inequalities are
active. The right-hand side is b := Bx∗. The coefficients of the objective function
are generated by the equation c := AT y∗ +BT z∗. This construction ensures that the
optimum is known; that is, x∗ is primal optimal and (y∗, z∗, 0, 0) is dual optimal. For
the following numerical results, we consider interval input data with rad(P) = r · P̌,
r := 10−8, and P̌ is the previously defined random problem.

In Table 8.2 we display the number of inequalities m, the number of variables n,
the number of equations p, the relative error |f∗ − f∗|/|f∗| of the rigorous bounds,
and the ratios tf∗/ts, tf∗/ts, where ts denotes the time required by linprog applied to
the midpoint problem, tf∗ is the time for the lower bound, and tf∗ denotes the time
required by the upper bound.

The symbol ∗1 means that in this case linprog gave the warning

the dual appears to be infeasible (and the primal unbounded)

and has computed poor approximate optimal solutions with an accuracy of only two
decimal digits. Note that, because of the above construction, there exist optimal
solutions. The symbol ∗2 means that linprog gives results without any warning, but
the accuracy of the dual optimal solution was poor, yielding a poor rigorous lower
bound. However, the upper bound f

∗
was very accurate.

From Table 8.2 it follows that the bounds are close together with respect to the
interval data, provided sufficiently good approximations are calculated by linprog.
The time for the lower bound tf∗ is only a fraction of the time ts needed by the
lp-solver, and only one iteration is required for these examples. The time for the
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Table 8.2

Results for randomly generated problems.

m,n, p |f∗ − f∗|/|f∗| tf∗/ts t
f
∗/ts

20, 10, 0 1.5777 × 10−6 0.092 1.283

100, 20, 0 7.3356 × 10−7 0.025 1.240

300, 30, 0 2.8784 × 10−6 0.0039 0.985

500, 40, 0 2.7805 × 10−6 0.001 0.947

1000, 50, 0 ∗1 : f∗ = 1.5015 × 101 0.002 1.031

f
∗

= ∞
0, 20, 10 1.01822 × 10−5 0.198 2.207

0, 100, 30 ∗2 : 5.1683 × 10−2 0.202 2.128

0, 1000, 300 ∗2 : 2.1452 × 10−2 0.021 1.160

20, 10, 5 8.0556 × 10−5 0.186 2.583

50, 20, 10 2.2092 × 10−6 0.065 2.383

200, 40, 20 ∗2 : 7.2848 × 10−2 0.007 3.316

upper bound tf∗ is larger or of the same order of magnitude as ts. The reason is
that for the upper bound an approximate solution of the perturbed problem must
be computed in the first step, and linprog allows no reoptimization. Except for the
last three cases in Table 8.2, which have required two to three iterations, only one
iteration was necessary.

Because of the curious results, we discuss separately a randomly generated prob-
lem, where m = 500, n = 100, and p = 50. By our construction we know the optimal
value f∗ = 2.6136× 101. The routine linprog gave the warning that the dual appears
to be infeasible (and the primal unbounded) and has computed the poor approximate
optimal value −1.5733 and an approximation of a primal feasible point, which is not
within the simple bounds. One consequence was that the rigorous upper bound was
computed equal to +∞. However, the rigorous lower bound was equal to 8.8983,
closer to the optimal value than the approximate value. The required time for linprog
was 2538 seconds, and the time for the lower bound was 0.7 seconds.

9. Conclusions and future work. In this paper algorithms for computing rig-
orous lower and upper bounds of the optimal value of a linear programming problem
are considered. It turns out that such bounds can also be useful for well-posed prob-
lems because even commercial solvers like the MATLAB routine linprog may compute
curious and unsatisfactory results.

If linear relaxations especially are used in branch and bound methods, then these
rigorous bounds are advantageous because the user cannot see and judge the inter-
mediate results, and solutions of the original problem cannot drop away. A benefit is
that the lower bound, which must be computed in each branching step, needs only a
small part of the computing time required for the lp-solver.

For interval input data the bounds allow a rough sensitivity analysis. This is
usually not possible in classical sensitivity analysis for linear programming problems,
where only special input data are permitted to vary.

In our future work we want to generalize these results to convex programming
problems and to use these bounds in algorithms for mixed nonlinear integer problems.
Moreover, by using software other than the MATLAB optimization toolbox, we want
to investigate experimentally the range of applicability of these rigorous error bounds
for large and sparse problems.
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Abstract. We correct an error in Lemma 4.2 of [C. Kanzow and C. Nagel, Semidefinite programs:
New search directions, smoothing-type methods, and numerical results, SIAM J. Optim., 13 (2002),
pp. 1–23]. With this correction, all results in that paper remain true.
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Let LA(X) := AX + XA be the Lyapunov operator associated with a given
matrix A ∈ Rn×n. In Lemma 4.2(c) of [1] we asserted that the composition LA ◦ LB
is strongly monotone for two symmetric positive definite matrices A,B � 0. While
the given proof holds if A and B commute, inequality (4.8) in [1], namely

tr(X(BA+AB)X) ≥ 0,

does not hold in general for all X ∈ Sn×n: Setting

A :=

(
10 5
5 6

)
, B :=

(
1 2
2 6

)
, X :=

(
15 −7
−7 3

)
,

an easy calculation shows that A,B � 0 but tr(X(BA+AB)X) = −588 < 0. There-
fore, to prove part (c), (d) of Lemma 4.2 in [1], we have to add the assumption

BA+AB � 0.(1)

In Proposition 4.4 we used Lemma 4.2(d) with A := E − S and B := E −X (where

E :=
(
X2 + S2 + 2τ2I

)1/2
for some τ > 0) in order to show that a certain linear

mapping is bijective. We now have to prove that these matrices satisfy inequality (1).
This will be done in the following Lemma.

Lemma 1. Let E :=
(
X2 + S2 + 2τ2I

)1/2
, A := E − S, and B := E −X. Then

BA+AB � 0.

Proof. We have
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BA+AB = (E −X)(E − S) + (E − S)(E −X)

= E2 −XE − ES +XS + E2 − SE − EX + SX

= X2 + S2 + 2τ2I − E(X + S)− (X + S)E + E2 +XS + SX

= (X + S − E)2 + 2τ2I � 0.

This completes the proof.
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Abstract. In this paper we prove global convergence for asynchronous parallel pattern search.
In standard pattern search, decisions regarding the update of the iterate and the step-length control
parameter are synchronized implicitly across all search directions. We lose this feature in asyn-
chronous parallel pattern search since the search along each direction proceeds semiautonomously.
By bounding the value of the step-length control parameter after any step that produces decrease
along a single search direction, we can prove that all the processes share a common accumulation
point and, if the function is continuously differentiable, that such a point is a stationary point of the
standard nonlinear unconstrained optimization problem.
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global convergence analysis
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1. Introduction. Asynchronous parallel pattern search (APPS) was introduced
in [5] as a way to solve in a parallel or distributed computing environment nonlinear
optimization problems of the form

min
x∈Rn

f(x), where f : Rn → R.(1.1)

In this paper, we prove that a subsequence of the sequence of iterates produced by
APPS converges to a stationary point of (1.1), when f is continuously differentiable.

To do so, we build on the global convergence results for pattern search established
in [7, 10, 11]. What distinguishes this analysis from the earlier work is the need to
address the new concerns introduced by the asynchronism. The analyses in [7, 10,
11] rely on the fact that the more usual implementations of pattern search have
complete knowledge of information acquired during the course of the search when
making decisions about how to proceed. In contrast, APPS partitions out each search
direction to a single process and, to eliminate idle time, does away with the close
synchronization of the searches along each direction. This means that the search
along the single direction governed by an individual process is allowed to proceed
semiautonomously. By this we mean that each process is allowed to make its own
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decisions regarding the update of the iterate and the length of the next step, based only
on the information currently available to it, even though that information may not be
up-to-date with respect to the other processes. Further, there is no single controlling
process. Instead, information between processes is exchanged intermittently so that
eventually all processes learn of every reasonable candidate for the minimizer. The
only assumption we make is that information about success (i.e., a decrease in the
value of f) on one process reaches all other processes in a finite amount of time. We
make no assumption about the order in which such information is received. Thus
the processes act as a loose confederation of agents working toward a single goal: the
identification of a stationary point of (1.1). The advantage of allowing processes to
proceed semiautonomously is that we can eliminate synchronization barriers so that
we achieve good computational performance when working in a parallel or distributed
computing environment, as our tests in [5] demonstrate.

The critical issue for our analysis is that APPS makes decisions about updating
the length of the next step and the best point in the absence of complete information
about the progress of the searches along the other directions. Therefore, at any given
time in the search, neither the value of the parameter each process uses to determine
the length of the step nor the value of the best point may be the same across par-
ticipating processes. Another minor aspect in which we differ from previous analysis
is that we do not fix the contraction and expansion parameters used to update the
step lengths. These differences require significant extensions to the analyses found in
[7, 10, 11]. The key to safeguarding the overall outcome of the search lies in bounding
the values which the parameter that controls the lengths of the steps is allowed to
assume after any step that produces decrease on f (i.e., after a successful step).

In section 2 we describe a synchronous variant of parallel pattern search and use it
to motivate APPS. In section 3 we outline APPS and introduce the extensive notation
required for our analysis. We hasten to add that most of this bookkeeping, which is
essential to our analysis, is not required in practice. A full treatment of the practical
design and implementation of APPS is deferred to [5]. Since the notational overhead
required for the analysis is significant, we refer interested readers to [6] for an example
of APPS applied to a simple function, an illustration of the associated notation, and
a discussion of those features of the asynchronous algorithms that most complicate
the analysis. In this paper, we concentrate on the analysis, which is broken into four
parts, covered in sections 5–8. In section 9 we close with some remarks regarding
further extensions that could be made to the analysis.

Standard notation. We denote by R, Q, Z, and N the sets of real, rational,
integer, and natural numbers, respectively.

We use pow(Λ, �) to indicate that Λ is raised to the power �, so that pow(Λ, �) ≡
Λ�. We adopt this notational convention to eliminate any ambiguities that could arise
when we introduce superscripts for use as indices.

2. Parallel pattern search. We start by considering a synchronous version of
parallel pattern search (PPS) to clarify the notation and motivate APPS.

We assume that we have p independent processes, each of which is generating a
sequence of trial points. We denote the set of processes as

P = {1, . . . , p}.
We work with a finite set of search directions

D = {d1, . . . , dp} = {Bc1, . . . , Bcp},(2.1)
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where
• B ∈ Rn×n is a real nonsingular matrix,
• ci ∈ Qn for each i ∈ P, and
• the vectors in the set D form a positive spanning set [7] for Rn.

To each process i ∈ P we assign the constant search direction di ∈ D. We constrain
the vectors ci, i = {1, . . . , p}, to the rationals to ensure that all iterates lie on a
rational lattice, which, as we see in section 5, is required for the proof of Theorem 5.2.
However, we allow a mapping of the rational vectors ci to the real vectors di through
the use of a fixed real nonsingular matrix B.

We denote by xki the best point (i.e., one with the least function value) known by
process i at iteration k. We denote by ∆k

i the scalar that controls the length of the
step taken along the direction di to construct a new trial point at iteration k. We refer
to ∆k

i as the step-length control parameter. For the synchronous version of pattern
search, the subscript i on x and ∆ is redundant since the synchronization ensures
that the values of xki and ∆k

i are equivalent for all i ∈ P; however, this subscript
becomes meaningful in the asynchronous case, so we introduce the notation here for
comparison.

Each process i ∈ P constructs a trial point by computing

xki + ∆k
i di(2.2)

and then evaluates f at this point. After the evaluation has finished on process
i, process i broadcasts the result to all the other processes in P and then waits
until it has received results from all the other processes in P. This is the point of
synchronization; no further action can be taken on process i until all the results from
all the other processes in P are known. Once all p results are known to all p processes,
a decision is made simultaneously as to which point is now best, and then xki and ∆k

i

are updated to produce xk+1
i and ∆k+1

i . We assume that any ties are broken in a way
that ensures all processes arrive at an identical choice for the new best point.

Because it is convenient for what follows, we replace the notion of iterations with
the notion of occurrences at certain time steps as measured by a global clock like that
used in other asynchronous convergence proofs; cf. [2]. Let the infinite set

T = {0, 1, 2, . . . }

be the index of time steps. We assume that the time steps are of fine enough resolution
that at most one event (i.e., a change in the best known point and/or the value of the
step-length control parameter) occurs per time step, per process. In the synchronous
case, iterations can be thought of as coarse time steps.

Using our global clock, we can represent the consequence of a single iteration, say
k, for a single process, say i ∈ P, on a timeline as illustrated in Figure 2.1. At time
step t0, process i starts a function evaluation at its trial point given by

xt0i + ∆t0
i di.

Observe that the notation introduced in (2.2) has changed. Now the time step re-
places the iteration number in the superscript and, from now on, we use time steps
as our indices. At time step t1, process i finishes its evaluation of f(xt0i + ∆t0

i di)
and broadcasts its result to the remaining processes. We assume that at some time
step t2, all processes in P have received the results from all other processes, so each
independently decides on the point that is now best. Since each process knows the
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. . .
t0

iteration k

. . .
t1

i finishes
f(x

t0
i

+∆
t0
i

di)

. . . �
t2

iteration k + 1

�� i idle

Fig. 2.1. Timeline for synchronous pattern search for process i.

results from all p processes in P, and since ties are broken in a consistent fashion, all
p processes will arrive at the same conclusion as to which point is now best. Each
process then updates its copies of the best point and the step-length control param-
eter to obtain xt2i and ∆t2

i . Iteration k + 1 then begins. Note that from time step t1
until time step t2, process i is idle.

For process j ∈ P, j �= i, the procedure differs in only two respects. First, the
trial point is calculated using a different search direction dj ∈ D to yield

xt0j + ∆t0
j dj .

Recall that xt0j = xt0i and ∆t0
j = ∆t0

i due to the synchronization. Second, we have
no guarantee that the evaluation of f at the trial point will take the same number of
time steps on process j as it did on process i. At one extreme is the possibility that
the evaluation of f takes only a single time step, which would give us the scenario
illustrated in Figure 2.2, where t̂1 denotes the time step at which the function evalu-
ation on process j finishes. In this case, t̂1 = t0 + 1 and process j is idle from time
step t0 + 1 to time step t2. At the other extreme, we have the scenario in Figure 2.3,
so that there is effectively no idle time on process j. Note that in this case we have
assumed that the communication is instantaneous—our theory allows for this possi-
bility as well as the possibility that communication may take up to a finite number
of time steps.

We stress that even though the time required to finish a function evaluation may
vary from process to process and from iteration to iteration, the synchronization
ensures that, across all processes, iteration k begins at time step t0 while iteration
k + 1 begins at time step t2.

The goal of asynchronous parallel pattern search is to eliminate the synchroniza-
tion since it potentially can waste CPU cycles, as our examples in Figures 2.1 and 2.2
demonstrate and our experimental evidence in [5] confirms. As we see in the next
section, APPS allows each process to update its xti and ∆t

i independently whenever a
function evaluation finishes and/or a new message arrives.

. . .
t0

iteration k

t̂1 = t0 + 1

j finishes
f(x

t0
j

+∆
t0
j

dj)

. . . �
t2

iteration k + 1

��
j idle

Fig. 2.2. Timeline for synchronous pattern search for process j.

. . .
t0

iteration k

. . . �
t̂1 = t2

j finishes f(x
t0
j

+∆
t0
j

dj)

iteration k+1

Fig. 2.3. Alternate timeline for synchronous pattern search for process j.
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3. Asynchronous parallel pattern search. Like PPS, APPS [5] uses p pro-
cesses collectively to solve (1.1). Each process is in charge of searching along a single
search direction from its best known point, and the best known point and the value
of the step-length control parameter are varied according to internal and external
events. The difference is that individual processes in APPS no longer wait for infor-
mation from the other processes before making a local decision as to the next best
point. Once the decision is made, the process then updates its record of the best point
and the step-length control parameter, constructs a new trial point, and immediately
begins a new evaluation of the objective function.

Because we no longer have synchronization after every function evaluation, de-
cisions now depend on the time step at which they are made. Therefore, we index
according to the global clock described previously. We then define the following for
each process i ∈ P and time step t ∈ T :

xti = the best known point at time step t for process i, and

∆t
i = the step-length control parameter at time step t for process i.

In APPS, the current values of the best point and the step-length control parameter
can be different across processes at the same time step t ∈ T . Therefore, the subscript
i is no longer redundant, and it is possible that xti �= xtj and/or ∆t

i �= ∆t
j . On a single

process i ∈ P, we are guaranteed that at any time step t ∈ T , f(xt+1
i ) ≤ f(xti).

The values of xti and ∆t
i are not necessarily changed at every time step. Let

Ti = the set of time steps at which xti and/or ∆t
i is changed,(3.1)

so that Ti ⊆ T . For each process i ∈ P we categorize each time step t ∈ T as either
successful or unsuccessful. We also need to observe further distinctions within each of
these two categories, which we detail in sections 3.2 and 3.3.

3.1. Assumptions. As a practical matter, we assume that at the start of the
search the best point and the value of the step-length control parameter are equal for
all i ∈ P; that is, there exist x0 ∈ Rn and ∆0 ∈ R, ∆0 > 0 such that

x0 = x0
1 = x0

2 = · · · = x0
p and ∆0 = ∆0

1 = ∆0
2 = · · · = ∆0

p.(3.2)

We further assume that the value f(x0) is known by all processes.
As is standard for pattern search analysis, we assume

L(x0) = {x ∈ Rn : f(x) ≤ f(x0) } is bounded.(3.3)

Also, to ensure that APPS always converges to a stationary point of (1.1), we assume
that f is continuously differentiable on the closure of L(x0), though we need this
assumption only for our final result, Theorem 8.5.

We assume that D, the set of search directions, is fixed and finite and of the form
given in (2.1), with the conditions that B is a real nonsingular matrix, that ci ∈ Qn
for each i ∈ P, and that the vectors in the set D form a positive spanning set for Rn.

We assume that the initial step-length control parameter is constrained by

0 < ∆min ≤ ∆0 ≤ ∆max < +∞,(3.4)

where ∆min and ∆max are constants. These same constants are used to bound ∆t
i

after any step that produces decrease on f (i.e., after any successful time step). This
condition is given in (3.10) and is described fully in section 3.2.1.
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We assume that both the maximum time for a function evaluation and the max-
imum time for a single communication are finite; we quantify those as

η = maximum number of time steps for evaluating f at a given x, and(3.5)

γ = maximum number of time steps for communicating a message.(3.6)

We assume that the minimum time for evaluation and communication are one and
zero time steps, respectively.

3.2. Successful time steps. On process i, we characterize any time step t ∈
T at which we identify a point with a strictly lower value of f as successful. We
further distinguish between internal and external successes depending on whether the
information that identified improvement in the value of f was computed locally or
received in the form of a message from another process; we detail these distinctions
in sections 3.2.1 and 3.2.2.

We pay special attention to points that produce equal values of f since we must
break ties in a consistent fashion. This becomes particularly critical in the asyn-
chronous case since equivalent function values are likely to become known to each
process at different time steps and perhaps in reverse order. To ensure the conver-
gence of the overall search, we must ensure that when faced with equivalent function
values, every one of the participating processes arrives at the same decision as to
which of the points known to produce the same function value should be considered
“best.” Thus, we may have reason to classify some time steps as successful, even
when they do not strictly improve the value of f . We describe such situations in more
detail in section 3.2.2.

3.2.1. Internal successes. The first type of successful time step is an internal
success, which can occur when a process finishes a function evaluation. Suppose that
on process i ∈ P a function evaluation starts at some time step, say t0, (using xt0i and
∆t0
i to generate the trial point) and finishes at some later time step, say t1. We can

represent this on a timeline as in Figure 3.1.

. . .
t0

i starts
f(x

t0
i

+∆
t0
i

di)

. . . �
t1 − 1 t1

i finishes
f(x

t0
i

+∆
t0
i

di)

��
≤ η

Fig. 3.1. Timeline for asynchronous pattern search on process i.

The time step t1 is considered an internal success when the following condition is
satisfied:

f
(
xt0i + ∆t0

i di
)
< f

(
xt1−1
i

)
.(3.7)

We compare f(xt0i + ∆t0
i di) to f(xt1−1

i ), rather than to f(xt0i ), since it is possible
that xt1−1

i �= xt0i due to an external success, which is described in the next section.
When (3.7) is not satisfied, the time step is unsuccessful, as described in section 3.3.
Otherwise, when (3.7) is satisfied, we say that time step t1 ∈ Ii, where

Ii = the set of internal successful time steps for process i.

We then update xi as follows:

xt1i = xt0i + ∆t0
i di;
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in other words, xt1i is set to the point that produced the best known function value.
Further, we update the step-length control parameter ∆i as follows:

∆t1
i = λt1i ∆t0

i ,

where λt1i is the expansion parameter for the update at time step t1. Before we define
the expansion parameter for the update, we first define the rational constant

Λ ∈ Q, Λ > 1,(3.8)

which controls the scaling of all steps. Returning to the choice of λti, we require it to
satisfy two conditions. The first condition is that λti be a nonnegative integer power
of Λ; i.e.,

λti = pow(Λ, kti)(3.9)

for some

kti ∈ {0, 1, 2, . . . }.

Since Λ > 1 and kti is nonnegative, λti ≥ 1. The second condition on the choice of λti
is that the new step-length control parameter must satisfy

0 < ∆min ≤ ∆t
i ≤ ∆max < +∞,(3.10)

where ∆min and ∆max are the same constants used in (3.4). Note that (3.10) applies
only to updates associated with successful time steps. The bounds on ∆t

i implicitly
restrict the value of kti that may be chosen in (3.9).

The lower bound on ∆ is new to the asynchronous analysis; in section 4 we give
an example that shows why this lower bound is necessary to ensure an accumulation
point that is common to all processes. As for the upper bound on ∆, we could use the
assumption that L(x0) is bounded, given in (3.3), to yield an implicit upper bound on
∆, as is done in the analyses in [7, 10]. For convenience, here we assume the existence
of an explicit upper bound and thus eliminate the dependence on f .

Once xi and ∆i are updated, process i broadcasts the new best point, its function
value, and the new step-length control parameter to all the other processes in P for
them to consider as a candidate for new best. Process i then proceeds with the
construction and evaluation of xt1i + ∆t1

i di.

3.2.2. External successes. The other type of successful time step is an external
success. Suppose that an internal success occurs on process i at time step t1, as just
described in section 3.2.1. Then at some time step t2 ≥ t1, process j, j �= i, receives
the broadcast from process i with the new best point found by process i, along with its
associated function value and step-length control parameter. We assume that process
j can immediately assimilate the newly received information even if it is currently
in the midst of a function evaluation. In the implementation described in [5], we
achieve this by executing the function evaluation as a separate thread or process. We
represent this example of an external success on the timeline in Figure 3.2.

There are three possibilities when process j receives a message from process i:
the function value associated with the incoming point is either better than, equal
to, or worse than the function value of the best point at the previous time step.
Certainly, if f(xt1i ) < f(xt2−1

j ) holds, then process j now has a new best point,
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. . .
t0

i starts
f(x

t0
i

+∆
t0
i

di)

. . .
t1

i finishes
f(x

t0
i

+∆
t0
i

di)

. . . �
t2 − 1 t2

j receives from i

f(x
t0
i

+∆
t0
i

di)

��
≤ γ

Fig. 3.2. Timeline for asynchronous pattern search message from process i to process j.

received from the external process i, and it should update its local values for the best
point and the step-length control parameter in light of this new information. However,
if f(xt1i ) > f(xt2−1

j ), process j should simply discard the new information since xt2−1
j

is clearly better than xt1i .
The interesting question is what to do when f(xt1i ) = f(xt2−1

j ). To ensure the
robustness of the search procedure, we define a comparison operator ≺. Given any
x, y, z ∈ Rn, ≺ denotes a comparison that satisfies the following two conditions:

1. x ≺ y and y ≺ z implies x ≺ z, and
2. x = y (i.e., neither x ≺ y nor y ≺ x) only if x[i] = y[i] for i = 1, . . . , n, where

the notation x[·] denotes the ith entry of the vector x.
We can use any definition for the comparison operator≺ so long as it satisfies these two
conditions. For example, we may use the following ordered elementwise comparison.
We say x ≺ y if there exists j ∈ {1, . . . , n} such that x[j] < y[j] and x[i] = y[i] for
i = 1, . . . , j − 1. Given a way to resolve ties, we are now ready to define an external
success.

The time step t2 is considered an external success if either

f
(
xt1i
)
< f

(
xt2−1
j

)
or f

(
xt1i
)

= f
(
xt2−1
j

)
and xt1i ≺ xt2−1

j .(3.11)

If (3.11) is satisfied, we then say that t2 ∈ Ej , where

Ej = the set of external successful time steps for process j.

The updates are

xt2j = xt1i

and

∆t2
j = ∆t1

i .

We assume that the receipt of an external message does not affect the status of a
function evaluation that may be executing on the receiving process.

3.2.3. Additional comments on what constitutes a success. Now that we
have defined what constitutes both an internal and an external success, we define

Si = Ii ∪ Ei = the set of successful time steps for process i.

We emphasize again that although internal successes require strict decrease in
the function value as seen in (3.7), external successes relax the requirement of strict
decrease and instead use the comparison operator ≺ to break ties, as shown in (3.11).
This ensures that all processes agree on the best point even when different points
generated by different processes have the same function value.
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3.3. Unsuccessful time steps. Any time step that is not successful is classified
as unsuccessful. We let the set

Ui = T \ Si
denote the unsuccessful time steps on process i ∈ P. There are two types of unsuc-
cessful time steps.

3.3.1. Contractions. Consider again the function evaluation on process i that
starts at time step t0 and finishes at time step t1, as shown in Figure 3.1. We say
that time step t1 is a contraction if (3.7) is not satisfied and xt1−1

i = xt0i ; i.e., there
is no reduction in the function value and xi has not been updated since time step t0
(which also means that ∆t1−1

i = ∆t0
i ). In terms of time steps, t1 �∈ Ii and t �∈ Ei for

any t ∈ {t0 + 1, . . . , t1 − 1}.
In this case, process i is required to reduce the value of its step-length control

parameter ∆t1−1
i before continuing the search along its direction di. This means that

t ∈ Ti since ∆t1−1
i , though not xt1−1

i , is changed. More specifically, we say that
t1 ∈ Ci, where

Ci = the set of contraction time steps for process i.

Note that Si ∩ Ci = ∅ since Ci ⊆ Ui.
We update the step-length control parameter ∆i as follows:

∆t1
i = θt1i ∆t1−1

i ,

where θt1i is the contraction parameter at time step t1. The choice of the contraction
parameter θti is subject to the following condition, using the same Λ as in (3.9):

θti = pow(Λ, �ti)(3.12)

for some

�ti ∈ {−1,−2,−3, . . . , �min},(3.13)

where �min is a finite integer constant. Together, (3.8), (3.12), and (3.13) imply that

θti ∈ [θmin, θmax] ⊂ (0, 1), where θmin = pow(Λ, �min), θmax = pow(Λ,−1).(3.14)

3.3.2. The trivial case. The final possibility is that no changes to either xti or
∆t
i occur on process i for a given time step t; in other words, t �∈ Ti. This situation

could occur for several reasons.
One possibility would be that process i is still evaluating f at a trial point con-

structed at some time step t0 < t and that evaluation does not finish during time step
t. Thus, t �∈ Ii and t �∈ Ci.

A further possibility is that no external candidate arrives from process j, j �= i,
or an external candidate does arrive, but it is immediately discarded since its function
value does not improve upon f(xt−1

i ). Thus, t �∈ Ei.
A last possibility is that at time step t, process i does finish evaluating f at a trial

point constructed at some time step t0 < t but the function value does not improve
upon f(xt−1

i ), so t �∈ Ii. However, before assigning t to Ci, we must verify that
xt−1
i = xti. If xt−1

i �= xti, that means that at least one external success occurred on
process i at some time step t̂ ∈ {t0+1, . . . , t−1}. Let t̂ = max{{t0+1, . . . , t−1}∩Ei}.
In this case, since we have already recorded the external success at time step t̂, we
construct a new trial point without further changes to xt̂i or ∆t̂

i and initiate a new
function evaluation. Thus, while t̂ ∈ Ei, t ∈ Ui \ Ci.
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3.4. Multiple decisions in one time step. We allow for the possibility that
multiple candidates for the best point may be considered simultaneously at time step
t ∈ T if, for instance, multiple messages have arrived from external processes or there
is both an internal candidate as well as one or more external candidates to consider.

3.5. Identifying the source of a change. If a function evaluation finishes at
time step t1, a new one is started at time step t1 using the values xt1i and ∆t1

i —at
least one of these values is guaranteed to have changed since time step t0 from either
an internal success, an external success, or a contraction.

To identify where a change to xti, and possibly ∆t
i, was generated (i.e., on which

process) and at what time step the corresponding function evaluation started and
finished, for each i ∈ P and for all t ∈ Si we define the following generating functions:

ωi(t) = the index of the process generating the update at time step t on process i,

τi(t) =
the time index for the initiation of the function evaluation that
produced the update at time step t on process i, and

νi(t) =
the time index for the completion of the function evaluation that
produced the update at time step t on process i.

Here

ωi(·) : Si → P, τi(·) : Si → T , νi(·) : Si → T , and 0 ≤ τi(t) < νi(t) ≤ t.
For our example of an internal success on process i, so that t1 ∈ Ii, as illustrated

in Figure 3.1, we have ωi(t1) = i, τi(t1) = t0, and νi(t1) = t1. In fact, ωi(t) = i and
νi(t) = t for all t ∈ Ii.

For our example of an external success on process j, so that t2 ∈ Ej , as illustrated
in Figure 3.2, we have ωj(t2) = i, τj(t2) = τi(t1) = t0, and νj(t2) = νi(t1) = t1.

The generating functions play an important role in the proofs of Lemma 5.1,
Theorem 5.2, Lemma 7.4, and Corollary 7.5.

3.6. The definitions for xt
i and ∆t

i. For every t ∈ T , t > 0, the best point xti
for process i ∈ P is defined to be

xti =

⎧⎨
⎩
x
τi(t)
ωi(t)

+ ∆
τi(t)
ωi(t)

dωi(t) if t ∈ Si, and

xt−1
i otherwise.

(3.15)

Recall that we initialize the procedure with x0 as shown in (3.2). Thus, xti is changed
on process i ∈ P only at successful time steps t ∈ Si.

Changes in ∆t
i must occur at contraction time steps and may occur at successful

(internal or external) time steps. Correspondingly, for every t ∈ T , t > 0, the step-
length control parameter ∆t

i for process i ∈ P is defined to be

∆t
i =

⎧⎪⎪⎨
⎪⎪⎩
λ
νi(t)
ωi(t)

∆
τi(t)
ωi(t)

if t ∈ Si,
θti∆

t−1
i if t ∈ Ci, and

∆t−1
i otherwise.

(3.16)

Again, the initialization is as in (3.2), and we assume ∆0 satisfies (3.4). Recall λti ≥ 1
is the expansion parameter defined in (3.9) and θti ∈ (0, 1) is the contraction parameter
defined in (3.12).

These precise definitions for xti and ∆t
i play a role in all the results that follow.
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4. An overview of the analysis. Now that we have reviewed APPS and in-
troduced most of the notation required for our analysis, we provide an outline of that
analysis. Before proceeding, the reader may wish to review the example given in [6].
This example helps establish the definitions given in section 3, including those for the
many sets we have introduced to track the progress of the search. Also, [6] illustrates
and discusses those features of the asynchronous algorithm that make the analysis
more intricate than for the synchronous case.

Our first task is to show that every iterate xti lies on a rational lattice; this is
equivalent to Theorem 3.2 in [10] for the synchronous case. The main difference here
is that the asynchronism we have introduced in APPS complicates the arguments.
Now, for some subset of the t’s in T , the xti residing on process i may be the result of
an external success—i.e., a point produced by a search along direction dj on process
j, where j �= i. Thus the changes to xti and ∆t

i may be made without regard to the
history of past successes on process i. Nevertheless, in section 5 we show that the
algebraic structure found in the synchronous case is still preserved in the asynchronous
case.

The lattice structure is the key to ensuring convergence for pattern search. In the
synchronous case, the underlying lattice structure makes it possible to prove that a
subsequence of the step-length control parameters goes to zero—even though pattern
search does not enforce a sufficient decrease condition. In section 7, we show an
equivalent result, but we now have p semi-independent sequences of ∆ to consider.
This makes the arguments more complex than in the synchronous case. Still, we
arrive at Theorem 7.8, which says that

lim inf
t→+∞ ∆t

j = 0 for all j ∈ P.

Our definition of ∆t
i, given in (3.16), ensures that ∆t

i is decreased only at con-
tractions (i.e., when t ∈ Ci). In fact, it is these contractions that are of interest for the
remainder of the proof. In the synchronous case, there is an accumulation point x̂ of
the subsequence of iterates associated with contractions which has the property that
0 ≤ f(x̂)T di for all i ∈ P. The challenge in the asynchronous case lies in showing that
all the processes share a common accumulation point with this property. In order to
do this, in section 8 we show that all the processes share a common subsequence of
contraction iterates. This, in turn, relies on the fact that we require ∆min ≤ ∆ every
time we encounter a successful point, which guarantees that in the limit there will be
long sequences of unsuccessful iterates. These long sequences of unsuccessful iterates
allow us to construct a common sequence of contraction iterates across all processors.
This argument culminates with Theorem 8.5, which states that there exists an x̂ and,
for each i ∈ P , a subset of the contraction iterates Ĉi such that

lim
t→+∞
t∈Ĉi

∆t
i = 0, lim

t→+∞
t∈Ĉi

xti = x̂, and lim
t→+∞
t∈Ĉi

∇f(xti) = ∇f(x̂) = 0 for all i ∈ P.

A fundamental difference in the assumptions for the asynchronous case is that the
step-length control parameter is bounded below for all successful iterates (see (3.10)).
This assumption is critical to the asynchronous case because it enables us to avoid
a so-called race condition. If we did not enforce this lower bound, we might have
different processes producing sequences of iterates that converge to different limit
points, as the following situation in R2 illustrates. Let f(x) = xTx. Observe that f
is symmetric about both the x-axis and the y-axis and has a unique global minimizer
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Fig. 4.1. A potential race condition, which we exclude. In this illustration, if we do not enforce
the bounds on ∆t

i after an internal success, then each sequence converges to a different limit; the
circles denote the sequence of best iterates on processes 1 and 3 while the squares denote the sequence
of best iterates on process 2. The situation is remedied by requiring ∆t

i ≥ ∆min for all t ∈ Ii.

at x = (0, 0)T . Choose

D =

{( −1
0

)
,

(
0
−1

)
,

(
1
1

)}
,

which forms a positive basis for R2. Let x0 = (1, 1)T , ∆0 = 2, and Λ = 2. For every
contraction (t ∈ Ci), choose θ = Λ−2 = 1/4. For every internal success (t ∈ Ii),
choose λ = Λ1 = 2, ignoring the lower bound restriction in (3.10). Assume further
that each function evaluation requires exactly one time step and each communication
takes exactly two time steps.

The situation that develops in this case is illustrated in Figure 4.1. Here, both
{xt1} and {xt3} → (0, 1)T (denoted by circles) while {xt2} → (1, 0)T (denoted by
squares). The reason that the three sequences converge to two different limit points,
neither of which is the unique stationary point for f , is that the first and the second
processes are reducing their steps too quickly, continuing to find internal successes,
and rejecting each candidate for an external success because they have already found
another, better, internal success. The third process cannot remedy the situation since
its direction is always a direction of ascent. The broadcasts of internal successes
from the first and the second processes arrive on the third process within the same
time step and have the same function value, which is better than any produced on
the third process. Ties are broken in favor of the first process, leading to an exter-
nal success on the third process, so the iterates on the third process also converge
to (0, 1)T .
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Enforcing the lower bound of ∆min on ∆t
i for successful points eliminates this race

condition. Choose, for instance, ∆min = 1/4 and notice that this eventually disrupts
the symmetric exchanges between the first and the second processes.

We require a common accumulation point x̂ so that we can use the fact that our
search directions in D form a positive spanning set, thus ensuring the final conclusion
of Theorem 8.5: that x̂ is also a stationary point of f .

We close by noting that in practice we stop searching along a given direction
di once ∆t

i falls below a certain threshold. Process i then waits until either another
process reports a better point, in which case the search along di resumes with this new
best point, or a sufficient number of other processes have converged to the same point
identified by process i, in which case the entire search terminates. (For further details,
see [5].) Thus, as a practical matter, ∆min need not impede the overall progress of
the search, as it can be chosen to be on the order of the threshold used to terminate
the search.

5. The algebraic structure of the iterates. We return to the analysis of
APPS. We use the formulation for xti given in (3.15) to show that we can, in fact,
write any xti as a linear combination of the search directions (translated by x0). We
prove this in Lemma 5.1. Then, in Theorem 5.2, we show that the algebraic structure
underlying the sequences {xti}, for all i ∈ P, guarantees that all the iterates lie on
a rational lattice defined by the search directions. The latter result is equivalent to
Theorem 3.2 in [10].

Lemma 5.1. For any i ∈ P and any t ∈ T , there exist sets Îj(i, t) ⊆ Ij for each
j ∈ P such that

xti = x0 +
∑
j∈P

δj(i, t) dj with δj(i, t) =
∑

t̂∈Îj(i,t)

∆
τj( t̂ )
j ,(5.1)

where δj(i, t) = 0 if Îj(i, t) = ∅.
Proof. We prove this lemma by induction on t. For any i ∈ P, the case for t = 0

is trivial since x0
i = x0 by (3.2). Simply choose Îj(i, 0) = ∅ for each j ∈ P.

Now consider the case for general t for any i ∈ P. First consider t ∈ Ui, in which
case (3.15) gives us xti = xt−1

i . From the induction hypothesis, we have

xt−1
i = x0 +

∑
j∈P

δj(i, t− 1) dj with δj(i, t− 1) =
∑

t̂∈Îj(i,t−1)

∆
τj( t̂ )
j .

In this case, we simply choose Îj(i, t) = Îj(i, t− 1) for all j ∈ P to yield (5.1).

On the other hand, consider t ∈ Si. From (3.15), we have

xti = x
τi(t)
ωi(t)

+ ∆
τi(t)
ωi(t)

dωi(t).

The assumption that the minimum time for a function evaluation is one time step
ensures that τi(t) < t for all i ∈ P. Thus, from the induction hypothesis, we can
rewrite the first term as

x
τi(t)
ωi(t)

= x0 +
∑
j∈P

δj(ωi(t), τi(t)) dj with δj(ωi(t), τi(t)) =
∑

t̂∈Îj(ωi(t),τi(t))

∆
τj( t̂ )
j .
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By definition, we also have τi(t) = τωi(t)(νi(t)) and νi(t) ∈ Iωi(t). Therefore, choosing

Îj(i, t) =

{
Îj(ωi(t), τi(t)) ∪ {νi(t)} for j = ωi(t), and

Îj(ωi(t), τi(t)) for j �= ωi(t)

yields (5.1).
The purpose of the sets Îj(i, t) is to track, for each j ∈ P, which subset of the set

of time steps that produced internal successes on process j led to the xti residing on
process i at time step t.

Now that we have taken a closer look at xti, let us do the same for ∆t
i. From

(3.16), (3.12), and (3.9), we see that for any i ∈ P and for any t ∈ T we can express
any ∆t

i as a multiple of an integer power of the Λ from (3.8) times the ∆0 from (3.4).
Let Γti denote that integer power so that

∆t
i = pow(Λ,Γti) ∆0, Γti ∈ Z.(5.2)

Since Λ ∈ Q, we can find ΛN and ΛD (here the subscripts denote numerator and
denominator, respectively) such that

Λ =
ΛN

ΛD
, where ΛD,ΛN ∈ N with ΛD,ΛN relatively prime.(5.3)

Using (5.3), we can rewrite (5.2) as

∆t
i = pow(ΛN,Γ

t
i) pow(ΛD,−Γti) ∆0, Γti ∈ Z.(5.4)

Define Γmax to be the least integer such that

pow(Λ,Γmax)∆0 ≥ ∆max, Γmax ∈ Z.(5.5)

From (3.10) we are then guaranteed that

Γti ≤ Γmax for all i ∈ P and t ∈ T .(5.6)

Finally, we recall the definition of the set of search directions D given in (2.1).
Observe that each search direction di ∈ D is the product of a real nonsingular matrix
B and a rational vector ci.

Combining our observations on xti and ∆t
i, with our recollection of the definition of

D, we now state and prove the following theorem, which is our analogue of Theorem 3.2
from [10].

Theorem 5.2. Let i ∈ P and Γ ∈ Z. For any t ∈ T such that

Γ ≤ min {Γ
τi( t̂ )
i : t̂ ≤ t, t̂ ∈ Ii, i ∈ P },(5.7)

where Γti is defined as in (5.2), there exists ζj(i, t,Γ) ∈ Z for each j ∈ P such that

xti = x0 +
pow(ΛN,Γ)

pow(ΛD,Γmax)
∆0B

∑
j∈P

ζj(i, t,Γ) cj ,(5.8)

where ΛN and ΛD are as defined in (5.3) and Γmax is as defined in (5.5).
Further, xti lies on the rational lattice defined by integer multiples of the ele-

ments of the set {c1, . . . , cp} that is scaled by pow(ΛN,Γ) pow(ΛD,−Γmax) ∆0, trans-
lated by x0, and subject to a (possible) change of basis B. This lattice is denoted by
G(D,Λ,Γ,∆max,∆0, x0).
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Proof. First we make an observation about any ∆
τi( t̂ )
i such that i ∈ P, t̂ ≤ t, and

t̂ ∈ Ii. From (5.4)–(5.6) we have

∆
τi( t̂ )
i = pow(ΛN,Γ

τi( t̂ )
i − Γ) pow(ΛD,Γ

max − Γ
τi( t̂ )
i )

pow(ΛN,Γ)

pow(ΛD,Γmax)
∆0.

Recall from (5.3) that ΛD, ΛN ∈ N ⊂ Z and from (5.2) that Γ
τi( t̂ )
i ∈ Z. Further, we

have assumed that Γ ∈ Z and Γ ≤ Γ
τi( t̂ )
i , and the assumptions placed on Γmax ensure

that Γmax ∈ Z and Γmax ≥ Γ
τi( t̂ )
i . Combining these observations, we have that

pow(ΛN,Γ
τi( t̂ )
i − Γ) pow(ΛD,Γ

max − Γ
τi( t̂ )
i ) ∈ Z.

In Lemma 5.1 we saw that we could write any xti as the sum of x0 plus a linear

combination of the search directions. Using the definitions of Îj(i, t) and δj(i, t) from
Lemma 5.1, we choose

ζj(i, t,Γ) =
∑

t̂∈Îj(i,t)

pow(ΛN,Γ
τj( t̂ )
j − Γ) pow(ΛD,Γ

max − Γ
τj( t̂ )
j )

=
pow(ΛD,Γ

max) δj(i, t)

pow(ΛN,Γ) ∆0
,

with ζj(i, t,Γ) = 0 if Îj(i, t) = ∅. Clearly, ζj(i, t,Γ) ∈ Z. Given that for every j ∈ P,
dj = Bcj , (5.8) then follows immediately from (5.1). The final statement follows
from two facts. First, the set {c1, . . . , cp} is finite. Second, each of the cj ’s is strictly
rational and any finite set of rational numbers can be scaled to the integers.

The importance of Theorem 5.2 will become apparent in Lemma 7.4, where we
show that some subsequence of the step-length control parameters must go to zero.

6. The subset of time steps at which changes occur is infinite. Before
we proceed to the proof of global convergence, we revisit the set Ti, which we first
defined in (3.1), and show that it must be infinite. A review of (3.15) and (3.16) leads
to an alternate definition in terms of the subsets Si and Ci:

Ti = Si ∪ Ci.(6.1)

Lemma 6.1. Ti is infinite.
Proof. Each function evaluation takes at most η time steps, and a new function

evaluation is started at the conclusion of each function evaluation. Since T is infinite,
there are infinitely many function evaluations. Recalling the discussion in section 3.5,
for each function evaluation we are guaranteed that either an external successful up-
date took place during the function evaluation or either an internal successful update
or a contraction took place at the conclusion of the function evaluation. So, there
must be at least one update to xi and/or ∆i for every function evaluation and, hence,
there are infinitely many updates.

This fact about Ti plays a role in the analysis ahead.

7. A subsequence of the step-length control parameters goes to zero.
Once the lattice structure has been established, the next part of the proof of conver-
gence for standard pattern search convergence analysis [10] involves showing that the
step-length control parameter ∆ goes to zero; i.e.,

lim inf
t→+∞ ∆t = 0.
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In this section, we aim to show an equivalent result, but we now have p semi-
independent sequences of ∆ to consider. Given this complication, the basic outline
for our arguments is as follows:

1. If the number of successful time steps for some process is finite, showing that
the sequence of step-length control parameters goes to zero is trivial. So, we eliminate
this case first in Lemma 7.1.

2. Using Lemma 7.1, we then show, in Lemma 7.2 and Corollary 7.3, that either
every process has a set of successful time steps that is finite or none do. From this
point forward, we then need only concern ourselves with the case where the number
of successful time steps is infinite.

3. Lemma 7.4 is a key result. We show that some subsequence of the set of all
step-length control parameters (indexed over all processes and all time steps) must
go to zero. This result relies on the fact that every xti lies on a rational lattice.

4. We narrow the scope in Corollary 7.5 to show that a subsequence of step-
length control parameters converges to zero on one process i ∈ P.

5. Before we can extend this result to the remaining processes, we introduce
some new definitions that help us discover what is happening between successful time
steps on any process j ∈ P, j �= i. In Lemma 7.6, we conclude that the lim sup of
the number of time steps between successes on a single process goes to +∞ in these
cases.

6. We now can tie together the actions across processes to say, in Lemma 7.7,
that every process must have a subsequence of step-length control parameters that
goes to zero.

7. Combining all these results into Theorem 7.8, we see that whether or not
the number of successful time steps is infinite, every process has a subsequence of
step-length control parameters that goes to zero.

Now that we have an overall picture of the argument, we begin by showing that
for any process i which has only finitely many successful time steps, the sequence of
step-length control parameters goes to zero.

Lemma 7.1. If Si is finite for some i ∈ P, then

lim
t→+∞∆t

i = 0.

Proof. Let t0 = max { t : t ∈ Si }. Then, by (3.16), for any time step t ∈ T such
that t > t0, either the time step is a contraction or nothing happens. From (6.1), we
have Ti = Si ∪Ci, and Lemma 6.1 assures us that Ti is infinite. Since, by assumption,
the set Si is finite, we conclude that the set Ci must be infinite. Hence there are
infinitely many contractions after time step t0. Therefore, the sequence {∆t

i}+∞
t=t0 is

decreasing and bounded below by zero. Finally, (3.14) guarantees that the contraction
parameter θti ≤ θmax < 1, which enforces a fraction of decrease at each contraction.
We can therefore conclude that the sequence {∆t

i}+∞
t=t0 converges to zero. Hence, the

claim.
In the next lemma, we show that if one process has infinitely many successful

time steps, then every process must have infinitely many successful time steps.
Lemma 7.2. If Si is infinite for some i ∈ P, then Sj is infinite for all j ∈ P.
Proof. Suppose not; that is, suppose there exists k ∈ P, k �= i, such that Sk is

finite. Let t0 = max { t : t ∈ Sk }, which implies that xt0k is the best point known
by process k over all t ∈ T . The point xt0k is considered by process i at some later
time step t1 ≤ t0 + γ, where γ is defined in (3.6). Since Si is infinite, xt0k , whether
initially accepted or rejected at time step t1, is improved upon at some later time step
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t2 with t2 > t1; together, (3.5) and (3.6) guarantee that t2 is finite. The point xt2i
must, in turn, be considered by process k at a later time step t3 ≤ t2 + γ. Since xt2i
is an improvement over xt0k , we must have t3 ∈ Sk; but this contradicts t0 being the
maximum t ∈ Sk.

The immediate corollary is that if any process has only finitely many successful
time steps, then every process has only finitely many successful time steps.

Corollary 7.3. If Si is finite for some i ∈ P, then Sj is finite for all j ∈ P.
From Lemma 7.1 and Corollary 7.3, the case for the convergence of the step-

length control parameters to zero is trivial when there are finitely many successful
time steps. The remainder of this section concentrates on the case where there are
infinitely many successful time steps on each process.

The next lemma shows there is a subsequence of step-length control parameters
(indexed over all processes) that converges to zero.

Lemma 7.4. Suppose Sj is infinite for all j ∈ P. Then there exists i ∈ P
such that

lim inf
t→+∞
t∈Si

∆
τi(t)
ωi(t)

= 0.

Proof. Suppose not. Then there exists ∆∗ > 0 such that

∆
τj(t)

ωj(t)
≥ ∆∗ for all j ∈ P and t ∈ Sj .

Choose a Γ∗ ∈ Z that satisfies (5.7) for all t ∈ T . We are guaranteed that such a
Γ∗ exists since ∆∗ is strictly positive. With this choice of Γ∗, Theorem 5.2 guarantees
that (5.8) holds for every choice of t ∈ T , and thus every xtj lies on the translated

rational lattice G(D,Λ,Γ∗,∆max,∆0, x0).
Observe that each lattice point in G(D,Λ,Γ∗,∆max,∆0, x0) can be considered

successful at most once by each process. Consider process k ∈ P. Recall that Sk =
Ik ∪ Ek and a successful point must satisfy either (3.7) or (3.11). In either case, if
f(xt2k ) < f(xt1k ), then clearly xt1k �= xt2k . The only other possibility is that t2 ∈ Ek with
f(xt2k ) = f(xt1k ), in which case we must have xt2k ≺ xt1k so that, once again, xt1k �= xt2k .
We conclude, therefore, that for any process k ∈ P, we cannot have t1, t2 ∈ Sk with
t1 < t2 such that xt1k = xt2k .

On the other hand, every successful point must lie in L(x0). The intersection of
the bounded set L(x0) with the translated integer lattice G(D,Λ,Γ∗,∆max,∆0, x0) is
finite.

Since any successful point must be in the finite set G(D,Λ,Γ∗,∆max,∆0, x0) ∩
L(x0) and no point is successful more than once for each process j ∈ P, it follows
that Sj must be finite. But this contradicts the assumption that Sj is infinite for all
j ∈ P. Hence, the claim.

An immediate corollary to the preceding lemma is that there is some process
which has a subsequence of step-length control parameters that converges to zero.

Corollary 7.5. Suppose Sj is infinite for all j ∈ P. Then there exists i ∈ P
such that

lim inf
t→+∞ ∆t

i = 0.(7.1)

Proof. By Lemma 7.4, there exists i ∈ P and S̄i ⊆ Si such that

lim
t→+∞
t∈S̄i

∆
τi(t)
ωi(t)

= 0.
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For each j ∈ P, define S̄ij = {t ∈ S̄i : ωi(t) = j}, so
⋃p
j=1 S̄ij = S̄i. Since S̄i is

infinite, there exists at least one k such that S̄ik is infinite. So,

lim
t→+∞
t∈S̄ik

∆
τi(t)
k = 0.

Hence, the claim.
We need to show that a subsequence of step-length control parameters is going

to zero for every process. In order to do so, we must first introduce some definitions
and an additional lemma.

For each process i ∈ P, we can decompose the set of unsuccessful time steps (i.e.,
t �∈ Si) into contiguous blocks as follows:

Ui = T \ Si = Ui1 ∪ Ui2 ∪ · · · ∪ UiN ,(7.2)

where N may be +∞, each Ui� is a contiguous index block (e.g., Ui� = {3, 4, 5, 6}),
and any pair Ui� and Ui,�+1 is separated by at least one t ∈ Si.

It is also useful to define the minimum number of contractions required to reduce
∆min to a given ∆ ∈ R, ∆ > 0, as

κ(∆) = min { p ∈ {0, 1, 2, . . . } : pow(θmin, p) ∆min ≤ ∆ },(7.3)

where θmin is defined in (3.14) and ∆min is defined in (3.10). It is straightforward to
see that

lim
∆→0

κ(∆) = +∞.(7.4)

Finally, for a given t ∈ T , we define the last successful time step up to, and
possibly including, t and the first successful time step after t as

ψi(t) = max { t̄ ∈ Si ∪ {0} : t̄ ≤ t }, and(7.5)

φi(t) = min { t̄ ∈ Si : t < t̄ },(7.6)

respectively. We ensure that ψi(t) is always defined by setting it to zero in the case
that { t̄ ∈ Si : t̄ ≤ t } is empty. In the case that there is no t̄ ∈ Si satisfying t < t̄, then
φi(t) = +∞. Thus, ψi(·) : T → Si ∪ {0}, φi(·) : T → Si ∪ {+∞}, and ψi(t) < φi(t)
for all t ∈ T .

Using the above definitions, we can show that the lim sup of the number of time
steps between successes is going to infinity if a subsequence of the step-length control
parameters is going to zero.

Lemma 7.6. Suppose Sj is infinite for all j ∈ P. Then for all i ∈ P satisfying
(7.1), we have

lim sup
�→+∞

| Ui�| = +∞.(7.7)

Proof. Let i ∈ P be such that (7.1) holds. By the definition of the limit, for
any ∆∗ > 0, there exists t∗ ∈ T such that ∆t∗

i < ∆∗. Without loss of generality, we
assume t∗ ∈ Ui.

Then, using definitions (7.3) and (7.5) from above, there must be at least κ(∆∗)
time steps between t∗ and ψi(t

∗) since (3.10) must hold for all t ∈ Si. Let �∗ be such
that t∗ ∈ Ui�∗ . Then

| Ui�∗ | > κ(∆∗).

From (7.4), the proof is complete.
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We can now show that, in the case of an infinite number of successful time steps, a
subsequence of the step-length control parameters converges to zero for every process.

Lemma 7.7. Suppose Sj is infinite for all j ∈ P. Then for all j ∈ P,

lim inf
t→+∞ ∆t

j = 0.

Proof. Suppose not. Then there exists an i ∈ P and ∆∗ > 0 such that

∆t
i ≥ ∆∗ for all t ∈ T .

Define

κ̄(∆∗) = min{p ∈ {0, 1, 2, . . . } : pow(θmax, p)∆max ≤ ∆∗},
where θmax is defined in (3.14) and ∆max is defined in (3.10). Then κ̄(∆∗) is the
maximum possible number of contractions needed to reduce ∆max to ∆∗. So the
maximum number of time steps between two successful time steps on process i is

max
�
| Ui�| ≤ η κ̄(∆∗),

where η is defined in (3.5) and Ui� is defined in (7.2).
Now consider k ∈ P, k �= i. Since any successful point produced on process k is

considered on process i within γ time steps, i has a new minimum within η κ̄(∆∗) time
steps, and that new minimum is considered by process k within γ more time steps; so
the maximum number of time steps between successes on any process k, k �= i, can
be at most

max
�
| Uk�| ≤ η κ̄(∆∗) + 2γ.(7.8)

However, Corollary 7.5 guarantees us that there exists i∗ such that (7.1) holds,
and our null hypothesis tells us i∗ �= i. Further, Lemma 7.6 says (7.7) must hold for
i∗, but this contradicts (7.8), which also holds for k = i∗. Hence, the claim.

Finally, we show that each process has a subsequence of step-length control param-
eters that converges to zero—whether there are finitely or infinitely many successful
time steps.

Theorem 7.8. For every process j ∈ P, there exists a subsequence of the step-
length control parameters that goes to zero; that is,

lim inf
t→+∞ ∆t

j = 0 for all j ∈ P.

Proof. If Si is infinite for some i ∈ P, then Sj is infinite for all j ∈ P by
Lemma 7.2, in which case the claim follows immediately from Lemma 7.7. Otherwise,
all Sj must be finite for all j ∈ P by Corollary 7.3, in which case the claim follows
from Lemma 7.1.

The following corollary says that, specifically, the subsequence of time steps at
which the step-length control parameters decrease forms a subset of the set of unsuc-
cessful time steps. This corollary is useful in the next section.

Corollary 7.9. The set Cj is infinite for all j ∈ P, and

lim inf
t→+∞
t∈Cj

∆t
j = 0 for all j ∈ P.(7.9)

Proof. This follows immediately from Theorem 7.8 since for each j ∈ P, ∆t
j ≥

∆min for all t ∈ Sj and (3.16) confirms that ∆t
j is unchanged for all t ∈ T \ Ti.
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8. A common accumulation point that is also a stationary point. Our
final goal is to show that there exists a common accumulation point for all processes
and that this accumulation point has a zero gradient. Our argument is outlined as
follows.

1. In Lemma 8.1 we show that on process 1 we can extract a subsequence of
contractions for which the step-length control parameter goes to zero and that the
subsequence xt1 associated with these particular contractions has an accumulation
point. (We specify the first process for convenience, but we could pick any process.)

2. Still focused on process 1, in Corollary 8.2 we show that the number of
unsuccessful time steps before each of these contractions is going to +∞. This means
that on process 1 we have a sequence of ever-lengthening contiguous index blocks of
unsuccessful time steps.

3. In Lemma 8.3 we show that using the subsequence of contractions on process
1 for which the step-length control parameter goes to zero, each process i, i �= 1, has
its own corresponding sequence of contiguous index blocks of unsuccessful time steps.

4. In Lemma 8.4, we show that the sequence of contiguous index blocks of
unsuccessful time steps on each process i, i �= 1, is also ever-lengthening. We then
extract a sequence of step-length control parameters corresponding to these ever-
lengthening blocks of unsuccessful time steps and show that this particular sequence
of step-length control parameters must go to zero.

5. Finally, in Theorem 8.5 we show that these blocks of unsuccessful iterates
can be used to build a sequence of contraction iterates corresponding to those on
process 1—and thus share the same accumulation point. Furthermore, if we use
the fact that the set of search directions positively spans Rn, and assume that f is
continuously differentiable, then we can show that this common accumulation point
is also a stationary point of f .

In essence, our argument for the existence of a common accumulation point is
based on the timing of the global clock. Since we have assumed both that the number
of time steps required for a function evaluation is finite (3.5) and that the number of
time steps required for the communication of a message is finite (3.6), we know that
eventually every process must see any candidate for the new best point in a finite
amount of time. What we do not know, in general, is in what order each candidate
will be considered on any given process. What we show is that there is an infinite
sequence of increasingly long blocks of unsuccessful time steps on every process, where
the block length is unbounded above as the algorithm proceeds. We also show that
every sufficiently long block is a member of a set of such blocks, where all the blocks
in a set have start times within γ time steps of one another. Similarly, the same
can be said for all finish times. We then show that each set contains one block for
each process. For a set of sufficiently long blocks, each process must start and finish
a function evaluation within that process’s block. The bounds (3.5) and (3.6) mean
that all processes start these new function evaluations using the same best point.
For sufficiently long blocks, all of these function evaluations must be unsuccessful.
Thus, in the language of [10], the processes collectively perform a poll about the best
point, and this poll is unsuccessful. The sequence of such sets of blocks is infinite,
and so an infinite sequence of these best points occurs. The final conclusion, that
this accumulation point is also a stationary point of f , follows automatically from our
assumptions on D and f .

Having made these observations, we start the analysis by showing that the first
process has a convergent subsequence of x’s corresponding to a subsequence of step-
length control parameters that goes to zero.
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Lemma 8.1. There exists x̂ ∈ Rn and Ĉ1 ⊆ C1 such that

lim
t→+∞
t∈Ĉ1

∆t
1 = 0 and lim

t→+∞
t∈Ĉ1

xt1 = x̂.(8.1)

Proof. From Corollary 7.9, we know that C1 is infinite and that (7.9) holds, so
there exists C′1 ⊆ C1 such that

lim
t→+∞
t∈C′

1

∆t
1 = 0.

Since the set {xt1 : t ∈ C′1 } is contained in the bounded set L(x0), we can extract an
infinite subset Ĉ1 ⊂ C′1 such that the subsequence converges; i.e., there exists x̂ in the
closure of L(x0) such that the limit in (8.1) holds.

Next, we show that the number of time steps between each t ∈ Ĉ1 and the most
recent success on process 1 goes to +∞.

Corollary 8.2. Let Ĉ1 be as defined in Lemma 8.1. Then there exists t∗ ∈ T
such that

κ(∆t
1) > η + 2γ for all t > t∗, t ∈ Ĉ1,

where κ(∆) is defined in (7.3), η is defined in (3.5), and γ is defined in (3.6).
Proof. This follows immediately from Lemma 8.1 and (7.4).
Another way to look at this corollary is to consider the step-length control param-

eters. By definition, κ(∆) returns the minimum number of contractions required to
reduce ∆min to a given value ∆. Consider t̂ > t∗ with t̂ ∈ Ĉ1. Corollary 8.2 then tells
us that κ(∆t

1) is at least η+2γ. The importance of this connection with ∆min becomes
clearer when we recall that (3.10) requires the ∆ associated with any successful time
step to satisfy ∆t

i ≥ ∆min. Therefore, we conclude that the minimum possible number
of contractions since the last successful time step, at time step ψ1( t̂ ), is η+2γ. Since
each contraction requires one function evaluation which, in turn, requires at least one
time step, the situation illustrated in Figure 8.1 must hold.

. . .
ψ1( t̂ )

. . . �t̂

��
> η + 2γ

Fig. 8.1. Relative order of events on process 1 when t̂ ∈ Ĉ1 and t̂ > t∗.

The situation illustrated in Figure 8.1 applies only to process 1. Now we show
that for every t̂ ∈ Ĉ1, t̂ > t∗, on each of the other processes there is a corresponding
nonempty block of contiguous time steps that is devoid of successes. In particular,
the situation shown in Figure 8.2 holds. The relative order between the time steps
ψ1( t̂ ) + γ and t̂− γ follows from Corollary 8.2. In the next lemma, we show that the
relative order of the time steps ψi(t̂ − γ) and ψ1(t) + γ, as well as that of the time
steps t̂ − γ and φi(ψ1( t̂ ) + γ), also must hold for any i ∈ P, i �= 1, when t̂ ∈ Ĉ1 and
t̂ > t∗. The result we want then follows immediately.

Lemma 8.3. Let Ĉ1 be as defined in Lemma 8.1 and let t∗ be as defined in
Corollary 8.2. Then for any t̂ ∈ Ĉ1 with t̂ > t∗ and any i ∈ P, i �= 1, we have

ψi(t̂− γ) ≤ ψ1( t̂ ) + γ and(8.2)

t̂− γ ≤ φi(ψ1( t̂ ) + γ),(8.3)
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. . .
ψi(t̂− γ)

. . .
ψ1( t̂ ) + γ

. . .
t̂− γ

. . . �
φi(ψ1( t̂ ) + γ)

��
> η

Fig. 8.2. Relative order of events for any process i ∈ P, i �= 1, when t̂ ∈ Ĉ1 and t̂ > t∗.

where γ is defined in (3.6), ψi(·) is defined in (7.5), and φi(·) is defined in (7.6).
Further,

{ t ∈ T : ψ1( t̂ ) + γ < t < t̂− γ } ⊆ Ui,(8.4)

where Ui is defined in (7.2).

Proof. Suppose not. First consider the proof for (8.2). Since the point x
ψ1( t̂ )
1 is

guaranteed to have been considered by process i by time step ψ1( t̂ )+γ and ψ1( t̂ )+γ <
ψi(t̂− γ) (from the null hypothesis), it must be true that

f(x
ψi(t̂−γ)
i ) < f(x

ψ1( t̂ )
1 ),(8.5)

or, equivalently for our purposes, that the tie-breaking condition in (3.11) is satisfied.

Likewise, the point x
ψi(t̂−γ)
i will be considered by process 1 at some time step t1 ≥

ψi(t̂− γ). By the null hypothesis, we have ψ1( t̂ ) < ψi(t̂− γ)− γ, so ψ1( t̂ ) < t1. On

the other hand, since the point x
ψi(t̂−γ)
i must be considered within γ time steps of

ψi(t̂− γ), we have t1 ≤ ψi(t̂− γ) + γ. By the definition of ψ, we conclude t1 ≤ t̂. So
we then have

ψ1( t̂ ) < t1 ≤ t̂.
From (8.5), either t1 ∈ S1, or there exists t2 ∈ S1 with ψ1( t̂ ) < t2 < t1. In either
case, we have a contradiction to the fact that ψ1( t̂ ) is the most recent successful time
step before t̂ on process 1.

We follow the same line of reasoning for (8.3). Since φi(ψ1( t̂ )+γ) ∈ Si (note that

it is finite by the null hypothesis) and the point x
ψ1( t̂ )
1 must have been considered by

time step ψ1( t̂ ) + γ, it must be true that

f(x
φi(ψ1( t̂ )+γ)
i ) < f(x

ψ1( t̂ )
1 ),(8.6)

or, equivalently for our purposes, that the tie-breaking condition in (3.11) is satisfied.

Likewise, the point x
φi(ψ1( t̂ )+γ)
i will be considered by process 1 by some time step t1

satisfying

ψ1( t̂ ) < φi(ψ1( t̂ ) + γ)− γ ≤ t1 ≤ φi(ψ1( t̂ ) + γ) + γ < t̂,

where the last part is from the null hypothesis and the first part is from the definition
of φ. From (8.6), either t1 ∈ S1 or there exists t2 ∈ S1 with ψ1( t̂ ) < t2 < t1. In either
case, we once again have a contradiction.

The proof for (8.4) follows immediately.
Using the previous lemma, we can construct a set of time steps Ĉi such that the

corresponding sequence of step-length control parameters converges to zero.
Lemma 8.4. Consider any i ∈ P, i �= 1. Let Ĉ1 be as defined in Lemma 8.1 and

let t∗ be as defined in Corollary 8.2. For any t̂ ∈ Ĉ1 with t̂ > t∗ define

χi( t̂ ) = max { t ∈ Ci : t < t̂− γ }(8.7)
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and

Ĉi = {χi( t̂ ) : t̂ > t∗, t̂ ∈ Ĉ1 }.

Then

lim
t→+∞
t∈Ĉi

∆t
i = 0.(8.8)

Proof. First, we are guaranteed that

χi( t̂ ) > ψ1( t̂ ) + γ for each t̂ ∈ Ĉ1 with t̂ > t∗

for the following reasons. Appealing to Corollary 8.2, we know κ(∆t̂
1) > η+2γ and so

the interval contains at least η time steps. Thus, one function evaluation must finish
and another start on process i during that interval. Since, by Lemma 8.3, there are
no successes on i between ψ1( t̂ ) + γ and t̂− γ, there must be at least one contraction
on i in that interval, i.e., a t ∈ Ci.

Next, from Lemma 8.1 and (7.4), we know that

lim
t→+∞
t∈Ĉ1

κ(∆t
1) = +∞,

so it must also be the case that

lim
t→+∞
t∈Ĉ1

(t− γ)− (ψ1(t) + γ)

η
= +∞.

In other words, the number of contractions in the interval defined by (8.4) is tending
towards infinity. Therefore, (8.8) holds.

Finally, we conclude that all processes share a common accumulation point and
that such a point is a stationary point of f . This argument follows the same basic
lines as those seen in [3, 9] (for the case that the search directions are restricted to
the set D = {±ei, i = 1, . . . , n}) and [11] (for the general case that D is a positive
spanning set). Similar arguments have been used more recently in [8, 1, 4].

Theorem 8.5. Assume the function f in (1.1) is continuously differentiable on
the closure of L(x0). Then there exists x̂ ∈ Rn and, for each i ∈ P, there exists
Ĉi ⊂ Ci such that

lim
t→+∞
t∈Ĉi

∆t
i = 0 and lim

t→+∞
t∈Ĉi

xti = x̂.(8.9)

Furthermore,

lim
t→+∞
t∈Ĉi

∇f(xti) = 0.

Proof. By Lemma 8.1, we know that (8.9) holds for i = 1. By Lemma 8.4, we
know that for each i ∈ P, i �= 1, we can construct Ĉi such that the limit on ∆t

i in

(8.9) holds. Further, note that for every t̂ ∈ Ĉi, we have

x
χi( t̂ )
i = xt̂1,
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where χi( t̂ ) is defined in (8.7). Thus,

{xti : t ∈ Ĉi } ⊆ {xt1 : t ∈ Ĉ1 }.

So, the limit on xti given in (8.9) holds as well. Hence, the claim.
Now, for any t ∈ Ci, (3.15) and (3.16) give us

xti = xt−1
i and ∆t

i = θti∆
t−1
i .

Define the set B̂i = { t = t̂ − 1 : t̂ ∈ Ĉi }. Since θti is bounded below by θmin, (8.9)
ensures that

lim
t→+∞
t∈B̂i

∆t
i = 0.

If t̂ ∈ Ĉi this means that

f(xt̂−1
i ) ≤ f(xt̂−1

i + ∆ t̂−1
i di).(8.10)

We rely here on the fact that even though the function evaluation that led to the
conclusion that t̂ ∈ Ĉi may have been initiated at some t < t̂ − 1, the update rules
(3.15) and (3.16) ensure that xti = xt−1

i and ∆t
i = ∆t−1

i for any t ∈ T \ Ti. Since

(8.10) holds for any t̂ ∈ Ĉi, this is equivalent to saying that for any t ∈ B̂i
f(xti) ≤ f(xti + ∆t

idi).

The mean value theorem then gives us

f(xti) ≤ f(xti) + ∆t
i∇f(xti + σti∆

t
idi)

T di

for some σti ∈ [0, 1]. Therefore,

0 ≤ ∇f(xti + σti∆
t
idi)

T di, t ∈ B̂i.

Taking the limits as t→∞, we get

0 ≤ ∇f(x̂)T di for all i ∈ P.(8.11)

Since the vectors in D are assumed to form a positive spanning set for Rn, (8.11)
implies that ∇f(x̂) = 0.

9. Conclusions. When developing this analysis, we tried to keep the number
of assumptions made to a minimum. Our first priority was to assure that under
standard assumptions, the version of APPS that we had implemented could be shown
to be globally convergent. That said, there are some further relaxations we could
have made. For instance, in (3.2) we assumed, for convenience, that all processes
started with the same initial iterate x0 and the same initial value ∆0 for the step-
length control parameter. While we could relax (3.2), to do so would introduce a
level of complication to the analysis that does not appear to add appreciably to the
fundamental result.

An extension of more obvious practical import is to allow the set of search direc-
tions to change over time. In this paper, we assume that the set of search directions
is fixed. Earlier pattern search results [10] make clear that this condition can be
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relaxed to allow a more general notion of exploratory moves. Experience with sequen-
tial implementations of pattern search has demonstrated that there certainly can be
algorithmic advantage to doing so. For instance, the exploratory moves enable more
aggressive or speculative steps that may either accelerate the progress of the search
or move the iterates away from a local minimizer, without compromising global con-
vergence. In the parallel setting, one of the motivations for APPS was to devise
algorithms that could recover from the failure of a process. Since all we require, in
the end, is that (8.11) holds for enough vectors in D to form a positive basis for Rn,
we have some flexibility in both the implementation and the analysis. In particular,
exploratory moves are included implicitly. The exploratory moves play an active role
in the search only if they produce a success, but our analysis focuses on the contrac-
tions. As long as we can express any point produced by an exploratory move as in
Theorem 5.2 (i.e., any success produced by an exploratory move lies on an appropriate
lattice), the analysis accommodates this extension in a straightforward fashion.

Another possible extension to the analysis is to examine the robustness of the
search in the presence of process failures either because the processor on which the
process resides fails or because on that particular process the evaluation of the function
f at a given x fails. In the current implementation of APPS, we ignore the failure of
a process so long as the search directions contained on the active processes continue
to form a positive spanning set. If we experience enough process failures that this
condition no longer holds, we restart enough processes so that the condition is once
again satisfied. If we assume a finite number of failures for evaluation at a given
point—an extension to (3.5), our assumption that the maximum number of time
steps for evaluating f at a given x is finite—then the modifications required to the
analysis seem straightforward enough that we simply note them here.

A more ambitious option, along the lines of related ideas proposed in [11, 8, 4],
would be to actually change the set of search directions during the course of the
search, rather than working with some subset of a fixed set of directions chosen at
the start of the search. To do so requires some modification of the mechanism used
to control the length of the step. Our analysis relies on the algebraic structure of the
iterates. This can be relaxed, either by requiring ∆ to go to zero in the limit [11, 4]
or by introducing a sufficient decrease condition to determine the success of a step
[8], in lieu of the simple decrease conditions in (3.7) and (3.11) that we use here.

We close with the observation that we can reduce the general framework presented
here to a special case that looks more like traditional (sequential) pattern search. (This
is what motivated us to allow 0 ≤ γ so that communication can be “instantaneous,”
as it would be in the sequential case.) The difference here is that we have introduced
the bounds given in (3.10) for t ∈ Si. These bounds are necessary for our analysis
(e.g., in the proofs of Lemma 7.7 and Corollary 7.9 or for the definition of κ(∆) in
(7.3), which plays a role in the proofs of Lemma 7.6, Corollary 8.2, and Lemma 8.4).
Prior definitions of pattern search did not require the enforcement of (3.10) since the
synchronization of the updates to ∆ suffices without the imposition of these bounds
on updates made after a successful step.
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Abstract. We explicitly calculate universal barrier functions for cones generated by (weak)
Chebyshev systems over finite sets. We show that universal barrier functions corresponding to Cheby-
shev systems on intervals are obtained as limits of universal barrier functions of their discretizations.
The results rely heavily upon the classical work of Krein, Nudelman, and Schoenberg.
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1. Introduction. In [1] we calculated the universal barrier function for a broad
class of cones generated by Chebyshev systems on intervals of the real line and the
circle. In general, given a closed, convex, pointed cone K in Rn, the universal barrier
function (up to a multiplication by a positive constant) has the form [5]

Φ(x) = ln

∫
K∗

e−〈x,y〉dµ(y),

where x ∈ int(K),K∗ is the cone dual to K, and µ is the Lebesgue measure. The
expression we obtained in the case of the cone generated by a Chebyshev system is of
the following form:

Φ(x) =
1

2
ln det(D̄(x)),

where D̄(x) is a skew-symmetric matrix. The only complication, say, in compar-
ison with the semidefinite programming case, is that the entries of D̄(x) are one-
dimensional definite integrals. While there exist interesting cases in which these in-
tegrals can be explicitly calculated, in general it is important to understand what
is the right way to approximate these integrals to preserve important properties of
modern interior-point algorithms (e.g., complexity estimates). On the other hand, the
class of optimization problems involving Chebyshev cones is a subclass of semi-infinite
programming problems. Many natural procedures for finding approximate solutions
to semi-infinite programming problems rely upon discretizations of semi-infinite con-
straints. Discretization procedures applied to Chebyshev cones lead to Chebyshev
systems over finite (more generally, countable) sets. Thus, it is quite natural to try to
calculate universal barrier functions for such systems. It follows from general proper-
ties of the Lebesgue integral that such barriers should converge to universal barriers
of Chebyshev cones on intervals with the refinement of a discretization and, conse-
quently, should provide a natural way to approximate those universal barriers. In
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particular, this approach allows us to provide a new and simpler proof of the formula
for a universal barrier of a Chebyshev cone on an interval that was initially derived
in [1].

The cones generated by Chebyshev systems over finite sets are defined by a finite
number (equal to the cardinality of the set) of linear inequality constraints. Obviously,
one can easily construct a self-concordant barrier for such cones (as the minus sum of
logarithms of linear forms defining these inequalities). However, the so-called barrier
parameter for this barrier will be equal to the number of inequality constraints (i.e., the
cardinality of the set) and will grow rapidly with the refinement of a discretization.
On the contrary, due to a deep result of Nesterov and Nemirovskii [5] the barrier
parameter of the universal barrier function is of the order of dimension of the cone
(O(n)), and hence in our case does not depend on the refinement of a discretization!
Since the barrier parameter determines complexity estimates for practically all modern
interior algorithms (the smaller the parameter, the better the estimates), the use of
a universal barrier function for polyhedral cones is potentially quite beneficial. The
problem, however, is that so far (within the class of polyhedral cones) such a universal
barrier function has been calculated only for the positive orthant. More precisely, it
is not known how to decompose in an efficient way an arbitrary polyhedral cone into
cones linearly isomorphic to the positive orthant.

In the present paper we calculate the universal barrier function for a broad class
of polyhedral cones generated by (weak) Chebyshev systems over finite sets in the
computable form, as in semidefinite programming. More precisely,

Φ(x) =
1

2
ln det D̄1(x),

where D̄1(x) is again a skew-symmetric matrix. The entries of D̄1(x) are essentially
Riemann sums for entries of D̄(x) in the case where the corresponding finite set
appears as a result of a discretization of an interval. Observe that polynomial splines
belong to the class of weak Chebyshev systems and thus are covered by the results of
the present paper.

We rely heavily upon the classical results of Krein, Nudelman, and Schoenberg.
In our opinion, these results provide additional evidence that the modern theory of
interior-point algorithms in the form developed by Nesterov and Nemirovskii has a
deep mathematical structure which is currently only partially understood.

2. Chebyshev systems over finite sets. Let ∆ = {t1 < t2 < · · · < tm} be an
ordered finite set of real numbers. We say that the functions ui : ∆→ R, i = 0, . . . , n,
form a Chebyshev system over ∆ if

det(ui(tjk)) > 0(2.1)

for any 1 ≤ j1 < j2 < · · · < jn+1 ≤ m. Introduce vectors vi ∈ Rn+1, i = 1, . . . ,m,
where

vi = (u0(ti), u1(ti), . . . , un(ti))
T .

Condition (2.1) can be rewritten in the form

det[vj1vj2 . . . vjn+1
] > 0(2.2)

for any 1 ≤ j1 < j2 < · · · < jn+1 ≤ m. Many examples of Chebyshev systems can
be found, e.g., in [4]. In particular, a fundamental system of solutions of a linear
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differential equation with constant coefficients is a Chebyshev system, provided all
the roots of the characteristic equation are real.

One can naturally associate a cone with a given Chebyshev system as follows:

K =

{
x ∈ Rn+1 : x = (x0, . . . , xn)

T ,

n∑
i=0

xiui(tj) ≥ 0 ∀j ∈ [1,m]

}
.

It is obvious that

K = {x ∈ Rn+1 : 〈x, vj〉 ≥ 0 ∀j ∈ [1,m]}.

Here 〈, 〉 is the standard scalar product in Rn+1. Hence, the dual cone K∗ can be
described as

K∗ =

⎧⎨
⎩

m∑
j=1

ρjvj : ρj ≥ 0, j = 1, . . . ,m

⎫⎬
⎭ .

Our next goal is to describe a combinatorial concept of an index for the finite
increasing sequence of integers. It will be used to parameterize the dual cone K∗

using the so-called principal representations.
Let θ = {1 ≤ j1 < j2 < · · · < jp ≤ m} be a subset of the set [1,m]. This

subset clearly can be partitioned, in a unique fashion, into subsequent blocks, each
comprised of one or more integers without lacunae between them, while different
blocks are separated from each other by a lacuna, as in the following example: θ =
{1, 2, 4, 6, 7, 9} = {1, 2} ∪ {4} ∪ {6, 7} ∪ {9}. The block starting with 1 (ending with
m), if any, is called adjacent to 1 (respectively, adjacent to m); all other blocks are
called interior. According to the parity of k, a block is said to be even or odd. The
index of an interior block θ′ containing k elements is defined as

ε(θ′) = k

if k is even, and

ε(θ′) = k + 1

if k is odd. If a block θ′ containing k elements adjoins either 1 or m, then ε(θ′) = k.
Finally, it is obvious that every θ can be partitioned into blocks θs, s = 1, 2, . . . , t, for
some t. We define the index of θ (notation: ε(θ)) as

ε(θ) =

t∑
i=1

ε(θs).(2.3)

The next proposition immediately follows from definitions.
Proposition 1. We have

card(θ) ≤ ε(θ).

Moreover, card(θ) = ε(θ) if and only if all interior blocks are even.
Here card(θ) is the number of elements in θ.
Definition 1. A sequence θ ⊂ [1,m] is called full if card(θ) = ε(θ).
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Let x ∈ K∗,

x =

p∑
i=1

ρivji ,(2.4)

1 ≤ j1 < j2 . . . jp ≤ m, ρi > 0, i = 1, . . . , p. We say that (2.4) is a principal represen-
tation of x if

ε{j1, . . . , jp} = n+ 1.

For a proof of the following theorem see, e.g., [4, Theorem 5.1] or [6].
Theorem 1. Every x ∈ int(K∗) admits exactly two principal representations as

follows:
• The block adjacent to m is even (in particular, empty). This is the so-called

lower principal representation.
• The block adjacent to m is odd. This is the so-called upper principal repre-

sentation.
Given θ = {j1 < · · · < jp}, where 1 ≤ j1, jp ≤ m, denote by K∗

θ the following
cone:

K∗
θ =

{
p∑
i=1

ρivji : ρi > 0

}
.

Proposition 2. Let Θu (respectively, Θl) be the set of all full subsets of [1,m]
of the index n+ 1 such that the block adjacent to m is odd (respectively, even). Then

Su = ∪θ∈ΘuK
∗
θ ⊂ int(K∗),

Sl = ∪θ∈Θl
K∗
θ ⊂ int(K∗).

Moreover, the Lebesgue measure of int(K∗)\Su (respectively, int(K∗)\Sl) is equal
to zero. Besides,

K∗
θ ∩K∗

θ′ = ∅
for θ, θ′ ∈ Θu (respectively, Θl).

Proof. Let θ ⊂ [1,m], θ �= [1,m]. Then ε(θ) ≥ card(θ), and equality occurs if and
only if θ is full. Let ε(θ) = n + 1. If card(θ) < n + 1, then dimK∗

θ < n + 1 and,
hence, µ(K∗

θ ) = 0, where µ is the Lebesgue measure on Rn+1. On the other hand, if
card(θ) = n + 1, then θ is full, dimK∗

θ = n + 1 (since the vectors vj , j ∈ θ, form a
basis in Rn+1). But then K∗

θ ⊂ int(K∗). Using the uniqueness of upper and lower
principal representations guaranteed by Theorem 1, we immediately conclude that
K∗
θ ∩K∗

θ′ = ∅, θ, θ′ ∈ Θu (respectively, Θl), θ �= θ′. The result follows.
Example 1. Let n = 2,m = 5. We have

Θu = {θ1, θ2, θ3},

θ1 = {1, 2, 5}, θ2 = {2, 3, 5}, θ3 = {3, 4, 5};

Θl = {θ4, θ5, θ6},
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θ4 = {1, 2, 3}, θ5 = {1, 4, 5}, θ6 = {1, 3, 4}.
We are now in a position to calculate the characteristic function of K.
Theorem 2. Let x ∈ int(K). Then

I(x) =

∫
K∗

e−〈x,y〉dµ(y) =
∑

θ={j1,...,jn+1}∈Θ

det[vj1 , . . . , vjn+1 ]∏n+1
l=1 〈vjl , x〉

,

where Θ = Θu or Θ = Θl.
Remark 1. Since x ∈ int(K), we have 〈x, vj〉 > 0∀j ∈ [1,m].
Proof. Consider the case Θ = Θu (the case Θ = Θl is absolutely similar). By

Proposition 2,

I(x) =
∑
θ∈Θu

∫
K∗

θ

e−〈x,y〉dµ(y).

If y ∈ K∗
θ , θ = {j1, . . . , jn+1}, we have

y =

n+1∑
k=1

ρkvjk , ρk > 0.

Hence,

〈x, y〉 =

n+1∑
k=1

ρk〈x, vjk〉,

dµ(y) = det[vj1 , . . . , vjn+1
]dρ1dρ2 . . . dρn+1.

We used the fact that det[vj1 , . . . , vjn+1 ] > 0 while changing variables. Hence,

∫
K∗

θ

e−〈x,y〉dµ(y) =

∫ +∞

0

. . .

∫ +∞

0

n+1∏
k=1

e−ρk〈x,vjk 〉 det[vj1 , . . . , vjn+1
]dρ1 . . . dρn+1

=
det[vj1 , . . . , vjn+1 ]∏n+1

k=1〈x, vjk〉
.

The result follows.

3. “Pfaffian” form of universal barrier functions. In principle, Theorem
2 provides an explicit description of the universal barrier function for the cone K.
However, it is difficult to compare this description with the results of [1]. Thus, we
need to find a more “computable” form of our universal barrier function that we can
compare with results of [1].

Given x ∈ int(K), introduce vectors

ai =
vi
〈x, vi〉 −

vi+1

〈x, vi+1〉 , i = 1, 2, . . . ,m,

where by definition, vm+1 = 0.
Theorem 3. We have∑

{j1<j2<···<jn+1}∈Θl

det[vj1 , . . . , vjn+1 ]∏n+1
k=1〈x, vjk〉

=
∑

1≤l1<l2<···<ln+1≤m
det[al1 , al2 , . . . , aln+1

].
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The proof of this theorem will be given in the appendix. Here we illustrate this
result by an example.

Example 2. Let m = 6, n = 3. We have

Θl = {θ1, θ2, θ3, θ4, θ5, θ6},

θ1 = {1, 2, 3, 4}, θ2 = {1, 2, 4, 5}, θ3 = {1, 2, 5, 6},

θ4 = {2, 3, 4, 5}, θ5 = {2, 3, 5, 6}, θ6 = {3, 4, 5, 6}.

With the notation introduced above, we have

∑
{j1<j2<j3<j4}∈Θl

det[vj1 , vj2 , vj3 , vj4 ]∏4
k=1〈x, vjk〉

= det[a1, a2, a3, a4 +a5 +a6]+det[a1, a2 +a3, a4, a5 +a6]+det[a1, a2 +a3 +a4, a5, a6]

+ det[a2, a3, a4, a5 + a6] + det[a2, a3 + a4, a5, a6] + det[a3, a4, a5, a6]

=
∑

1≤l1<l2<l3<l4≤6

det[al1 , al2 , al3 , al4 ].

The analogue of Theorem 4 for Θu can be formulated as follows.
Theorem 4. We have

∑
{j1<j2<···<jn+1}∈Θu

det[vj1 , . . . , vjn+1
]∏n+1

k=1〈x, vjk〉
=

∑
1≤l1<l2<···<ln<m

det[al1 , al2 , . . . , aln , vm]

〈x, vm〉 .

The proof of Theorem 4 is completely analogous to the proof of Theorem 3 given
in the appendix.

Example 3. Let m = 6, n = 2. We have

Θu = {θ1, θ2, θ3, θ4},

θ1 = {1, 2, 6}, θ2 = {2, 3, 6}, θ3 = {3, 4, 6},

θ4 = {4, 5, 6}.

With the notation introduced above, we have

∑
{j1<j2<j3}∈Θu

det[vj1 , vj2 , vj3 ]∏3
k=1〈x, vjk〉

=
1

〈x, v6〉 (det[a1, a2 + a3 + a4 + a5, v6] + det[a2, a3 + a4 + a5, v6]



CALCULATION OF UNIVERSAL BARRIER FUNCTIONS 971

+ det[a3, a4 + a5, v6] + det[a4, a5, v6])

=
∑

1≤j1<j2<j3≤5

det[aj1 , aj2 , aj3 , v6]

〈x, v6〉 .

Let b1, b2, . . . , bm be vectors in an even-dimensional vector space R2r,m ≥ 2r.
Let, further,

bi = (bi(1), bi(2), . . . , bi(2r))
T ,

d(α, β) =
∑

1≤i<j≤m
det

[
bi(α) bj(α)
bi(β) bj(β)

]
,

α, β = 1, 2, . . . , 2r. Let D be a skew-symmetric 2r × 2r matrix such that

D(α, β) = d(α, β), α, β = 1, 2, . . . , 2r.

The next proposition is due to Okada [7, Theorem 3].
Proposition 3. We have

Pf(D) =
∑

1≤j1<j2<···<j2r≤m
det[bj1 , bj2 , . . . , bj2r ].

Here Pf(D) stands for the Pfaffian of an even-dimensional skew-symmetric ma-
trix D.

Remark 2. One substantial property of Pfaffians is that

Pf(D)2 = det(D).

Hence, lnPf(D) = 1
2 ln det(D). For a good introductory discussion of major proper-

ties of Pfaffians, we recommend [2].
Lemma 1. Let (z(i, j)), i, j = 1, 2, . . . , N + 1, be a skew-symmetric matrix such

that z(i,N + 1) = 0, i = 1, . . . , N. Then

S =
∑

1≤i<j≤N
(z(i, j) + z(i+ 1, j + 1)− z(i, j + 1)− z(i+ 1, j)) =

N−1∑
i=1

z(i, i+ 1).

Proof. We have

S =
∑

1≤i<j≤N
z(i, j) +

∑
2≤i<j≤N+1

z(i, j)−
∑

2≤i≤j≤N
z(i, j)−

∑
1≤i<j−1≤N

z(i, j).

Combining the first and the third (respectively, the second and the fourth) terms
and taking into account that z(i, i) = 0, we obtain

S =
N∑
j=2

z(1, j) +

N∑
i=2

z(i, i+ 1)−
N+1∑
j=3

z(1, j)

=

N∑
i=1

z(i, i+ 1)− z(1, N + 1).

The result follows.
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We are now in a position to describe the characteristic function of a cone generated
by a Chebyshev system over a finite set in the form similar to [1]. Recall that such
a system is determined by a finite set of vectors vi, i = 1, . . . ,m, in Rn+1 satisfying
(2.1), where

vi = (vi(0), vi(1), . . . , vi(n))T ,

vi(k) = uk(ti), k = 0, 1, . . . , n.

Theorem 5. Let x ∈ int(K) and n be odd. Then

I(x) =

∫
K∗

e−〈x,y〉dµ(y) = Pf(D(x)),

where D(x) = (d(α, β)), α, β = 0, 1, . . . , n,

d(α, β) =

m−1∑
i=1

det
[
vi(α)
vi(β)

vi+1(α)
vi+1(β)

]
〈x, vi〉〈x, vi+1〉

=
m−1∑
i=1

det
[
uα(ti)
uβ(ti)

uα(ti+1)−uα(ti)
uβ(ti+1)−uβ(ti)

]
〈x, vi〉〈x, vi+1〉 .

Proof. By Theorems 2, 3, and Proposition 3, we have

I(x) = Pf(D), D = (d(α, β)) ,

d(α, β) =
∑

1≤i<j≤m
det

[
ai(α) aj(α)
ai(β) aj(β)

]
,

where

ai =
vi
〈x, vi〉 −

vi+1

〈x, vi+1〉 , i = 1, 2, . . . ,m.

Let

z(i, j) = det

[
ṽi(α) ṽj(α)
ṽi(β) ṽj(β)

]
,

where

ṽi =
vi
〈x, vi〉 .

Then

d(α, β) =
∑

1≤i<j≤m
(z(i, j) + z(i+ 1, j + 1)− z(i, j + 1)− z(i+ 1, j)).

The result follows from Lemma 1.
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Let v1, v2, . . . , vm be vectors in Rn+1 associated with a Chebyshev system u0, . . . ,
un via (2.2), and let L be a linear isomorphism of Rn+1 such that detL > 0. Then
Lv1, Lv2, . . . , Lvm is also a Chebyshev system in Rn+1 since

det[Lvj1 , . . . , Lvjn+1 ] = detLdet[vj1 , . . . , vjn+1
].

Moreover, if we denote by KL the corresponding cone generated by Lv1, . . . , Lvm, i.e.,

KL = {x ∈ Rn+1 : 〈x, Lvi〉 ≥ 0 ∀i = 1, . . . ,m},
then

KL = L−TK, K∗
L = LK∗.

In other words, the cones K and KL are linearly isomorphic. Hence, their character-
istic functions coincide up to a multiplicative constant. One can always find such an
L so that

Lvm = (0, . . . , 0, 1)T .

Theorem 6. Let x ∈ int(K), n be even, and vm = (0, . . . , 0, 1)T . Then

I(x) =

∫
K∗

e−〈x,y〉dµ(y) =
Pf(D1(x))

〈x, vm〉 ,

where

D1(x) = (d1(α, β)) , α, β = 0, 1, . . . , n− 1,

d1(α, β) =

m−2∑
i=1

det
[
vi(α)
vi(β)

vi+1(α)
vi+1(β)

]
〈x, vi〉〈x, vi+1〉

=

m−2∑
i=1

det
[
uα(ti)
uβ(ti)

uα(ti+1)−uα(ti)
uβ(ti+1)−uβ(ti)

]
〈x, vi〉〈x, vi+1〉 .

Proof. By Theorems 2 and 4, we have

I(x) =
∑

1≤l1<l2<···<ln≤m−1

det[al1 , al2 , . . . , aln , vm]

〈x, vm〉 .

Taking into account vm = (0, . . . , 0, 1)T and expanding determinants over the last
column, we obtain

I(x) =
∑

1≤l1<l2<···<ln≤m−1

det[ãl1 , . . . , ãln ]

〈x, vm〉 .

Here ãi ∈ Rn,

ãi(j) = ai(j) =
vi(j)

〈x, vi〉 −
vi+1(j)

〈x, vi〉 ,

j = 0, 1, . . . , n− 1. We can now finish the proof exactly as in Theorem 5.
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Definition 2. We say that the functions ui : ∆ → R, i = 0, . . . , n, form a
periodic Chebyshev system if the corresponding vectors v1, . . . , vm ∈ Rn+1 satisfy
v1 = vm and

det[vj1 , . . . , vjn+1
] > 0

for all subsets {1 ≤ j1 < j2 < · · · < jn+1 ≤ m}, except for the subsets with j1 = 1
and jn+1 = m.

Lemma 2. If v1, . . . , vm ∈ Rn+1 correspond to a periodic Chebyshev system, then
n is even.

Proof. Take jn+1 = m, jn = m− 1, . . . , j1 = m− n. Then

det[vj1 , . . . , vjn+1
] = (−1)n det[vjn+1

, vj1 , vj2 , . . . , vjn ]

= (−1)n det[v1, vj1 , . . . , vjn ].

Both the first and last determinants should be positive. Hence, n is even.
If v1, . . . , vm correspond to a periodic Chebyshev system, then v2, v3, . . . , vm form

a usual Chebyshev system, and cones generated by these systems obviously coincide.
Hence, we can apply Theorem 6 to calculate the universal barrier function for the
cone generated by a periodic Chebyshev system.

Now let u0, . . . , un be a Chebyshev system of continuously differentiable functions
on the interval [a, b]. Let

C =

{
(x0, . . . , xn) :

n∑
i=0

xiui(t) ≥ 0 ∀t ∈ [a, b]

}
.

In [1] we calculated the universal barrier function for C. Suppose that n is odd.
Then, given x ∈ int(C),

IC(x) = Pf(D2(x)), D2(x) = (d2(α, β)) ,

α, β = 0, 1, . . . , n, where

d2(α, β) =

∫ b

a

det
[
uα(t)
uβ(t)

u̇α(t)
u̇β(t))

]
x(t)2

dt,

x(t) =

n∑
i=0

xiui(t).

Choose a ≤ t1 < t2 < · · · < tm ≤ b for some m ≥ n+1. It is clear that u0, . . . , un
form a Chebyshev system over the finite set ∆ = {t1, . . . , tm}. It is quite obvious that
C ⊂ K = K∆. Hence, we can compare IC(x) and IK(x). By Theorem 5 we see that
d(α, β) is essentially a Riemann sum for d2(α, β) (observe that 〈x, vi〉 = x(ti) ∀i).
The difference between the corresponding formulas for the case n even is explained
by the fact that in Theorem 6 we used the upper principal representation, whereas
in Theorem 5 of [1] we used the lower principal representation. More precisely, let us
divide the interval [a, b] into 2k equal parts by the points

tν = a+
(b− a)(ν − 1)

2k
, ν = 1, . . . ,m = 2k + 1.
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Let, further, ∆k = {t0 < t1 < · · · < t2k+1}. Denote by K∆k
the cone generated

by the corresponding Chebyshev system. It is clear that K∆K1
⊃ K∆2 ⊃ · · · ⊃ C and

hence, K∗
∆1
⊂ K∗

∆2
⊂ · · · ⊂ C∗.

Theorem 7. Let x ∈ int(C). Then the sequence IK∆k
(x), k = 1, 2, . . ., is mono-

tonically increasing and

IK∆k
(x)→ IC(x), k →∞.

Moreover, the convergence is uniform on any compact subset in int(C).
The result easily follows from the fact that entries of the corresponding skew-

symmetric matrices as described in Theorems 5 and 6 converge to the corresponding
integrals d2(α, β).

We conclude this section with a unifying result that combines formulae for uni-
versal barrier functions obtained in [1] and in Theorems 5 and 6. Consider a union
of disjoint closed intervals I = ∪Ni=1[ai, bi] (a1 < b1 < a2 < b2 < · · · < aN < bN )
and a collection of (possibly empty) finite sets ∆i (i = 0, . . . , N) such that ∆0 ⊂
(−∞, a1),∆i ⊂ (bi, ai+1) (i = 1, . . . , N − 1), ∆n ⊂ (bN ,∞). If ∆i is nonempty, we
describe it by ∆i = {ti1 < t2 < · · · < timi

}. It will also be convenient for us to denote
timi+1

= ai+1 (i = 0, . . . , N − 1) and ti0 = bi (i = 1, . . . , N).
Define a set ∆ = I ∪ (∪Ni=0∆i). Assume that the functions ui : ∆ → R, i =

0, . . . , n, form a Chebyshev system over ∆ and that K is the corresponding Chebyshev
cone. As in (2.2), we introduce vectors v(t) ∈ Rn+1, where

v(t) = (u0(t), u1(t), . . . , un(t))
T .

Theorem 8. Let x ∈ int(K) and n be odd. Then

I(x) =

∫
K∗

e−〈x,y〉dµ(y) = Pf(D(x)),

where D(x) = ‖d(α, β)‖, α, β = 0, 1, . . . , n,

d(α, β) =

N∑
i=0

mi∑
j=0

det
[
uα(tij)
uβ(tij)

uα(ti,j+1)
uβ(ti,j+1)

]
〈x, v(tij)〉〈x, v(ti,j+1)〉 +

N∑
i=1

∫ bi

ai

det
[
uα(t)
uβ(t)

u̇α(t)
u̇β(t))

]
〈x, v(t)〉2 dt.

The proof of this statement is completely analogous to that of Theorem 7. A
similar result holds for n even, in which case the system has to be normalized so that
v(sup ∆) = (0, . . . , 0, 1)T and the right-hand side of the formula for I(x) has to be
divided by 〈x, v(sup ∆)〉.

4. Extensions. Suppose that, instead of (2.1), the following weaker condition
is satisfied:

det(ui(tjk)) ≥ 0 ∀1 ≤ j1 < j2 < · · · < jn+1 ≤ m.

If the corresponding (n+ 1)×m matrix

[v1, . . . , vm]

has the maximal rank n+1 (which is equivalent to saying that det[vj1 , . . . , vjn+1 ] > 0
for at least one ordered set 1 ≤ j1 < j2 < · · · < ljn+1 ≤ m ), then v1, . . . , vm is called
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a weak Chebyshev system (using terminology from [3]). We will assume that the cone
K,

K = {x ∈ Rn+1 : 〈x, vi〉 ≥ 0 ∀i},
is pointed, i.e., int(K) �= ∅ and K does not contain straight lines (observe that if
v1, . . . , vm is a Chebyshev system, then this is always the case [4]). Our last assump-
tion is that vi �= 0 ∀i. One can easily see that, under these assumptions,

int(K) = {x ∈ Rn+1 : 〈x, vi〉 > 0 ∀i}.
As is well known, the dual cone K∗ is also pointed. Following a classical argument of
Schoenberg [9], consider for a given 0 < q < 1 an m×m matrix

X(q) = (xij(q)), xij(q) = q(i−j)
2

, i, j = 1, 2, . . . ,m.

The major property of X(q), which we are going to use, is that all minors of X(q)
are positive. This easily follows from the identity

X(q) = diag(q, q2
2

, . . . , qi
2

, . . . , qm
2

)W (q)diag(q, q2
2

, . . . , qm
2

),

where W (q) = (wij(q)), wij(q) = (q−2i)j , ij,= 1, 2, . . .m, is a Vandermonde matrix.
Consider the (n+ 1)×m matrix

[v1(q), . . . , vm(q)] = [v1, . . . , vm]X(q).

Observe that

vi(q) =

m∑
j=1

xij(q)vj .(4.1)

Denote by δ(i1, . . . , in+1; j1, . . . , jn+1)(q) the minor of X(q) corresponding to rows
i1 < i2 < · · · < in+1 and columns j1 < j2 < · · · < jn+1. By the Binet–Cauchy
formula,

det[vi1(q), . . . , vin+1(q)]

=
∑

1≤j1<j2<···<jn+1≤m
δ(j1, . . . , jn+1; i1, . . . , in+1)(q)) det[vj1 , . . . , vjn+1

],

1 ≤ i1 < i2 < · · · < in+1 ≤ m.
Hence, if at least one det[vj1 , . . . , vjn+1 ] > 0 (which is the case if K is pointed),

then v1(q), . . . , vm(q) form a Chebyshev system for any 0 < q < 1. Since X(q) → I,
when q → 0 (I is the identity matrix), we can use this construction to calculate the
characteristic function for the cone K. Denote by K(q) the cone generated by the
Chebyshev system v1(q), . . . , vm(q). It is obvious from (4.1) that K ⊂ K(q), int(K) ⊂
int(K(q)), 0 < q < 1. Thus, K(q)∗ ⊂ K∗, int(K(q)∗) ⊂ int(K∗). Given A ⊂ Rn+1,
denote by χA : Rn+1 → R the function such that χA(y) = 1 if y ∈ A; χA(y) = 0
otherwise.

We will need the following geometrically evident lemma.
Lemma 3. Let M = cone(w1, w2, . . . , wl) be a finitely generated cone with a

nonempty interior in a finite-dimensional vector space V. Then x ∈ int(M) if and
only if it admits a representation of the form

x =
l∑
i=1

λiwi,

where all λi are strictly positive.
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Proof. Let e1, . . . , el be a canonical basis in Rl. Consider a linear map B : Rl →
V,Bei = wi, i = 1, . . . , l. Then M = B(Rl

+), and hence int(M) = B(int(Rl
+)) (see,

e.g., [8]). The result follows.
Lemma 4. For any sequence q1 > q2 > · · · , converging to zero, we have

limχint(K(qi)∗)(y) = χint(K∗)(y), i→∞ ∀y ∈ Rn+1.(4.2)

Proof. Let y ∈ int(K∗). Then by Lemma 2, y admits a representation of the form

y =
m∑
i=1

λivi,(4.3)

where all λi are strictly positive. Let us show that y ∈ int(K(q)∗) for all sufficiently
small q. By Lemma 2 it suffices to indicate a representation

y =

m∑
i=1

λi(q)vi(q)(4.4)

with λi(q) > 0 ∀i. Comparing (4.2) with (4.3), we see that one can take λi(q) to be
solutions of the system of linear equations

X(q)µ = λ,(4.5)

where µ = (µ1, . . . , µm)T , λ = (λ1, . . . , λm)T . But X(q) tends to the identity matrix
when q tends to zero. Hence, X(q)−1 tends to the identity matrix when q tends to
zero. But then all components of the solution to (4.4) will be positive for sufficiently
small q (since all λi are positive). This provides a representation in the form of (4.4)
for all sufficiently small q. Thus, y ∈ int(K(q)∗) for all sufficiently small q. The result
follows.

Theorem 9. Let x ∈ int(K). Then (in the notation of the previous lemma)

IKqi
(x)→ IK(x), i→∞.

Proof. We have

IKqi
(x) =

∫
K∗

qi

e−〈x,y〉dµ(y) =

∫
int(K∗

qi
)

e−〈x,y〉dµ(y)

=

∫
Rn+1

χint(K∗
qi

)(y)e
−〈x,y〉dµ(y)→

∫
Rn+1

χint(K∗)(y)e
−〈x,y〉dµ(y)

=

∫
K∗

e−〈x,y〉dµ(y).

The convergence follows by Lemma 4, the Lebesgue dominated convergence theorem,
and by (obvious) inequalities

0 ≤ χint(K∗
qi

) ≤ χint(K∗).

Corollary 1. Theorems 2–6 hold for a weak Chebyshev system v1, . . . , vm sat-
isfying the following two additional conditions:
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• The corresponding cone K is pointed.
• All vectors vi are nonzero.

Proof. Since Theorem 2 is true for each cone Kq, it is also true for K: it suffices
to take limit q → 0 and apply the previous theorem. The remaining theorems are
derived from Theorem 2 exactly as in the case of a Chebyshev system.

Example 4. Consider the following system of functions:

tl, tl−1, . . . , t, 1, (t− x1)
l
+, (t− x2)

l
+, . . . , (t− xr)l+

on the interval [−1, 1]. Here −1 < x1 < x2 < · · · < xr < 1 and x+ = max{x, 0}.
The linear combinations of these functions are called spline polynomials of degree l
with knots x1, . . . , xr. These functions form a weak Chebyshev system (see, e.g., [3]).
Thus, we can apply our results to its discretizations.

Appendix.
Proof of Theorem 3 (compare with [6]). For i = 1, . . . ,m, denote vi

〈x,vi〉 by v′i and

observe that, for i < j, v′i − v′j = ai + ai+1 + · · ·+ aj−1. Therefore,

det[vj1 , . . . , vjn+1 ]∏n+1
k=1〈x, vjk〉

= det[v′j1 , . . . , v
′
jn+1

] = det[v′j1 − v′j2 , . . . , v′jn+1
− v′m+1]

=
∑

j1≤l1<j2≤l2<j3≤···≤jn+1≤ln+1≤m
det[al1 , al2 , . . . , aln+1 ].

To complete the proof, one needs to show that, for every collection of indices I :=
{1 ≤ l1 < l2 < · · · < ln+1 ≤ m}, there exists exactly one (n + 1)-tuple θ(I) = {j1 <
j2 < · · · < jn+1} ∈ Θl such that j1 ≤ l1 < j2 ≤ l2 < j3 ≤ · · · ≤ jn+1 ≤ ln+1 ≤ m.
This can be done by induction on m and n. Indeed, let k be the smallest integer such
that lk+1 > k + 1. Then li = i for i = 1, . . . , k and, therefore, θ(I) must also satisfy
ji = i for i = 1, . . . , k. If θ(I) ∈ Θl, then the parity of the size of the block that
contains 1 is equal to the parity of n + 1. Thus, if k ≡ n + 1(mod 2), we must have
k + 1 < jk+1 ≤ lk+1; otherwise jk+1 = k + 1 and lk+1 < jk+2 ≤ lk+2.

Let k′ be equal to k+1 if k ≡ n+1(mod 2) and to k+2 otherwise. We see that jk′

is the smallest index of the second block in θ(I). Since this block must be of even size,
and since jk′ ≤ lk′ < jk′+1, we conclude that jk′ = lk′ and jk′+1 = lk′ +1 ≤ lk′+1. Now
if we definem′, n′, and l′i, j

′
i (i = 1, . . . , n−k′) by settingm′ = m−lk′+1, n

′ = n−k′−1,
l′i = lk′+i+1 − lk′+1, and j′i = jk′+i+1 − lk′+1, then 1 ≤ l′1 < · · · < l′n′+1 ≤ m′ and θ(I)
satisfies needed properties if and only if the collection j′1 < · · · < j′n+1 belongs to Θl

and j′1 ≤ l′1 < j′2 ≤ l′2 < j′3 ≤ · · · ≤ j′n′+1 ≤ l′n′+1 ≤ m′. The statement now follows
from the induction assumption.

Remark 3. The proof of Theorem 4 is completely analogous to the proof of
Theorem 3.
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Abstract. This paper formulates and analyzes a pattern search method for general constrained
optimization based on filter methods for step acceptance. Roughly, a filter method accepts a step
that improves either the objective function value or the value of some function that measures the
constraint violation. The new algorithm does not compute or approximate any derivatives, penalty
constants, or Lagrange multipliers. A key feature of the new algorithm is that it preserves the
division into search and local poll steps, which allows the explicit use of inexpensive surrogates
or random search heuristics in the search step. It is shown here that the algorithm identifies limit
points at which optimality conditions depend on local smoothness of the functions and, to a greater
extent, on the choice of a certain set of directions. Stronger optimality conditions are guaranteed for
smoother functions and, in the constrained case, for a fortunate choice of the directions on which
the algorithm depends. These directional conditions generalize those given previously for linear
constraints, but they do not require a feasible starting point. In the absence of general constraints,
the proposed algorithm and its convergence analysis generalize previous work on unconstrained,
bound constrained, and linearly constrained generalized pattern search. The algorithm is illustrated
on some test examples and on an industrial wing planform engineering design application.
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1. Introduction. The optimization problem considered in this paper is

min
x∈X

f(x)

s.t. C(x) ≤ 0,
(1.1)

where f : X → R ∪ {∞} and C : X → (R ∪ {∞})m are functions with C =
(c1, . . . , cm)T , and X is a full dimensional polyhedron in Rn defined by finitely many
nondegenerate explicit bound and linear constraints. It is possible, for instance when
the functions are provided as “black box” subroutine calls, that some constraints
might be linear without the knowledge of the user. In that case, these linear con-
straints are incorporated in C(x) ≤ 0. The region defined by feasibility with respect
to the constraints C(x) ≤ 0 is denoted by Ω. The combined feasible region with
respect to both sets of constraints is X ∩Ω. The proposed approach combines aspects
of filter algorithms to handle Ω and a “barrier” approach to maintain feasibility with
respect to X.
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Filter algorithms were introduced by Fletcher and Leyffer [14] as a way to globalize
sequential linear programming (SLP) and sequential quadratic programming (SQP)
without using any merit function that would require a troublesome parameter to
be provided by the user for weighting the relative merits of improving feasibility
and optimality. A filter algorithm introduces a function that aggregates constraint
violations and then treats the resulting biobjective problem. A step is accepted if
it reduces the value either of the objective function or of the constraint violation.
Although this clearly is less parameter dependent than a penalty function, or an
augmented Lagrangian, still we acknowledge that specifying a constraint violation
function implies assigning relative weights to reducing each constraint. The algorithm
maintains feasibility with respect toX by modifying the aggregate constraint violation
for Ω to +∞ outside of X.

Fletcher et al. [15, 16] show convergence of the filter method that uses SQP or
SLP to suggest steps. Thus, previous filter algorithms require explicit use of the
derivatives of both the objective and the constraints. They also require more than a
simple decrease of the objective and constraint violation functions to accept a step.
Numerical results for their filter methods are very promising.

The generalized pattern search (GPS) algorithm class designed by Torczon [28]
unifies a wide class of useful derivative-free algorithms for unconstrained optimiza-
tion. Lewis and Torczon extended the GPS framework to bound constrained opti-
mization [21] and, more generally [23], for problems with a finite number of linear
constraints. Audet and Dennis [2] allow extended valued functions, which arise of-
ten in practice (see, e.g., [4, 5]), and provide an analysis that, among other things,
identifies a specific set of limit points allowing the application of Clarke’s [8] gener-
alized derivatives under local Lipschitz continuity to unify, strengthen, and simplify
the unconstrained and simply constrained Lewis–Torczon theory. In our opinion, a
significant feature of our nonsmooth analysis is its ability to highlight the dependence
of GPS even with simple constraints on the choice of directions.

Under the assumption that f is continuously differentiable, Torczon [28] showed
that GPS methods for unconstrained optimization produce some limit point for which
the gradient of the objective function is zero, and Lewis and Torczon showed that their
adaptations produce a Karush–Kuhn–Tucker (KKT) point for bound constrained [21]
and linearly constrained [23] problems. These adaptations require that the set of
directions given to the GPS method include the tangent cone generators of the feasible
region at every feasible point.

We identified specific subsequences of trial points in [2]. These “refining subse-
quences” will be discussed in section 5.3 and, even without any assumptions on the
smoothness of f , limit points of these subsequences are shown to exist under standard
assumptions. It is also shown that the following intermediate results hold: If it turns
out that f is Lipschitz near a strictly feasible limit point, then Clarke’s derivatives are
nonnegative on a set of positive spanning directions. A positive spanning set is a set
of directions in Rn whose nonnegative linear combinations span the whole space Rn.
Moreover, if f is strictly differentiable (defined in section 5.2) at that strictly feasible
point, then the gradient is guaranteed to be zero. Similar results are shown when the
limit point is on the boundary of the linearly constrained domain—again under the
assumption that the tangent cone generators at every point are available to the GPS
method.

Assuming that the functions f and C are twice continuously differentiable and
that the constraint Jacobian has full rank, Lewis and Torczon [24] propose and an-
alyze a derivative-free procedure to handle general constraints. In their procedure,
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GPS for bound constraints is used to carry out the specified inexact minimizations
of the sequence of augmented Lagrangian subproblems formulated by Conn, Gould,
and Toint [9]. Our algorithm is an alternative to their method, for the cases when
one would prefer not to assume continuous second derivatives, or when one wishes to
directly engage the original problem and avoid estimating penalty parameters and La-
grange multipliers, but is willing to settle for weaker optimality conditions. Thus, we
do not claim that our method is to be preferred for every problem, but our algorithm
does have the advantage that it reduces to the GPS method for linear constraints
when all the constraints are known to be linear. In fact, we also allow infeasible
starting points, but that is a minor point for linear constraints.

One of our objectives is to construct an algorithm that can be used on applications
in which the objective and constraints are not given analytically but as “black boxes.”
For such applications, a value x ∈ Rn will be used as an input to a nontrivial simulation
to evaluate f(x) and C(x). The subroutine call may fail to return a value a significant
percentage of times it is invoked [4, 5, 6, 7, 18] and, even when it succeeds, several
factors (e.g., noise, numerical instability, modeling inaccuracy, etc.) may mean that
one cannot construct accurate approximate derivatives. Under these circumstances,
i.e., the structure of the functions is unknown to the optimizer, we will settle for
weakened local optimality convergence results. The pattern search filter algorithm
presented here has the following features:

• It is completely derivative free. It neither uses or approximates any derivative
information nor attempts to linearize any constraint.
• It transparently generalizes GPS for unconstrained problems and for bound

or linear constraints when they are treated, as in [2, 21, 23], by rejecting
points infeasible for those constraints, and by selecting polling directions that
conform to the boundary of the domain (see Definition 4.1).
• It uses a step acceptance rule based on filter methods, so there is no need for

any penalty constants or Lagrange multiplier estimates.
• It makes assumptions on the problem functions f and C that conform to the

practical instances that interest us most [4, 3, 5]. They may be discontinuous
and even take on infinite values. Therefore, no global smoothness assumption
is justified; however, the strength of the optimality conditions guaranteed by
the algorithm depends on local smoothness of the functions at the limit point
and, most strongly, on properties of the GPS directions at that point.
• It preserves the desirable GPS property of requiring only simple decrease,

which is expressed in the present context with respect to the objective and
constraint violation functions.
• It does not require any constraint qualifications on the nonlinear constraints.

The Boeing Design Explorer software uses the GPS filter algorithm given here
as a meta algorithm in the surrogate management framework for general nonlinear
programming [3]. We will give representative results for Design Explorer applied to
such an industrial design problem, and so we will mention specific implementation
along the way to show how certain aspects of the algorithm have been implemented
successfully.

A key issue for implementations like Design Explorer, the one presented in [25],
and our own NOMAD software, is that the division into search and poll steps is
preserved. This is crucial to the use of the surrogate management framework with or
without constraints [4]. This division of steps is not used by all researchers, but we do
need it for use with implementations we prefer [4, 5, 25, 3] and for our own NOMAD.
Abramson’s MatLab 6 implementation NOMADm of a suite of algorithms including
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the filter algorithm given here can be accessed online from http://en.afit.edu/ENC/
Faculty/MAbramson/abramson.html.

The search steps we prefer make a global exploration of the variable space, and
they might use inexpensive surrogate objective and constraints to predict points that
constitute improvements to the real problem. We believe that this is crucial for the
application of direct search methods to a large class of engineering design problems
because applying these methods directly to the actual problem would be in many
cases prohibitively expensive. Needing minutes, hours, or even days to compute a
real function value is common.

The poll step is a local exploration near an identified incumbent filter point, and
its properties enable the theory to guarantee convergence. Both the search and poll

steps are detailed in section 2. Another use for our algorithm, with properly chosen
search steps, is that in which one would rather not find only a nearby local optimizer,
but instead is willing to use some function evaluations to explore the domain more
thoroughly. For example, the implementation in [25] uses an evolutionary algorithm
on the surrogate problem for just this reason. We do not guarantee a global optimum;
after all, it is important to keep in mind that global optimization of black box functions
is impossible, even to the point that if one had the global optimum, one could not be
certain of it [27].

The paper is organized as follows. Sections 2 and 3 give brief descriptions of
pattern search and filter algorithms. In section 4, we present and begin the analysis
of a new algorithm that combines their features. Specifically, without any smoothness
assumptions on the problem, we show the existence of some promising limit points.
Our optimality results rely on Clarke’s calculus with respect to both the constraint
violation and objective functions, and on the notion of contingent cones, and so we
provide the necessary background in section 5. Section 6 shows that if the constraint
violation or objective function is locally smooth at such a limit point, then some first
order optimality conditions are satisfied. In the absence of general constraints, the
convergence results reduce to those presented in [2]. In fact, Proposition 6.7 and the
remark following it show that the results here generalize to nonlinear constraints the
results for linear constraints if the choice of GPS directions satisfies conditions easily
enforced for the linear case. Finally, in section 7, we make important points through
three examples. First, we show the value of a filter method as opposed to a “barrier”
method, which rejects trial points that violate the linear constraints [23, 2]. Second, we
show the advantages for our algorithm of a squared �2 over an �1 measure of constraint
violations. Third, we show that our main convergence result concerning the objective
function cannot be improved without removing some of the flexibility of the algorithm
or adding more assumptions about the problem, including knowledge of the geometry
of the constraints at a limit point. We conclude this section by applying our method
to a real engineering problem. These examples show the strength and limitations
of our approach. The paper concludes with a discussion of the significance of the
convergence results, especially as they relate to the dependence of GPS algorithms on
the finite set of polling directions to which they are restricted.

2. Pattern search algorithms for unconstrained optimization. The read-
er is referred to [23, 2] for a thorough description of linearly constrained pattern search
algorithms. In the present paper, the same notation as in [2] is used.

2.1. Search and poll steps. Pattern search algorithms for unconstrained min-
imization generate a sequence of iterates {xk} in Rn with nonincreasing objective
function values. At each iteration, the objective function is evaluated at a finite
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number of points on a mesh (a discrete subset of Rn defined below) to try to find
one that yields a lower objective function value than the incumbent. An incumbent
solution is a trial point in Rn where the algorithm evaluated the objective function
f and has the lowest value found so far. Any strategy may be used to select mesh
points that are to be candidates for the next iteration, provided that only a finite
number of points (possibly none) is selected. This is called the search step. We fa-
vor search procedures like those used in Design Explorer and NOMAD that choose
candidate points independent of the incumbent and whose commonality is that their
global reach is independent of the mesh size. We feel that such search procedures
are more likely to discover different basins for the function than the one in which the
initial point lies.

When the search fails in finding an improved mesh point, the poll step must
be invoked. In that “fall back” step the function value is evaluated at neighboring
mesh points around xk. If the poll step also fails in finding an improved mesh point,
then xk is said to be a mesh local optimizer. The mesh is then refined and xk+1 is
set to xk. The situation for our constrained version is going to be a bit more complex
but is consistent in spirit.

If either the search or poll step succeeds in finding an improved mesh point
xk+1 �= xk with a strictly lower objective function value, then the mesh size param-
eter is kept the same or increased, and the process is reiterated. Indeed, as long
as improved mesh points are found, one would likely choose trial points on coarser
meshes. With surrogate-based search steps [4], a great deal of progress can often
be made with few function values, and O(n) function values are needed only when
the poll step detects a mesh local optimizer, which indicates that the mesh needs
to be refined. We warn the reader that there is only a cursory discussion of search

strategies in the present paper. The reason is that since the search is free of any
rule, except finiteness and being on the mesh, it cannot be used to enhance the con-
vergence theory. Indeed, some examples in [1] exploit perverse search strategies to
show negative results. However, we are willing to pay this “theoretical” price for the
practical reasons given above.

The formal definition of the mesh requires the following. Let D be a finite matrix
whose columns in Rn form a positive spanning set. We use the notation d ∈ D to
indicate that d is a column of the matrix D. It is also required that each column
d ∈ D is the product of a nonsingular generating matrix G ∈ Rn×n by some integer
vector in Zn. The same generating matrix G is used for all directions d. See [1, 2] for
further insight on this set D, or see [22] for the original equivalent formulation. The
set valued function M(·, ·) defines the current mesh through the lattices spanned by
the columns of D, centered around the current iterate xk:

M(xk,∆k) = {xk + ∆kDz : z ∈ NnD},(2.1)

where ∆k ∈ R+ is the mesh size parameter, and nD is the number of columns of the
matrix D. Note that in section 4.2, on the filter GPS algorithm we will use a more
general definition of the mesh.

When the search fails in providing an improved mesh point, the objective func-
tion must be evaluated at the mesh points that neighbor the current iterate xk, the
current incumbent solution. In the unconstrained case the poll set is centered at xk,
the current iterate. This defines the poll set Pk = {xk} ∪ {xk + ∆kd : d ∈ Dk} for
some positive spanning matrix Dk ⊆ D. This notation means that the columns of Dk

are chosen from those of D. We will refer to evaluating f(xk + ∆kd) as polling in the
direction d.
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Since iterate has little meaning for the filter algorithm presented in section 4, we
will poll about a choice of poll centers to be defined later. This will give a different
definition for the current mesh.

2.2. Parameter update. At any iteration, there are two possible outcomes,
which lead to two sets of rules to update the parameters.

If the iteration fails to produce an improved mesh point, then the poll step
guarantees that xk is a mesh local optimizer. The mesh is then refined. More precisely,

∆k+1 = τwk∆k < ∆k(2.2)

with 0 < τwk < 1, where τ > 1 is a rational number that remains constant over all
iterations, and wk ≤ −1 is an integer bounded below by the constant w− ≤ −1.

If the iteration produces an improved mesh point, then the mesh size parameter
is kept the same or is increased, and the process is reiterated. The coarsening of the
mesh follows the rule

∆k+1 = τwk∆k ≥ ∆k,(2.3)

where τ > 1 is defined above and wk ≥ 0 is an integer bounded above by w+ ≥ 0.
By modifying the mesh size parameters this way, it follows that for any k ≥ 0, there
exists an integer rk ∈ Z such that ∆k = τ rk∆0.

Typical values for the mesh parameter update are τ = 2 and wk = −1 when the
poll center is shown to be a local mesh optimizer, and wk = 1 when an improved
mesh point is found. This leads to setting ∆k+1 = 1

2∆k when the mesh needs to be
refined, and ∆k+1 = 2∆k when the mesh is coarsened. An example of the direction
matrix might be D = [In −In], where In is the n × n identity matrix. The mesh
would then be M(xk,∆k) = {xk + ∆kz : z ∈ Zn} and the poll set would be Pk =
{xk}∪{xk±∆kei : i = 1, 2, . . . , n}, where ei is the ith column of the identity matrix.
In the case whereD is constructed from all the columns of the set {−1, 0, 1}n, the mesh
is the same as the previous one, but the poll set may differ because any set of mesh
points, whose directions from the poll center form a positive basis, may be chosen.
In R2 for instance, the poll set could be Pk = {xk, xk + ∆k(1, 0)T , xk + ∆k(0, 1)T ,
xk + ∆k(−1,−1)T }.

We borrow Coope and Price’s [10] terminology for the following final remark on
GPS. These methods are said to be opportunistic in the sense that as soon as an
improved mesh point is found, the current iteration may stop without completing the
function evaluations in the search and poll steps.

3. Filter algorithms for constrained optimization. Filter algorithms treat
the optimization problem as biobjective: one wishes to minimize both the objective
function f and a nonnegative aggregate constraint violation function h. Filter algo-
rithms attempt to minimize both functions but, clearly, priority must be given to h,
at least until a feasible iterate is found. This priority appears also in our algorithm
in the definition of the poll centers and the poll set. Fletcher et al. [14, 15, 16] do
this via restoration steps. Another difference in our algorithm is that in keeping with
pattern search algorithms for less general problems, we only require improvement in
either f or h, while Fletcher et al. have a sufficient decrease condition in the form of
an envelope over the filter that constitutes a “sufficiently unfiltered” condition.

The terminology used in this paper differs slightly from that used by Fletcher et al.
Our notation is more compact for our class of algorithms, and so it simplifies the pre-
sentation of our results. In addition, since our plan is to provide a truly multiobjective
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GPS algorithm in later work, and since it is likely to involve a version of the filter, it
is best to conform to standard terminology in multiobjective optimization [13].

Fletcher et al.’s definition of dominance makes it a reflexive relation, which simpli-
fies the definition of a filter, but we will forgo that convenience to adhere to standard
multiobjective terminology. The point is that the reader familiar with the filter lit-
erature should read this section carefully. We will end up with almost the standard
notion of a filter, but we will define it slightly differently using the standard multi-
objective notion of dominance: For a pair of vectors w,w′, with finite components,
w dominates w′, written w ≺ w′, if and only if for all i, wi ≤ w′

i, and w �= w′. We
will use w � w′ to indicate that either w ≺ w′ or w = w′, which is the notion of
dominance used in earlier filter papers.

The constraint violation function is defined to satisfy the following properties:
h(x) ≥ 0, h(x) = 0 if and only if C(x) ≤ 0, thus h(x) > 0 if and only if C(x) � 0,
and h(x) = +∞ whenever any component of C(x) is infinite. For example, we could
set h(x) = ‖C(x)+‖, where ‖ · ‖ is a vector norm and where (C(x)+)i is set to zero
if ci(x) ≤ 0 and to ci(x) otherwise, i = 1, 2, . . . , n. We show in section 6.1 that
the more locally smooth h is, the better the algorithm is able to exploit the positive
spanning sets used. Our analysis and the examples in sections 5.2 and 7.2 indicate
that h(x) = ‖C(x)+‖22 is a sound choice.

Recall that the feasible region of the optimization problem (1.1) is defined to be
the intersection of a polyhedron X and Ω. Since it is simple to remain feasible with
respect to X, we define a second constraint violation function

hX = h+ ψX ,(3.1)

where ψX is the indicator function for X. It is zero on X and +∞ elsewhere. We will
see in the next section that by applying our pattern search filter algorithm to hX and
f , the convergence results with respect to feasibility will depend on local smoothness
of h, and not of hX , which is obviously discontinuous on the boundary of X.

There should be no confusion in defining a special meaning of dominance for the
vector arguments of our problem functions hX , f . This will simplify our terminology
rather than use some other symbol such as ≺(hX ,f). Thus, a point xk ∈ Rn is said
to dominate x ∈ Rn, xk ≺ x if and only if (hX(xk), f(xk))

T ≺ (hX(x), f(x))T . Two
points are equivalent if they generate an identical pair of hX and f values. As above,
x � x′ indicates that either x ≺ x′ or x and x′ are equivalent.

A filter F is a finite set of infeasible points in Rn such that no pair x, x′ in the
filter is in the relation x ≺ x′. A point x′ is said to be filtered either if x′  x for some
x ∈ F , or if hX(x′) ≥ hmax for some positive finite upper bound hmax on allowable
aggregate infeasibility, or if x′ is feasible and f(x) ≥ fF (i.e., the least function value
found so far at a feasible point). The point x′ is unfiltered otherwise. The set of
filtered points F is denoted in standard notation as

F =
⋃
x∈F
{x′ : x′  x} ∪ {x′ : hX(x′) ≥ hmax} ∪ {x′ : hX(x′) = 0, f(x′) ≥ fF }.(3.2)

For our version of the filter, iterate is not a necessary concept. Instead, the role
of iterate in the nonfilter versions of GPS is played here by the set of incumbents
consisting of the best feasible point in X ∩ Ω found so far (if any have been found),
and the least infeasible point with the best function value found so far.

Unfiltered points are added to F as they are generated, and filtered ones are
rejected. Whether a point is filtered can depend on when it is generated. This
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temporal property causes “blocking entries” [14]. In order to avoid the problem of
blocking entries, the filter contains only infeasible points. The incumbent best feasible
point is treated separately. The reason for this separation is to encourage moving over
an infeasible function ridge and approaching a different part of the feasible region.

4. A pattern search filter algorithm for constrained optimization. In
the previous sections we presented the filter framework for general constraints, and
the GPS algorithm for unconstrained optimization. We now present a GPS filter
method for the optimization problem (1.1). When some of the constraints are known
to be linear, i.e., when X is not trivial, it is frequently advantageous to treat them
separately from the others and to ask that every point at which f is evaluated belong to
X. This is especially true of linear equality or bound constraints. For any derivative-
free algorithm, one should surely use linear equality constraints to eliminate variables,
and this is desirable for nonlinear equality constraints if it is practical. A reference
dealing with various formulations based on eliminating some variables in this way
is [4].

4.1. Bound and linear constraints. By applying the algorithm to hX , defined
in (3.1), instead of h, any trial point outside of X is rejected since its constraint
violation function value is larger than hmax. We called this the “barrier” approach
for X. In the absence of general constraints [2], the indicator function is added to
f instead of h. In the present work, we cannot add it to f because the trial points
x ∈ X for which −∞ < f(x) ≤ ∞ and 0 < h(x) < h(x′) for all x′ ∈ F are unfiltered.

In addition, the fact that some linear constraints are explicitly known must be
used to select mesh directions that take into account the geometry of the region X,
just as suggested in [21, 23, 2]: When the poll center is within a given tolerance ε > 0
of the boundary of X, then the positive spanning directions Dk that define the poll set
are chosen to contain the ones that span the tangent cone TX(y) to X at all boundary
points y within the tolerance ε. The formal definition is as follows.

Definition 4.1. A rule for selecting the positive spanning sets Dk = D(k, xk) ⊆
D conforms to X for some ε > 0 if, at each iteration k and for each y in the boundary
of X for which ‖y − xk‖ < ε, TX(y) is generated by nonnegative linear combinations
of the columns of a subset Dy

k of Dk.
These tangent cone directions should be added to Dk before getting too close

to the boundary, i.e., it is best not to take the tolerance ε too small. The reader
will see that a finite set D cannot conform to Ω ∩X when Ω is defined by nonlinear
constraints. Nonetheless, it is interesting that in the case when Ω ∩X is defined by
linear constraints, the above is less than we assume in Proposition 6.7. This is the
substance of the remark following that proposition.

4.2. Meshes and poll centers. In our proposed pattern search filter algorithm,
the test for accepting a better mesh point is not based solely on the decrease of
the objective function value when there are constraints. Therefore, the terminology
improved mesh point (used in the unconstrained case) is not suitable in a biobjective
context. Instead, we will use the terminology unfiltered mesh point when either the
search or poll step finds a mesh point that is not filtered. If both steps fail in
finding an unfiltered mesh point, then we cannot say that the poll center is a mesh
local optimizer (as in the unconstrained case); instead we will say that the poll center,
which will be chosen to be one of two special points that we call incumbents, or chosen
to be a point that ties one of them, is a mesh isolated filter point since its mesh
neighbors (the points in the poll set) are all filtered.
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As in the pattern search algorithms presented in section 2, the search and poll

steps are opportunistic and may be terminated without any more function evaluations
when an unfiltered mesh point is found. The mesh size parameter is then either
increased or kept constant according to rule (2.3). When no such point is found,
the poll center is a mesh isolated filter point and the filter remains unmodified. The
mesh size parameter is decreased according to rule (2.2). Unlike Fletcher et al.’s filter
algorithms, there is no “envelope” added to the filter to guarantee a form of sufficient
decrease.

We define two types of incumbents: the feasible ones, and the infeasible ones with
minimal constraint violation. Let fFk represent the feasible incumbent value, i.e., the
smallest objective function value (for feasible points) found by the algorithm up to
iteration k. If no feasible point has been found, fFk is set at +∞. Let hIk > 0 be
the least positive constraint violation function value found up to iteration k, and let
f Ik denote the smallest objective function value of the points found whose constraint
violation function values are equal to hIk. If no such point exists, or if hIk > hmax,
then hIk is fixed at hmax and f Ik at −∞. The superscript F stands for feasible and I
for infeasible. We denote by Sk the set of points at which f and h were evaluated by
the start of iteration k. This notation leads to the definition of incumbent solutions.

Definition 4.2. At iteration k of a pattern search filter algorithm, any x ∈
X ∩ Ω ∩ Sk such that f(x) = fFk is a feasible incumbent point, and any x ∈ X ∩ Sk
such that 0 < h(x) = hIk < hmax and f(x) = f Ik is an infeasible incumbent.

Figure 1 shows an example of a filter and illustrates the incumbent solutions.

�f

�
hX

fF
k

(hI
k
,fI

k
)

hmax

Fk
Feasible region: X ∩ Ω = {x ∈ Rn : hX(x) = 0}
Trial point: tk ∈M(xk,∆k) equation (4.1)

Filtered trial point: tk ∈ Fk
Unfiltered mesh point: tk /∈ Fk equation (3.2)

Mesh isolated filter point: Pk ⊂ Fk equation (4.2)

Fig. 1. Feasible incumbent set: {x ∈ X ∩ Ω ∩ Sk : f(x) = fFk }. Infeasible incumbent set

{x ∈ X ∩ Sk : h(x) = hIk, f(x) = fIk}. (Sk is the set of points at which f and h were evaluated by
the start of iteration k.)

In the unconstrained case, there was a single type of incumbent solution. There-
fore the mesh was necessarily defined around it. We redefine the current mesh so that
it contains more points, therefore allowing more flexibility to the algorithm. Recall
that the mesh is conceptual in the sense that it is never actually constructed, and its
sole purpose is to allow us to capture some structure about the trial points in order
to derive some convergence results.

Let S0 ⊂ X be the set of initial trial points provided by the user at which the
function values are computed. We assume that

• at least one point of S0 has a constraint violation function value less than
hmax. This ensures that there is at least one incumbent solution.
• every element of S0 lies on M0(x,∆0) (see (2.1)) for some x ∈ S0.
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The mesh is now defined as the following union:

M(Sk,∆k) =
⋃
x∈Sk

M(x,∆k),(4.1)

and M(x,∆k) is defined in (2.1). This new definition allows more flexibility for the
user. For example, the search step is now allowed to explore, in a way similar to the
poll step, around any trial point x in Sk, i.e., to evaluate the functions at points from
the set {x+ ∆kd : d ∈ D}.

The poll center pk, the point around which the poll set is constructed, is chosen
in the sets of either feasible or infeasible incumbents. Note that when these sets of
incumbents are nonempty, each will usually be composed of a single element. Thus,
the poll center satisfies either

(hX(pk), f(pk)) = (0, fFk ) or (hX(pk), f(pk)) = (hIk, f
I
k ).(4.2)

The poll set is the poll center pk together with its mesh neighbors:

Pk = {pk} ∪ {pk + ∆kd : d ∈ Dk}.(4.3)

The positive spanning matrix Dk is composed of columns of D and conforms to the
boundary of the linear constraints for an ε > 0 (see Definition 4.1) when the poll
center is within ε of the boundary of X.

Our class of algorithms and their analysis are completely flexible about the choice
between these two types of poll centers. The user may supply a strategy to select a
poll center. In section 7, we give what we hope are convincing arguments to not
always make one choice or the other. Indeed, always choosing an unchanging feasible
incumbent poll center makes the filter algorithm essentially reduce to the barrier
approach, which is not indicated for constraints where the polling directions do not
conform to the feasible region. Still, we prefer to neither prescribe nor proscribe any
choice rule for poll centers. This flexibility may seem tedious to the reader, but the
user may have a clear preference based on the results of the search, which may have
involved some strategy that makes it unlikely that one or the other choice would be
successful. For example, polling on the surrogate function around several filter points
in the search step seems useful in [25], and the results on the surrogate would be
likely to influence the choice of poll center.

Even if we already have a feasible incumbent point, we may wish to poll around
one of the least infeasible points, which might have a lower objective function value,
in order to try to find and explore a different part of the feasible region Ω. Also,
this is what allows our filter algorithm to avoid stalling in the Lewis–Torczon [21]
example when those linear constraints are treated by the filter. This is illustrated in
section 7.1.

4.3. Description of the algorithm. At any iteration, three types of unfiltered
mesh points xk+1 ∈ M(Sk,∆k) can be generated by the algorithm. The most useful
ones are the unfiltered feasible mesh points. They improve the feasible incumbent
value to fFk+1 = f(xk+1) < fFk . Next are the infeasible ones that improve the infeasible

incumbent with minimal constraint violation: 0 < hIk+1 = hX(xk+1) < hIk and f Ik+1 =
f(xk+1). Finally, there are the other infeasible ones that add some elements to the
filter but leave the incumbents unchanged. In all three cases, the mesh size parameter
is updated according to rule (2.3) with, possibly, some different values of wk. A typical
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way to update the mesh size parameter is to double it when a new incumbent solution
is found; otherwise keep it constant when only an unfiltered mesh point is found, and
cut it in half when the poll center is shown to be a mesh isolated filter point.

To check whether a trial point x is filtered or not, the following strategy is used
in order to avoid wasting expensive function evaluations of f and C. First, ψX(x)
is evaluated by determining if x belongs to X. If not, then hX(x) > hmax and x is
filtered, and the evaluation of f(x) and C(x) is avoided. Second, it is possible that
partial information on C(x) allows the algorithm to conclude that x is filtered. For
example, if h(x) = ‖C(x)+‖22, and if it is known that

∑p
i=1 |ci(x)+|2 ≥ hmax for some

index p < m, then the evaluation of f(x) and ci(x) for i = p + 1, p + 2, . . . ,m is
not necessary. Similar observations hold if f(x) and partial information on C(x) are
known, though this situation is more complicated since the value of f(x) alone cannot
allow us to conclude that x is filtered without at least partial knowledge of h(x).

When all trial points are filtered, then the poll center pk is a mesh isolated filter
point, and the mesh size parameter is decreased according to rule (2.2). The next poll
center pk+1 need not be fixed to pk. These iterations usually require more function
evaluations than when an unfiltered mesh point is found. A useful strategy is to poll
around both incumbents before decreasing the mesh size parameter. Logically, one
can declare that the first poll step was actually a part of the search.

Our algorithm for constrained optimization is formally stated in Figure 2. We
allow for the fact that in some applications, a set S0 of initial points may be available
from solving similar problems and can be used to seed the filter. Without any loss
of generality, we assume that any such points, or at least the undominated ones, are
on the initial mesh and have been “filtered” to be consistent with our initialization
step in the sense that x0 will not be filtered by the other seed points. An easy way
to assure this would be to take x0 to be the seed point with the smallest value of hX ,
to break ties by taking one with the smallest objective function value, and to make
sure that the necessary directions are in D in order that all the initial filter points are
on the mesh. Of course, one must ensure that the directions satisfy the conditions of
section 2.

In pattern search algorithms, one role of the poll step is to guarantee conver-
gence. This is why it is rigidly defined through the positive spanning sets Dk ⊂ D.
In practice, the largest improvements in the incumbent points are obtained in the
search step (e.g., see [3, 4, 5], where an inexpensive-to-evaluate surrogate of an ex-
pensive function is constructed). The search step is usually the one that drives the
iterates away from a local optimum. In a search implementation, it might be a good
idea to try some points that are near points of the filter. Frank [17] made a suggestion,
which seems valuable in practice, that search might include polling the expensive
function around the next most feasible filter point, i.e., x ∈ Fk with the least value
of hX(x) > hI . The objective here again is to attempt to find and then explore a
different part of the feasible region. This is illustrated by the example in section 7.4.

In the next section, we discuss the reduction of the algorithm proposed here in the
absence of nonlinear constraints to those given earlier for unconstrained and linearly
constrained problems.

4.4. Reduction of the GPS-filter method to linearly constrained opti-
mization. Consider the case where m = 0, i.e., when there are no nonlinear con-
straints. In [2], linear constraints defining X were handled by adding the indicator
function to f and, in the present paper, it is added to h. The effect is the same,
since in both cases the indicator function simply eliminates from consideration the
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• Initialization: Let F0 be the filter associated with a set of initial points
S0. Let x0 be an undominated point of F0. Fix ∆0 > 0 and set the iteration
counter k to 0.
• Definition of incumbent points: Define (if possible)
fFk : the least objective function value for all feasible points found so far;

hIk > 0: the least positive constraint violation function value found so far;

f Ik : the least objective function value of the points found so far whose
constraint violation function value is equal to hIk.
• Search and poll on current mesh M(Sk,∆k) (see (4.1)):

Perform the search and possibly the poll steps (or only part of the steps)
until an unfiltered trial point xk+1 is found, or until it is shown that all
trial points are filtered by Fk.

– Search step: Evaluate hX and f on a set of trial points on the
current mesh M(Sk,∆k) (the strategy that gives the set of points is
usually provided by the user).

– Poll step: Evaluate hX and f on the poll set Pk (see (4.3)) for a
poll center pk that satisfies (4.2).

• Parameter update: Let Sk+1 = Sk ∪ {the set of all trial points visited
in the search and poll steps}. If the search or the poll step produced
an unfiltered mesh point not in Fk, then update ∆k+1 ≥ ∆k according to
rule (2.3), and go to the next step to update the filter.
Otherwise, update ∆k+1 < ∆k according to rule (2.2), and set Fk+1 = Fk;
increase k ← k + 1 and go back to the definition of the incumbents.
• Filter update: Let Fk+1 be the union of Fk with all infeasible unfiltered

points (with respect to Fk) found during the search and poll steps. Re-
move dominated points from Fk+1. Increase k ← k + 1 and return to the
definition of the incumbents.

Fig. 2. A pattern search filter algorithm.

infeasible points with respect to X. In both cases, the convergence results are relative
to the smoothness of h and f and not of hX and fX .

The main result of [2] was to identify a convergent subsequence of poll centers
(called a refining subsequence) such that the Clarke derivatives at the limit point
x̂ are nonnegative in all the unsuccessful polling directions used infinitely often in
the subsequence. The analysis below generalizes this by identifying a large set of
directions for which Clarke derivatives are nonnegative.

4.5. Infinite refinement of the mesh. In this section, we identify a set of
limit points of poll centers. Each such limit point satisfies optimality conditions whose
strength depends on the smoothness of the problem and the choice of directions.

The convergence analysis of our algorithm is based on the standard (see [9, 14,
15, 16]) assumption that all trial points produced by the algorithm lie in a compact
set. A consequence of this is that since the mesh size parameter does not decrease
when an unfiltered mesh point is found (∆k+1 ≥ ∆k), then it follows that only finitely
many consecutive unfiltered mesh points can be generated.

We will be mainly concerned with the poll centers pk that are mesh isolated
filter points (i.e., the mesh neighbors of pk are filtered) and for which the mesh size
parameter is reduced (∆k+1 < ∆k). The proofs of the results in this subsection
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are omitted, even if the definition of the mesh is slightly different. The key element
required is not the mesh but the fact that any mesh point x ∈ M(Sk,∆k) can be

written as x+
∑k
i=0 ∆iDzi for some x ∈ S0 and zi ∈ NnD for i = 0, 1, . . . , k.

Our first result is that there is a subsequence of iterations for which the mesh
size parameter goes to zero. In order to prove it we require the following lemma from
Torczon [28] or Audet and Dennis [2]. We omit the proof because it simply involves
incorporating our definition (4.1) of the mesh into the same proof.

Lemma 4.3. The mesh size parameters ∆k are bounded above by a positive con-
stant independent of the iteration number k.

Combining this lemma with the assumption that all incumbents lie in a compact
set implies the following result. Its proof is omitted since it is identical to that of the
same result in [2]. The original proof of this, using slightly different notation, can be
found in Torczon [28].

Lemma 4.4. The mesh size parameters satisfy lim infk→+∞ ∆k = 0.
Coope and Price [10] analyze mesh-based algorithms for the unconstrained and

linearly constrained problems in which, instead of requiring that the search be per-
formed on the mesh, they assume that the limit inferior of the mesh size parameter
goes to zero. This shifts the burden from the algorithm specification to the imple-
mentation.

Since the mesh size parameter shrinks only at mesh isolated filter points, Lem-
ma 4.4 guarantees that there are infinitely many iterations for which the poll centers
are mesh isolated filter points. Thus by compactness, the mesh isolated filter points
have limit points. Moreover, all these limit points belong to the polyhedron X. At
such an iteration the entire trial set, and in particular the poll set Pk, is filtered. There-
fore, for each direction d ∈ Dk either hX(pk + ∆kd) ≥ hmax or there exists some ele-
ment x in the filter Fk such that both f(pk+∆kd) ≥ f(x) and hX(pk+∆kd) ≥ hX(x)
or hX(pk + ∆kd) = 0 and fX(pk + ∆kd) ≥ fFk .

5. Background for optimality results. As in [2], Clarke’s [8] generalized
derivatives are the key to our convergence analysis. To use this powerful tool, we
analyze the case where the function is Lipschitz in a neighborhood of the limit point
in question. Of course, there are some optimization problems on which we would
apply our algorithm where the functions are not Lipschitz, or optimization problems
where we cannot show that the functions are Lipschitz. But this is beside the point.
We show how the algorithm behaves on problems with Lipschitz functions. Another
ingredient needed for optimality conditions is the contingent cone, which generalizes
the notion of tangent cone to more general constraints. The following material is
adapted from [19, 26].

Definition 5.1. Let S ⊂ Rn be nonempty. The cone generated by S is

cone(S) = {λs : λ ≥ 0 and s ∈ S}.

A tangent vector to S at x in the closure of S is v ∈ Rn such that there exists a
sequence {yk} of elements of S that converges to x and a sequence of positive real
numbers {λk} for which v = limk λk(yk − x). The set T (S, x) of all tangent vectors
to S at x is called the contingent cone (or sequential Bouligand tangent cone) to S at
x. The polar cone of a cone K ⊂ Rn is K◦ = {x ∈ Rn : xT v ≤ 0 for all v ∈ K}.

For X, the contingent cone is the same as the tangent cone. The normal cone,
used to define KKT points, is less useful here than the polar cone since the normal
cone in our context may have little to do with optimality given its usual definition
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as the convex conic hull of the gradients of the constraints. The polar cone of the
contingent cone is more useful in this context.

Optimality conditions for a differentiable function can be stated in terms of the
cone generated by the convex hull of a set S, i.e., the set of nonnegative linear combi-
nations of elements of S. We will use the standard notation co(S) for the convex hull
of S but, rather than use the induced but somewhat unwieldy notation cone(co(S)),
we will use the notation cc(S) for the convex conic hull of S. Thus, for example, to
say that a set S is a positive spanning set is to say that cc(S) = Rn.

Definition 5.2 (see [8]). Let g : Rn → R be Lipschitz near x̄ ∈ Rn. Clarke’s
generalized derivative at x̄ in the direction v ∈ Rn is

g◦(x̄; v) := lim sup
y→x̄, t↓0

g(y + tv)− g(y)
t

.

The generalized gradient of g at x̄ is the set

∂g(x̄) := {s ∈ Rn : g◦(x̄; v) ≥ vT s for all v ∈ Rn}.

The generalized derivative may be obtained from the generalized gradient as follows:
g◦(x̄; v) = max{vT s : s ∈ ∂g(x̄)}.

The following alternate definition of directional derivative will be useful.
Lemma 5.3. Let g : Rn → R be Lipschitz near x̄ ∈ Rn. Then,

g◦(x̄; v) = lim sup
y→x̄, w→v, t↓0

g(y + tw)− g(y)
t

.

Proof. Let L be a Lipschitz constant for g near x̄. Then

lim sup
y→x̄, w→v, t↓0

g(y + tw)− g(y)
t

= lim sup
y→x̄, w→v, t↓0

g(y + tv)− g(y)
t

+
g(y + tw)− g(y + tv)

t

≤ lim sup
y→x̄, w→v, t↓0

g(y + tv)− g(y)
t

+ L‖w − v‖ = g◦(x̄; v).

On the other hand, setting w = v gives a lower bound on the limit supremum:

lim sup
y→x̄, w→v, t↓0

g(y + tw)− g(y)
t

≥ lim sup
y→x̄, t↓0

g(y + tv)− g(y)
t

= g◦(x̄; v).

In order to show that the Clarke generalized directional derivative is nonnegative
at a point x̄ ∈ Rn in the direction v ∈ Rn, it suffices to generate three subsequences:
{yk} converging to x̄, {wk} converging to v, and {tk} converging to zero from above
in such a way that g(yk) ≤ g(yk + tkwk) for infinitely many k’s.

5.1. Clarke’s derivatives at limit points. In this subsection, we develop some
results about the directions in which the Clarke derivatives indicate optimality. To
save space, we prove our preliminary results for a function g, which can be either h or
f . Also, for any x̄ ∈ Rn, we define Γg(x̄) to be the closure of {x ∈ Rn : g(x) ≥ g(x̄)}.

Proposition 5.4. Let S ⊂ Rn be nonempty, let g be defined on an open superset
of S, and let g be Lipschitz near x̄ ∈ S. Necessary conditions for x̄ to be a local
minimizer of g on S are as follows:

• g◦(x̄; v) ≥ 0 for every v ∈ T (S, x̄).
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• If g has a Fréchet derivative ∇g(x̄) at x̄, then ∇g(x̄)T v ≥ 0 for every v ∈
co(T (S, x̄)), and so −∇g(x̄) ∈ co(T (S, x̄))◦. Thus, if T (S, x̄) contains a
positive spanning set, then co(T (S, x̄))◦ = {0} and ∇g(x̂) = 0.

Proof. Let S, g, and x̄ be as in the statement, and let v be in T (S; x̄). Then,
there exists a sequence {xk} of elements of S converging to the local minimizer x̄ of
g on S, and there exists some positive sequence {λk} such that v = limk λk(xk − x̄).
If v = 0, the result is trivial. If v �= 0, then limk

1
λk

= 0.

Now, take yk = x̄, wk = λk(xk − x̄), and tk = 1
λk

; we see that

g◦(x̄; v) ≥ lim sup
k

g(yk + tkwk)− g(yk)
tk

= lim sup
k

λk[g(xk)− g(x̄)].

But, since xk ∈ S, {xk} converges to x̄, and x̄ is a local minimizer of g on S, we have
that for sufficiently large k, λk[g(xk)−g(x̄)] is nonnegative and the first result follows.

Now assume that ∇g(x̄) is the Fréchet derivative at x̄. Then by Theorem 4.14
of [19], ∇g(x̄)T v ≥ 0 for every v ∈ T (S, x). Let v ∈ co(T (S, x̄)). Then, there is a
nonnegative coefficient vector α such that v =

∑
i αisi for some si ∈ T (S, x̄). The

second result follows from the linearity of the inner product and the definition of
polar cone. If T (S, x̄) contains a positive spanning set, then co(T (S, x̄)) = R

n and,
therefore, for every v �= 0, we have that v,−v ∈ T (S, x̄), and so ∇g(x̄)T v ≥ 0 and
∇g(x̄)T (−v) ≥ 0, which completes the proof.

The approach we now give for generating directions in which Clarke derivatives
are nonnegative generalizes the one presented in [2]. Indeed, the following result will
be useful in enlarging the set of directions and, in addition, it relates the generalized
directional derivative to the class of iterative methods that require a decrease in some
merit function at each iteration. We prove this more general result first.

Lemma 5.5. Let g be Lipschitz near the limit x̄ of a sequence {yk} for which
the corresponding values g(yk) are monotone nonincreasing and for which yk �= x̄ for
all k. If v is any limit point of the sequence { yk−x̄

‖yk−x̄‖}, then v ∈ T (Γg(x̄), x̄) and

g◦(x̄; v) ≥ 0.

Proof. Let {yk} and x̄ be as in the above statement. There is at least one
limit point v of { yk−x̄

‖yk−x̄‖} since the unit ball is compact. Setting λk = 1
‖yk−x̄‖ in

Definition 5.1 yields trivially that v ∈ T (Γg(x̄), x̄). Moreover, Lemma 5.3 implies

g◦(x̄; v) = lim sup
y→x̄, w→v, t↓0

g(y + tw)− g(y)
t

≥ lim sup
k→∞

g
(
x̄+ ‖yk − x̄‖ yk−x̄

‖yk−x̄‖
)
− g(x̄)

‖yk − x̄‖ = lim sup
k→∞

g(yk)− g(x̄)
‖yk − x̄‖ ≥ 0.

5.2. Choice of the constraint violation norm. The �2 constraint violation
function h2(x) = ‖C(x)+‖22 will give our best results since it is continuously dif-
ferentiable whenever C is (see Dennis, El-Alem, and Williamson [11] for a compact
formulation of ∇h2). The constraint violation function h1(x) = ‖C(x)+‖1 is another
common choice, at least for SQP. Thus, the question arises as to the differentiability
of h1. The answer, which implies that it is rarely strictly differentiable at x̂, is given
by the following result. Recall that a function g is said to be strictly differentiable

[20, 8] at x if limy→x̂, t↓0
g(y+tv)−g(y)

t = ∇g(x̂)T v for all v ∈ Rn, and g is said to be
regular [8] at x if for all v ∈ Rn, the one-sided directional derivative g′(x, v) in the
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direction v exists and coincides with g◦(x; v). In section 7.2 we will see an example
showing the cost of this lack of smoothness.

Proposition 5.6. If C is regular at every x, then so is h1. Let I(x) = {i :
ci(x) > 0} and A(x) = {i : ci(x) = 0} be the inactive and active set at x, respectively.
Then the generalized gradients are related by

∂h1(x) =
∑
i∈I(x)

∂ci(x) +

{ ∑
i∈A(x)

γiζi : γi ∈ [0, 1], ζi ∈ ∂ci(x), i ∈ A(x)

}
.

The generalized directional derivatives of h1 and C in a direction v at x are related
by

h◦1(x; v) =
∑
i∈I(x)

c◦i (x; v) +
∑
i∈A(x)

(c◦i (x; v))+.

Thus, if C is strictly differentiable at x, then

h◦1(x; v) =
∑
i∈I(x)

∇ci(x)T v +
∑
i∈A(x)

(∇ci(x)T v)+.

Proof. The proof follows from various results in [8] and from some simple obser-
vations. Clarke’s Propositions 2.3.12 and 2.3.6 guarantee that both ci(x)+ and h1(x)
are regular at x whenever ci(x) is.

The third corollary to Clarke’s Proposition 2.3.3 implies that ∂h1(x) =
∑
i∂ci(x)+,

where this means all possible sums of an element from each ∂ci(x)+. Clarke’s Propo-
sition 2.3.12 implies that

∂ci(x)+ =

⎧⎨
⎩

∂ci(x) if ci(x) > 0,
co{∂ci(x), ∂0(x)} = {γiζi : γi ∈ [0, 1], ζi ∈ ∂ci(x)} if ci(x) = 0,
∂0(x) = {0} if ci(x) < 0.

The generalized directional derivative in any direction v can be written as h◦1(x; v)
=
∑
i(ci(x; v)+)◦. If ci(x) > 0, then (ci(x; v)+)◦ = max{vT ζ : ζ ∈ ∂ci(x)} = c◦i (x; v).

If ci(x) < 0, then (ci(x; v)+)◦ = max{vT ζ : ζ ∈ ∂0(x)} = 0. Finally, if ci(x) = 0, then

(ci(x; v)+)◦ = max{vT η : η ∈ ∂ci(x)+}
= max

{
vT η : η ∈ {γiζi : γi ∈ [0, 1], ζi ∈ ∂ci(x)}

}
=

{
0 if max{vT ζi ∈ ∂ci(x)} ≤ 0,

max{vT ζi ∈ ∂ci(x)} otherwise

= (max{vT ζi ∈ ∂ci(x)})+ = (c◦i (x; v))+.

The last part of the result follows by definition of strict differentiability.
Note that the above result could be slightly rewritten by using one-sided direc-

tional derivatives instead of generalized directional derivatives. Indeed, if C is regular
at x, then c◦i (x; v) coincides with the one-sided directional derivative c′i(x; v), and
h◦1(x; v) coincides with h′1(x; v).

5.3. Refining sequences. The purpose of the following definition is to identify
a limit of trial points and as many directions as possible for which Clarke’s derivatives
are nonnegative at that limit. We will make the convention, which is implied by the
algorithm, that pk being an active poll center implies that polling around pk was at
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least initiated at iteration k, although function values at all the corresponding poll
set may not have been computed because polling is allowed to stop if some poll step
yields an improved mesh point.

Definition 5.7. A convergent subsequence of active poll centers {pk}k∈K (for
some subset of indices K) is said to be a refining subsequence if limk∈K ∆k = 0. The
set of refining directions for g associated with a refining subsequence {pk}k∈K is

Rg(K) = {v ∈ Rn : v = ζ − ξ �= 0 and −∞ < g(pk + ∆kξ) ≤ g(pk + ∆kζ) <∞
and pk + ∆kζ, pk + ∆kξ ∈ Vk for infinitely many k ∈ K},

where Vk ⊂ Pk are the members of the poll set visited by GPS. The set of limit
directions for g associated with the limit x̂ of a refining subsequence {pk}k∈K is

Lg(K) =

{
v ∈ Rn : ∃{yk}k∈K ⊂ Vk \ {x̂} such that lim

k∈K
yk = x̂, and g(yk) ≥ g(yk′)

∀k′ > k ∈ K, and v is a limit point of

{
yk − x̂
‖yk − x̂‖

}
k∈K

}
.

Figure 3 illustrates an example of refining directions for a refining subsequence
pki : The subsequence {pk}k∈K converges to x̂ and has six associated directions, rep-
resented by vectors, and four limit directions, represented by dotted lines. Note that
in the above definition, if ξ = 0, then the refining direction v = ζ − ξ belongs to
Dk. Thus, all the directions in infinitely many Dk, where polling was unsuccessful in
finding a better point (for g), are refining directions. Also, if the function is constant
in the refining direction v ∈ Rg(K), then −v also will be a refining direction.

We now show the existence of refining subsequences and directions, but because
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Fig. 3. An example of refining and limit directions. The six refining directions (represented by
vectors) use the fact that g(pki

+ ∆ki
d1) > g(pki

+ ∆ki
d2) > g(pki

+ ∆ki
d3) > g(pki

). The four
limit directions are represented by dotted lines.
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the limit directions depend on whether g is f or h, we postpone their existence results
until the next section.

Lemma 5.8. There exists at least one refining subsequence composed of mesh
isolated filter points. Let {pk}k∈K be a refining subsequence. If there exists some
tk ∈ Vk with −∞ < g(tk) < ∞ for infinitely many k in K, then the set of refining
directions Rg(K) is nonempty.

Proof. Lemma 4.4 guarantees that there exists a subsequence of iterations whose
mesh size parameter goes to zero. The mesh size parameter ∆k decreases only when
the poll step shows that all trial points in Pk are filtered. Moreover, the assumption
that all trial points (thus all active poll centers) are in a compact set implies that
one such subsequence has a limit point. Thus, there exists a refining subsequence
consisting exclusively of mesh isolated poll centers.

Let pk and tk be as in the above statement. The second result follows from the
fact that the directions tk−pk

∆k
belong to the finite set D, and therefore there is a

direction d ∈ D used infinitely often. By definition, either d or −d (or both) belongs
to Rg(K).

We now show that the generalized directional derivative is nonnegative at limit
points of refining subsequences for all associated refining and limit directions for g.

Theorem 5.9. Let g be Lipschitz near the limit point x̂ of a refining subsequence
{pk}k∈K . Then g satisfies optimality conditions at x̂ on cone(Rg(K) ∪ Lg(K)) in
the sense that if v ∈ cone(Rg(K) ∪ Lg(K)), then g◦(x̂; v) ≥ 0. Moreover, Lg(K) ⊂
T (Γg(x̂), x̂).

Proof. Let g be Lipschitz near the limit point x̂ of a refining subsequence {pk}k∈K .
If v = ζ − ξ �= 0 belongs to Rg(K) for some ζ, ξ ∈ Rn, then by the definition of the
generalized directional derivative we have that

g◦(x̂; v) ≥ lim sup
k∈K

g((pk + ∆kξ) + ∆kd)− g(pk + ∆kξ)

∆k
≥ 0.

The same result on cone(Rg(K) ∪ Lg(K)) follows from the positive homogeneity of
Clarke’s generalized directional derivative. If v belongs to Lg(K) for some subsequence
{yk}k∈K ⊂ Vk \ {x̂} converging to x̂, then Lemma 5.5 completes the proof.

The previous theorem implies that one of the advantages of using a large number
of positive spanning directions in the algorithm is that the set of directions for which
Clarke’s generalized derivatives are shown to be nonnegative will be larger.

The following corollary strengthens Theorem 5.9 when g is strictly differentiable
at the limit point x̂. Assuming that g is strictly differentiable at x̂, as defined in
section 5.2, is equivalent in finite dimensions to assuming that g is Lipschitz near x̂,
Fréchet differentiable, and regular at x̂ [8].

Corollary 5.10. If g is strictly differentiable at x̂, then ∇g(x̂)T v ≥ 0 for every
v ∈ cc(Rg(K)∪Lg(K)) and thus, if Rg(K)∪Lg(K) contains a positive spanning set,
then ∇g(x̂) = 0.

Proof. Assume that ∇g(x̂) is the Fréchet derivative at x̂. Then Theorem 5.9
ensures that ∇g(x̂)T v ≥ 0 for every v ∈ Rg(K)∪Lg(K). Let v ∈ cc(Rg(K)∪Lg(K)).
Then, there is a nonnegative coefficient vector α such that v =

∑
i αisi for some

si ∈ Rg(K) ∪ Lg(K). The first result follows from the linearity of the inner product.

If Rg(K) ∪ Lg(K) contains a positive spanning set, then cc(Rg(K) ∪ Lg(K)) =
R
n and, therefore, for every v �= 0, we have that v,−v ∈ Rg(K) ∪ Lg(K), and so
∇g(x̄)T v ≥ 0 and ∇g(x̄)T (−v) ≥ 0, which completes the proof.
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6. Optimality conditions for the GPS-filter method. We will continue
with results that consider only the behavior of h and then complete our results by
analyzing the effect of the filter on the objective function f .

6.1. Results for the constraint violation function. The algorithm defini-
tion gives priority to feasibility, as expressed by the constraint violation function, over
minimizing the objective function. A consequence of this is that the optimality con-
ditions guaranteed by the algorithm are stronger for h, i.e., achieving feasibility, than
they are for achieving constrained optimality. Indeed, in the absence of the assump-
tion of linearly independent constraint gradients, our feasibility results are what one
would prove for standard SQP methods—that we obtain a stationary point of the �2
norm of the constraint violations.

An obvious initial comment is that h(pk) = hX(pk) for every poll center pk since
trial points violating some linear constraints are rejected. Therefore, any limit of
poll centers belongs to X. So the analysis can be done in terms of h instead of hX .
Another observation is that, by definition, if h(x̂) = 0, then x̂ is a global minimizer
for h. Furthermore, any limit point of a sequence of feasible points would be feasible
if h were lower semicontinuous there or if the feasible region were closed. However, it
is possible for a sequence of least infeasible poll centers to converge to an infeasible
point. We will therefore concentrate on limit points of infeasible mesh isolated poll
centers.

Before presenting results that assume local Lipschitz continuity, we prove the
following result, which shows in particular that if any limit point of least infeasible
poll centers is feasible and if h is continuous there, then all limit points at which h is
lower semicontinuous are also feasible. It also provides a way to identify some limit
directions in Lh(K).

Theorem 6.1. Let {pIk}k∈K be a convergent subsequence of least infeasible poll
centers. Then limk h(p

I
k) exists and, if h is lower semicontinuous at any limit point

x̄ of {pIk}, then limk h(p
I
k) ≥ h(x̄) ≥ 0. Every limit point of least infeasible poll

centers at which h is continuous has the same constraint violation function value.
Furthermore, if h is Lipschitz near any x̄, then h◦(x̄; v) ≥ 0 for any limit direction v

of { pIk−x̄
‖pI

k
−x̄‖}. In addition, each limit direction satisfies v ∈ T (Γh(x̄), x̄).

Proof. The sequence {h(pIk)} is convergent because it is a nonincreasing sequence
of positive numbers. Of course, for any subsequence of {pIk}, the corresponding h
values have the same limit. Thus, if h is lower semicontinuous at x̄, we know that,
for any subsequence {pk}k∈K of the iteration sequence that converges to x̄,

lim
k
h(pIk) = lim

k∈K
h(pIk) = lim inf

k∈K
h(pIk) ≥ h(x̄) ≥ 0.

If h is continuous at some limit points of infeasible poll centers, then the same
argument shows that all such limit points have the same value of the constraint
violation function. Thus, if any such limit point is feasible, they all are feasible.

The rest of the proof follows by noticing that v ∈ Lh(K) and by applying Theo-
rem 5.9.

The next result guarantees some nonsmooth first order optimality conditions. It
shows that Clarke’s derivatives for h are nonnegative in a subset of refining directions
whose convex conic hull is the tangent cone to X.

Proposition 6.2. Let x̂ be the limit of a refining subsequence composed of mesh
isolated filter points {pk}k∈K , and assume that the rule for selecting Dk conforms
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to X for an ε > 0. If h is Lipschitz near x̂, then h◦(x̂; v) ≥ 0 for any direction v in a
set of directions D′ ⊂ Rh(K) satisfying cc(D′) = T (X, x̂).

Proof. Let {pk}k∈K , ε, and x̂ be as in the statement of the result. When h(x̂) = 0,
h◦(x̂; v) ≥ 0 for any v ∈ Rn, so assume that h(x̂) > 0. Since the rule for selecting
Dk conforms to X for an ε > 0, there exists a subset of directions D′ of D such that
cc(D′) = T (X, x̂), and for any v ∈ D′ and sufficiently large k ∈ K, pk+∆kv ∈ Pk∪X
and h(pk + ∆kv) > 0. However, since the poll centers are mesh isolated filter points,
it follows that h(pk + ∆kv) ≥ h(pk), and therefore v belongs to Rh(K). Theorem 5.9
completes the proof.

A consequence of this result is that if h is strictly differentiable at the limit point
of a refining subsequence composed of mesh isolated filter points, then standard first
order optimality conditions for h are satisfied.

Corollary 6.3. Let x̂ be the limit of a refining subsequence composed of mesh
isolated filter points {pk}k∈K , and assume that the rule for selecting Dk conforms to
X for an ε > 0. If h is strictly differentiable at x̂, then ∇h(x̂)T v ≥ 0 for every v in
T (X, x̂).

Proof. The result is a direct consequence of Corollary 5.10 and Proposition
6.2.

6.2. Results for the objective function. We have shown above that the limit
point for a refining subsequence generated by the algorithm satisfies local optimality
conditions for the constraint violation function. We now derive some results for the
objective function. The first result proposes a way to identify some limit directions
in Lf (K).

Proposition 6.4. Let {pFk }k∈K be a subsequence of feasible poll centers con-
vergent to a point x̄. If f is lower semicontinuous at x̄, then limk f(pkk) exists and
is greater than or equal to f(x̄). The set of such limit points at which f is con-
tinuous all have the same objective function value. Furthermore, if f is Lipschitz

near any x̄, then any limit direction v of { pFk −x̄
‖pF

k
−x̄‖} is such that f◦(x̄; v) ≥ 0 and

v ∈ T (Ω, x̄) ∩ T (Γf (x̄), x̄).

Proof. Let {pFk }k∈K and x̄ be as in the above statement. The subsequence
f(pFk )k∈K is monotone nonincreasing and bounded below by the finite value f(x̄),
and therefore it converges.

Since pFk ∈ Ω for every k ∈ K, it follows by the definition of the contingent cone
that v ∈ T (Ω, x̄). The rest of the proof follows by noticing that v ∈ Lf (K) and by
applying Theorem 5.9.

The next pair of results guarantees some nonsmooth first order optimality condi-
tions related to the cone tangent to X. They are similar to the first order optimality
results for h, Proposition 6.2, and Corollary 6.3, except that they require the limit
point to be strictly feasible with respect to Ω. Basically, these results show that when
the nonlinear constraints are not binding, the use of the filter does not interfere with
the linearly constrained results.

Proposition 6.5. Let x̂ be the limit of a refining subsequence composed of mesh
isolated filter points {pk}k∈K , and assume that the rule for selecting Dk conforms to
X for an ε > 0. If f is Lipschitz near x̂, and if x̂ is strictly feasible with respect to
Ω, then f◦(x̂; v) ≥ 0 for any direction v in a set of directions D′ ⊂ Rh(K) satisfying
cc(D′) = T (X, x̂).

Proof. Let {pk}k∈K , ε, and x̂ be as in the statement of the result. Since the rule
for selecting Dk conforms to X for an ε > 0, then there exists a subset of directions D′
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of D such that cc(D′) = T (X, x̂), and for any v ∈ D′ and sufficiently large k ∈ K,
pk+∆kv ∈ Pk∪X ∪Ω. However, since the poll centers are mesh isolated filter points,
it follows that f(pk + ∆kv) ≥ f(pk), and therefore v belongs to Rf (K). Theorem 5.9
completes the proof.

The following corollary to this result shows standard first order optimality con-
ditions for f on X under the additional assumption of strict differentiability.

Corollary 6.6. Let x̂ be the limit of a refining subsequence composed of mesh
isolated filter points {pk}k∈K , and assume that the rule for selecting Dk conforms to
X for an ε > 0. If f has a strict derivative ∇f(x̂) at x̂, and if x̂ is strictly feasible
with respect to Ω, then ∇f(x̂)T v ≥ 0 for every v in T (X, x̂).

Proof. The result is a direct consequence of Corollary 5.10 and Proposition
6.5.

Note that since it is assumed in Corollary 6.6 that x̂ is feasible with respect to
Ω, and since the algorithm reduces to the one in [23, 2] in the absence of general
constraints, the proof of the corollary also follows from a result in [2].

Our next result does not assume strict feasibility of the limit point. It is a corollary
of Corollary 5.10. It gives conditions for the limit point of a refining sequence to satisfy
optimality conditions on problem (1.1). It is that the convex conic hull of the union
of the refining and the limit directions contains the contingent cone for the feasible
region at x̂. It is interesting that this condition can be met without any feasible
descent directions in any poll set. In the simple linearly constrained case, this is
implied by ensuring that the polling directions conform to the boundary of X but,
here, the corresponding assumption that the polling directions for a refining sequence
generate the contingent cone for the feasible region at x̂ is not as constructive. This
result is illustrated on the three examples of section 7.

Proposition 6.7. Let x̂ be the limit point of a refining subsequence {pk}k∈K .
If f has a strict derivative ∇f(x̂) at x̂, then −∇f(x̂) belongs to the polar C◦

f of
Cf = cc(Rf (K)∪Lf (K)), and so x̂ satisfies the optimality conditions of Corollary 5.10
for f on Cf . Moreover, if T (Ω∩X, x̂) ⊂ Cf , then x̂ satisfies the optimality conditions
of Corollary 5.10 for f on problem (1.1).

Proof. Let x̂, f , and Cf be as in the above statement. Corollary 5.10 guarantees
that ∇f(x̂)T v ≥ 0 for any vector v ∈ Cf . The results follow from the definition
of polarity: in general, −∇f(x̂) ∈ C◦

f = {u ∈ Rn : uT v ≤ 0 for all v ∈ Cf}. If
Cf ⊇ T (Ω ∩X, x̂), then C◦

f ⊂ T ◦(Ω ∩X, x̂), and the proof is complete.
Remark. Notice that under the assumption that the contingent cone generators of

the nonlinear constraints binding at x̂ belong to the set of refining or limit directions
(as will be the case for linear constraints and conforming directions; see Definition 4.1),
then the preceding result reduces to the corresponding result from [2, 23]. This is
because, in that case, the contingent cone is the tangent cone, and the polar of the
contingent cone is the normal cone, so x̂ is a KKT point.

By using a filter-based step acceptance criterion, we have overcome a difficulty in
applying pattern search algorithms to constrained optimization. Specifically, we have
that the objective function descent directions in the positive spanning set D may be
infeasible. Lewis and Torczon [21] give an example in which a nonfilter version of the
pattern search algorithm stalls (i.e., all subsequent iterates are the same mesh isolated
filter point) at a point containing a strictly feasible descent direction.

The following result shows that, under assumptions on the smoothness of the
functions but regardless of the choice of positive spanning set, our algorithm will
eventually find an unfiltered mesh point, except when ∇f(pk) = 0. Thus, we will
move away from a constrained minimizer, even a global solution, if doing so decreases
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either h or f or produces a new least infeasible point. This is an essential ingredient of
any method with ambitions of finding more than a single local constrained minimizer.

Proposition 6.8. If both h and f are strictly differentiable at the poll center
pk, and if ∇f(pk) �= 0, then there cannot be infinitely many consecutive iterations in
which pk is a mesh isolated filter point.

Proof. Let h and f be strictly differentiable at pk, where ∇f(pk) �= 0. Assume
that there are infinitely many consecutive iterations in which pk is a mesh isolated
filter point. Let d be a direction used infinitely often in the (constant) subsequence
of poll centers such that ∇f(pk)

T d < 0.
Since the function h is strictly differentiable at pk, there exists an ε > 0 such that

one of the following two conditions is satisfied: either hX(pk + ∆d) ≤ hX(pk) < hmax
or hX(pk + ∆d) > hX(pk) for all 0 < ∆ < ε.

If the first condition is satisfied, then for ∆k < ε the poll step will find an
unfiltered mesh point. This is a contradiction. If the second condition is satisfied,
then let h̃ be the smallest value of {hX(x) : hX(x) > hX(pk), x ∈ Fk}∪{hmax}, and let
f̃ be the corresponding objective function value, i.e., either f̃ = f(x̃) for some vector
x̃ ∈ Fk that satisfies hX(x̃) = h̃, or f̃ = −∞ in the case that h̃ = hmax. It follows
that h̃ > hX(pk) and f̃ < f(pk). Therefore, whenever ∆k < ε is small enough, the
following inequalities hold: hX(pk) < hX(pk+∆kd) < h̃ and f̃ < f(pk+∆kd) < f(pk);
thus the trial mesh point is unfiltered. This is a contradiction.

7. Illustration of our results. We now illustrate the behavior of our algorithm
on three test examples and on a real engineering problem. The first test example is
due to Lewis and Torczon [21]. Unlike the barrier approach in [21], the filter approach
can converge even with a badly chosen positive spanning set.

The second example justifies our choice of the squared �2 norm over the �1 norm
in the definition of the constraint violation function. The nonsmoothness of the latter
may not provide descent on h1 in some of the poll directions for which h2 does descend.
The example shows that, since h1 does not allow movement, using it can result in
stalling at an infeasible point.

The third example shows the limitations of our results; there is more left to
do. This example uses the algorithm’s flexibility as a loophole to avoid a desirable
outcome. Even with the squared �2 norm, it is still possible to choose the positive
spanning sets, and to be unlucky, in a way that there is a polling direction which is
a feasible descent direction for the objective function f from the limit point x̂. This
does not contradict our results, but it does show their limitations without a suitable
search scheme.

The last example is a wing planform design problem from Boeing for an airplane
different from the two airplanes used to generate the results reported in [3].

7.1. Example of Lewis and Torczon. Consider the linear program [21]

min
x=(a,b)T

−a− 2b

s.t. 0 ≤ a ≤ 1,
b ≤ 0.

The optimal solution is x̂ = (1, 0)T . Let us apply our algorithm with initial point
x0 = (0, 0)T , initial mesh size parameter ∆0 = 1, and a single positive spanning
matrix Dk = D constructed with the four directions ±(1, 1)T and ±(1,−1)T . We will
not use any search step for this example. It is pointed out in [21] that all iterations
of a “barrier” pattern search algorithm that assigns an objective function value of +∞
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to infeasible points, but does not take into consideration the geometry of the feasible
region, remain at the origin since the polling directions that yield decrease in the
objective function are infeasible.

Suppose that the constraints are given as black boxes and that the algorithm is
not aware that they are linear. Therefore X = R

2 and Ω = {(a, b) ∈ R2 : 0 ≤ a ≤
1, b ≤ 0}.

One might consider using the unconstrained GPS on an �1 exact penalty function
for this problem. It turns out that for any penalty constant greater than or equal
to 3, the algorithm with the same starting data never moves from the origin. The
penalty constant must be greater than 2 for the minimizer of the �1 penalty function
to be the solution to the original problem, so the penalty function approach is not
useful here.

Our filter algorithm, using the above-mentioned spanning set, converges to the
optimal solution. Mesh directions that conform to the boundary of the feasible region
cannot be identified. Figure 4 displays the first few iterations. The shaded area is the
feasible region. The poll centers are underlined, and the functions values are displayed
between brackets: [h(x), f(x)]. The points in the poll set are joined to the poll center
by dotted lines.
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Fig. 4. First iterations on example from Lewis and Torczon.

Figure 4(a) illustrates the iterations for which ∆k = 1. Starting at x0 = p0 =
(0, 0)T the algorithm evaluates both functions at ±(1, 1)T and ±(1,−1)T . Only the
trial point (1,−1)T is feasible; it is, however, dominated by x0. The point (1, 1)T

dominates the two other trial points and is unfiltered.
Let x1 = p1 = (1, 1)T . The functions are evaluated at the four points around p1,

and two unfiltered points are found: x2 = (0, 2)T and (2, 2)T . Even if an unfiltered
mesh point was found, the poll center p2 would remain at p1. Polling around p2 yields
filtered points; thus p2 is a mesh isolated filter point. Figure 5 displays the filters
corresponding to the poll centers in Figure 4. Figure 4(b) starts at iteration 3 with
p3 = (1, 1)T and ∆3 = 1

2 . Two consecutive iterations, in which an unfiltered mesh
point is found, lead to p4 = ( 3

2 ,
1
2 )T then p5 = (1, 0)T , which is the optimal solution.

However, since the gradient is nonzero at this point, Proposition 6.8 ensures that
polling around this point will eventually produce an unfiltered mesh point. Indeed, as
shown in Figure 4(c), iteration 5 produces a mesh isolated filter point, but iteration 6
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Fig. 5. Filter for the example from Lewis and Torczon.

generates an unfiltered mesh point, which is a new infeasible incumbent with a minimal
constraint violation. For this example, the limit point is feasible, and so it is a global
optimizer for the constraint violation function. The sets of refining and limit directions
for f are

Rf (K) =

{[−1
−1

]
,

[
1
−1

]
,

[−2
−2

]
,

[
2
−2

]
,

[
0
−2

]
,

[−2
0

]}
,

Lf (K) =

{
1√
2

[−1
−1

]
,

1√
2

[
1
−1

]}
.

The polar of the cone spanned by the refining and limit directions of f is spanned
by {(1, 1)T , (0, 1)T } and indeed contains −∇f(1, 0) = (1, 2)T (as stated by Proposi-
tion 6.7). Moreover, nonnegative combinations of the last two directions of Rf (K)
span the contingent cone to the constraints, and therefore the solution satisfies the
KKT conditions.

Remark. Observe that the choice of the poll centers is also important to the
quality of the limit points the algorithm finds. Indeed, in this example, if one were
to always take the current poll center to be the best feasible incumbent, then the
refining sequence will have every term equal to x0. Cf is again spanned by the same
set of directions Rf (K).

Of course, continuing to poll around an unchanging feasible incumbent is a bad
idea since it ignores the flexibility of the filter method by reducing it to the barrier
method. A better poll center selection strategy could be to alternate between the
two incumbents every time the poll step detects a mesh isolated filter point. Polling
around the infeasible one with a minimal constraint violation is especially interesting
when f I is less than fF since it might move the trial points away from a local optimum
or toward a more interesting part of the feasible region. That way, there will be
infinitely many poll steps around both types of incumbents. It is also worthwhile to
change the positive spanning set to enrich the set of refining directions for both h and
f . The flexibility of our theory ensures that such heuristics can be part of a rigorously
convergent algorithm.
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7.2. Choice of the constraint violation norm. The choice of the norm in
the definition of the constraint violation function h(x) = ‖C(x)+‖ affects the conver-
gence behavior. The example presented here complements the theoretical results of
section 5.2. We prefer the squared �2 norm over the �1 norm since it is differentiable
whenever the constraint function C is (see [11] for an explicit formulation of the gradi-
ent). This means that if there is a descent direction, then a positive spanning set will
detect it with the �2 norm, but �1 might miss it (see Corollary 6.3). This is illustrated
in the following simple linear program:

min
x=(a,b)T

b

s.t. −b ≤ 3a ≤ b,
b ≥ 1

with an �1 constraint violation function h1(a, b) = max(3a− b, 0)+max(−3a− b, 0)+
max(1− b, 0).

Let the algorithm start at the infeasible point x0 = p0 = (0, 0)T , and let the
positive spanning set be D = {(1, 1)T , (1,−1)T , (0,−1)T }. The poll centers and the
filter are depicted in Figure 6.

Legend: [h1(x), f(x)]

�
a

�b

•
(0,0)
[1,0]

(0,−∆k)

[1+3∆k,−∆k]

(∆k,∆k)

[1+∆k,∆k]

(−∆k,∆k)

[1+∆k,∆k]

�
h1

�
f

∆k

0

−∆k

1 1+∆k 1+3∆k

•

Fig. 6. The algorithm stalls with the �1 norm.

Every even iteration k produces an unfiltered mesh point that does not improve
any of the incumbents: The trial point xk+1 = pk + ∆k(1, 1)T is unfiltered by Fk.
Every odd iteration confirms that the poll center is a mesh isolated filter point: The
three trial points are filtered since pk+1 = pk = (0, 0)T . Therefore, the mesh size
parameter is reduced at each odd iteration.

The sequence of poll centers stalls at the infeasible point x̂ = (0, 0)T . This means
that the nondifferentiability of h1 hides the descent directions for the constraint viola-
tion function. It also means that this is another example in which the unconstrained
GPS algorithm applied to the �1 exact penalty function fails as a solution approach.
However, as guaranteed by Theorem 5.9, h◦(x̂, v) is nonnegative for the positive span-
ning directions in D as well as for other refining and limit directions for h:

Rh(K) =

{[
1
1

]
,

[−1
1

]
,

[
0
−1

]
,

[
1
−2

]
,

[−1
−2

]
,

[
1
0

]
,

[−1
0

]}
,

Lh(K) =

{
1√
2

[
1
1

]
,

1√
2

[−1
1

]}
.
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The sets of refining and limit directions for f are

Rf (K) =

{[
1
1

]
,

[−1
1

]
,

[
0
1

]
,

[−1
2

]
,

[
1
2

]
,

[
1
0

]
,

[−1
0

]}
,

Lf (K) =

{
1√
2

[
1
1

]
,

1√
2

[−1
1

]}
.

The polar of the cone spanned by the refining and limit directions for f reduces to
the negative gradient of f : {(0,−1)T }.

Remark. If the squared �2 norm is used for h instead of �1, then the poll center
moves away from (0, 0) to (∆k,∆k)

T as soon as the mesh size parameter drops below 2
3

since 0 < h(∆k,∆k) < 1 whenever 0 < ∆k < 2
3 . The sets of refining and limit

directions for f are the same as above, but the algorithm converges to a global optimal
solution.

7.3. Illustration of the limitation of the results. Consider the problem

min
x=(a,b)T

b

s.t. a(1− a)− b ≤ 0.

The algorithmic strategies described below are such that the algorithm goes through
infinitely many consecutive cycles of three iterations, and the sequence of poll centers
converges to a feasible limit point from which there is a feasible descent direction.
This direction is used infinitely often in the poll step. The first iteration of each
cycle improves the feasible incumbent, the second one improves the least infeasible
incumbent, and the last one produces a mesh isolated filter point. We admit that the
flexibility in the choice of polling directions is exploited to lead to a weak result, but
our point is that it can happen.

The trial points generated during cycle � are summarized in Table 1. The algo-
rithm does not perform any search, and complete polling is always performed. The
table also displays the positive spanning directions used at each poll step. The initial
points in cycle � = 1 are p0 = xI = ( 1

4 , 0)T and xF = (0, 1)T , and the initial mesh
size parameter is ∆0 = 1

8 .
Figure 7 displays the first cycle (polling around the poll centers p0, p1, and p2)

and the corresponding filter. Cycle 1 terminates with a mesh isolated filter point, and
cycle 2 is initiated at p3 = ( 1

8 , 0)T with ∆3 = 1
16 . More generally, cycle � terminates

with a mesh isolated filter point. The mesh size parameter is divided by 2, and cycle
�+ 1 starts.

All trial points including the sequence of mesh isolated filtered points, i.e., the poll
centers corresponding to the third step of each cycle, converge to the feasible point
x̂ = (0, 0)T . There are no other limit points. The results of section 6.1 concerning
the constraint violation function are clearly satisfied since the limit point is at the
global minimum of h. However, there is a feasible direction from the limit point used
infinitely often by the subsequence, which is also a descent direction for the objective
function. The sets of refining and limit directions for f are

Rf (K) =

{[−2
1

]
,

[
2
0

]
,

[−2
0

]
,

[
0
1

]
,

[
0
2

]
,

[−1
1

]
,

[−1
2

]
,

[
1
0

]
,

[−1
0

]
,

[
1
1

]}
,

Lf (K) =

{[
1
0

]
,

[
0
1

]
,

1√
10

[−1
3

]}
.
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Table 1

Description of the three iterations of cycle � with initial incumbents xF = (0, 1
2�+1 )T and

xI = ( 1
2�+1 , 0)T and function values [h(xF ), f(xF )] = [0, 1

2�+1 ] and [h(xI), f(xI)] = [ 2
�+1−1
4�+1 , 0].

Mesh Poll Poll Trial

size center dirs points Comments

(∆k) (pk) [h, f ] (Dk) [h, f ]

(−2, 1)
(
0, 1

2�+2

) [
0, 1

2�+2

]
xF is improved

1
2�+2

(
1

2�+1 , 0
) [

2�+1−1
4�+1 , 0

]
(2, 0)

(
1
2�
, 0
) [

2�−1
4�

, 0

]
Filtered by poll center

(0,−1)
(

1
2�+1 ,

−1
2�+2

) [
3×2�−1

4�+1 , −1
2�+2

]
Unfiltered

(0,−2)
(
0, −1

2�+2

) [
1

2�+2 ,
−1

2�+2

]
Unfiltered

1
2�+2

(
0, 1

2�+2

) [
0, 1

2�+2

]
(1,−1)

(
1

2�+2 , 0
) [

2�+2−1
4�+2 , 0

]
xI is improved

(−1, 2)
( −1

2�+2 ,
3

2�+2

) [
0, 3

2�+2

]
Filtered by poll center

(1, 0)
(

1
2�+1 , 0

) [
2�+1−1
4�+1 , 0

]
Already in filter

1
2�+2

(
1

2�+2 , 0
) [

2�+2−1
4�+2 , 0

]
(−1, 1)

(
0, 1

2�+2

) [
0, 1

2�+2

]
Already in filter

(−1,−1)
(
0, −1

2�+2

) [
1

2�+2 ,
−1

2�+2

]
Already in filter

Feasible region

�

x

�
y

−1
8

1
8

1
4

1
2

−1
8

1
8

3
8

•
p0

[ 3
16 ,0] [ 14 ,0]

[ 5
16 ,

−1
8 ]

•
p1

[0, 18 ]

[0, 38 ]

[ 18 ,
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8 ]
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�
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1
8

3
16

1
4
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16

−1
8

0

1
8

3
8

•p0

•p1

•p2=p3

Fig. 7. The first cycle.

The polar of the cone spanned by these directions is the cone spanned by the single
direction (0,−1)T , which is the gradient at the origin. Thus, Proposition 6.7 is again
sharp. The contingent cone at the origin is the half-space a−b ≤ 0, and the intersection
of the contingent cone at the origin with Cf , the cone generated by the convex conic
hull of Rf (K) ∪ Lf (K), is the convex conic hull of (−2, 0)T and (1, 1)T .
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7.4. Filter results on a Boeing planform design application. The GPS
filter algorithm, as implemented in Boeing’s Design Explorer, has been applied to
wing planform design for several different airplanes. Typically, each airplane requires
several redesigns as the design project progresses. The wing planform is the two-
dimensional, downward, vertical projection of the wing. The design variables are the
line segment end point for the wing leading edges, trailing edges, and spars. Also
there are variables related to wing thickness and aerodynamic loading [3]. A typical
design problem is to minimize direct operating cost subject to several constraints. The
constraints include required range, maximum approach velocity, maximum required
runway length, and several others. The analysis code is a sophisticated combination
of preliminary design tools from many disciplines. The disciplines include structures,
aerodynamics weights, costing, and configuration management.

This problem has 17 variables, 13 nonlinear constraints, and no linear constraints.
The best point in the initial surrogate (a kriging model that interpolates data from
200 points obtained from an orthogonal-array–based Latin hypercube) is the least
infeasible point, which has a constraint violation of 0.426 and an objective of 9.845.

Figure 8 illustrates the progression of the filter for this application. In all plots,
the symbol × represents the initial point, except in the bottom right plot due to the
scale change. The top two plots correspond to the first 15 function evaluations, the
middle to the first 50, and the bottom plots show the whole filter after completing
117 evaluations after the initial 200. The initial point gets filtered at the third function
evaluation. The first feasible point is found at the 58th evaluation. The best feasible
point is denoted on the two bottom plots by a star at (0, 9.75)T .

The bottom left plot contains several trial points with an objective function value
near 9.6. This suggests that the search strategy tried to find a feasible design with
such a low f value, but was unsuccessful.

8. Discussion. Though the algorithm behaved very well on the real industrial
design problem above (as well as on those in [3] and others), at first glance, one
might be unimpressed by the behavior of the algorithm on the academic examples
of the last section. Of course, they were designed to illustrate the tightness of our
convergence results and the crucial directional dependence of GPS methods. Our
interest is in optimization problems, such as the planform problem, where derivative-
based methods are impractical. Our algorithm can only rely on function values, and
sometimes even these values are not reliable. A design example is presented in [4, 5],
where two times out of three the evaluation of the objective function failed to produce
a value.

A consequence of this absence of structure is that the convergence results that are
guaranteed depend strongly on the set of directions used in the poll step. Indeed, the
richer the set of directions, the stronger the convergence result, since adding directions
can increase the number of refining and limit directions, and widen the cone Cf of
Proposition 6.7, and hence narrow its polar cone, where the negative gradient of the
objective is shown to reside. Intuitively, if a poll step identifies a poll center that
is a mesh isolated filter point, then, the next time a poll is performed there (with a
reduced mesh size parameter) it would be natural to use a different positive spanning
set to increase the likelihood of detecting an eventual descent direction. However,
essential to the convergence proof is a finite total number of polling directions. It
follows that one cannot attempt to obtain a dense set of polling directions within the
GPS class of algorithms.

In practice, one would never use a pattern search algorithm following the rules
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Fig. 8. Filter progression on a Boeing planform design application.

upon which these examples are based. First, we would use a search step such as a
space-filling Latin hypercube sampling, a surrogate-based exploration, or a more local
search such as the type suggested in [12]. Second, the set of polling directions would
be enlarged in order to avoid large gaps in the directions explored. Finally, the polling
centers would sometimes be the feasible incumbent, and sometimes the infeasible one
with least constraint violation value, but when promising filter points are generated
(such as ones with low f and h values), nothing stops the search step from including
an unofficial poll around these candidates as a part of the search. These simple
algorithmic enhancements fit into the general description of the algorithm presented
in section 4.3. Even with these improvements one could devise twisted examples with
the behavior of the above examples. It is, however, unlikely that such behavior would
be encountered in practice.



A PATTERN SEARCH FILTER ALGORITHM 1009

Acknowledgments. The authors would like to thank Lt. Col. Mark Abramson,
USAF, for many useful suggestions which improved the presentation. We also appre-
ciate the collaborations with Paul Frank of Mathematics and Engineering Analysis at
the Boeing Phantom Works and with Alison Marsden of Stanford University. Paul’s
insightful use of the filter on real Boeing problems and the subsequent feedback he
provided has helped us improve our work. Alison provided valuable feedback on her
independent implementation of our algorithm applied to an expensive design problem.
Finally, we thank both referees for helpful reports that improved the paper.

REFERENCES

[1] C. Audet, Convergence results for pattern search algorithms are tight, Optim. Eng., to appear.
[2] C. Audet and J. E. Dennis, Jr., Analysis of generalized pattern searches, SIAM J. Optim.,

13 (2003), pp. 889–903.
[3] C. Audet, J. E. Dennis, Jr., D. W. Moore, A. J. Booker, and P. D. Frank, A

surrogate-model-based method for constrained optimization, in Proceedings of the 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
AIAA paper 4891, American Institute of Aeronautics and Astronautics, Reston, VA, 2000.

[4] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W.

Trosset, A rigorous framework for optimization of expensive functions by surrogates,
Struct. Optim. 17 (1999), pp. 1–13.

[5] A. J. Booker, P. D. Frank, J. E. Dennis, Jr., D. W. Moore, and D. B. Serafini, Manag-
ing surrogate objectives to optimize a helicopter rotor design—further experiments, in Pro-
ceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, AIAA paper 4717, American Institute of Aeronautics and Astronautics,
Reston, VA, 1998.

[6] T. D. Choi, O. J. Eslinger, C. T. Kelley, J. W. David, and M. Etheridge, Optimization of
automotive valve train components with implicit filtering, Optim. Eng., 1 (2000), pp. 9–27.

[7] T. D. Choi and C. T. Kelley, Superlinear convergence and implicit filtering, SIAM J. Optim.,
10 (2000), pp. 1149–1162.

[8] F. H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM, Philadel-
phia, 1990.

[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds, SIAM J. Numer.
Anal., 28 (1991), pp. 545–572.

[10] I. D. Coope and C. J. Price, On the convergence of grid-based methods for unconstrained
optimization, SIAM J. Optim., 11 (2001), pp. 859–869.

[11] J. E. Dennis, Jr., M. El-Alem, and K. Williamson, A trust-region approach to nonlinear
systems of equalities and inequalities, SIAM J. Optim., 9 (1999), pp. 291–315.

[12] J. E. Dennis, Jr., and V. Torczon, Direct search methods on parallel machines, SIAM J.
Optim., 1 (1991), pp. 448–474.

[13] H. Eschenauer, J. Koski, and A. Osyczka, eds., Multicriterion Design Optimization,
Springer, Berlin, 1990.

[14] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math.
Program., 91 (2002), pp. 239–269.

[15] R. Fletcher, S. Leyffer, and Ph. L. Toint, On the global convergence of a filter–SQP
algorithm, SIAM J. Optim., 13 (2002), pp. 44–59.

[16] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter, Global conver-
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Abstract. Under some new conditions, we present several equivalent (and sufficient) conditions
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1. Introduction. Let H be a Hilbert space, C be a nonempty closed subset of
H, and F be a mapping from H into H. The variational inequality problem (VIP(C,
F)) is to find a vector x∗ ∈ C such that

〈F (x∗), x− x∗〉 ≥ 0 for all x ∈ C.(1)

The dual variational inequality problem (DVIP(C, F)) is to find a vector x∗ ∈ C such
that

〈F (x), x− x∗〉 ≥ 0 for all x ∈ C.(2)

We denote the solution set of the VIP(C, F) by C∗ and that of the DVIP(C, F) by
C∗ and assume that C∗ and C∗ are nonempty. From now on, we also assume C to be
convex.

Variational inequality problems occur in a number of applications for which the
reader can refer to Harker and Pang’s survey paper [5] and references therein.

To measure the violation of the solutions to the VIP(C, F) at any point x ∈ C,
one often uses the following gap functions.

The primal gap function g(x) associated with the VIP(C, F) is defined as

g(x) := max{〈F (x), x− c〉 : c ∈ C} for x ∈ H.

We denote

Γ(x) := {c ∈ C : 〈F (x), x− c〉 = g(x)}.

Similarly, we define the dual gap function G(x) associated with the VIP(C, F) as

G(x) := max{〈F (c), x− c〉 : c ∈ C} for x ∈ H
∗Received by the editors January 18, 2003; accepted for publication (in revised form) October 2,

2003; published electronically May 25, 2004. This work was supported by NSC of R.O.C.
http://www.siam.org/journals/siopt/14-4/42148.html

†Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W
3P4 (ziliwu@email.com). Current address: Department of Mathematics, National Cheng Kung Uni-
versity, Tainan, Taiwan 701.

‡Department of Mathematics, National Cheng Kung University, Tainan, Taiwan 701 (soonyi@
mail.ncku.edu.tw).

1011



1012 ZILI WU AND SOON-YI WU

and denote

Λ(x) := {c ∈ C : 〈F (c), x− c〉 = G(x)}.
(For more general gap functions, we refer to [8] and references therein.)

It is easy to see that these two gap functions are both nonnegative on C and the
dual gap function is convex. In addition, if G is bounded above on a neighborhood
of a point x ∈ H, then G is Lipschitz near x; that is, there exists a constant M > 0
such that

‖G(x1)−G(x2)‖ ≤M‖x1 − x2‖
for all x1 and x2 in a neighborhood of x (see [2, Proposition 2.2.6]).

When G is Gâteaux differentiable at x, that is, there exists ξ ∈ H such that the
directional derivative G′(x; ·) of G at x satisfies

G′(x; v) := lim
t→0+

G(x+ tv)−G(x)

t
= 〈ξ, v〉 for all v ∈ H,

the Lipschitz continuity ofG near x implies that the Gâteaux derivative ξ (also denoted
by ∇G(x)) satisfies that

lim
u→v
t→0+

G(x+ tu)−G(x)

t
= 〈ξ, v〉 for all v ∈ H.

Following Ferris and Mangasarian [4], we say that the VIP(C, F) has the minimum
principle sufficiency property if

Γ(x∗) = C∗ for each x∗ ∈ C∗.

Similarly, the VIP(C, F) has the maximum principle sufficiency property if

Λ(x∗) = C∗ for each x∗ ∈ C∗.

For a nonempty convex set C, the normal cone to C at x ∈ H is defined by

NC(x) :=

{ { ξ ∈ H : 〈ξ, c− x〉 ≤ 0 for all c ∈ C} if x ∈ C,
∅ if x 	∈ C.

The tangent cone to C at x is given by TC(x) := [NC(x)]◦, where A◦ denotes the
polar set of A ⊆ H defined by

A◦ := {v ∈ H : 〈v, x〉 ≤ 0 for all x ∈ A}.
It is known that

TC(x) = {v ∈ H : d′C(x; v) = 0}
(see [2]), where dC stands for the distance function associated with C given by

dC(x) := inf{‖c− x‖ : c ∈ C} for each x ∈ H
and d′C(x; v) is the directional derivative of dC at x in the direction v ∈ H:

d′C(x; v) := lim
t→0+

dC(x+ tv)− dC(x)

t
.
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For x∗ ∈ C∗, we have

〈−F (x∗), x− x∗〉 ≤ 0 for all x ∈ C,
that is, −F (x∗) ∈ NC(x∗) = [TC(x∗)]◦. If

−F (x∗) ∈ int
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ for each x∗ ∈ C∗,

the set C∗ is said to be weakly sharp (according to Patriksson [10]). This is equivalent
to saying that for each x∗ ∈ C∗ there exists α > 0 such that

αB ⊆ F (x∗) +
⋂

x∈C∗
[TC(x) ∩NC∗(x)]◦,

where B denotes the open unit ball in H.
A mapping F : H → H is said to be pseudomonotone at x ∈ C if for each y ∈ C

there holds

〈F (x), y − x〉 ≥ 0⇒ 〈F (y), y − x〉 ≥ 0.

We say that F is pseudomonotone on a subset C1 of C if it is pseudomonotone at
each x ∈ C1. F is pseudomonotone+ on C if it is pseudomonotone on C and, for all
x, y ∈ C,

〈F (x)− F (y), x− y〉 = 0⇒ F (x) = F (y).

F is pseudomonotone∗ on C if it is pseudomonotone on C and, for some k > 0 and
all x, y ∈ C,

〈F (x), x− y〉 = 0
〈F (y), x− y〉 = 0

}
⇒ F (x) = kF (y).

In particular, F is pseudomonotone+
∗ on C if it is pseudomonotone∗ on C with k = 1.

From the above definition, we see that

pseudomonotonicity+ of F ⇒ pseudomonotonicity+
∗ of F⇒

pseudomonotonicity∗ of F⇒ pseudomonotonicity of F.

The notion of a weak sharp minimum was introduced by Burke and Ferris [1]
to present sufficient conditions for the finite identification, by iterative algorithm, of
local minima associated with mathematical programming in Rn. Their results have
been extended by Marcotte and Zhu [9] to the variational inequality problem under
the assumption that F is pseudomonotone+ and continuous on a compact convex set
C in Rn. Marcotte and Zhu [9] showed that C∗ is weakly sharp iff G has an error
bound on C, that is, there exists some µ > 0 such that

dC∗(x) ≤ µG(x) for each x ∈ C.
If C is also a compact polyhedral set in Rn, then C∗ is weakly sharp iff the VIP(C,
F) has the minimum principle sufficiency property.

The generalized monotonicity is used in [9] mainly to guarantee the solution set
for the variational inequality coincides with the optimal solution sets of corresponding
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gap functions. Such coincidence plays an important role in characterizing the weak
sharpness.

Our purpose in this paper is to develop the above weak sharpness results in the
Hilbert space H by presenting the following novel condition:

{v ∈ H : 〈F (x∗), v〉 ≥ 0} = {v ∈ H : 〈F (y∗), v〉 ≥ 0} for x∗, y∗ ∈ C;(3)

that is, F (x∗) and F (y∗) have the same direction. We organize the rest of this paper
as follows. In section 2, we discuss basic relations among C∗, C∗, Γ(x), and Λ(x) under
assumption (3). We show in section 3 that C∗ has the minimum principle sufficiency
property if (3) holds for each x∗ ∈ C∗ ⊆ C∗ and each y∗ ∈ Γ(x∗) or if C∗ is weakly
sharp and (3) holds for each x∗ ∈ C∗ and each y∗ ∈ C∗. In parallel, we give several
equivalent conditions for C∗ to possess the maximum principle sufficiency property in
section 4. These equivalences show that the maximum principle sufficiency property
bears close relation to (3) and the value of F on Γ(x∗) and Λ(x∗). In section 5, under
a weaker condition than in Marcotte and Zhu [9], we show that C∗ is weakly sharp
iff G has an error bound on C, which is in turn equivalent to saying that C∗ has the
minimum principle sufficiency property and there exists α > 0 such that

αB ∩ [F (x∗) +NC(x)] = ∅ for each x∗ ∈ C∗ and each x ∈ C\C∗.

We also present two sufficient conditions for C∗ to be weakly sharp and prove that a
class of algorithms are convergent to C∗ in finitely many steps under the assumption
of weak sharpness of C∗.

2. Relationship among C∗, C∗, Γ(x), and Λ(x). Recall that the pseu-
domonotonicity of F on C is sufficient for C∗ ⊆ C∗, while the continuity of F on C
guarantees the inclusion C∗ ⊆ C∗. So C∗ = C∗ whenever F is pseudomonotone and
continuous on C. In this section, we mainly reveal the relations among C∗, C∗, Γ(x),
and Λ(x) under assumption (3) and show how it plays a role similar to that of the
pseudomonotonicity and continuity of F . However, before this, we present some basic
relations first without detailed proof.

The following proposition is simple but it is very convenient for us to use it
implicitly.

Proposition 2.1. For x∗ ∈ C,
(i) x∗ ∈ C∗ ⇔ g(x∗) = 0⇔ x∗ ∈ Γ(x∗);
(ii) x∗ ∈ C∗ ⇔ G(x∗) = 0⇔ x∗ ∈ Λ(x∗).
Proof. (i) has been stated in [6] (or follows directly from [8, Theorem 4.1]), while

(ii) is made easily from definitions.
The next proposition characterizes solutions to the VIP(C, F) and DVIP(C, F).
Proposition 2.2. For x∗ ∈ C and y∗ ∈ C the following are equivalent:
(i) x∗ ∈ C∗ and y∗ ∈ C∗.
(ii) 〈F (x∗), x∗ − y〉 ≤ 〈F (x∗), x∗ − y∗〉 ≤ 〈F (x), x− y∗〉 for all x, y ∈ C.
For each x∗ ∈ C∗ and each y∗ ∈ C∗, by taking y = x∗ and x = y∗ in (ii) of

Proposition 2.2, we have 〈F (x∗), x∗ − y∗〉 = 0. This implies that y∗ ∈ Γ(x∗) and
x∗ ∈ Λ(y∗). So C∗ is contained in Γ(x∗), while C∗ is in Λ(y∗).

Proposition 2.3. The following hold:
(i) C∗ ⊆ Γ(x∗) for each x∗ ∈ C∗.
(ii) C∗ ⊆ Λ(x∗) for each x∗ ∈ C∗.

In particular, if F is continuous on C∗, then C∗ ⊆ Γ(x∗) for each x∗ ∈ C∗; if F is
pseudomonotone on C∗, then C∗ ⊆ Λ(x∗) for each x∗ ∈ C∗.
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Note that the following hold:

〈F (x∗), x∗ − y∗〉 = 0 for each x∗ ∈ C∗ and y∗ ∈ Γ(x∗);
〈F (y∗), x∗ − y∗〉 = 0 for each x∗ ∈ C∗ and y∗ ∈ Λ(x∗).

According to these, we have the following equivalences.
Proposition 2.4. The following hold:
(i) For each x∗ ∈ C∗ and y∗ ∈ Γ(x∗),

〈F (x∗)− F (y∗), x∗ − y∗〉 = 0⇔ 〈F (y∗), x∗ − y∗〉 = 0.

(ii) For each x∗ ∈ C∗ and y∗ ∈ Λ(x∗),

〈F (x∗)− F (y∗), x∗ − y∗〉 = 0⇔ 〈F (x∗), x∗ − y∗〉 = 0.

The next proposition states that under assumption (3) the equality 〈F (x∗), x∗ −
y∗〉 = 0 is equivalent to 〈F (y∗), x∗ − y∗〉 = 0 and implies that both x∗ and y∗ are in
C∗ as long as one of them is in C∗.

Proposition 2.5. Let x∗ ∈ C and y∗ ∈ C satisfy (3).
(i) 〈F (x∗), x∗ − y∗〉 = 0⇔ 〈F (y∗), x∗ − y∗〉 = 0.
(ii) If either 〈F (x∗), x∗ − y∗〉 = 0 or 〈F (y∗), x∗ − y∗〉 = 0, then

x∗ ∈ C∗ ⇔ y∗ ∈ C∗.

From Proposition 2.5 we see that (3) is sufficient for a mapping F to possess the
cut property as below:

x∗ ∈ C∗

x∗ 	= y∗ ∈ C
〈F (y∗), x∗ − y∗〉 = 0

⎫⎬
⎭⇒ y∗ ∈ C∗,

which is required in an algorithm designed to solve concave-convex games (see [3]).
The following result shows that (3) plays an important role in revealing the rela-

tions among C∗, C∗, Γ(x∗), and Λ(x∗) like the pseudomonotonicity and continuity of
F on C.

Theorem 2.6. Let x∗ ∈ C and y∗ ∈ C satisfy (3).
(i) x∗ ∈ C∗ and y∗ ∈ Γ(x∗) iff x∗ ∈ Γ(x∗) and y∗ ∈ C∗.
(ii) x∗ ∈ C∗ and y∗ ∈ Λ(x∗) iff x∗ ∈ Λ(x∗) and y∗ ∈ C∗.
Proof. (i) Let x∗ ∈ C∗ and y∗ ∈ Γ(x∗). Then x∗ ∈ Γ(x∗) and

〈F (x∗), x∗ − y∗〉 = g(x∗) = 0,

which, by Proposition 2.5, implies y∗ ∈ C∗.
Conversely, suppose that x∗ ∈ Γ(x∗) and y∗ ∈ C∗. Then x∗ ∈ C∗ and

〈F (y∗), x∗ − y∗〉 ≥ 0,

from which, with (3), we have 0 = g(x∗) ≥ 〈F (x∗), x∗ − y∗〉 ≥ 0. So y∗ ∈ Γ(x∗).
(ii) To prove the necessity, let x∗ ∈ C∗ and y∗ ∈ Λ(x∗). Then

〈F (x∗), y∗ − x∗〉 ≥ 0 and 〈F (y∗), x∗ − y∗〉 = G(x∗) ≥ 0,
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which together with (3) implies 〈F (x∗), x∗ − y∗〉 ≥ 0. Thus 〈F (x∗), x∗ − y∗〉 = 0. But
this in turn implies 〈F (y∗), y∗ − x∗〉 ≥ 0. Thus

G(x∗) = 〈F (y∗), x∗ − y∗〉 = 0,

that is, x∗ ∈ Λ(x∗) and, by Proposition 2.5, y∗ must lie in C∗.
Next we prove the sufficiency. Suppose that x∗ ∈ Λ(x∗) and y∗ ∈ C∗. Then

0 = G(x∗) ≥ 〈F (y∗), x∗ − y∗〉 ≥ 0,

that is, y∗ ∈ Λ(x∗) and 〈F (y∗), x∗ − y∗〉 = 0. It follows from Proposition 2.5 that
x∗ ∈ C∗.

Corollary 2.7. Let x∗ ∈ C and y∗ ∈ C satisfy (3).

(i) If x∗ ∈ C∗, then y∗ ∈ C∗ ⇔ y∗ ∈ Γ(x∗).
(ii) If x∗ ∈ C∗ ∩ Λ(y∗), then y∗ ∈ C∗ ⇔ y∗ ∈ C∗.
(iii) If x∗ ∈ C∗ ∩ C∗, then y∗ ∈ C∗ ⇔ y∗ ∈ Λ(x∗).
Note that for points x∗ and y∗ in C∗ assumption (3) implies

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0.

This turns out to be true for each pair of points x∗ and y∗ in a set containing C∗ as
below.

Proposition 2.8. Let k > 0. If both x∗ and y∗ lie in Γ(x∗)∪Λ(x∗)∪C∗∪Γ(y∗)∪
Λ(y∗), then the following statements satisfy

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v) :

(i) F (y∗) = kF (x∗).
(ii) {v ∈ H : 〈F (x∗), v〉 ≥ 0} = {v ∈ H : 〈F (y∗), v〉 ≥ 0}.
(iii)

{ 〈F (x∗), x∗ − y∗〉 ≥ 0⇔ 〈F (y∗), x∗ − y∗〉 ≥ 0,
〈F (x∗), y∗ − x∗〉 ≥ 0⇔ 〈F (y∗), y∗ − x∗〉 ≥ 0.

(iv) 〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0.
(v) 〈F (x∗)− F (y∗), x∗ − y∗〉 = 0.

Hence, if (iv)((v))⇒ (i), then (i)⇔ (ii)⇔ (iii)⇔ (iv)(⇔ (v)).

Proof. The implications “(i) ⇒ (ii) ⇒ (iii)” and “(iv) ⇒ (v)” are immediate.

To prove (iii) ⇒ (iv), we suppose that (iii) holds. According to Proposition 2.1,
we need only to prove that (iv) holds for the following four cases:

x∗ ∈ C∗ ∪ Λ(y∗) and y∗ ∈ Λ(x∗) ∪ C∗, x∗ ∈ C∗ ∪ Λ(y∗) and y∗ ∈ Γ(x∗) ∪ Λ(y∗),

x∗ ∈ Λ(x∗)∪Γ(y∗) and y∗ ∈ Λ(x∗)∪C∗, x∗ ∈ Λ(x∗)∪Γ(y∗) and y∗ ∈ Γ(x∗)∪Λ(y∗).

We omit the further proof since it is trivial.

Remark 2.1. For x∗ ∈ C∗ and y∗ ∈ Λ(x∗), since we already have 〈F (y∗), x∗−y∗〉 =
0, both (iv) and (v) in Proposition 2.8 are equivalent to 〈F (x∗), x∗ − y∗〉 = 0. In
addition, if F is pseudomonotone∗ on C, then (i)–(iv) in Proposition 2.8 are equivalent
to one another.
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3. Minimum principle sufficiency property. Under the assumption that F
be pseudomonotone and continuous on C ⊆ Rn, Marcotte and Zhu [9] showed that the
weak sharpness of C∗ implies that the VIP(C, F) has the minimum principle sufficiency
property. In this section, we prove that this implication is still valid whenever (3)
holds for each x∗ ∈ C∗ and y∗ ∈ C∗. We need the following result in which a sufficient
condition is also presented for the VIP(C, F) to have the minimum principle sufficiency
property.

Proposition 3.1.

(i) If (3) holds for x∗ ∈ C∗ and all y∗ ∈ Γ(x∗), then Γ(x∗) ⊆ C∗.
(ii) If (3) holds for x∗ ∈ C∗ and all y∗ ∈ Γ(x∗), then x∗ ∈ Γ(x∗) = C∗.
(iii) If (3) holds for x∗ ∈ C∗ ∪ C∗ and all y∗ ∈ C∗, then x∗ ∈ C∗ ⊆ Γ(x∗).
Proof. Since (i) is direct from Theorem 2.6, it suffices to show (ii) and (iii).
Let x∗ ∈ C∗. For any fixed y∗ in Γ(x∗) satisfying (3), we have

0 = G(x∗) ≥ 〈F (y∗), x∗ − y∗〉 and 〈F (x∗), x∗ − y∗〉 = g(x∗) ≥ 0.

By (3), the first inequality above implies 〈F (x∗), x∗ − y∗〉 ≤ 0, so

g(x∗) = 〈F (x∗), x∗ − y∗〉 = 0.

Thus x∗ ∈ Γ(x∗) (that is, x∗ ∈ C∗) and, by Proposition 2.5, we obtain y∗ ∈ C∗. Since
y∗ is arbitrary, Γ(x∗) ⊆ C∗. On the other hand, if y∗ ∈ C∗, then

0 ≤ 〈F (y∗), x∗ − y∗〉 ≤ G(x∗) = 0.

By Proposition 2.5, x∗ ∈ C∗ and 〈F (x∗), x∗ − y∗〉 = 0 = g(x∗). Thus y∗ ∈ Γ(x∗).
Hence C∗ ⊆ Γ(x∗). Therefore (ii) follows.

To show (iii), let (3) hold for x∗ ∈ C∗ ∪ C∗ and all y∗ ∈ C∗. If x∗ ∈ C∗, then it
follows from Theorem 2.6 that x∗ ∈ C∗ ⊆ Γ(x∗). If x∗ ∈ C∗, then

0 ≤ 〈F (y∗), y∗ − x∗〉 ≤ g(y∗) = 0,

that is, 〈F (y∗), y∗ − x∗〉 = 0. It follows from Proposition 2.5 that x∗ ∈ C∗ and

〈F (x∗), x∗ − y∗〉 = 0,

which implies that y∗ ∈ Γ(x∗) for all y∗ ∈ C∗. Thus C∗ ⊆ Γ(x∗). Therefore (iii)
follows.

From Propositions 2.3 and 3.1 we see that the VIP(C, F) has the minimum
principle sufficiency property when C∗ ⊆ C∗ and (3) holds for each x∗ ∈ C∗ and each
y∗ ∈ Γ(x∗).

In [9, Theorem 4.2], Marcotte and Zhu presented a sufficient condition for the
VIP(C, F) to have the minimum principle sufficiency property in terms of the pseu-
domonotonicity of F and the concepts of tangent cone and normal cone to C. Simi-
larly, we give a sufficient condition for this as follows.

Theorem 3.2. Let C1 be a nonempty closed convex subset of C and let

K1 := int
⋂
x∈C1

[TC(x) ∩NC1(x)]
◦

be nonempty. Then, for each v ∈ K1, arg max{〈v, x〉 : x ∈ C} ⊆ C1. Hence, if
C1 = C∗ and −F (x∗) ∈ K1 for each x∗ ∈ C∗, then

C∗ ⊆ C∗ = Γ(x∗) for each x∗ ∈ C∗.
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If F is also continuous on C∗ or (3) holds for each x∗ ∈ C∗ and each y∗ ∈ C∗, then

C∗ = C∗ = Γ(x∗) for each x∗ ∈ C∗.

Proof. Let x ∈ C but x 	∈ C1. Then, since C1 is closed and convex, there exists a
unique vector x ∈ C1 such that ‖x− x‖ = dC1(x). This implies that

x− x ∈ TC(x) ∩NC1
(x),

and for each v ∈ K1 there exists δ > 0 such that

〈v + u, x− x〉 < 0 for all u ∈ δB,
from which we obtain

〈v, x〉 < 〈v, x〉 − δ

2
‖x− x‖.

Thus x 	∈ arg max{〈v, y〉 : y ∈ C} ⊆ C1.
Next, if C1 = C∗ and −F (x∗) ∈ K1 for each x∗ ∈ C∗, then

x∗ ∈ Γ(x∗) = arg max{〈−F (x∗), x〉 : x ∈ C} ⊆ C∗,

from which it follows that C∗∪Γ(x∗) ⊆ C∗. In addition, by Proposition 2.3, C∗ ⊆ Γ(x∗)
for each x∗ ∈ C∗. Therefore

C∗ ⊆ C∗ = Γ(x∗) for each x∗ ∈ C∗.

Moreover, if either F is continuous on C∗ or (3) holds for each x∗ ∈ C∗ and
each y∗ ∈ C∗, then the above inclusion reduces to an equality since in either case
C∗ ⊆ C∗ holds (see (iii) in Proposition 3.1 for the second case). Hence the result
desired follows.

Remark 3.1. When F is continuous on C ⊆ Rn and C∗ is convex, the first part
of the result in Theorem 3.2 for C1 = C∗, that is,

arg max{〈v, x〉 : x ∈ C} ⊆ C∗,

was first established by Marcotte and Zhu in [9, Theorem 4.2]. Since in this case we
have C∗ ⊆ C∗, the result in Theorem 3.2 corresponding to C1 = C∗ implies the above
inclusion. In addition, if −F (x∗) ∈ K1 for each x∗ ∈ C∗, then C∗ coincides not only
with Γ(x∗) but also with C∗ without the assumption of pseudomonotonicity. Finally,
if C∗ = C∗, the first part of result in Theorem 3.2 shows that the weak sharpness of
C∗ implies the minimum sufficiency property of it.

4. Maximum principle sufficiency property. Like the minimum principle
sufficiency property, the maximum principle sufficiency property is also very useful
in characterizing the weak sharpness of C∗. To see this, we present several sufficient
conditions for such a property in terms of (3) in this section.

Theorem 4.1. Let C∗ 	= ∅.
(i) If (3) holds for x∗ ∈ C∗ ∪ C∗ and all y∗ ∈ Λ(x∗), then x∗ ∈ Λ(x∗) = C∗.
(ii) If for each x∗ ∈ C∗ there exists y∗ ∈ Λ(x∗) such that (3) holds, then C∗ ⊆ C∗.
(iii) If for each x∗ ∈ C∗ there exists y∗ ∈ C∗ such that (3) holds, then C∗ ⊆ C∗.
(iv) If (3) holds for each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗), then

C∗ = Λ(x∗) = C∗ for each x∗ ∈ C∗ ∪ C∗.
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Proof. (i) If (3) holds for x∗ ∈ C∗ and all y∗ ∈ Λ(x∗), then, by Theorem 2.6,

x∗ ∈ Λ(x∗) ⊆ C∗.

On the other hand, by Propositions 2.1 and 2.3, we have C∗ ⊆ Λ(x∗) and hence,
Λ(x∗) = C∗.

If (3) holds for x∗ ∈ C∗ and all y∗ ∈ Λ(x∗), then

〈F (y∗), x∗ − y∗〉 = 0 for each y∗ ∈ Λ(x∗).

In particular, by Proposition 2.3, this equality holds for each y∗ ∈ C∗. By Proposi-
tion 2.5, x∗ ∈ C∗, and hence y∗ ∈ C∗ for each y∗ ∈ Λ(x∗). So Λ(x∗) ⊆ C∗. Thus, by
Proposition 2.3 again, Λ(x∗) = C∗.

Since (ii) and (iii) are immediate from Theorem 2.6, it remains to show (iv).
Suppose that (3) holds for each x∗ ∈ C∗∪C∗ and each y∗ ∈ Λ(x∗). Then it follows

from (i) that

Λ(x∗) = C∗ for each x∗ ∈ C∗ ∪ C∗.

In addition, by (ii) and (iii), we have C∗ = C∗. Therefore (iv) follows.
In the case stated in next result, the sufficient condition in (iv) of Theorem 4.1

becomes equivalent for the VIP(C, F) to possess the maximum principle sufficiency
property.

Theorem 4.2. Let

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0⇒ F (y∗) = kF (x∗)

for some k > 0, each x∗ ∈ C∗ ∪ C∗, and each y∗ ∈ Λ(x∗). Then the following are
equivalent:

(i) (3) holds for each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗).
(ii) C∗ = Λ(x∗) = C∗ for each x∗ ∈ C∗ ∪ C∗.
(iii) For each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗),{ 〈F (x∗), x∗ − y∗〉 ≥ 0⇔ 〈F (y∗), x∗ − y∗〉 ≥ 0,

〈F (x∗), y∗ − x∗〉 ≥ 0⇔ 〈F (y∗), y∗ − x∗〉 ≥ 0.

(iv) For each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗),

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0.

(v) F (y∗) = kF (x∗) for each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗).
Proof. The equivalences (i) ⇔ (iii) ⇔ (iv) ⇔ (v) have been stated in Proposi-

tion 2.8. It suffices to show (i) ⇒ (ii) ⇒ (iv). But the first implication is just (iv) in
Theorem 4.1, while the second one follows directly from Proposition 2.2. Hence the
proof is complete.

Remark 4.1. In the case C∗ ⊆ C∗, the expression C∗∪C∗ in Theorem 4.2 reduces
to C∗, and the equality 〈F (y∗), x∗ − y∗〉 = 0 in (iv) can be omitted. When F is both
continuous and pseudomonotone∗ on C, all statements in Theorem 4.2 are true as
stated below.

Theorem 4.3. Let F be continuous on C∗ and pseudomonotone∗ on C. Then,
for some k > 0, (i)–(v) in Theorem 4.2 hold.

Proof. If F is continuous on C∗ and pseudomonotone∗ on C, then C∗ = C∗. Since
(iv) is easy to verify for x∗ ∈ C∗ and y∗ ∈ Λ(x∗), by Theorem 4.2, (i)–(v) hold.
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Remark 4.2. Since the pseudomonotonicity+ of F implies the pseudomonotonic-
ity∗ of F , if F is continuous and pseudomonotone+ on C, all statements in Theorem 4.3
hold and all are equivalent with k = 1. Hence Theorem 4.3 extends [9, Theorem 3.1],
which states that Λ(x∗) = C∗ and F (y∗) = F (x∗) hold for each x∗ ∈ C∗ and each
y∗ ∈ C∗ ∪ Λ(x∗) under the assumption that F is continuous and pseudomonotone+

on C ⊆ Rn.
Combining Proposition 3.1 with Theorem 4.1, we obtain the following sufficient

condition and necessary condition for the VIP(C, F) to have both the minimum
principle sufficiency property and the maximum principle sufficiency property.

Theorem 4.4. For some k > 0, the following statements satisfy

(v)⇒ (i)⇒ (ii)((iii))⇒ (iv) :

(i) (3) holds for each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Γ(x∗) ∪ Λ(x∗).
(ii) C∗ = Γ(x∗) = Λ(x∗) = C∗ for each x∗ ∈ C∗ ∪ C∗.
(iii) For each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Γ(x∗) ∪ Λ(x∗),{ 〈F (x∗), x∗ − y∗〉 ≥ 0⇔ 〈F (y∗), x∗ − y∗〉 ≥ 0,

〈F (x∗), y∗ − x∗〉 ≥ 0⇔ 〈F (y∗), y∗ − x∗〉 ≥ 0.

(iv) For each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Γ(x∗) ∪ Λ(x∗),

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0.

(v) F (y∗) = kF (x∗) for each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Γ(x∗) ∪ Λ(x∗).
Hence, if also (iv)⇒ (v), then (i)–(v) are all equivalent.

Proof. By Proposition 2.8, we already have (v) ⇒ (i) ⇒ (iii) ⇒ (iv). In addition,
(i) ⇒ (ii) is a direct result of Proposition 3.1(ii) and Theorem 4.1(iv). So it remains
to show that (ii) ⇒ (iv).

Let (ii) hold. Then, for each x∗ ∈ C∗ ∪ C∗,

x∗ ∈ C∗ = C∗ and Γ(x∗) ∪ Λ(x∗) = Γ(x∗) ∩ Λ(x∗).

Thus, for each y∗ ∈ Γ(x∗) ∪ Λ(x∗), the two equalities in (iv) hold, and hence (iv)
follows.

Remark 4.3. When F is pseudomonotone∗ on C, since the assumption in Theo-
rem 4.4 holds, the statements (i)–(v) are equivalent. In particular, if F is continuous
and pseudomonotone+

∗ on C, then C∗ has the minimum principle sufficiency property
and maximum principle sufficiency property iff (3) holds for each x∗ ∈ C∗ and each
y∗ ∈ Γ(x∗) ∪ Λ(x∗) iff F equals F (x∗) over Γ(x∗) ∪ Λ(x∗) for each x∗ ∈ C∗.

5. Weak sharpness of C∗. In [9], Marcotte and Zhu showed that C∗ is weakly
sharp iff the dual gap function G has an error bound on C under the assumption that
C is compact and F is continuous and pseudomonotone+ over C. In this section,
we present several equivalent conditions for C∗ to be weakly sharp in terms of error
bounds of G. The methods we use are similar to those of Marcotte and Zhu [9].

Theorem 5.1. Let G be Gâteaux differentiable and locally Lipschitz on C∗.
Suppose that each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗) satisfy (3) and

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0⇒ F (y∗) = F (x∗).

Then C∗ is weakly sharp iff there exists µ > 0 such that

dC∗(x) ≤ µG(x) for each x ∈ C.(4)
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Proof. Suppose that each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗) satisfy (3) and

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0⇒ F (y∗) = F (x∗).

Then, by Theorem 4.2, C∗ = C∗ and

F (y∗) = F (x∗) for each y∗ ∈ Λ(x∗) = C∗ and each x∗ ∈ C∗.

If the set C∗ is weakly sharp, then there exists α > 0 such that

αB ⊆ F (x∗) + [TC(x∗) ∩NC∗(x∗)]◦ for each x∗ ∈ C∗,

where B is the closed unit ball in H. This, as proved in [9], is equivalent to saying
that

〈F (x∗), v〉 ≥ α‖v‖ for each v ∈ TC(x∗) ∩NC∗(x∗).

Now for each x ∈ C, since C∗(= C∗) is convex, there exists x ∈ C∗ such that

‖x− x‖ = dC∗(x),

which implies that x− x ∈ TC(x) ∩NC∗(x). Thus

G(x) ≥ 〈F (x), x− x〉 ≥ α‖x− x‖ = αdC∗(x).

Taking µ = α−1, we obtain (4).
Conversely, suppose that (4) is satisfied for some µ > 0.We claim that for α = µ−1

there holds

αB ⊆ F (x∗) + [TC(x∗) ∩NC∗(x∗)]◦ for each x∗ ∈ C∗.(5)

This is obvious for each point x∗ ∈ C∗ satisfying TC(x∗) ∩NC∗(x∗) = {0}.
Next we show that (5) still holds for any x∗ in C∗ with TC(x∗)∩NC∗(x∗) 	= {0}.
Let x∗ ∈ C∗ and 0 	= v ∈ TC(x∗) ∩NC∗(x∗). Then

〈v, v〉 > 0 and 〈v, y∗ − x∗〉 ≤ 0 for each y∗ ∈ C∗.

This implies that C∗ is separated from x∗ + v by the hyperplane

Hv := {x ∈ H : 〈v, x− x∗〉 = 0}.
In addition, for each sequence {tk} in (0,+∞) decreasing to 0, by [2, Theorem 2.4.5],
there exists a sequence {vk} such that vk → v and x∗ + tkvk ∈ C for sufficiently large
k. Thus 〈v, vk〉 > 0 for sufficiently large k, and hence we can assume that x∗ + tkvk
lies in the open set {x ∈ H : 〈v, x− x∗〉 > 0} which is separated from C∗ by Hv. So

dC∗(x∗ + tkvk) ≥ dHv (x∗ + tkvk) =
tk〈vk, v〉
‖v‖ .

Since G is Lipschitz near x∗ and G(x∗) = 0,

〈∇G(x∗), v〉 = lim
k→+∞

G(x∗ + tkvk)−G(x∗)
tk

≥ lim inf
k→+∞

αdC∗(x∗ + tkvk)

tk
≥ α‖v‖.
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Note that ∇G(x∗) = F (x∗) due to the Gâteaux differentiability of G at x∗ and the
inequality

G(x) ≥ 〈F (x∗), x− x∗〉 for all x ∈ H.
For each u ∈ B we have

〈αu− F (x∗), v〉 = 〈αu, v〉 − 〈∇G(x∗), v〉 ≤ α‖v‖ − α‖v‖ = 0.

This implies that (5) is valid. Since F is constant over C∗, C∗ is weakly sharp.
Recall that for a lower semicontinuous convex function f : H → (−∞,+∞] the

subdifferential of f at x in the sense of convex analysis is the set

∂f(x) := {ξ ∈ H : 〈ξ, y − x〉 ≤ f(y)− f(x) for each y ∈ H}.
It is easy to see that the indicator function associated with a convex set C given by

ψC(x) :=

{
0 if x ∈ C,
+∞ if x 	∈ C

satisfies ∂ψC(x) = NC(x) for x ∈ C.
Using the concept of the above subdifferential, Wu and Ye [11] showed that a

proper lower semicontinuous convex function f satisfies

f(x) ≥ αdS(x) for some α > 0 and each x ∈ H
iff ‖ξ‖ ≥ α for each ξ ∈ ∂f(x) and each x ∈ f−1(0,+∞), where S := {x ∈ H : f(x) ≤
0}. Based on this result and Theorem 5.1, we present another character of weak sharp
solutions of the VIP(C, F) as follows.

Theorem 5.2. Let G be Gâteaux differentiable and locally Lipschitz on C∗.
Suppose that each x∗ ∈ C∗ ∪ C∗ and each y∗ ∈ Λ(x∗) satisfy (3) and

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0⇒ F (y∗) = F (x∗).

Then the following are equivalent:
(i) C∗ is weakly sharp.
(ii) Γ(x∗) = C∗ and there exists α > 0 such that

αB ∩ [F (x∗) +NC(x)] = ∅ for each x∗ ∈ C∗ and each x ∈ C\C∗.(6)

Proof. Based on Theorem 4.2,

C∗ = Λ(x∗) = C∗ and F (y∗) = F (x∗) for each x∗ ∈ C∗ and each y∗ ∈ Λ(x∗).

(i) ⇒ (ii): Let C∗ be weakly sharp. Then, by Theorem 3.2, Γ(x∗) = C∗ = C∗ for
each x∗ ∈ C∗. In addition, as in the proof of Theorem 5.1, there exists α > 0 such
that, for each x∗ ∈ C∗,

〈F (x∗), v〉 ≥ α‖v‖ for each v ∈ TC(x∗) ∩NC∗(x∗).

Since for each x ∈ C there exists x ∈ C∗ such that ‖x − x‖ = dC∗(x), which implies
that x− x ∈ TC(x) ∩NC∗(x),

〈F (x), x− x〉 ≥ α‖x− x‖ = αdC∗(x).
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Since F (x∗) = F (y∗) and 〈F (x∗), x∗ − y∗〉 = 0 for any x∗, y∗ ∈ C∗ = C∗, the lower
semicontinuous convex function

f(x) := 〈F (x∗), x− x∗〉+ ψC(x) for x ∈ H
is well defined and satisfies

f(x) ≥ αdC∗(x) for each x ∈ H.
Denote S := {x ∈ H : f(x) ≤ 0}. It is easy to see that

S = {x ∈ C : 〈F (x∗), x− x∗〉 ≤ 0} = Γ(x∗) = C∗.

So we have

f(x) ≥ αdS(x) for each x ∈ H.
Thus it follows from [11, Theorem 7] that

‖ξ‖ ≥ α for each ξ ∈ ∂f(x) and each x ∈ f−1(0,+∞) = C\C∗.

This implies that (ii) holds since ∂f(x) = F (x∗) + ∂ψC(x) = F (x∗) +NC(x).
(ii)⇒ (i): Suppose that Γ(x∗) = C∗ for each x∗ ∈ C∗ and there exists α > 0 such

that (6) holds. Then, for the above f,

‖ξ‖ ≥ α for each ξ ∈ ∂f(x) and each x ∈ f−1(0,+∞).

For each x∗ ∈ C∗, by [11, Theorem 7] again, we have

f(x) ≥ αdS(x) = αdΓ(x∗)(x) = αdC∗(x) for each x ∈ H,
that is,

〈F (x∗), x− x∗〉 ≥ αdC∗(x) for each x∗ ∈ C∗ and each x ∈ C.
Thus

G(x) ≥ 〈F (x∗), x− x∗〉 ≥ αdC∗(x) for each x ∈ C.
Hence, by Theorem 5.1, C∗ is weakly sharp.

Next we apply Theorems 5.1 and 5.2 to the VIP(C, F) in which F is pseudomono-
tone+ to obtain the following equivalent condition for the weak sharpness of C∗.

Theorem 5.3. Let each x∗ ∈ C∗ and each y∗ ∈ Λ(x∗) satisfy

〈F (x∗)− F (y∗), x∗ − y∗〉 = 0.

Suppose that F is pseudomonotone+ over C and that G is Gâteaux differentiable and
locally Lipschitz on C∗. Then the following are equivalent:

(i) C∗ is weakly sharp.
(ii) There exists µ > 0 such that dC∗(x) ≤ µG(x) for each x ∈ C.
(iii) Γ(x∗) = C∗ and there exists α > 0 such that

αB ∩ [F (x∗) +NC(x)] = ∅ for each x∗ ∈ C∗ and each x ∈ C\C∗.

If C is also a polyhedral set in Rn, then (i)–(iii) are all equivalent to
(iv) Γ(x∗) = C∗ for each x∗ ∈ C∗.
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Proof. Based on Theorems 5.1 and 5.2, it suffices to verify the condition in
Theorem 5.1 for the equivalences (i) ⇔ (ii) ⇔ (iii).

Since F is pseudomonotone+, C∗ ⊆ C∗ = C∗ ∪ C∗. By Theorem 4.2, we need to
show only that each x∗ ∈ C∗ and each y∗ ∈ Λ(x∗) satisfy

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0.

But this is obvious according to Proposition 2.4 and the assumption.
Now if H = Rn and C is a polyhedral set, then for each x∗ ∈ C∗ the linear

program

min{〈F (x∗), x− x∗〉 : x ∈ C}
has the solution set Γ(x∗) and, according to [7, Lemma 1], there exists α > 0 such
that

〈F (x∗), x− x〉 ≥ α‖x− x‖ for each x ∈ C,
where x ∈ Γ(x∗) and ‖x− x‖ = dΓ(x∗)(x). If Γ(x∗) = C∗, then

〈F (x∗), x− x∗〉 ≥ αdC∗(x) for each x ∈ C,
that is,

〈F (x∗), x− x∗〉+ ψC(x) ≥ αdC∗(x) for each x ∈ Rn.
Based on [11, Theorem 7], we obtain

αB ∩ [F (x∗) +NC(x)] = ∅ for each x ∈ C\C∗.

This shows that (iv) implies (iii), and hence (iii) ⇔ (iv). Therefore (i)–(iv) are
equivalent.

Remark 5.1. (i) Under the assumption in Theorem 5.2 or 5.3,

C∗ = Λ(x∗) for each x∗ ∈ C∗,

so Theorems 5.2 and 5.3 also hold with Γ(x∗) = C∗ replaced with Γ(x∗) = Λ(x∗).
(ii) Unlike [9, Theorem 4.1], we do not assume the compactness of C in The-

orems 5.1 and 5.3. However, if C ⊆ Rn is compact and F is continuous and
pseudomonotone+ on C, then the conditions in Theorem 5.3 are satisfied since in
this case C∗ = C∗, G is Gâteaux differentiable (see [9, Theorem 3.1]) and locally
Lipschitz on C∗, and 〈F (y∗), x∗ − y∗〉 = 0 for x∗ ∈ C∗ and y∗ ∈ Λ(x∗) (which to-
gether with the pseudomonotonicity of F means 〈F (x∗), x∗ − y∗〉 = 0). Therefore,
Theorems 5.1 and 5.3 extend [9, Theorem 4.1]. In particular, when C is a polyhedral,
Theorem 5.3 covers [9, Theorem 4.3], which states that C∗ is weakly sharp iff the
VIP(C, F) possesses the minimum principle sufficiency property.

Note that in the case C = H the equivalence in Theorem 5.1 means that G has
an error bound on H iff

−F (x∗) ∈ int
⋂
x∈C∗

[NC∗(x∗)]◦ = int
⋂

x∈C∗
TC∗(x) for each x∗ ∈ C∗,

which is in turn sufficient for C∗ to be weakly sharp whether C = H or not, since for
x∗ ∈ C∗ we have

TC∗(x∗) = [NC∗(x∗)]◦ ⊆ [TC(x∗) ∩NC∗(x∗)]◦.
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The following result states that the above equivalence is still valid for any nonempty
convex set C in H, and hence the two equivalent statements are both sufficient for
the weak sharpness of C∗.

Theorem 5.4. Let G be Gâteaux differentiable on C∗. Suppose that each x∗ ∈
C∗ ∪ C∗ and each y∗ ∈ Λ(x∗) satisfy (3) and

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0⇒ F (y∗) = F (x∗).

Then the following are equivalent:
(i) −F (x∗) ∈ int

⋂
x∈C∗ TC∗(x) for each x∗ ∈ C∗.

(ii) There exists µ > 0 such that

dC∗(x) ≤ µG(x) for each x ∈ H.(7)

Proof. As in the proof of Theorem 5.1, we have C∗ = C∗ and

F (y∗) = F (x∗) for each y∗ ∈ Λ(x∗) = C∗ and each x∗ ∈ C∗.

If (i) holds, then there exists α > 0 such that

αB ⊆ F (x∗) + TC∗(x∗) = F (x∗) + [NC∗(x∗)]◦ for each x∗ ∈ C∗,

where B is the closed unit ball in H. Thus for each x∗ ∈ C∗ and every u ∈ B we have

αu− F (x∗) ∈ [NC∗(x∗)]◦.

Therefore

〈αu− F (x∗), v〉 ≤ 0 for each v ∈ NC∗(x∗).

Taking u = v/‖v‖ for v 	= 0 yields

〈F (x∗), v〉 ≥ α‖v‖ for each v ∈ NC∗(x∗).

Now for each x ∈ H, since C∗ is convex, there exists x ∈ C∗ such that

‖x− x‖ = dC∗(x),

which implies that x− x ∈ NC∗(x). Thus

G(x) ≥ 〈F (x), x− x〉 ≥ α‖x− x‖ = αdC∗(x).

Taking µ = α−1, we obtain (7).
Conversely, suppose that (7) is satisfied for some µ > 0. To obtain (i), it suffices

to show that for α = µ−1 there holds

αB ⊆ F (x∗) + TC∗(x∗) for each x∗ ∈ C∗.(8)

Obviously, if x∗ ∈ C∗ satisfies NC∗(x∗) = {0}, then (8) holds.
Next we show that (8) also holds for any x∗ in C∗ with NC∗(x∗) 	= {0}.
Let x∗ ∈ C∗ and 0 	= v ∈ NC∗(x∗). Then

〈v, v〉 > 0 and 〈v, y∗ − x∗〉 ≤ 0 for each y∗ ∈ C∗.
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Hence C∗ is separated from x∗ + v by the hyperplane Hv passing through x∗ and
orthogonal to v. In addition, for each sequence {tk} in (0,+∞) decreasing to 0, x∗+tkv
lies in the open set {x ∈ H : 〈v, x − x∗〉 > 0} which is separated from C∗ by Hv, so
we have

dC∗(x∗ + tkv) ≥ dHv
(x∗ + tkv) = tk‖v‖,

from which and from the inequality G(x∗ + tkv) ≥ αdC∗(x∗ + tkv) it follows that

〈∇G(x∗), v〉 = lim
k→+∞

G(x∗ + tkv)−G(x∗)
tk

≥ α‖v‖.

Thus for each u ∈ B we have

〈αu− F (x∗), v〉 = 〈αu, v〉 − 〈∇G(x∗), v〉 ≤ α‖v‖ − α‖v‖ = 0.

This implies that (8) holds since 0 	= v ∈ NC∗(x∗) is arbitrary and F is constant over
C∗.

To conclude this paper, we derive a finite convergence result for a class of al-
gorithms for solving variational inequalities under the condition that C∗ be weakly
sharp.

Theorem 5.5. Let F be continuous on C∗ and let C∗ be weakly sharp. Suppose
that each x∗ ∈ C∗ and each y∗ ∈ Λ(x∗) satisfy (3) and

〈F (x∗), x∗ − y∗〉 = 0 and 〈F (y∗), x∗ − y∗〉 = 0⇒ F (y∗) = F (x∗).

If {xk} is a sequence in H satisfying either
(i) dC∗(xk)→ 0 and F is uniformly continuous on C∗, or
(ii) xk converges to some x∗ ∈ C∗,

then Γ(xk) ⊆ C∗ for sufficiently large k.
Proof. For any fixed x∗ ∈ C∗, under the given conditions, it follows from Theo-

rem 4.2 that C∗ = Λ(x∗) = C∗ and F (y∗) = F (x∗) for each y∗ ∈ C∗. Since the set
C∗ is weakly sharp, that is,

−F (x∗) ∈ int
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ for each x∗ ∈ C∗,

there exists α > 0 such that

−F (x∗) + αB ⊆
⋂

x∈C∗
[TC(x) ∩NC∗(x)]◦ for each x∗ ∈ C∗,

where B is the closed unit ball in H.
If {xk} is a sequence satisfying (i), then, since C∗ is convex, there exists unique

x∗k ∈ C∗ = C∗ such that ‖xk − x∗k‖ = dC∗(xk) and, by the uniform continuity of F on
C∗,

‖F (xk)− F (x∗)‖ = ‖F (xk)− F (x∗k)‖ < α for sufficiently large k,

that is,

−F (xk) ∈ int
⋂
x∈C∗

[TC(x) ∩NC∗(x)]◦ for sufficiently large k.
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Obviously, this still holds if {xk} is a sequence satisfying (ii). Therefore we obtain
from Theorem 3.2 that Γ(xk) ⊆ C∗ for sufficiently large k.

Remark 5.2. Motivated by [9, Theorem 5.1], Theorem 5.5 has the same conclusion
as in that theorem. However, in [9, Theorem 5.1], F is assumed to be not only
continuous and pseudomonotone+ on C ⊆ Rn but also uniformly continuous on an
open set containing C∗ and {xk}, so the condition in Theorem 5.5 is weaker.
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Abstract. Through a new (parametric) linear programming approach, we derive a formula for
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1. Introduction. In this paper we discuss the finite sample breakdown point
of the �1-regression estimator, with a fixed design matrix X and contamination re-
stricted to the dependent variable y, which we denote by α(�1,y|X) to indicate that
the design matrix X is given. The finite sample breakdown point, or conditional
breakdown point, α(�1,y|X), was introduced by Donoho and Huber [2]. It is espe-
cially important in planned experiments, where the design matrix is under the control
of the experimenter. Its study has been addressed by, among others, He et al. [7],
Ellis and Morgenthaler [6], and Mizera and Müller [11, 12]. We introduce the notions
of the q-strength and the s-stability of X based on a parametric linear programming
(LP) approach to the problem, which permits us to derive a formula for α(�1,y|X).
We show that our result is consistent with earlier results. The advantage of our
framework is that it permits us to compute the breakdown value via the solution of
a mixed-integer program (MIP). We present computational results for nine data sets
from the robust regression literature.

1.1. �1-regression. In linear regression we have n observations on some “de-
pendent” variable y and some number p ≥ 1 of “independent” variables x1, . . . , xp,
for each of which we know n values as well. We denote

y =

⎛
⎜⎜⎜⎜⎝

y1
·
·
·
yn

⎞
⎟⎟⎟⎟⎠ , X =

⎛
⎜⎜⎜⎜⎝

x1
1 · · · x1

p

· ·
· ·
· ·
xn1 · · · xnp

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x1

·
·
·

xn

⎞
⎟⎟⎟⎟⎠ = (x1, . . . ,xp),(1)

where y ∈ Rn is a vector of n observations and X is an n× p matrix of reals referred
to as the design matrix. x1, . . . ,xp are column vectors with n components, and
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x1, . . . ,xn are row vectors with p components corresponding to the columns and rows
of X, respectively. To rule out pathologies we assume throughout that the rank r(X)
of X is full, i.e., that r(X) = p.

The statistical linear regression model is y = Xβ + ε, where βT = (β1, . . . , βp)
is the vector of parameters of the linear model and εT = (ε1, . . . , εn) a vector of n
random variables corresponding to the error terms in the asserted relationship. An
upper index T denotes “transposition” of a vector or matrix throughout this work.
In the statistical model, the dependent variable y is a random variable for which
we obtain measurements or observations that contain some “noise” or measurement
errors that are captured in the error terms ε. For the numerical problem that we are
facing we write

y = Xβ + r,(2)

where, given some parameter vector β, the components ri of the vector rT =
(r1, . . . , rn) are the residuals that result, given the observations y, a fixed design
matrix X, and the chosen vector β ∈ Rp. In the case of �1-regression, the (optimal)
parameters β ∈ Rp are those that minimize the �1-norm ‖y−Xβ‖1 =

∑n
i=1 |yi−xiβ|

of the residuals.
The �1-regression problem can be formulated as the LP problem

min eTnr+ + eTnr−(3)

s.t. Xβ + r+ − r− = y,

β free, r+ ≥ 0, r− ≥ 0,

where en is the vector with all n components equal to 1. In (3) the residuals r of
the general form (2) are simply replaced with a difference r+ − r− of nonnegative
variables; i.e., we require that r+ ≥ 0 and r− ≥ 0, whereas the parameters β ∈ Rp
are “free” to assume positive, zero, or negative values. From the properties of LP
solution procedures, it follows that in any solution inspected by, e.g., the simplex
algorithm, either r+i > 0 or r−i > 0, but not both, thus giving |ri| in the objective
function depending on whether ri > 0 or ri < 0 for any i ∈ N , where N = {1, . . . , n}.

To characterize the optimality of coefficients β ∈ Rp for �1-regression let

Zβ =
{
i ∈ N : rβ

i = 0
}
, Uβ =

{
i ∈ N : rβ

i > 0
}
, Lβ =

{
i ∈ N : rβ

i < 0
}
,(4)

where rβ
i = yi − xiβ for all i ∈ N . Let XZ = (xi)i∈Z , eZ = (1, . . . , 1)T with |Z|

components equal to 1 (i.e., |Z| is the cardinality of the set Z). XU , eU , rU , XL, eL,
and rL are defined likewise.

Theorem 1. Let β ∈ Rp and Zβ, Uβ, Lβ be as defined in (4). β is an optimal
solution to minβ ‖y −Xβ‖1 if and only if there exists v ∈ R|Zβ| such that

vXZβ
= −eTUβ

XUβ
+ eTLβ

XLβ
, −eTZβ

≤ v ≤ eTZβ
,(5)

i.e., if and only if (5) is solvable.
Proof. The dual linear program to (3) is given by

max
{
uy : uX = 0, −eTn ≤ u ≤ eTn

}
= max

{
ur : uX = 0, −eTn ≤ u ≤ eTn

}
,

where the equality follows because uy = u(Xβ + r) = ur for all u ∈ Rn satisfying
uX = 0. Suppose condition (5) is satisfied. Define ui = 1 for i ∈ Uβ, ui = −1 for
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i ∈ Lβ, and uZβ
= v. Then u is a feasible solution to the dual, ur = eTUrU − eTLrL =

‖r‖1, and thus by the weak theorem of duality of LP, β is an optimal solution. Suppose
β is an optimal solution to the �1-regression problem, but that v ∈ R|Zβ| satisfying
(5) does not exist. By Farkas’s lemma (see, e.g., [1, Exercise 6.5] or [13]), there exist
ξ ∈ Rp, η+,η− ∈ R|Zβ| such that

XZβ
ξ + η+ − η− = 0,

(
−eTUβ

XUβ
+ eTLβ

XLβ

)
ξ + eTZβ

η+ + eTZβ
η− < 0,(6)

η+ ≥ 0, η− ≥ 0.

If Zβ = ∅, then −eTUβ
XUβ

+ eTLβ
XLβ

�= 0 since otherwise the dual linear pro-

gram, and thus (5), has a solution. In this case we choose any ξ ∈ Rp such that
(−eTUβ

XUβ
+ eTLβ

XLβ
)ξ < 0. Since rUβ

> 0 and rLβ
< 0, there exists λ > 0 such

that r+
Uβ

(λ) = rUβ
− λXUβ

ξ ≥ 0 and r−Lβ
(λ) = −rLβ

+ λXLβ
ξ ≥ 0. Consequently,

β(λ) = β + λξ, r±Zβ
(λ) = λη±, r+

Uβ
(λ), r−Uβ

(λ) = 0, r+
Lβ

(λ) = 0, and r−Lβ
(λ) define a

feasible solution to the linear program (3). Calculating its objective function we get

eTNr+(λ) + eTNr−(λ) = eTUβ
r+
Uβ

(λ) + eTLβ
r−Lβ

(λ) + λ
(
eTZβ

η+ + eTZβ
η−
)

= ‖r‖1 + λ
(
−eTUβ

XUβ
ξ + eTLβ

XLβ
ξ + eTZβ

η+ + eTZβ
η−
)
< ‖r‖1,

and consequently β is not optimal.
As one of the referees pointed out, a different proof of Theorem 1 can be obtained

by applying Theorem 2.2.1 of [8, p. 253]. We leave the details to the interested reader.

2. The breakdown point of �1-regression.

2.1. Breakdown point. The notion of the breakdown point of a regression es-
timator due to Hampel [5] can be found, e.g., in [14], and reads as follows. Suppose
we estimate the regression parameters β by some technique τ from some data (X,y)
to be βτ . If we replace any number 1 ≤ m < n of the data with some arbitrary data
(x̃i, ỹi), we obtain new data (X̃, ỹ). The same technique τ applied to (X̃, ỹ) yields

estimates βτ (X̃, ỹ) that are different from the original ones. We can use any norm

‖ · ‖ on Rp to measure the distance ‖βτ (X̃, ỹ) − βτ‖ of the respective estimates. If
we vary over all possible choices, then this distance remains either bounded or not
bounded. Let

b(m, τ,X,y) = sup
X̃,ỹ

∥∥∥βτ (X̃, ỹ)− βτ∥∥∥(7)

be the maximum bias that results when we replace at most m of the original data
(xi, yi) with arbitrary new data. Let

b(m, τ,y|X) = sup
ỹ

∥∥∥βτ (X, ỹ)− βτ∥∥∥(8)

be the maximum bias that results when we replace at most m of the original values
of the dependent variable yi with arbitrary new data. The breakdown point of τ is

α(τ,X,y) = min
1≤m<n

{m
n

: b(m, τ,X,y) is infinite
}

;
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i.e., it is the minimum number of rows of (X,y) that, if replaced with arbitrary new
data, make the regression technique τ break down. The conditional breakdown point
of τ is

α(τ,y|X) = min
1≤m<n

{m
n

: b(m, τ,y|X) is infinite
}

;

i.e., it is the minimum number of values of y that, if replaced with arbitrary new
data, make the regression technique τ break down. We divide by n to get 1

n ≤
α(τ,X,y) ≤ 1.

The breakdown point of �1-regression is 1
n or, asymptotically, 0; see, e.g., [14].

However, the determination of the conditional breakdown point α(�1,y|X) of �1-
regression is not straightforward. He et al. [7] disprove a claim of Donoho and Huber
[2, p. 166] that α(�1,y|X) is 1

2 or 50%. This was observed in [3] independently of He
et al.’s work.

Example 1. Let n = 3, p = 2 with data

(X,y) =

⎛
⎝ 1 0 2

1 2 3
1 −1 2

⎞
⎠ ,(9)

and suppose that y2 is contaminated. We replace y2 = 3 with y2 = 3 + ϑ, where
ϑ ≥ 0 is arbitrary. We calculate that the optimal �1-regression coefficients β(ϑ) are
β1(ϑ) = 7

3 + ϑ
3 , β2(ϑ) = 1

3 + ϑ
3 for all ϑ ≥ 0. The optimal residuals are r−1 (ϑ) = 1

3 + ϑ
3 ,

and r+i (ϑ) = r−i (ϑ) = 0 otherwise. Thus ‖β(ϑ) − β(0)‖1 = 2
3ϑ → +∞ for ϑ → +∞,

and thus a single contaminated observation in y may cause �1-regression to break
down.

This example can be generalized to higher dimensions. The idea that underlies the
counterexample to Donoho and Huber’s statement is the following: For any ϑ ≥ 0, the
optimal basis of (3) corresponding to the data contains row x2 of the design matrix,
but neither r+2 nor r−2 . Hence the optimal β(ϑ) depend on the amount ϑ of the
contamination of y2, and thus the maximum bias that results from the contamination
grows beyond all bounds.

2.2. q-strength and s-stability of design matrices. To study α(�1,y|X),
we consider the parametric linear program corresponding to (3),

z(ϑ) = min
{
eTnr+ + eTnr− : Xβ + r+ − r− = y+ϑg, r+ ≥ 0, r− ≥ 0

}
,(10)

where g ∈ Rn is arbitrary and ϑ ≥ 0 is some parameter. Since g ∈ Rn is arbitrary,
the sign restriction on ϑ does not matter. By varying ϑ and g, every possible con-
tamination of the components of the observation vector y ∈ Rn is obtained. It is well
known (see, e.g., [13, p. 102]) that z(ϑ) is a convex, piecewise linear function of ϑ.

Lemma 1. Let P∗ = {u ∈ Rn : uX = 0, −eTn ≤ u ≤ eTn}. Then

0 ≤ z(ϑ) = z(ϑ0) + (ϑ− ϑ0)u
0g ≤ z(ϑ0) + (ϑ− ϑ0)‖g‖1

for all ϑ ≥ ϑ0 with some finite ϑ0 ≥ 0 and u0 some extreme point of P∗.
Proof. From (10), z(ϑ) ≥ 0. Since (β, r+, r−) = (0,max{0,y + ϑg},−min{0,

y + ϑg}) is feasible for (10), it follows from the triangle inequality that z(ϑ) ≤
‖y + ϑg‖1 ≤ ‖y‖1 + ϑ‖g‖1 for all ϑ ≥ 0. Consequently, by the duality theorem
of LP,

z(ϑ) = max{u(y + ϑg) : u ∈ P∗}.(11)
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Since 0 ∈ P∗ and P∗ ⊆ {u ∈ Rn : −eTn ≤ u ≤ eTn}, P∗ is a nonempty polytope.
Hence, P∗ = conv{u1, . . . ,ur}, where ui is an extreme point of P∗ and r > 0 a finite
number. Thus

z(ϑ) = max
{
ui(y + ϑg) : 1 ≤ i ≤ r} = z(ϑ0) + (ϑ− ϑ0)u

0g(12)

for all ϑ ≥ ϑ0, where ϑ0 ≥ 0 is some finite value of the parameter and u0 a cor-
responding optimal extreme point of P∗ for ϑ = ϑ0. Finally, u0g ≤ ‖g‖1, since
−eTn ≤ u0 ≤ eTn .

To analyze α(�1,y|X), let

Fq = {(U,L,Z) : U ⊆ N , L ⊆ N − U , Z = N − (U ∪ L), |U ∪ L| = q}.

We call a design matrix X q-strong if q is the largest integer such that

vXZ = −eTUXU + eTLXL, −eTZ ≤ v ≤ eTZ(13)

is solvable for all (U,L,Z) ∈ Fq. Note the similarity between (5) and (13). Geomet-
rically, we require that q be the largest integer such that the faces

F (U,L) = P∗ ∩ {u ∈ Rn : uj = 1 for j ∈ U , uj = −1 for j ∈ L}

of the dual polytope P∗ are nonempty for all (U,L,Z) ∈ Fq. Since P∗ �= ∅, every
design matrix is q-strong for some q ≥ 0. The condition |L ∪ U | = q can be replaced
with |L ∪ U | ≤ q in the definition of q-strength. Thus 0 ≤ q ≤ n is well defined for
every design matrix X. In the numerical example of section 2.1, the dual polytope P∗

has precisely two extreme points u1 = (1,− 1
3 ,− 2

3 ) and u2 = −u1. Hence the design
matrix X of (9) is 0-strong, which explains its breakdown point of 1

3 .

Proposition 1. If X is q-strong, then q ≤ n− p and α(�1,y|X) ≤ q+1
n .

Proof. Suppose q > n − p and let (U,L,Z) ∈ Fq. Thus |Z| = n − q < p. Conse-
quently, XZξ = 0 has a solution ξ �= 0. Let η+ = η− = 0. If (−eTUXU+eTLXL)ξ �= 0,
then (ξ,η+,η−) or (−ξ,η+,η−) solve (6). Thus by Farkas’s lemma, (13) is not solv-
able, which is a contradiction. Suppose (−eTUXU + eTLXL)ξ = 0. Since r(X) = p,
there exist i ∈ U ∪L such that xiξ �= 0. If i ∈ U , let S = U − i and T = L+ i. It fol-
lows that (−eTSXS +eTTXT )ξ = 2xiξ �= 0, and thus we contradict with (S, T, Z) ∈ Fq
as in the previous case. If i ∈ L, we use S = U + i and T = L − i. Thus q ≤ n − p.
To prove the second part we proceed as follows. Since X is q-strong, there exist
(U,L,Z) ∈ Fq+1 such that (13) is not solvable. Let

gj = +1 for all j ∈ U, gj = −1 for all j ∈ L, gj = 0 otherwise,

and g = (gj)j∈N . From Lemma 1, z(ϑ) = z(ϑ0) + (ϑ− ϑ0)u
0g for all ϑ ≥ ϑ0, where

u0 is some optimal extreme point of P∗ for ϑ = ϑ0. Since (13) is not solvable for U
and L, it follows that −1 < u0

j < 1 for some j ∈ U ∪ L. Let (β(ϑ0), r
+(ϑ0), r

−(ϑ0))

be any optimal solution to (10) for ϑ = ϑ0. By complementary slackness, r+j (ϑ0) =

r−j (ϑ0) = 0, and thus xjβ(ϑ0) = yj + ϑ0gj . Let ϑ > ϑ0 be arbitrary. Since u0 is

unchanged, it follows as before that r+j (ϑ) = r−j (ϑ) = 0 in any optimal solution to

(10), and thus xjβ(ϑ) = yj + ϑgj . Consequently, |xjβ(ϑ) − xjβ(ϑ0)| = ϑ − ϑ0. By
the Cauchy–Schwarz inequality, ϑ− ϑ0 = |xj(β(ϑ)− β(ϑ0))| ≤ ‖xj‖‖β(ϑ)− β(ϑ0)‖,
and hence ‖β(ϑ) − β(ϑ0)‖ → +∞ for ϑ → +∞; i.e., the maximum bias (8) grows
beyond all bounds for g. Thus α(�1,y|X) ≤ q+1

n .
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Proposition 2.

(i) If X is q-strong and g ∈ Rn in (10) has q nonzero components, then (10)
has an optimal solution (β(ϑ), r+(ϑ), r−(ϑ)) with limϑ→∞ ‖β(ϑ)‖1 <∞.

(ii) If X is q-strong and the solution to (10) is unique for ϑ ≥ ϑ0, then
α(�1,y|X) = q+1

n .
Proof. (i) Let S = {i ∈ N : gi > 0}, T = {i ∈ N : gi < 0}. Since X is q-strong

and |S ∪ T | = q, it follows that there exists an extreme point uk ∈ P∗ such that
uk� = 1 for all � ∈ S and uk� = −1 for all � ∈ T . Since uig ≤ ‖g‖1 for all i = 1, . . . , r,
and (12) holds for arbitrarily large ϑ ≥ ϑ0, it follows that any optimal dual extreme
point u0 of P∗ satisfies u0

� = 1 for all � ∈ S and u0
� = −1 for all � ∈ T . Consequently,

z(ϑ) = z(ϑ0) + (ϑ− ϑ0)‖g‖1 for all ϑ ≥ ϑ0.(14)

Let (β(ϑ0), r
+(ϑ0), r

−(ϑ0)) be an optimal solution to (10) for ϑ = ϑ0 and define(
β(ϑ), r+(ϑ), r−(ϑ)

)
=
(
β(ϑ0), r

+(ϑ0) + (ϑ− ϑ0)g
+, r−(ϑ0) + (ϑ− ϑ0)g

−) ,
where g+ = max{0,g} and g− = −min{0,g}. (β(ϑ), r+(ϑ), r−(ϑ)) is a feasible
solution to (10) for all ϑ ≥ ϑ0. Since eTnr+(ϑ) + eTnr−(ϑ) = z(ϑ0) + (ϑ− ϑ0)‖g‖1, by
the duality theorem, it is an optimal solution to (10). Hence ‖β(ϑ)‖1 = ‖β(ϑ0)‖1 <∞
for ϑ→ +∞ and the assertion follows.

(ii) If the solution to (10) is unique for all ϑ ≥ ϑ0, then by part (i) the maximum
bias remains bounded if q components of y are contaminated. Since the contamination
vector g is perfectly arbitrary, by Proposition 1, the assertion follows.

A necessary and sufficient condition for �1-regression to have a unique solution
can be found, e.g., in [4, Proposition 3].

We next give a different condition for X to be q-strong. It yields the basis for an
algorithmic approach to find the breakdown point of �1-regression. For (U,L,Z) ∈ Fq
let

z(U,L)=min{(−eTUXU+eTLXL)ξ+eTZ(η++η−) : XZξ+η
+−η−= 0, η+ ≥ 0, η− ≥ 0}

and note that z(U,L) = 0 for U = L = ∅.
Theorem 2. A design matrix X is q-strong if and only if q is the largest integer

such that z(U,L) ≥ 0 for all (U,L,Z) ∈ Fq.
Proof. We establish sufficiency first. By assumption, for every (U,L,Z) ∈ Fq

min{(−eTUXU+eTLXL)ξ+eTZη
+ + eTZη

− : XZξ+η
+ − η− = 0, η+ ≥ 0, η− ≥ 0} = 0.

By the strong duality theorem of LP, the dual of this linear program,

max{u0 : uXZ = −eTUXU + eTLXL, −eTZ ≤ u ≤ eTZ},

has a finite optimum. Thus (13) is solvable for all choices of (U,L,Z) ∈ Fq. Suppose
that X is m-strong. It follows that m ≥ q. Suppose that m > q. Then the dual
program has a finite optimum for all (U,L,Z) ∈ Fm and, by strong duality, so does
the primal, i.e., z(U,L) = 0 for all (U,L,Z) ∈ Fm. This contradicts the assumption
that q is the largest such integer. Consequently, X is q-strong. On the other hand,
let X be q-strong. It follows that

P ∗(U,L) = {u ∈ RZ : uXZ = −eTUXU + eTLXL, −eTZ ≤ u ≤ eTZ} �= ∅
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for all (U,L,Z) ∈ Fq. P ∗(U,L) is a nonempty polytope, and thus by strong duality

0 = max{u0 : u ∈ P ∗(U,L)} = z(U,L).

Suppose that z(U,L) ≥ 0 for all (U,L,Z) ∈ Fm with m > q. Then, as in the first
part of the proof, we have a contradiction by the fact that q is the largest integer such
that (13) is solvable.

It follows from Proposition 2 that for any q-strong design matrix X and finite y,
there exist �1-regression coefficients whose bias is bounded for any set of q contam-
inated elements of y. While a q-strong X may permit �1-regression coefficients, for
which the bias grows beyond all bounds, �1-regression with q-strong X still is robust
since one needs only to ensure in such a case that the �1-regression coefficients used
are bounded. We show by a brief example that this anomaly of �1-regression due to
multiple optima to (10) can indeed occur.

Example 2. Consider the data

(X,y) =

⎛
⎜⎜⎝

1 1 0
1 2 0
1 3 0
1 4 0

⎞
⎟⎟⎠ .

It is easily verified that X is 1-strong. If the fourth observation is contaminated, we
find that the parametric linear program (10)

min
4∑
i=1

(r+i + r−i ) s.t.

β1 + β2 + r+1 − r−1 = 0,
β1 + 2β2 + r+2 − r−2 = 0,
β1 + 3β2 + r+3 − r−3 = 0,
β1 + 4β2 + r+4 − r−4 = ϑ,

where β1 and β2 are free, r+i ≥ 0 and r−i ≥ 0 for i = 1, . . . , 4, has two basic optimal
solutions given by β0

1 = β0
2 = 0, r+4 = ϑ and by β1

1 = −ϑ, β1
2 = 1

2ϑ, r+1 = 1
2ϑ,

r−3 = 1
2ϑ, respectively, where in both cases r+i = 0 and r−i = 0 otherwise. Thus

in this example we have, in agreement with Proposition 2, the existence of optimal
�1-regression coefficients β0 for which the bias is bounded, whereas for β1 the bias
grows without bounds.

We call X s-stable if s ≥ 0 is the largest integer such that

XZξ + η+ − η− = 0,
(−eTUXU + eTLXL

)
ξ + eTZ

(
η+ + η−) ≤ 0,(15)

ξ �= 0, η+ ≥ 0, η− ≥ 0,

is not solvable for any (U,L,Z) ∈ Fs. It follows that s ≥ 0 is well defined for any
X with r(X) = p. If |Z| < p, then (15) is solvable: In this case there exists ξ �= 0
such that XZξ = 0. If (−eTUXU + eTLXL)ξ ≤ 0, then ξ and η+ = η− = 0 solve
(15); otherwise, we change the sign of ξ. It follows that s ≤ n − p. Note the subtle
difference between (6) and (15). More precisely, every solution to (6) is feasible for
(15), but not vice versa.

Example 2 (continued). Consider the 1-strong design matrix X of Example 2.
r(X) = p and thus s ≥ 0. Let (U,L,Z) ∈ F1, where U = {4}, L = ∅, and Z = {1, 2, 3}.
Then ξ1 = −θ, ξ2 = θ

2 , η+
1 = η−3 = θ

2 for arbitrary real θ and η+
i = η−i = 0 otherwise

solves (15), but not (6). Thus the 1-strong design matrix X is 0-stable.
From the definition of s it follows that z(U,L) ≥ 0 for all (U,L,Z) ∈ Fs.
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Proposition 3. If X is s-stable, then s ≤ n− p and X is q-strong with q ≥ s.
Proof. For the proof, see the above discussion and Theorem 2.
As the last example shows, the inequality q ≥ s in Proposition 3 can be sharp.
Proposition 4. If X is s-stable, then α(�1,y|X) ≤ s+1

n .
Proof. Suppose that X is q-strong for some q ≥ 0. Hence q ≥ s. Thus if

s = q, the assertion follows from Proposition 1. Suppose q > s. Then there exists
(U,L,Z) ∈ Fs+1 such that (15) is solvable. Let ξ,η+,η− be any solution to (15) with
ξ �= 0. Define g ∈ Rn by gj = xjξ for all j ∈ U ∪ L, gj = 0 otherwise, and consider
the linear program (10). By Lemma 1 there exists some finite ϑ0 ≥ 0 such that (12)
holds for all ϑ ≥ ϑ0. Since X is q-strong with q ≥ s+ 1, it follows, as in the proof of
Proposition 2, that (14) holds. Define β(ϑ) = β(ϑ0) + (ϑ− ϑ0)ξ and

r+
Z (ϑ) = r+

Z (ϑ0) + (ϑ− ϑ0)η
+, r−Z (ϑ) = r−Z (ϑ0) + (ϑ− ϑ0)η

−, r±U∪L(ϑ) = r±U∪L(ϑ0).

It follows that (β(ϑ), r+(ϑ), r−(ϑ)) is feasible for (10) and, since by duality

z(ϑ) ≤ eT (r+(ϑ)+r−(ϑ)) = z(ϑ0)+(ϑ− ϑ0)e
T
Z(η++η−) ≤ z(ϑ0)+(ϑ− ϑ0)‖g‖1 = z(ϑ),

it is optimal for (10). But limϑ→+∞ ‖β(ϑ)‖ → +∞, since ξ �= 0, and thus α(�1,y|X) ≤
s+1
n .

Theorem 3. A design matrix X is s-stable if and only if α(�1,y|X) = s+1
n .

Proof. Let X be s-stable and suppose that α(�1,y|X) ≤ s
n . Then there ex-

ists g ∈ R
n with s nonzero components such that (10) has an optimal solution

(β(ϑ), r+(ϑ), r−(ϑ)) with ‖β(ϑ)‖1 → +∞ for ϑ → +∞. By Lemma 1 there exists a
finite ϑ0 ≥ 0 such that z(ϑ) = z(ϑ0) + (ϑ− ϑ0)u

0g for all ϑ ≥ ϑ0 and some extreme
point u0 of P∗. Since X is q-strong with q ≥ s it follows as before that (14) holds. By
[4, Proposition 2] there exists B ⊆ N with |B| = p such that XBβ(ϑ) = yB + ϑgB
with XB nonsingular, and thus

β(ϑ) = X−1
B yB + ϑX−1

B gB = β(ϑ0) + (ϑ− ϑ0)ξ

for all ϑ ≥ ϑ0, where ξ = X−1
B gB �= 0 because ‖β(ϑ)‖1 → +∞. It follows that

r±(ϑ) = r±(ϑ0) + (ϑ − ϑ0)η
± for all ϑ ≥ ϑ0, where η+ = max{0,g − Xξ} and

η− = −min{0,g−Xξ}, respectively. Since Xβ(ϑ) + r+(ϑ)− r−(ϑ) = y + ϑg for all
ϑ ≥ 0, we calculate

Xβ(ϑ0) + r+(ϑ0)− r−(ϑ0) + (ϑ− ϑ0)(Xξ + η+ − η−) = y + ϑ0g + (ϑ− ϑ0)g.

Consequently, Xξ + η+ − η− = g. Define (U,L,Z) ∈ Fs by

Z = {i ∈ N : gi = 0}, U = {i ∈ N − Z : gi > 0}, L = {i ∈ N − Z : gi < 0}.
From XUξ + η+

U − η−
U = gU and XLξ + η+

L − η−
L = gL, we calculate(

eTUXU − eTLXL

)
ξ + eTUη

+
U + eTLη

−
L −

(
eTUη

−
U + eTLη

+
L

)
= ‖g‖1.

Calculating the optimal objective function value of (10) from the primal solution, we
find

z(ϑ) = eTN (r+(ϑ) + r−(ϑ)) = z(ϑ0) + (ϑ− ϑ0)e
T
N (η+ + η−) = z(ϑ0) + (ϑ− ϑ0)‖g‖1.

Thus eTN (η+ + η−) = ‖g‖1 and, from the previous relation for ‖g‖1, we get(−eTUXU + eTLXL

)
ξ + eTZ

(
η+
Z + η−

Z

)
= −2

(
eTUη

−
U + eTLη

+
L

) ≤ 0.
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Hence (15) is solvable for (U,L,Z) ∈ Fs, which is a contradiction. Thus α(�1,y|X) >
s
n , and by Proposition 4 we have equality. Suppose α(�1,y|X) = s+1

n . By definition,
s is the smallest integer with this property. Suppose X is t-stable for some integer
t ≥ 0. By the first part of this theorem, α(�1,y|X) = t+1

n , and thus s = t.
Proposition 2 shows that for q-strong X there exist optimal �1-regression coeffi-

cients such that the bias remains bounded when at most q data of y are contaminated.
It is thus debatable whether or not we want to talk of a “breakdown” of �1-regression
in this case. By Proposition 3 we know q ≥ s, and from Example 2 we know that q > s
is possible. The question becomes whether or not the difference q− s is “reasonably”
small. Under the assumption that the data X are in general position we can answer
the question affirmatively. (X is in general position if every p × p submatrix of X is
nonsingular.)

Proposition 5. If X is in general position, q-strong, and s-stable, then 0 ≤
q − s ≤ 1.

Proof. Suppose that q > s. Then there exist (U,L,Z) ∈ Fs+1 such that (15) has a
solution (ξ,η+

Z ,η
+
Z ). We claim that η+

i +η−i > 0 for some i ∈ Z. Otherwise, XZξ = 0
with ξ �= 0 implies that r(XZ) < p. But, by Proposition 1, |Z| = n−(s+1) ≥ n−q ≥ p,
and thus r(XZ) = p since X is in general position. The claim follows. Assume that
η+
i > 0 for some i ∈ Z. Let Z∗ = Z − i, U∗ = U , and L∗ = L+ i. We calculate

(−eTU∗XU∗ + eTL∗XL∗
)
ξ +

∑
i∈Z∗

(
η+
i + η−i

)
=
(−eTUXU + eTLXL

)
ξ +

∑
i∈Z

(
η+
i + η−i

)
+ xiξ − η+

i − η−i ≤ −2η+
i < 0

because xiξ+η+
i −η−i = 0. Hence (6) has a solution for (U∗, L∗, Z∗) ∈ Fs+2, and thus

by Farkas’s lemma the corresponding (13) is not solvable, i.e., q < s+2. If η−i > 0 for
some i ∈ Z, we let Z∗ = Z − i, U∗ = U + i, and L∗ = L and calculate likewise.

2.3. Related work on α(�1, y|X). To summarize previous results on the de-
termination of the finite sample breakdown point of �1-regression, letm∗ be the largest
integer such that for all S ⊆ N with |S| = m∗

inf
‖ξ‖=1

∑
i∈N−S |xiξ|∑
i∈N |xiξ|

>
1

2
.(16)

He et al. [7, Theorem 5.2] show (m∗ + 1)/n ≤ α(�1,y|X) ≤ (m∗ + 2)/n. Mizera and
Müller [11] prove that

α(�1,y|X) = (m∗ + 1)/n.(17)

We show that Theorem 3 is consistent with (17). From (16) it follows that

−
∑
i∈S
|xiξ|+

∑
i∈N−S

|xiξ| > 0 for all ξ ∈ Rp with ‖ξ‖ > 0.

Hence
∑
i∈S |xiξ| ≥

∑
i∈U xiξ −∑i∈L xiξ, where U,L ⊆ S with L ∩ U = ∅ and

L ∪ U = S are arbitrary. Letting Z = N − S we get, from the previous inequality,

−
∑
i∈U

xiξ +
∑
i∈L

xiξ +
∑
i∈Z
|xiξ| > 0(18)
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for all ξ ∈ Rp with ‖ξ‖ > 0 and U and L as specified. Let η+,η− ∈ R|Z| satisfy
η+,η− ≥ 0 and XZξ + η+ − η− = 0 for some ξ ∈ Rp. It follows that

η+
i + η−i ≥ |xiξ| for i ∈ Z(19)

because xiξ + η+
i − η−i = 0 and η+

i ≥ 0, η−i ≥ 0 imply η+
i ≥ −xiξ and η−i ≥ xiξ.

Thus if xiξ ≤ 0, then η+
i ≥ |xiξ|, and if xiξ > 0, then η−i ≥ |xiξ|. Equation (19)

follows. From (18) and (19),

(−eTUXU + eTLXL

)
ξ + eTZ

(
η+ + η−) > 0

for all ξ ∈ Rp with ‖ξ‖ > 0 and U and L as specified. Consequently, since S is any
subset of N with |S| = m∗, (15) has no solution for any (U,L,Z) ∈ Fm∗ . Hence X is
s-stable with s ≥ m∗. By the definition of m∗, there exists S ⊆ N with |S| = m∗ + 1
such that

inf
‖ξ‖=1

∑
i∈N−S |xiξ|∑
i∈N |xiξ|

≤ 1

2
.

Hence −∑i∈S |xiξ0| +∑i∈N−S |xiξ0| ≤ 0 for some ξ0 �= 0. Define U = {i ∈ S :

xiξ0 ≥ 0} and L = {i ∈ S : xiξ0 < 0}. Then
∑
i∈S |xiξ0| = (eTUXU − eTLXL)ξ0. Let

η+
i = max{0,xiξ0} and η−i = −min{0,xiξ0} for all i ∈ Z = N − S. It follows that

(ξ0,η+
Z ,η

−
Z ) solves (15), and thus s < m∗ + 1. Consequently, s = m∗ and the results

agree even though the proof methodologies employed are quite different.
Mizera and Müller [12] provide an enumerative algorithm for the computation of

the conditional breakdown point as follows. m∗ = |S| is the largest integer such that
(16) holds for all S ⊆ N with |S| = m∗ if and only if |E| = m∗ + 1, where m∗ + 1 is
the smallest integer such that there exists an E ⊆ N such that

max
‖ξ‖=1

∑
i∈E |xiξ|∑
i∈N |xiξ|

≥ 1

2
.(20)

Note that the restriction ‖ξ‖ = 1 can be dropped. They then show that in order to
calculate m∗ + 1 it is sufficient to compare at most

(
n
p−1

)
candidate solutions for ξ

in (20).

3. Calculating the q-strength and s-stability of a design matrix. To
calculate the q-strength and s-stability of a design matrix X, there are two roads to
take. The first is to find the q-strength or the s-stability of X by enumeration. The
second is to formulate an MIP and solve the program. Mizera and Müller [12] provide
a “special purpose” enumerative algorithm. Here we use the results of section 2 to
formulate the problem as an MIP. Thus, in order to calculate, a user need only
generate the corresponding constraint set for the data of his/her design matrix X (a
useful exercise for a graduate student) and solve the problem using some commercially
available MIP solver, such as CPLEX.

By Theorem 2, X is not q-strong if for some (U,L,Z) ∈ Fq there exist ξ ∈ Rp,
η+,η− ∈ R|Z| satisfying (6). Thus the problem of determining the q-strength of X
consists of finding the smallest integer such that (6) is solvable for some (U,L,Z) ∈ Fq.
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We claim that the following MIP, called MIP1, does just that:

min

n∑
i=1

ui + �i

s.t. xiξ + η+
i − η−i + si − ti = 0 for i = 1, . . . , n,(21)

si −Mui ≤ 0, si +Mui ≥ 0 for i = 1, . . . , n,(22)

ti −M�i ≤ 0, ti +M�i ≥ 0 for i = 1, . . . , n,(23)

η+
i + η−i +Mui +M�i ≤M for i = 1, . . . , n,(24)

ui + �i ≤ 1 for i = 1, . . . , n,(25)
n∑
i=1

si + ti + η+
i + η−i ≤ −ε,(26)

ξ, s, t free, η+ ≥ 0, η− ≥ 0, ui, �i ∈ {0, 1} for i = 1, . . . , n.(27)

We assume that M > 0 is a suitably chosen large number and ε > 0 a small number
so that the constraints (22)–(24) corresponding to the ith observation are nonbinding
for the solution that results if we set ui or �i equal to 1 or ui = �i = 0. It can be
shown by standard arguments of mixed-integer programming that such M and ε exist.
Specifically, let U be the set of indices in which ui = 1 in any solution to MIP1, let
L be given by �i = 1, and Z = N − U − L. By (25), L ∩ U = ∅ and thus U,L,Z is
a three-way partition of N . Moreover, to every such three-way partition of N there
corresponds some setting of ui and �i equal to 0 or 1 with ui + �i ≤ 1. Equations
(22)–(24) constrain si, ti, η

+
i , and η−i such that if ui = 0, then si = 0; if �i = 0, then

ti = 0; and if ui + �i = 1, then η+
i = η−i = 0. It follows that the constraints of MIP1

produce the following system of constraints:

XZξ + η+
Z − η−

Z = 0,(28)

XUξ + sU = 0, XLξ − tL = 0,(29) ∑
i∈U

si +
∑
i∈L

ti +
∑
i∈Z

η+
i + η−i ≤ −ε(30)

since (22)–(24) are redundant. By (29) and (30),

0 > −ε ≥
∑
i∈U

si +
∑
i∈L

ti +
∑
i∈Z

η+
i + η−i =

(−eTUXU + eTLXL

)
ξ + eTZη

+
Z + eTZη

−
Z .

Thus, (6) is satisfied. Since MIP1 minimizes
∑n
i=1 ui + �i = |L ∪ U |, it determines

the smallest integer k such that X is not k-strong. Therefore, X is q-strong with
q = k − 1.

MIP1 calculates the q-strength of a design matrix X. However, if the size of X
is large, e.g., if n ≥ 100, then even with today’s powerful MIP solvers the calculation
may take too much time. Thus, we now provide guidelines for a heuristic to determine
a good upper bound of the q-strength and the s-stability of a large design matrix.

Although solving a large MIP exactly may take a long time, finding a feasible
solution is often much easier and can be accomplished quite quickly. Determining a
feasible solution to MIP1 provides an upper bound Q on the q-strength of a design
matrix. This upper bound can be improved upon if some subset S ⊂ N exists where
|S| < Q, L,U ⊂ S with L ∪ U = S, L ∩ U = ∅, and Z = N − S such that no solution
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exists to (13). In such a case, the design matrix in question is at most (|S| − 1)-
strong. Furthermore, from preliminary computational results, when a matrix is not
|S|-strong, it is often easy to find a subset S ⊂ N such that no solution exists to (13).

HEURISTIC upper bound Q.
Step 1. Input MIP1 to a commercially available package such as CPLEX. Find

some feasible (not necessarily optimal) solution to MIP1 with objective function
value Q.

Step 2. Randomly select r subsets, S ⊂ N , of size Q− 1. Set i = 1.
Step 3. Randomly select p partitions of Si, where Li ∪ Ui = Si. Set j = 1.
Step 4. For the jth partition of Si with Z = N − Si, solve a linear program

corresponding to (13). If a solution exists, replace j with j + 1. Otherwise, replace Q
with Q− 1 and goto Step 2.

Step 5. If j > p, replace i with i+ 1. Otherwise, goto Step 4.
Step 6. If i ≤ r, goto Step 3. Otherwise, Q is an upper bound for the q-strength

of the design matrix in question and stop.
By Theorem 3, the finite sample breakdown point of �1-regression equals s+1

n ,
where the design matrix with n rows is s-stable. Although q-strength provides a
robustness measure by itself, calculating the q-strength does not guarantee the exact
value of the breakdown point. We now provide another mixed-integer linear program
that calculates the s-stability and thus the breakdown point of �1-regression. This
MIP, called MIP2, is similar to MIP1 except that here we calculate the smallest value
of |U ∪ L| such that (15) is solvable.

min

n∑
i=1

ui + �i

s.t. xiξ + η+
i − η−i + si − ti = 0 for i = 1, . . . , n,(31)

si −Mui ≤ 0, ti −M�i ≤ 0 for i = 1, . . . , n,(32)

η+
i + η−i +Mui +M�i ≤M for i = 1, . . . , n,(33)

ui + �i ≤ 1 for i = 1, . . . , n,(34)
n∑
i=1

η+
i + η−i − si − ti ≤ 0,

n∑
i=1

si + ti ≥ ε,(35)

ξ free, η+ ≥ 0, η− ≥ 0, s ≥ 0, t ≥ 0, ui, �i ∈ {0, 1} for i = 1, . . . , n.(36)

As in MIP1, we assume that M is a suitably chosen large number and ε a small
number so that (32) and (33) are nonbinding for the solution that results if we set ui
or �i equal to 1 or ui = �i = 0. The existence of such M and ε can be shown as in the
case of MIP1. As in the case of MIP1, we argue that to every three-way partition of
N there corresponds a feasible solution to MIP2 and vice versa. Equations (32)–(33)
constrain si, ti, η

+
i , and η−i such that if ui = 0, then si = 0; if �i = 0, then ti = 0;

and if ui + �i = 1, then η+
i = η−i = 0. It follows that every feasible assignment of the

zero-one variables of MIP2 reduces MIP2 to the following constraints:

XZξ + η+
Z − η−

Z = 0,(37)

XUξ + sU = 0, XLξ − tL = 0,(38)

−
∑
i∈U

si −
∑
i∈L

ti +
∑
i∈Z

η+
i + η−i ≤ 0,(39)
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Table 1

Breakdown points α(�1,y|X) for �1-regression.

Data set n p q-strength s-stability Breakdown

Stackloss 21 4 3 3 4
21

Aircraft 23 5 1 1 2
23

Delivery 25 3 2 2 3
25

Engine 16 5 1 1 2
16

Gessel 21 2 2 2 3
21

Salinity 28 4 3 3 4
28

Telephone 24 2 6 5 6
24

Wood 20 6 2 2 3
20

Star 47 2 4 4 5
47

where U = {i ∈ N : ui = 1} and L = {i ∈ N : �i = 1}. By (38) and (39),

0 ≥ −
∑
i∈U

si −
∑
i∈L

ti +
∑
i∈Z

η+
i + η−i =

(−eTUXU + eTLXL

)
ξ + eTZη

+
Z + eTZη

−
Z .

Since
∑n
i=1 si + ti ≥ ε > 0, it follows that either si > 0, ti = 0, and η+ = η−i = 0

or si = 0, ti > 0, and η+ = η−i = 0 for some i ∈ N . Consequently, from (31),
xiξ = −si+ti �= 0, and thus ξ �= 0. Hence, (15) is satisfied. On the other hand, if (15)
is solvable, then a feasible solution to MIP2 is readily constructed. So the formulation
MIP2 does the job. Since MIP2 minimizes

∑n
i=1 ui + �i = |L ∪ U |, it determines the

smallest integer k such that X is not k-stable. Therefore, X is s-stable with s = k−1.
To demonstrate the usefulness of our approach, we have calculated the q-strength

and the s-stability of the design matrices for nine data sets from the robust regression
literature. All of these data sets can be found in [14], except for the engine data set
which can be found in [10, p. 529]. These results are listed in Table 1. In all but
one data set, s = q and the breakdown point equals q+1

n . The results were obtained
by solving the corresponding MIPs by the commercially available CPLEX package
on a Pentium 4 (2.26 GHz) processor. The median solution time and the median
number of nodes in the branch and bound tree of the nine MIPs for the s-stability
were 25.09 seconds and 22164, respectively. The median time spent and number of
nodes traversed in order to find the optimal solution were 6.19 seconds and 10779,
respectively. On the other hand, the median solution time and the median number
of nodes in the branch and bound tree of the nine MIPs for the q-strength were
1.47 seconds and 1169, respectively. The median time spent and number of nodes
traversed in order to find the optimal solution were .26 seconds and 405, respectively.

3.1. The telephone data. The telephone data set is data on the number of
international phone calls from Belgium per year versus the years 1950 through 1973.
The data has outliers in the values of the dependent variable (calls), in particular
the data for the calls in the years 1964 through 1969. These outliers were due to the
recording of the number of international phone call minutes from Belgium as opposed
to the number of calls. Figure 1 contains four graphs of versions of this data set,
each with a fitted �1-regression line. The graph in the upper left-hand corner is the
original data set with the outliers as described above. Notice that the �1-regression
line is hardly influenced by the outliers. To further demonstrate this, the graph in the
upper right-hand corner contains an �1-fit to data that is most likely quite similar to
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Fig. 1. �1-regression lines for telephone data.

the “uncontaminated” data set. The estimated observations used for the years 1964
through 1970 are determined from a least squares fit to the data excluding the years
1963 through 1970. The original outliers are plotted by empty circles but are not
taken into consideration when solving for the �1-regression line. From Table 1, the
q-strength for this problem is 6, its s-stability is 5, and thus α(�1,X|y) = 6

24 ; i.e., some
set of six contaminated observations may cause the �1-regression estimator to break
down in this example. However, by Proposition 2 and the fact that the q-strength
is 6, there exist bounded �1-regression coefficients for every set of six contaminated
observations, but not for every set of seven contaminated observations. The graph in
the bottom left-hand corner shows the uncontaminated data set with six new outliers
for the years 1968 through 1973. The �1-regression estimator performs quite well
with these six outliers in the sense that �1-regression coefficients exist that are hardly
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influenced by the outliers. However, for just one more contaminated observation,
there are no longer �1-regression coefficients that are not influenced by the outliers;
see the graph in the bottom right corner. In our minds this points to the suitability
of the q-strength of a design matrix as a measure of the breakdown of �1-regression.
In any case, by Proposition 5, q-strength and s-stability are, in general, reasonably
close to each other.

4. Conclusion. We have provided an exact formula for the breakdown point
α(�1,y|X) of �1-regression with contamination restricted to the dependent variable.
This is done using the notion of the s-stability of the design matrix X, which is
introduced here. We have shown that our results agree with results known in the
literature. We have also introduced the notion of q-strength, a new robustness measure
for �1-regression. Most important, we have shown that one can indeed calculate the
conditional breakdown point of �1-regression by solving an appropriate MIP. We
give computational experiments using the proposed approach for nine data sets from
the robust regression literature. For large data sets, we provide a heuristic that
provides an upper bound on the q-strength of a design matrix. This is important in
the design of robustly planned experiments, as it provides a computable assessment
of the vulnerability of the experiment’s design to errors in the measurement on the
dependent variable. Finally, we provide an illustrative example to demonstrate the
difference between q-strength and s-stability of design matrices.
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1. Introduction. We consider the unconstrained optimization problem

min
x∈�n

f(x),(1.1)

where f : �n �→ � is continuously differentiable. Many iterative methods for (1.1)
produce a sequence x0, x1, x2, . . . , where xk+1 is generated from xk, the current
direction dk, and the stepsize αk > 0 by the rule

xk+1 = xk + αkdk.

In monotone line search methods, αk is chosen so that f(xk+1) < f(xk). In nonmono-
tone line search methods, some growth in the function value is permitted. As pointed
out by many researchers (for example, see [4, 16]), nonmonotone schemes can improve
the likelihood of finding a global optimum; also, they can improve convergence speed
in cases where a monotone scheme is forced to creep along the bottom of a narrow
curved valley. Encouraging numerical results have been reported [6, 8, 11, 14, 15, 16]
when nonmonotone schemes were applied to difficult nonlinear problems.

The earliest nonmonotone line search framework was developed by Grippo, Lam-
pariello, and Lucidi in [7] for Newton’s methods. Their approach was roughly the
following: Parameters λ1, λ2, σ, and δ are introduced where 0 < λ1 < λ2 and
σ, δ ∈ (0, 1), and they set αk = ᾱkσ

hk where ᾱk ∈ (λ1, λ2) is the “trial step” and hk
is the smallest nonnegative integer such that

f(xk + αkdk) ≤ max
0≤j≤mk

f(xk−j) + δαk∇f(xk)dk.(1.2)

∗Received by the editors May 20, 2003; accepted for publication (in revised form) October 2, 2003;
published electronically May 25, 2004. This material is based upon work supported by National
Science Foundation grant 0203270. Any opinions, findings, and conclusions or recommendations
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National Science Foundation.
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Here the gradient of f at xk, ∇f(xk), is a row vector. The memory mk at step k is
a nondecreasing integer, bounded by some fixed integer M . More precisely,

m0 = 0 and for k > 0, 0 ≤ mk ≤ min{mk−1 + 1,M}.
Many subsequent papers, such as [2, 6, 8, 11, 15, 18], have exploited nonmonotone
line search techniques of this nature.

Although these nonmonotone techniques based on (1.2) work well in many cases,
there are some drawbacks. First, a good function value generated in any iteration is
essentially discarded due to the max in (1.2). Second, in some cases, the numerical
performance is very dependent on the choice ofM (see [7, 15, 16]). Furthermore, it has
been pointed out by Dai [4] that although an iterative method is generating R-linearly
convergent iterations for a strongly convex function, the iterates may not satisfy the
condition (1.2) for k sufficiently large, for any fixed bound M on the memory. Dai’s
example is

f(x) =
1

2
x2, x ∈ �, x0 �= 0, dk = −xk, and(1.3)

αk =

{
1− 2−k if k = i2 for some integer i,

2 otherwise.

The iterates converge R-superlinearly to the minimizer x∗ = 0; however, condition
(1.2) is not satisfied for k sufficiently large and any fixed M .

Our nonmonotone line search algorithm, which was partly studied in the first
author’s masters thesis [17], has the same general form as the scheme of Grippo,
Lampariello, and Lucidi, except that their “max” is replaced by an average of function
values. More precisely, our nonmonotone line search algorithm is the following:

Nonmonotone Line Search Algorithm (NLSA).

• Initialization: Choose starting guess x0, and parameters 0 ≤ ηmin ≤
ηmax ≤ 1, 0 < δ < σ < 1 < ρ, and µ > 0. Set C0 = f(x0), Q0 = 1,
and k = 0.
• Convergence test: If ‖∇f(xk)‖ sufficiently small, then stop.
• Line search update: Set xk+1 = xk + αkdk where αk satisfies either the

(nonmonotone) Wolfe conditions:

f(xk + αkdk) ≤ Ck + δαk∇f(xk)dk,(1.4)

∇f(xk + αkdk)dk ≥ σ∇f(xk)dk,(1.5)

or the (nonmonotone) Armijo conditions: αk = ᾱkρ
hk , where ᾱk > 0 is the

trial step, and hk is the largest integer such that (1.4) holds and αk ≤ µ.
• Cost update: Choose ηk ∈ [ηmin, ηmax], and set

Qk+1 = ηkQk + 1, Ck+1 = (ηkQkCk + f(xk+1))/Qk+1.(1.6)

Replace k by k + 1 and return to the convergence test.
Observe that Ck+1 is a convex combination of Ck and f(xk+1). Since C0 = f(x0),

it follows that Ck is a convex combination of the function values f(x0), f(x1), . . . , f(xk).
The choice of ηk controls the degree of nonmonotonicity. If ηk = 0 for each k, then
the line search is the usual monotone Wolfe or Armijo line search. If ηk = 1 for each
k, then Ck = Ak, where

Ak =
1

k + 1

k∑
i=0

fi, fi = f(xi),
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is the average function value. The scheme with Ck = Ak was suggested to us by
Yu-hong Dai. In [9], the possibility of comparing the current function value with an
average of M previous function values was also analyzed; however, since M is fixed,
not all previous function values are averaged together as in (1.6). As we show in
Lemma 1.1, for any choice of ηk ∈ [0, 1], Ck lies between fk and Ak, which implies
that the line search update is well-defined. As ηk approaches 0, the line search closely
approximates the usual monotone line search, and as ηk approaches 1, the scheme
becomes more nonmonotone, treating all the previous function values with equal
weight when we compute the average cost value Ck.

Lemma 1.1. If ∇f(xk)dk ≤ 0 for each k, then for the iterates generated by the
nonmonotone line search algorithm, we have fk ≤ Ck ≤ Ak for each k. Moreover, if
∇f(xk)dk < 0 and f(x) is bounded from below, then there exists αk satisfying either
the Wolfe or Armijo conditions of the line search update.

Proof. Defining Dk : � → � by

Dk(t) =
tCk−1 + fk

t+ 1
,

we have

D′
k(t) =

Ck−1 − fk
(t+ 1)2

.

Since ∇f(xk)dk ≤ 0, it follows from (1.4) that fk ≤ Ck−1, which implies that D′
k(t) ≥

0 for all t ≥ 0. Hence, Dk is nondecreasing, and fk = Dk(0) ≤ Dk(t) for all t ≥ 0. In
particular, taking t = ηk−1Qk−1 gives

fk = Dk(0) ≤ Dk(ηk−1Qk−1) = Ck.(1.7)

This establishes the lower bound for Ck in Lemma 1.1.
The upper bound Ck ≤ Ak is proved by induction. For k = 0, this holds by the

initialization C0 = f(x0). Now assume that Cj ≤ Aj for all 0 ≤ j < k. By (1.6), the
initialization Q0 = 1, and the fact that ηk ∈ [0, 1], we have

Qj+1 = 1 +

j∑
i=0

i∏
m=0

ηj−m ≤ j + 2.(1.8)

Since Dk is monotone nondecreasing, (1.8) implies that

Ck = Dk(ηk−1Qk−1) = Dk(Qk − 1) ≤ Dk(k).(1.9)

By the induction step,

Dk(k) =
kCk−1 + fk

k + 1
≤ kAk−1 + fk

k + 1
= Ak.(1.10)

Relations (1.9) and (1.10) imply the upper bound of Ck in Lemma 1.1.
Since both the standard Wolfe and Armijo conditions can be satisfied when

∇f(xk)dk < 0 and f(x) is bounded from below, and since fk ≤ Ck, it follows that
for each k, αk can be chosen to satisfy either the Wolfe or the Armijo line search
conditions in the nonmonotone line search algorithm.

Our paper is organized as follows: In section 2 we prove global convergence under
appropriate conditions on the search directions. In section 3 necessary and sufficient
conditions for R-linear convergence are established. In section 4 we implement our
scheme in the context of Nocedal’s L-BFGS quasi-Newton method [10, 13], and we give
numerical comparisons using the unconstrained problems in the CUTE test problem
library [3].
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2. Global convergence. To begin, we give a lower bound for the step generated
by the nonmonotone line search algorithm. Here and elsewhere, ‖ · ‖ denotes the
Euclidean norm, and gk = ∇f(xk)

T, a column vector.
Lemma 2.1. Suppose the nonmonotone line search algorithm is employed in a

case where gT
kdk ≤ 0 and ∇f satisfies the following Lipschitz conditions with Lipschitz

constant L:
1. ‖∇f(xk+1)−∇f(xk)‖ ≤ L‖xk+1 − xk‖ if the Wolfe conditions are used, or
2. ‖∇f(x)−∇f(xk)‖ ≤ L‖x− xk‖ for all x on the line segment connecting xk

and xk + αkρdk if the Armijo condition is used and ραk ≤ µ.
If the Wolfe conditions are satisfied, then

αk ≥
(

1− σ
L

) |gT
kdk|
‖dk‖2 .(2.1)

If the Armijo conditions are satisfied, then

αk ≥ min

{
µ

ρ
,

(
2(1− δ)
Lρ

) |gT
kdk|
‖dk‖2

}
.(2.2)

Proof. We consider the lower bounds (2.1) and (2.2) in the following two cases.
Case 1. Suppose that αk satisfies the Wolfe conditions. By (1.5), we have

(∇f(xk + αkdk)−∇f(xk))dk ≥ (σ − 1)∇f(xk)dk.

Since gT
kdk ≤ 0 and σ < 1, (σ− 1)gT

kdk ≥ 0, and by the Lipschitz continuity
of f ,

αkL‖dk‖2 ≥ (σ − 1)gT
kdk,

which implies (2.1).
Case 2. Suppose that αk satisfies the Armijo conditions. If ραk ≥ µ, then
αk ≥ µ/ρ, which gives (2.2). Conversely, if ραk < µ, then since hk is the
largest integer such that αk = ᾱkρ

hk satisfies (1.4) and since fk ≤ Ck, we
have

f(xk + ραkdk) > Ck + δραkg
T
kdk ≥ f(xk) + δραkg

T
kdk.(2.3)

When ∇f is Lipschitz continuous,

f(xk + αdk)− f(xk) = αgT
kdk +

∫ α

0

[∇f(xk + tdk)−∇f(xk)]dk dt

≤ αgT
kdk +

∫ α

0

tL‖dk‖2 dt

= αgT
kdk +

1

2
Lα2‖dk‖2.

Combining this with (2.3) gives (2.2).
Our global convergence result utilizes the following assumption (see, for example,

[4, 7]) concerning the search directions.
Direction Assumption. There exist positive constants c1 and c2 such that

gT
kdk ≤ −c1‖gk‖2,(2.4)
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and

‖dk‖ ≤ c2‖gk‖(2.5)

for all sufficiently large k.
Theorem 2.2. Suppose f(x) is bounded from below and the direction assumption

holds. Moreover, if the Wolfe conditions are used, we assume that ∇f is Lipschitz
continuous, with Lipschitz constant L, on the level set

L = {x ∈ �n : f(x) ≤ f(x0)}.
Let L̄ denote the collection of x ∈ �n whose distance to L is at most µdmax, where
dmax = supk ‖dk‖. If the Armijo conditions are used, we assume that ∇f is Lipschitz
continuous, with Lipschitz constant L, on L̄. Then the iterates xk generated by the
nonmonotone line search algorithm have the property that

lim inf
k→∞

‖∇f(xk)‖ = 0.(2.6)

Moreover, if ηmax < 1, then

lim
k→∞

∇f(xk) = 0.(2.7)

Hence, every convergent subsequence of the iterates approaches a point x∗, where
∇f(x∗) = 0.

Proof. We first show that

fk+1 ≤ Ck − β‖gk‖2,(2.8)

where

β = min

{
δµc1
ρ

,
2δ(1− δ)c21

Lρc22
,
δ(1− σ)c21

Lc22

}
.(2.9)

Case 1. If the Armijo conditions are used and ραk ≥ µ, then αk ≥ µ/ρ. By
(1.4) and (2.4), it follows that

fk+1 ≤ Ck + δαkg
T
kdk ≤ Ck − δαkc1‖gT

k‖2 ≤ Ck −
δµc1
ρ
‖gk‖2,

which implies (2.8).
Case 2. If the Armijo conditions are used and ραk ≤ µ, then by (2.2),

αk ≥
(

2(1− δ)
Lρ

) |gT
kdk|
‖dk‖2 ,(2.10)

and by (1.4), we have

fk+1 ≤ Ck −
(

2δ(1− δ)
Lρ

)(
gT
kdk
‖dk‖

)2

.(2.11)

Finally, by (2.4) and (2.5),

fk+1 ≤ Ck −
(

2δ(1− δ)c21
Lρc22

)
‖gk‖2,(2.12)

which implies (2.8).



1048 HONGCHAO ZHANG AND WILLIAM W. HAGER

Case 3. If the Wolfe conditions are used, then the analysis is the same as in
Case 2, except that the lower bound (2.10) is replaced by the corresponding
lower bound (2.1).

Combining the cost update relation (1.6) and the upper bound (2.8),

Ck+1 =
ηkQkCk + fk+1

Qk+1

≤ ηkQkCk + Ck − β‖gk‖2
Qk+1

= Ck − β‖gk‖2
Qk+1

.(2.13)

Since f is bounded from below and fk ≤ Ck for all k, we conclude that Ck is bounded
from below. It follows from (2.13) that

∞∑
k=0

‖gk‖2
Qk+1

<∞.(2.14)

If ‖gk‖ were bounded away from 0, (2.14) would be violated since Qk+1 ≤ k + 2 by
(1.8). Hence, (2.6) holds. If ηmax < 1, then by (1.8),

Qk+1 = 1 +

k∑
j=0

j∏
i=0

ηk−i ≤ 1 +

k∑
j=0

ηj+1
max ≤

∞∑
j=0

ηjmax =
1

1− ηmax
.(2.15)

Consequently, (2.14) implies (2.7).
Remark. The bound condition αk ≤ µ in the Armijo conditions of the line

search update can be removed if ∇f satisfies the Lipschitz condition slightly outside
of L. In the proof of Theorem 2.2, this bound ensures that when ραk < µ, the point
xk + ραkdk lies in the region L̄, where ∇f is Lipschitz continuous, which is required
for establishing Lemma 2.1.

Similar to [4], a slightly different global convergence result is obtained when (2.5)
is replaced by the following growth condition on dk: There exist positive constants
τ1 and τ2 such that

‖dk‖2 ≤ τ1 + τ2k(2.16)

for each k.
Corollary 2.3. Suppose ηmax < 1 and all the assumptions of Theorem 2.2 are

in effect except the direction assumption which is replaced by (2.4) and (2.16). If
τ2 �= 0, then

lim inf
k→∞

‖∇f(xk)‖ = 0.(2.17)

If τ2 = 0, then

lim
k→∞

‖∇f(xk)‖ = 0.(2.18)

Proof. We assume, without loss of generality, that τ1 ≥ 1. The analysis is identical
to that given in the proof of Theorem 2.2 except that the bound ‖dk‖ ≤ c2‖gk‖ used
in the transition from (2.11) to (2.12) is replaced by the bound (2.16). As a result,
the inequality (2.8) is replaced by

fk+1 ≤ Ck −
(

β1

τ1 + τ2k

)
‖gk‖lk ,(2.19)
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where lk = 2 in Case 1, lk = 4 in Cases 2 and 3, and

β1 = min

{
δµc1
ρ

,
2δ(1− δ)c21

Lρ
,
δ(1− σ)c21

L

}
.

Using the upper bound (2.19) for f(xk+1) in the series of inequalities (2.13) gives

Ck+1 ≤ Ck −
(

β1

Qk(τ1 + τ2k)

)
‖gk‖lk .

By (2.15),

Ck+1 ≤ Ck −
(
β1(1− ηmax)

τ1 + τ2k

)
‖gk‖lk .(2.20)

Since f is bounded from below and Ck ≥ fk, we obtain (2.17) when τ2 �= 0 and (2.18)
when τ2 = 0. This completes the proof.

3. Linear convergence. In [4] Dai proves R-linear convergence for the non-
monotone max-based line search scheme (1.2), when the cost function is strongly
convex. Similar to [4], we now establish R-linear convergence for our nonmonotone
line search algorithm when f is strongly convex. Recall that f is strongly convex if
there exists a scalar γ > 0 such that

f(x) ≥ f(y) +∇f(y)(x− y) +
1

2γ
‖x− y‖2(3.1)

for all x and y ∈ �n. After interchanging x and y and adding,

(∇f(x)−∇f(y))(x− y) ≥ 1

γ
‖x− y‖2.(3.2)

If x∗ denotes the unique minimizer of f , it follows from (3.2), with y = x∗, that

‖x− x∗‖ ≤ γ‖∇f(x)‖.(3.3)

For t ∈ [0, 1], define x(t) = x∗ + t(x− x∗). Since f is convex, f(x(t)) is a convex
function of t, and the derivative f ′(x(t)) is an increasing function of t ∈ [0, 1] with
f ′(x(0)) = 0. Hence, for t ∈ [0, 1], f ′(x(t)) attains its maximum value at t = 1. This
observation combined with (3.3) gives

f(x)− f(x∗) =

∫ 1

0

f ′(x(t))dt ≤ f ′(x(1)) = ∇f(x)(x− x∗)

≤ ‖∇f(x)‖‖x− x∗‖ ≤ γ‖∇f(x)‖2.(3.4)

Theorem 3.1. Suppose that f is strongly convex with unique minimizer x∗, the
search directions dk in the nonmonotone line search algorithm satisfy the direction
assumption, there exist µ > 0 such that αk ≤ µ for all k, ηmax < 1, and ∇f is
Lipschitz continuous on bounded sets. Then there exists θ ∈ (0, 1) such that

f(xk)− f(x∗) ≤ θk(f(x0)− f(x∗))(3.5)

for each k.
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Proof. Since f(xk+1) ≤ Ck and Ck+1 is a convex combination of Ck and f(xk+1),
we have Ck+1 ≤ Ck for each k. Hence,

f(xk+1) ≤ Ck ≤ Ck−1 ≤ · · · ≤ C0 = f(x0),

which implies that all the iterates xk are contained in the level set

L = {x ∈ �n : f(x) ≤ f(x0)}.
Since f is strongly convex, it follows that L is bounded and ∇f is Lipschitz continuous
on L. By the direction assumption and the fact that ‖∇f(x)‖ is bounded on L,
dmax = supk ‖dk‖ <∞. Let L̄ denote the collection of x ∈ �n whose distance to L is
at most µdmax and let L be a Lipschitz constant for ∇f on the L̄.

As shown in the proof of Theorem 2.2,

f(xk+1) ≤ Ck − β‖gk‖2,(3.6)

where β is given in (2.9). Also, by the direction assumption and the upper bound µ
on αk, xk+1 = xk + αkdk satisfies

‖xk+1 − xk‖ = αk‖dk‖ ≤ µc2‖gk‖.
Combining this with the Lipschitz continuity of ∇f gives

‖∇f(xk+1)−∇f(xk)‖ = ‖gk+1 − gk‖ ≤ L‖xk+1 − xk‖ ≤ µc2L‖gk‖,
from which it follows that

‖gk+1‖ ≤ ‖gk+1 − gk‖+ ‖gk‖ ≤ b‖gk‖, b = 1 + µc2L.(3.7)

We now show that for each k,

Ck+1 − f(x∗) ≤ θ(Ck − f(x∗)),(3.8)

where

θ = 1− βb2(1− ηmax) and b2 =
1

β + γb2
.

This immediately yields (3.5) since f(xk) ≤ Ck and C0 = f(x0).
Case 1. ‖gk‖2 ≥ b2(Ck − f(x∗). By the cost update formula (1.6), we have

Ck+1 − f(x∗) =
ηkQk(Ck − f(x∗)) + (fk+1 − f(x∗))

1 + ηkQk
.(3.9)

Utilizing (3.6) gives

Ck+1 − f(x∗) ≤ ηkQk(Ck − f(x∗)) + (Ck − f(x∗))− β‖gk‖2
1 + ηkQk

= Ck − f(x∗)− β‖gk‖2
Qk+1

.

Since Qk+1 ≤ 1/(1− ηmax) by (2.15), it follows that

Ck+1 − f(x∗) ≤ Ck − f(x∗)− β(1− ηmax)‖gk‖2.
Since ‖gk‖2 ≥ b2(Ck − f(x∗)), (3.8) has been established in Case 1.



NONMONOTONE LINE SEARCH 1051

Case 2. ‖gk‖2 < b2(Ck − f(x∗)). By (3.4) and (3.7), we have

f(xk+1)− f(x∗) ≤ γ‖gk+1‖2 ≤ γb2‖gk‖2.
And by the Case 2 bound for ‖gk‖, this gives

f(xk+1)− f(x∗) ≤ γb2b2(Ck − f(x∗)).

Inserting this bound for f(xk+1)− f(x∗) in (3.9) yields

Ck+1 − f(x∗) ≤ (ηkQk + γb2b2)(Ck − f(x∗))
1 + ηkQk

=

(
1− 1− γb2b2

Qk+1

)
(Ck − f(x∗)).(3.10)

Rearranging the expression for b2, we have γb2b2 = 1 − βb2. Inserting this
relation in (3.10) and again utilizing the bound (2.15), we obtain (3.8).

This completes the proof of (3.8), and as indicated above, the linear convergence
estimate (3.5) follows directly.

In the introduction, example (1.3) revealed that linearly convergent iterates may
not satisfy (1.2) for any fixed choice of the memory M . We now show that with our
choice for Ck, we can always satisfy (1.4), when k is sufficiently large, provided ηk is
close enough to 1. We begin with a lower bound for f(x) − f(x∗), analogous to the
upper bound (3.4). By (3.1) with y = x∗, we have

f(x)− f(x∗) ≥ 1

2γ
‖x− x∗‖2.(3.11)

If ∇f satisfies the Lipschitz condition

‖∇f(x)‖ = ‖∇f(x)−∇f(x∗)‖ ≤ L‖x− x∗‖,
then (3.11) gives

f(x)− f(x∗) ≥ 1

2γL2
‖∇f(x)‖2.(3.12)

Theorem 3.2. Let x∗ denote a minimizer of f and suppose that the sequence
f(xk), k = 0, 1, . . . , converges R-linearly to f(x∗); that is, there exist constants θ ∈
(0, 1) and c such that f(xk) − f(x∗) ≤ cθk. Assume that the xk are contained in
a closed, bounded convex set K, f is strongly convex on K, satisfying (3.1), ∇f is
Lipschitz continuous on K, with Lipschitz constant L, the direction assumption holds,
and the stepsize αk is bounded by a constant µ. If ηmin > θ, then (1.4) is satisfied for
k sufficiently large, where Ck is given by the recursion (1.6).

Proof. By (3.9) and the bound Qk ≤ k + 1 (see (1.8)), we have

Ck − f(x∗) =

∑k
i=0

[
(
∏k−1
j=i ηj)(f(xi)− f(x∗))

]
Qk

≥
∏k−1
j=0 ηj

k + 1

k∑
i=0

[
f(xi)− f(x∗)∏i−1

j=0 ηj

]

≥ (ηmin)k

k + 1
φk, where φk =

k∑
i=0

f(xi)− f(x∗)∏i−1
j=0 ηj

.(3.13)
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Here we define a product
∏k−1
j=i ηj to be 1 whenever the range of indices is vacuous;

in particular,
∏k−1
j=k ηj = 1. Let Φ denote the limit (possibly +∞) of the positive,

monotone increasing sequence φ0, φ1, . . . .
By the direction assumption and (3.12), we have

αkg
T
kdk ≥ −µc2‖gk‖2 ≥ −2γµc2L

2(f(xk)− f(x∗)).(3.14)

Combining the R-linear convergence of f(xk) to f(x∗) with (3.14) gives

f(xk+1)− f(x∗)− δαkgT
kdk ≤ cθk+1 − δαkgT

kdk

≤ cθk(θ + 2γµc2L
2).(3.15)

Comparing (3.13) with (3.15), it follows that when

Φ

k + 1
≥ c

(
θ

ηmin

)k
(θ + 2γµc2L

2),(3.16)

(1.4) is satisfied. Since ηmin > θ, the inequality (3.16) holds for k sufficiently large,
and the proof is complete.

As a consequence of Theorem 3.2, the iterates of example (1.3) satisfy the Wolfe
condition (1.4) for k sufficiently large, when ηk = 1 for all k.

4. Numerical comparisons. In this section we compare three methods:
(i) the monotone line search, corresponding to ηk = 0 in the nonmonotone line

search algorithm;
(ii) the nonmonotone scheme [7] based on a maximum of recent function values;
(iii) the new nonmonotone line search algorithm based on an average function

value.
In our implementation, we chose the stepsize αk to satisfy the Wolfe conditions with
δ = 10−4 and σ = .9. For the monotone line search scheme (i), Ck in (1.4) is replaced
by f(xk); in the nonmonotone scheme (ii) based on the maximum of recent function
values, Ck in (1.4) is replaced by

max
0≤j≤mk

f(xk−j).

As recommended in [7], we set m0 = 0 and mk = min{mk−1 + 1, 10} for k > 0.
Although our best convergence results were obtained by dynamically varying ηk, using
values closer to 1 when the iterates were far from the optimum, and using values closer
to 0 when the iterates were near an optimum, the numerical experiments reported here
employ a fixed value ηk = .85, which seemed to work reasonably well for a broad class
of problems.

The search directions were generated by the L-BFGS method developed by No-
cedal in [13] and Liu and Nocedal in [10]; their software is available from the web
page http://www.ece.northwestern.edu/∼nocedal/software.html.

We now briefly summarize how the search directions are generated: dk = −B−1
k gk,

where the matrices Bk are given by the update

B
(0)
k−1 = γkI,

B
(l+1)
k−1 = B

(l)
k−1 −

B
(l)
k−1sls

T
l B

(l)
k−1

sT
l B

(l)
k−1sl

+
yT
l yl

ylsl
, l = 0, 1, . . . ,Mk − 1,

Bk = BMk

k−1.
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We took Mk = min{k, 5},
yl = gjl+1 − gjl , sl = xjl+1 − xjl , jl = k −Mk + l,

and

γk =

{
‖yk−1‖2

yk−1sk−1
if k > 0,

1 if k = 0.

The analysis in [10] reveals that when f is twice continuously differentiable and
strongly convex, with the norm of the Hessian uniformly bounded, B−1

k is uniformly
bounded, which implies that the direction assumption is satisfied.

Our numerical experiments use double precision versions of the unconstrained
optimization problems in the CUTE library [3]. Altogether, there were 80 problems.
Our stopping criterion was

‖∇f(xk)‖∞ ≤ 10−6(1 + |f(xk)|), ‖y‖∞ = max
1≤i≤n

|yi|,

except for problems PENALTY1, PENALTY2, and QUARTC, which would stop at
k = 0 with this criterion. For these three problems, the stopping criterion was

‖∇f(xk)‖∞ ≤ 10−8‖∇f(x0)‖∞.
In Tables 4.1 and 4.2, we give the dimension (Dim) of each test problem, the number
ni of iterations, and the number nf of function or gradient evaluations. An “F” in
the table means that the line search could not be satisfied. The line search routine
in the L-BFGS code, according to the documentation, is a slight modification of the
code CSRCH of Moré and Thuente. In the cases where the line search failed, it
reported that “Rounding errors prevent further progress. There may not be a step
which satisfies the sufficient decrease and curvature conditions. Tolerances may be
too small.” Basically, it was not possible to satisfy the first Wolfe condition (1.4)
due to rounding errors. With our nonmonotone line search algorithm, on the other
hand, the value of Ck was a bit larger than either the function value f(xk) used in
the monotone scheme (i) or the local maximum used in (ii). As a result, we were able
to satisfy (1.4) using the Moré and Thuente code, despite rounding errors, in cases
where the other schemes were not successful.

We now give an overview of the numerical results reported in Tables 4.1 and 4.2.
First, in many cases, the numbers of function and gradient evaluations of the three
line search algorithms are identical. When comparing the monotone scheme (i) to the
nonmonotone schemes (ii) and (iii), we see that either of the nonmonotone schemes
was superior to the monotone scheme. In particular, there were

• 20 problems where monotone (i) was superior to nonmonotone (ii),
• 35 problems where nonmonotone (ii) was superior to monotone (i),
• 15 problems where monotone (i) was superior to nonmonotone (iii),
• 43 problems where nonmonotone (iii) was superior to monotone (i).

When comparing the nonmonotone schemes, we see that the new nonmonotone line
search algorithm (iii) was superior to the previous, max-based scheme (ii). In partic-
ular, there were

• 10 problems where (ii) was superior to (iii),
• 20 problems where (iii) was superior to (ii).

As the test problems were solved, we tabulated the number of iterations where
the function increased in value. We found that for either of the nonmonotone schemes
(ii) or (iii), in roughly 7% of the iterations, the function value increased.
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Table 4.1

Numerical comparisons.

Problem Dim Monotone (i) Maximum (ii) Average (iii)
name ni nf ni nf ni nf

ARGLINA 500 2 4 2 4 2 4
ARGLINB 500 F F F F 35 44
ARGLINC 500 F F F F 74 111
ARWHEAD 10000 12 15 12 14 12 14
BDQRTIC 5000 129 156 180 200 162 175
BROWNAL 400 6 14 6 14 6 14
BROYDN7D 2000 662 668 660 662 660 662

BRYBND 5000 29 32 38 41 38 41
CHAINWOO 800 3578 3811 3503 3530 3223 3258
CHNROSNB 50 295 308 313 315 298 300

COSINE 1000 11 16 12 16 12 16
CRAGGLVY 5000 61 68 59 63 59 63
CURLY10 1000 990 1024 1302 1310 1482 1488
CURLY20 1000 2392 2462 2019 2025 2322 2325
CURLY30 1000 3034 3123 3052 3060 2677 2683

DECONVU 61 605 634 324 326 324 326
DIXMAANA 3000 11 13 11 13 11 13
DIXMAANB 3000 11 13 11 13 11 13
DIXMAANC 6000 12 14 12 14 12 14
DIXMAAND 6000 14 16 14 16 14 16
DIXMAANE 6000 355 368 341 343 341 343
DIXMAANF 6000 284 295 258 260 258 260
DIXMAANG 6000 300 307 297 299 297 299
DIXMAANH 6000 294 305 303 305 303 305
DIXMAANI 6000 2355 2426 2616 2618 2576 2579
DIXMAANJ 6000 251 259 272 274 272 274
DIXMAANK 6000 258 266 220 222 220 222
DIXMAANL 6000 215 220 190 192 190 192
DIXON3DQ 800 4733 4874 4515 4516 4353 4356
DQDRTIC 10000 14 23 11 17 11 17
EDENSCH 5000 22 27 28 31 28 31

EG2 1000 4 5 4 5 4 5
EIGENALS 420 4377 4549 4016 4031 4381 4396
EIGENBLS 420 4572 4698 4214 4226 4288 4301
EIGENCLS 462 3327 3416 3615 3623 3615 3623
ENGVAL1 10000 14 17 14 17 14 17
ERRINROS 50 160 176 184 191 154 162
EXTROSNB 50 13789 17217 10128 10658 10606 11427
FLETCBV2 1000 1223 1265 1419 1420 1284 1286
FLETCBV3 1000 3 11 3 11 3 11
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Table 4.2

Numerical comparisons (continued).

Problem Dim Monotone (i) Maximum (ii) Average (iii)
name ni nf ni nf ni nf

FLETCHBV 500 2 10 2 10 2 10
FLETCHCR 5000 25245 27605 26449 26553 26257 26515
FMINSRF2 10000 385 395 387 389 387 389
FMINSURF 10000 601 611 686 688 686 688
FREUROTH 5000 16 23 16 22 16 22
GENHUMPS 1000 1892 2418 1978 2168 1944 2187
GENROSE 2000 4169 4510 4387 4444 4309 4380
HILBERTA 200 356 388 237 243 365 371
HILBERTB 200 7 9 7 9 7 9

INDEF 500 2 10 2 10 2 10
JIMACK 82 4423 4644 5531 5552 3892 3912

LIARWHD 10000 26 30 28 32 31 34
MANCINO 100 11 15 11 15 11 15
MOREBV 10000 74 77 77 79 77 79

NCB20 3010 429 474 337 347 316 323
NONCVXU2 1000 1227 1262 1583 1591 1583 1591
NONCVXUN 1000 1936 1987 1657 1664 1657 1664

NONDIA 10000 21 27 21 26 21 26
NONDQUAR 10000 3331 3685 3625 3751 3315 3444
PENALTY1 10000 23 31 23 31 23 31
PENALTY2 200 F F 131 136 130 133
PENALTY3 200 F F F F 73 107
POWELLSG 10000 55 63 59 62 68 71

POWER 5000 297 305 302 304 302 304
QUARTC 10000 23 31 23 31 23 31

SCHMVETT 10000 20 25 21 23 21 23
SENSORS 200 25 29 26 29 26 29
SINQUAD 5000 267 329 319 371 366 431
SPARSINE 1000 6692 6989 7173 7176 6220 6227
SPARSQUR 10000 34 39 35 37 35 37
SPMSRTLS 10000 245 260 243 250 243 250
SROSENBR 10000 17 20 17 20 18 20
TESTQUAD 2000 6431 6628 4549 4551 4456 4462
TOINTGOR 50 88 94 92 93 92 93
TOINTGSS 10000 17 22 17 22 17 22
TQUARTIC 10000 24 29 25 29 25 29

TRIDIA 10000 2781 2860 2977 2980 2637 2641
VARDIM 10000 1 2 1 2 1 2

VAREIGVL 5000 18 21 18 20 18 20
WOODS 10000 15 20 21 24 21 24
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Abstract. We establish first-order and second-order sufficient conditions ensuring that a proper
lower semicontinuous function f on a Banach space X has an error bound. We also consider similar
problems with constraint, namely, that f is replaced by its restriction to a subset of X. These results
are employed to identify exactly when a quadratic function on X has an error bound.
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1. Introduction. Let X be a Banach space and f : X → R ∪ {+∞} a proper
lower semicontinuous function. Let λ ∈ R with λ � inf f (:= infx∈X f(x)). Let Lf (x)
:= {x ∈ X; f(x) � λ}. Assuming Lf (λ) �= ∅, we say that f has a (Lipschitz) error
bound δ > 0 for Lf (λ) if the distance of x to Lf (λ) satisfies the inequality

δd(x, Lf (λ)) � f(x)− λ ∀x /∈ Lf (λ).(1.1)

Many authors have studied this problem (see [4], [8], [10], [11], [12], [15], [16], [13],
[14], and the references therein). In this paper, we study the error bound problem by
using the Hadamard directional derivative d−f(x;u) and the second-order directional
derivatives. Let D denote the set of all x satisfying d−f(x; 0) = 0. We show in
Theorem 2.5 that δ > 0 is an error bound for Lf (λ) if

sup
x∈D\Lf (λ)

inf
‖u‖=1

d−f(x;u) � −δ.(1.2)

The consideration of the Hadamard derivative instead of the Dini derivative provides
not only a better sufficient condition than the one provided in [13] but also a better
tool in dealing with the constraint problems (see Theorems 2.6 and 2.7). If the above
first-order sufficient condition (1.2) fails to apply, then one may look at second-order
conditions. In section 3, we establish a second-order Taylor expansion (in an inequality
form) for lower semicontinuous functions, and this expansion is then applied to provide
a second-order sufficient condition for error bounds. This result appears to be new
even for C2-functions (see Corollary 3.3). In section 4, we study quadratic functions f
on X and identify exactly when f has a Lipschitz error bound, and our classification
is more concise than the corresponding results in [13] given for X = Rn.
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2. First-order sufficient conditions for the existence of an error bound.
Let Z be a complete metric space and S a closed subset of Z. Let f : Z → R∪{+∞}
be a lower semicontinuous function. Let δ > 0. Define Mf (x, δ) by

Mf (x, δ) := {y ∈ Z; f(x) � f(y) + δd(x, y)}.
Let

Of (δ) := {x ∈ Domf ;Mf (x, δ) = {x}}.
When δ = 1, we denote Mf (x, 1) by Mf (x) and Of (1) by Of for short. The following
result is similar to [8] and [13] but we do not assume that S is a level set of f .

Proposition 2.1. Let Z be a complete metric space and S a nonempty closed
subset of X. Let f : Z → R ∪ {+∞} be a lower semicontinuous function bounded
from below. Suppose that Of (δ) ⊆ S. Then for any x ∈ Domf\S, there exists z ∈ S
such that

δd(x, z) � f(x)− f(z).

Proof. We suppose without loss of generality that δ = 1. Let x ∈ Z\S, and
assume that f(x) < +∞. It is sufficient to show that

Mf (x) ∩ S �= ∅.
Note that Mf (x) is closed as f is lower semicontinuous. By Ekeland’s variational
principle (cf. [3, Theorem 7.5.1]), there exists z ∈Mf (x) such that

f(y) + d(y, z) > f(z) ∀y ∈Mf (x)\{z}.(2.1)

We will show that z ∈ S (and hence complete the proof). By way of contradiction
we assume that z /∈ S. Then, by assumption, z /∈ Of and hence there exists w ∈
Mf (z)\{z} such that

f(z)− f(w) � d(z, w).(2.2)

Since w ∈ Mf (z) and z ∈ Mf (x), we have w ∈ Mf (x) and so the inequality (2.1)
holds for y = w. But this is impossible since the inequality (2.2) contradicts (2.1) for
y = w .

In terms of level set Lf (λ) of f , we have the following result [13, Lemma 2.3].
Corollary 2.2. Let Z be a complete metric space and f : Z → R ∪ {+∞} a

proper lower semicontinuous function. Let δ > 0, λ ∈ R be such that Lf (λ) �= ∅ and
for any x ∈ Domf\Lf (λ), there exists y ∈ f−1[λ,+∞) with

f(x)− f(y) � δd(x, y) > 0.(2.3)

Then one has

f(x)− λ � δd(x, Lf (λ)) ∀x ∈ Z\Lf (λ).

Proof. Since f is lower semicontinuous, Lf (λ) is closed. Let g be defined by g(x) =
max{λ, f(x)}. Then g : Z → [λ,+∞] is lower semicontinuous and Lg(λ) = Lf (λ).
By the assumption (2.3) one has Og(δ) ⊆ Lg(λ). It follows from Proposition 2.1 that
for any x ∈ Z\Lg(λ) there exists y ∈ Lg(λ) such that

g(x)− g(y) = g(x)− λ � δd(x, Lg(λ)).
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Hence, we have

f(x)− λ � δd(x, Lf (λ)).

Throughout the entire paper, X denotes a Banach space and f : X → R∪{+∞}
is a lower semicontinuous function. Suppose that f is finite at a point x ∈ X. Let
u ∈ X. We use d−f(x;u) and D−f(x;u) to denote, respectively, Hadamard’s and
Dini’s lower directional derivatives of f at x in the direction u. They are defined by

d−f(x;u) := lim inf
u′→u,t↓0

1

t
(f(x+ tu′)− f(x))

and

D−f(x;u) := lim inf
t↓0

1

t
(f(x+ tu)− f(x)).

Thus, d−f � D−f . Let D or Df denote the set of all x such that d−f(x; 0) > −∞.
By the homogeneity of d−f(x; ·) we have

D = {x ∈ Domf ; d−f(x; 0) = 0}.(2.4)

Lemma 2.3. Let x ∈ X and f(x) be finite. If d−f(x; 0) = −∞, then for any
δ > 0, there exists y ∈ X such that

f(x)− f(y) � δd(x, y) > 0.

Proof. Suppose that d−f(x; 0) = −∞. Then for any δ > 0, it follows from the
definition of d−f(x; ·) that there exist a sequence (tn) ↓ 0 and a sequence (un) → 0
such that

f(x)− f(x+ tnun) > tnδ =
δ

‖un‖d(x, x+ tnun).

Thus, noting 1
‖un‖ > 1 for some large n and letting y = x + tnun, we complete the

proof.
In terms of Hadamard’s directional derivative, we have the following sufficient

condition for f to admit an error bound.
Theorem 2.4. Let S be a closed subset of X. Let θ := infz∈X\S f(z) and δ > 0.

Suppose that θ > −∞ and

sup
x∈D\S

inf
‖u‖=1

d−f(x;u) � −δ.(2.5)

Then

δd(x, S) � f(x)− θ ∀x ∈ X\S.

Proof. Define a function g : X → R ∪ {+∞} by

g(x) :=

{
f(x), x ∈ X\S,
θ, x ∈ S.
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Then g � θ is a lower semicontinuous function with d−f(x;u) = d−g(x;u) for any
x ∈ X\S and u ∈ X. Thus, one has D\S = Dg\S, where Dg := {x ∈ X; d−g(x; 0) >
−∞}. Therefore, (2.5) can be rewritten as

sup
x∈Dg\S

inf
‖u‖=1

d−g(x;u) � −δ.(2.6)

Let δ′ ∈ (0, δ) and x ∈ Domg\S. We claim that there exists y ∈ X such that

g(x)− g(y) � δ′d(x, y) �= 0.(2.7)

If x /∈ Dg, then the claim is certainly true by Lemma 2.3. Thus we may suppose that
x ∈ Dg. By (2.6) there exists a unit vector u such that d−g(x;u) < −δ′. Hence, there
exist sequences (tn) ↓ 0 and (un)→ u such that

lim
n→+∞

1

tn
(g(x+ tnun)− g(x)) < −δ′;

that is,

lim
n→+∞

1

tn ‖un‖ (g(x+ tnun)− g(x)) < −δ′.

Taking y = x+ tnun with a sufficiently large n, we have y �= x and

g(y)− g(x) < −δ′d(x, y).
Therefore the claim made in (2.7) holds. Consequently, Domg\S ⊂ X\Oδ′(g) which
ensures (since Oδ′(g) ⊂ Domg) that Oδ′(g) ⊂ S. Then, we deduce from Proposi-
tion 2.1 that

g(x)− θ � δ′d(x, S) ∀x ∈ X\S.
Since δ′ lying in (0, δ) is arbitrary, we have

g(x)− θ � δd(x, S) ∀x ∈ X\S.
By considering level sets Lf (λ) in place of S, we have the following theorem.
Theorem 2.5. Let δ > 0 and let λ ∈ R be such that Lf (λ) �= ∅. Suppose that

sup
x∈D\Lf (λ)

inf
‖u‖=1

d−f(x;u) � −δ.(2.8)

Then

δd(x, Lf (λ)) � f(x)− λ ∀x ∈ X\Lf (λ).

Proof. Let θ := infx∈X\Lf (λ) f(x). Then θ � λ. Thus, the result follows from
Theorem 2.4.

Remark 1. In place of (2.8), the sufficient condition established by Ng and Zheng
in [13] is that

sup
x∈X\Lf (λ)

inf
‖u‖=1

D−f(x;u) � −δ.(2.9)
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Since d−f � D−f and D\Lf (λ) ⊆ X\Lf (λ), it is clear that Theorem 2.5 improves
the earlier result. In particular, the consideration of d−f is of importance to us
as it provides information about f along “curvilinear tangents” (rather than only
linear ones) when we consider constrained problems. This in turn will provide a key
argument for our error bound result of quadratic functions studied in section 4. In
the appendix of this paper, we give an example which is covered by Theorem 2.5 but
not by [13, Theorem 2.5].

We now turn to a result for a constrained problem; this result will provide a key
step for us to establish a second sufficient condition in Theorem 2.7. Let C be a
closed subset of X and let x ∈ C. Recall (see [3]) that the contingent cone of C at x
is defined by

TC(x) :=

{
u ∈ X; lim inf

t↓0
1

t
(dC(x+ tu)) = 0

}
.

Thus, u ∈ TC(x) if and only if there exist sequences (tn) ↓ 0 and (un)→ u such that
x+ tnun ∈ C for each n.

Theorem 2.6. Let S and C be closed subsets of X with ∅ �= S ⊆ C. Let f : C →
R∪{+∞} be a proper lower semicontinuous function such that λ := infx∈C\S f(x) >
−∞, and let δ > 0. Suppose that for any x ∈ Df\S there exists a unit vector
u ∈ TC(x) such that d−f(x;u) � −δ. Then one has δd(x, S) � (f(x) − λ) for each
x ∈ C\S.

Proof. f can be regarded as being defined on X by putting f(x) = +∞ for all
x ∈ X\C. Let g be defined by

g(x) :=

{
f(x), x ∈ X\S,
λ, x ∈ S.

Thus, g is a lower semicontinuous function on X bounded from below. Since f(x) =
g(x) = +∞ for x ∈ X\C,

Dg\S = Df\S.(2.10)

Let x ∈ Dg\S. By (2.10) and assumption, take a unit vector u ∈ TC(x) such that
d−f(x;u) � −δ. Take sequences (tn) ↓ 0, (un)→ u such that

d−f(x;u) = lim
n→+∞

1

tn
(f(x+ tnun)− f(x)) � −δ.

By considering subsequences if necessary, we can further assume that

x+ tnun ∈ C ∀n.
Indeed, if x+ tnun �∈ C for infinitely many n, then f(x+ tnun) = +∞ for such n; this
contradicts

lim
n→∞

f(x+ tnun)− f(x)

tn
< +∞.

Noting that x + tnun /∈ S so that f(x + tnun) = g(x + tnun) for all large enough n,
it follows that

d−g(x;u) � lim inf
n→+∞

1
tn

(g(x+ tnun)− g(x))
= lim inf

n→+∞
1
tn

(f(x+ tnun)− f(x))

= d−f(x;u) � −δ.
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Thus, one has

sup
x∈Dg\S

inf
‖u‖=1

d−g(x;u) � −δ.

It follows from Theorem 2.4 that

δd(x, S) � g(x)− λ = f(x)− λ ∀x ∈ C\S.

Let ε > 0 and

D(ε) :=

{
x ∈ D\Lf (λ); inf

‖u‖=1
d−f(x;u) � −ε

}
.(2.11)

In terms of D(ε), the sufficient condition in Theorem 2.5 (ensuring that f has an error
bound for Lf (λ)) is clearly equivalent to the following: for some ε > 0,

D(ε) = ∅.(2.12)

The following result improves Theorem 2.5 by relaxing condition (2.12).
Theorem 2.7. Let f : X → R ∪ {+∞} be a lower semicontinuous function, and

let λ ∈ R be such that X �= Lf (λ) �= ∅. Suppose that there exist ε > 0, υ > λ and an
open set Q with

D(ε) ⊆ Q ⊆ X\Lf (υ)(2.13)

and

d0 := sup
x∈Q

d(x, Lf (λ)) < +∞.(2.14)

Then f admits an error bound for Lf (λ).
Proof. We may assume that Q is nonempty (see Remark 2 below). Then, if x ∈ Q,

d0 � d(x, Lf (λ)) > 0. Let Q(s) := {x ∈ X\Lf (υ); d(x, Lf (λ)) < d0 + s},∀s > 0,
and denote Q by Q(0). Then for any s � 0, Q(s) is an open subset of X with
Q(s) ⊆ X\Lf (v) and

sup
x∈Q(s)

d(x, Lf (λ)) � d0 + s < +∞.

Note that

f(x)− λ � υ − λ
d0 + s

d(x, Lf (λ)) ∀x ∈ Q(s)(2.15)

because f(x) > υ. Let δ = min{ ε2 , υ−λ2d0
}. We will show that

f(x)− λ � δd(x, Lf (λ)) ∀x ∈ X\Lf (λ).(2.16)

Since

X\Lf (λ) = [Lf (υ)\Lf (λ)] ∪ [Q\Lf (λ)] ∪ [X\(Q ∪ Lf (υ))],(2.17)

we need only verify (2.16) for x belonging to each of the three sets on the right-hand
side of (2.17). Accordingly we divide our proof into three steps.
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(I) We first show that

f(x)− λ � δd(x, Lf (λ)) ∀x ∈ Lf (υ)\Lf (λ).(2.18)

To do this, let f̄ denote the “restriction” of f to Lf (υ); more precisely, let f̄ be defined
by f̄(x) = f(x) if x ∈ Lf (υ) or f̄(x) = +∞ otherwise. Since

f(q) � f(w) ∀q ∈ X\Lf (υ) and w ∈ Lf (υ),
d−f(x;u) = d−f̄(x;u) for each x ∈ Lf (υ) and u ∈ TLf (υ)(x). Therefore Df̄ = D ∩
Lf (υ). Let z ∈ D∩Lf (υ)\Lf (λ). By (2.13), z /∈ D(ε) and so inf‖u‖=1 d−f(z;u) < −ε.
Then there exist a unit vector u and sequences (tn) ↓ 0, (un)→ u such that

lim
n→+∞

f(z + tnun)− f(z)

tn
= d−f(z;u) < −ε � −δ.

Since f(z) � υ, it follows that for all large n, z + tnun ∈ Lf (υ) and so u ∈ TLf (υ)(z).

By Theorem 2.6 (applied to f , Lf (υ), Lf (λ) in place of f , C, S), we have (2.18).
(II) Next we show that

f(x)− λ � δd(x, Lf (λ)) ∀x ∈ Q\Lf (λ).(2.19)

In fact, let x ∈ Q\Lf (λ); we may assume that x /∈ Lf (υ) (because of (2.18)). Take
a sequence (xn) ⊆ Q such that xn → x. Then d(xn, Lf (λ)) → d(x, Lf (λ)) and so
d(x, Lf (λ)) � d0. This implies that

f(x)− λ � υ − λ
d0

d(x, Lf (λ)) � δd(x, Lf (λ)),

verifying (2.19).
(III) Let S denote the set Q∪Lf (υ), and define θ := infX\S f(x). Clearly, θ � υ.

By ( 2.13), one has that D(ε) ∩ (D\S) = ∅; that is,

inf
‖u‖=1

d−f(x;u) < −ε � −2δ ∀x ∈ D\S.

By Theorem 2.4 one has

f(x)− υ � f(x)− θ � 2δd(x, S) ∀x ∈ X\S.(2.20)

By definition of S, X\S can be expressed as S1 ∪ S2, where S1, S2 are defined by

S1 := {x ∈ X\S; d(x, S) = d(x,Q)},

S2 := {x ∈ X\S; d(x, S) = d(x, Lf (υ))}.
Let x ∈ S1. If x ∈ Q(d0), then by (2.15) one has

f(x)− λ � υ − λ
2d0

d(x, Lf (λ)) � δd(x, Lf (λ)).(2.21)

If x /∈ Q(d0), then one has d(x, Lf (λ)) � 2d0 and

d(x, S) = d(x,Q) � d(x, Lf (λ))− d0 � 1

2
d(x, Lf (λ)),(2.22)
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where the first (nonstrict) inequality holds as

d(x, q) + d0 � d(x, q) + d(q, Lf (λ)) � d(x, Lf (λ)) ∀q ∈ Q.
Combining (2.20) and (2.22), one has

f(x)− λ � f(x)− υ � 2δd(x, S) � δd(x, Lf (λ)).

Combining this with (2.21), we arrive at

f(x)− λ � δd(x, Lf (λ)) ∀x ∈ S1.(2.23)

Finally, we consider the case when x ∈ S2. Take yn ∈ Lf (υ) such that d(x, yn) <
d(x, Lf (υ)) + 1

n ; thus,

d(x, Lf (λ)) � d(x, Lf (υ)) + d(yn, Lf (λ)) +
1

n
.(2.24)

We suppose without loss of generality that each yn �∈ Lf (λ). Indeed, if yn ∈ Lf (λ)
for infinitely many n, then passing to the limits in

d(x, Lf (λ)) ≤ d(x, yn) < d(x, Lf (υ)) +
1

n
≤ d(x, Lf (λ)) +

1

n

gives that d(x, Lf (λ)) = d(x, Lf (υ)), and it follows from (2.20) and the fact that
x ∈ S2 that

f(x)− λ > f(x)− υ � δd(x, S) = δd(x, Lf (υ)) = δd(x, Lf (λ)).

It remains to consider the case when each yn ∈ Lf (υ)\Lf (λ). Noting that d(x, S) =
d(x, Lf (υ)) as x ∈ S2, it follows from (2.18) and (2.20) that

f(x)− λ � f(x)− υ + f(yn)− λ
� δ[d(x, Lf (υ)) + d(yn, Lf (λ))].

Combining this with (2.24), we have

f(x)− λ � δd(x, Lf (λ)) ∀x ∈ S2.(2.25)

Therefore (2.16) is seen to hold by (2.18), (2.19), (2.23), and (2.25).
Remark 2. If there exists ε > 0 such that D(ε) = ∅, then there exist υ > λ and

a nonempty open set Q satisfying (2.13) and (2.14). Indeed, pick x0 ∈ X\Lf (λ) and
take υ such that f(·) > υ � λ at x0 and hence on a bounded open neighborhood
Q of x0. This is possible because f is lower semicontinuous. Therefore Theorem 2.7
extends the result of Theorem 2.5.

Let CLf (λ)(x) denote the cone defined by

CLf (λ)(x) := {u ∈ X; there exists T > 0 such that x+ tu ∈ Lf (λ) ∀t ∈ (0, T ]}.
This may be referred to as the linear cone of Lf (λ) at x, in general a rather smaller
set than the contingent cone TLf (λ)(x).

Proposition 2.8. Let X be a Banach space, let λ ∈ R, and let f : X → R be a
C1-function. Suppose there exists x ∈ Lf (λ) such that ∇f(x) = 0 and CLf (λ)(x) �= X.
Then f has no error bound for Lf (λ).
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Proof. Let x ∈ Lf (λ),∇f(x) = 0, and u /∈ CLf (λ)(x). By definition there exists a
sequence (tn) ↓ 0 such that

x+ tnu /∈ Lf (λ) ∀n.(2.26)

Take zn ∈ Lf (λ) such that

‖x+ tnu− zn‖ �
(

1 +
1

n

)
d(x+ tnu, Lf (λ)) ∀n.(2.27)

By virtue of the intermediate value theorem and by replacing zn with a point in the
line segment (x+tnu, zn) if necessary, we can assume that f(zn) = λ. Note that, since
x ∈ Lf (λ), the right-hand side of (2.27) converges to 0 as n → +∞. Thus, letting
t′n = ‖x+ tnu− zn‖, one has t′n → 0. Let vn = x+tnu−zn

t′n
. Then x+ tnu = zn + t′nvn.

For each t′n, by the mean value theorem there exists ξn lying in the line segment
(zn + t′nvn, zn) such that

f(zn + t′nvn)− f(zn)

t′n
= ∇f(ξn)vn → 0 as n→ +∞(2.28)

because ξn → x and ∇f(x) = 0. It follows from (2.27) and (2.28) that

lim
n→+∞

f(x+ tnu)− λ
d(x+ tnu, Lf (λ))

= lim
n→+∞

t′n
d(x+ tnu, Lf (λ))

· f(zn + t′nvn)− f(zn)

t′n
= lim

n→+∞∇f(ξn)vn = 0.

This implies that f has no error bound for Lf (λ).

3. Second-order directional derivatives and second-order sufficient con-
ditions. In this section we suppose that f : X → R is a Gateaux differentiable func-
tion with derivative denoted by ∇f . Recall that the second-order lower directional
derivative of f at x in the directions u, v is defined by

d2
−f(x;u, v) := lim inf

t↓0
f(x+ tu+ t2v)− f(x)− t∇f(x)u

t2
.(3.1)

This second-order directional derivative has been studied by many authors; see [1],
[6], [7], [9], and [17]. Note in particular that when f is a C2-function, then

d2
−f(x;u, 0) =

1

2
∇2f(x)(u, u).(3.2)

The following result may be regarded as a generalization of the Taylor expansion.
For related results see [2] and [5].

Theorem 3.1 (inequality form of the Taylor expansion). Let f : X → R be
lower semicontinuous and Gateaux differentiable. Let x, u ∈ X and T > 0. Then
there exists α ∈ [0, T ) such that

f(x+ Tu)− f(x)− T∇f(x)u

T 2
� d2

−f(x+ αu;u, 0).(3.3)
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Proof. Define ρ := f(x+ Tu)− f(x)− T∇f(x)u and h : [0, T ]→ R by

h(t) := f(x+ tu)− t∇f(x)(u)− t2

T 2
ρ.(3.4)

Then h is lower semicontinuous on [0, T ] and h(T ) = h(0). Thus, h attains a minimum
at some point α ∈ [0, T ) and hence

∇f(x+ αu)u−∇f(x)− 2α

T 2
ρ = 0(3.5)

((3.5) holds trivially if α = 0). Therefore,

h(α+ λ)− h(α)

λ2

=
f(x+αu+λu)−f(x+αu)−λ∇f(x+αu)u

λ2
− ρ

T 2
+
∇f(x+αu)u−∇f(x)u− 2α

T 2 ρ

λ

=
f(x+αu+λu)−f(x+αu)−λ∇f(x+αu)u

λ2
− ρ

T 2
.

By the minimality of α, it follows that

0 � lim inf
λ↓0

f(x+ αu+ λu)− f(x+ αu)− λ∇f(x+ αu)u

λ2
− ρ

T 2
;

that is,

ρ

T 2
� d2

−f(x+ αu;u, 0),

thus proving (3.3).
We are now ready to present our second-order sufficient condition for f to have

an error bound. Recall that D(ε) is defined by

D(ε) := {x ∈ X\Lf (λ); ‖∇f(x)‖ � ε} (ε > 0).(3.6)

Theorem 3.2. Let f : X → R be continuous and Gateaux differentiable. Suppose
that Lf (λ) �= ∅ and that there exist υ > λ and T, δ, ρ > 0 such that the following
conditions hold:

(a) D(ρ) ⊆ X\Lf (υ).
(b) For each x ∈ D(ρ), there exists a unit vector u such that

d2
−f(x+ αu;u, 0) < −δ ∀α ∈ [0, T ).

Then f has an error bound for Lf (λ).
Proof. Let ε = min{ρ, δ4 , Tδ2 } and β = min{υ − λ, ε2 , 1, Tδ2 }. We claim that for

each x ∈ Domf\Lf (λ) there exists y ∈ f−1[λ,+∞) such that

f(x)− f(y) � βd(x, y) > 0.

Granting this, one can complete the proof by virtue of Corollary 2.2. To establish our
claim, we let x ∈ Domf\Lf (λ) and we consider the following three cases.

Case 1. x ∈ D(ε) and d(x, Lf (λ)) < 1. Since f is continuous, we can take
y ∈ Lf (λ) such that f(y) = λ and

‖x− y‖ < 1.
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Since x ∈ D(ε) ⊆ X\Lf (υ), one has f(x) > υ and hence

f(x)− f(y) � υ − λ � (υ − λ)d(x, y) � βd(x, y) > 0.(3.7)

Case 2. x ∈ D(ε) and d(x, Lf (λ)) � 1. By assumption let u be a unit vector
such that

d2
−f(x+ αu;u, 0) < −δ ∀α ∈ [0, T ).

Let T ′ = min{ 1
2 , T}; then ε � T ′δ

2 . Note that x+T ′u /∈ Lf (λ) as d(x, Lf (λ)) � 1 and
that by Theorem 3.1 there exists α ∈ [0, T ′) such that

f(x+ T ′u)− f(x)− T ′∇f(x)u � T ′2d2
−f(x+ αu;u, 0) < −T ′2δ.

Note that ∇f(x)u � ε since x ∈ D(ε); hence

f(x+ T ′u)− f(x)− T ′ε � −T ′2δ.

It follows that

f(x)− f(x+ T ′u) � T ′(T ′δ − ε)
� T ′2δ

2 = T ′δ
2 d(x, x+ T ′u)

� βd(x, x+ T ′u) > 0.

(3.8)

Case 3. x ∈ (X\D(ε))\Lf (λ). Then ‖∇f(x)‖ > ε and hence there exists a unit
vector u such that ∇f(x)u < −ε. Thus, there exists (tn) ↓ 0 such that

f(x)− f(x+ tnu) > tnε = εd(x, x+ tnu) � βd(x, x+ tnu) ∀n.(3.9)

Since f(x) > λ, letting y = x+ tnu with n sufficiently large one has y /∈ Lf (λ).
Corollary 3.3. Let f : X → R be a C2-function. Let λ ∈ R be such that

Lf (λ) �= ∅.
Let ρ, δ > 0. We suppose that ∇2f is uniformly continuous on the δ-neighborhood

U of D(ρ). Then f has an error bound for Lf (λ) if either of the following conditions
is satisfied:

(a) D(ρ) = ∅.
(b) There exists υ > λ with D(ρ) ⊆ X\Lf (υ) such that

sup
x∈D(ρ)

inf
‖u‖=1

∇2f(x)(u, u) < 0.

Proof. We need to deal only with the case (b). Let ε > 0 such that

sup
x∈D(ρ)

inf
‖u‖=1

∇2f(x)(u, u) < −3ε.(3.10)

Take T ∈ (0, δ) such that

‖∇2f(x)−∇2f(Y )‖ < δ(3.11)

for all x, y ∈ U with ‖x− y‖ < T . Let x ∈ D(ρ); by (3.10) there exists a unit vector
u such that

∇2f(x)(u, u) < −3ε,

and so by (3.11)

2d2
−f(y, u, 0) = ∇2f(y)(u, u) < −2ε

whenever ‖y − x‖ < T . Therefore the result follows from Theorem 3.2.
In the next section, we shall apply the results obtained in sections 2 and 3 to

describe exactly when a quadratic function on X has a Lipschitz error bound.
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4. Error bound for a quadratic function on Banach space. Throughout
this section, f will denote a quadratic function

f(x) :=
1

2
〈x,Ax〉+ 〈x, z∗〉+ γ ∀x ∈ X,(4.1)

where X is a Banach space with the dual space X∗, γ ∈ R, z∗ ∈ X∗, and A : X → X∗

is a bounded linear operator from X into X∗. Let A′ denote the dual operator of A
defined by

〈z,A′x〉 = 〈x,Az〉
for all x, z ∈ X. Let 1

2 (A+A′) be denoted by Ā. Then

∇f(x) =
1

2
(〈·, Ax〉+ 〈x,A·〉) + 〈·, z∗〉

=
1

2
(A+A′)x+ z∗ = Āx+ z∗

(4.2)

and

∇2f(x)(u, u) = 〈u,Au〉 ∀x, u ∈ X.
We note that A is symmetric: 〈z,Ax〉 = 〈x,Az〉 for all x, z ∈ X. Since 〈x,Ax〉 =
〈x,Ax〉 = 〈x,A′x〉, we can suppose henceforth that A is symmetric (replace A by A
if necessary). Further, we can show that

f(x+ u)− f(x) = ∇f(x)u+
1

2
∇2f(x)(u, u) ∀x, u ∈ X.(4.3)

Denote the set of all critical (stationary) points of f by N∇f , that is,

N∇f := {x ∈ X;∇f(x) = 0}.
By (4.2) one has N∇f = {x ∈ X;Ax = −z∗}. We recall that (xn) is a critical (or
stationary) sequence of f if limn→+∞∇f(xn) = 0. η is called a critical value of f if
η = f(x) for some x ∈ N∇f . We will show in the following lemma that there is only
one critical value (provided that N∇f is nonempty).

Lemma 4.1. Suppose that N∇f is nonempty. Then f and z∗ are constant on
N∇f . Moreover, if z0 ∈ N∇f , then it holds ∀x ∈ N∇f that

z∗(x) = −〈z0, Az0〉(4.4)

and that

f(x) = γ − 1

2
〈z0, Az0〉 ∀x ∈ N∇f .(4.5)

If we assume in addition that A is of closed range, then there exists m > 0 such that,
whenever (xn) is a critical sequence of f , one has

lim sup
n→+∞

d(xn, N∇f − z0) � ‖z
∗‖
m

(4.6)

and

lim
n→+∞ f(xn) = γ − 1

2
〈z0, Az0〉.(4.7)

(γ − 1
2 〈z0, Az0〉 will be referred to as the critical value of f .)
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Proof. Since A is assumed symmetric, (4.2) reads

∇f(x) = Ax+ z∗.(4.8)

Then Az0 + z∗ = 0 and Ax+ z∗ = 0; hence Ax = Az0 for each x ∈ N∇f . Therefore,
by symmetry of A,

z∗(x) = 〈x,−Az0〉 = 〈z0,−Ax〉 = 〈z0,−Az0〉 ∀x ∈ N∇f ,

verifying (4.4). This also implies that

〈x,Ax〉 = 〈z0, Az0〉 ∀x ∈ N∇f .(4.9)

Consequently,

f(x) =
1

2
〈x,Ax〉+ z∗(x) + γ

= γ − 1

2
〈z0, Az0〉 ∀x ∈ N∇f ,

verifying (4.5).
Suppose in addition that AX is closed. Then there exists m > 0 such that

‖Ax‖ � md(x, kerA) ∀x ∈ X

(cf. [18, IV. 5, Theorem 5.9]). Since (4.8) reads ∇f(x) = A(x− z0), it follows that

‖∇f(xn)− z∗‖ � m · d(xn, N∇f − z0).

Hence, if limn→+∞∇f(xn) = 0, one has

‖z∗‖ � m lim sup
n→+∞

d(xn, N∇f − z0),

thus proving (4.6).
Now, for each large n, one applies (4.6) to obtain yn ∈ N∇f such that

‖xn − (yn − z0)‖ � ‖z
∗‖
m

+ 1.

Note that by (4.5), each f(yn) = η, where η := γ − 〈z0, Az0〉. On the other hand, by
the mean value theorem, there exists ξn in the line segment (xn, yn) such that

|f(xn)− η| = |f(xn)− f(yn)|
= |∇f(ξn)(xn − yn)|
� ‖∇f(ξn)‖ ‖xn − yn‖
� ‖∇f(ξn)‖

(‖z∗‖
m

+ ‖z0‖+ 1

)
→ 0

because ∇f(ξn) → 0 as ∇f is affine, ∇f(xn) → 0, and ∇f(yn) = 0. Therefore (4.7)
holds.

Let λ ∈ R. In the following, we consider the problem of whether f has an error
bound for Lf (λ) or not. To avoid trivialities we suppose that X �= Lf (λ) �= ∅.
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Proposition 4.2. Suppose that z∗ /∈ AX, the closure of the range AX of A.
Then f has an error bound for Lf (λ).

Proof. By the Hahn–Banach theorem, there exists u∗∗ ∈ X∗∗ of norm 1 such that

u∗∗(z∗) = ‖z∗‖ and u∗∗(Ax) = 0 ∀x ∈ X.
Since ∇f(x) = Ax+ z∗, it follows that

u∗∗(∇f(x)) = ‖z∗‖ ∀x ∈ X.
By the bipolar theorem, there exists a net (uκ) in the unit ball of X which converges
to u∗∗ in the σ(X∗∗, X∗)-topology. Then, for any x ∈ X there exists uκ such that

∇f(x)

(
uκ
‖uκ‖

)
>
‖z∗‖

2 ‖uκ‖ � ‖z
∗‖
2

.

Therefore (2.8) is satisfied (with δ = ‖z∗‖
2 ) and so Theorem 2.5 implies that f admits

an error bound for Lf (λ) whenever Lf (λ) �= ∅.
Proposition 4.3. Let λ ∈ R. Suppose that A is not positive semidefinite and is

of closed range. If N∇f ∩ Lf (λ) = ∅, then f has an error bound for Lf (λ).
Proof. Let us first consider the case that N∇f = ∅. Since ∇f(x) = Ax + z∗,

it follows that z∗ /∈ AX. Since A is assumed to be of closed range, it follows from
Proposition 4.2 that f has an error bound for Lf (λ). In the following we assume
that N∇f �= ∅. We claim that there exist υ > λ and ε > 0 such that D(ε) ⊆
X\Lf (υ). Indeed, if not, then there exists a sequence (xn) such that ‖∇f(xn)‖ � 1

n
and f(xn) � λ+ 1

n for each n. Thus, letting η denote the critical value of f , it follows
from Lemma 4.1 that η � λ, contradicting the assumption that N∇f ∩ Lf (λ) = ∅.
Therefore our claim stands. Moreover, since A is not positive semidefinite, there exists
a unit vector u0 such that 〈u0, Au0〉 < 0. Since ∇2f(z) = A for each z ∈ X, Corollary
(3.3) implies that f has an error bound for Lf (λ).

For the case when A is of closed range, the next theorem together with Proposition
4.2 provides a complete answer for the question, When does f defined by (4.1) have
an error bound?

Theorem 4.4. Let λ ∈ R. Suppose further that z∗ ∈ AX (namely, N∇f �= ∅).
Then the following assertions hold.

(i) If λ is the critical value of f , then f has no error bound for Lf (λ).
(ii) If λ is not the critical value of f , then f has an error bound for Lf (λ) provided

that A is of closed range.
Proof. (i) We assume that z∗ ∈ AX and that λ = f(x) for some (and hence for

all by Lemma 4.1) x in N∇f . By virtue of Proposition 2.8 it is sufficient to show
CLf (λ)(x) �= X. By the way of contradiction we assume that CLf (λ)(x) = X. Then
for any u ∈ X, there exists Tu > 0 such that x + tu ∈ Lf (λ) ∀t ∈ [0, Tu]. Thus, for
each t ∈ [0, Tu], it follows from (4.3) that

λ � f(x+ tu) = f(x) +∇f(x)tu+
t2

2
∇2f(x)(u, u)

= λ+
t2

2
〈u,Au〉.

This implies that

〈u,Au〉 � 0 ∀u ∈ X.



FIRST- AND SECOND-ORDER CONDITIONS FOR ERROR BOUNDS 1071

Thus, f is a concave function and hence, any x ∈ N∇f is a maximum point of f .
Consequently, Lf (λ) = X, the case that we have rejected at the outset.

(ii) By Lemma 4.1, there exists η ∈ R such that f(x) = η for each x ∈ N∇f .
By assumption, λ �= η. Thus, we have two cases to consider: (a) λ < η and (b)
λ > η. For case (a), we can assume that A is not positive semidefinite (if A is positive
semidefinite, then f is a convex function and so η = inf f. Since η > λ, this is not
possible because we have assumed that Lf (λ) �= ∅). Thus, since S is of closed range
it follows from Proposition 4.3 that f has an error bound for Lf (λ).

Next consider case (b): λ > η. Then

inf
x/∈Lf (λ)

‖∇f(x)‖ > 0(4.10)

(and so (2.8) is satisfied for some δ > 0 and hence it follows from Theorem 2.5 that
f has an error bound for Lf (λ)). To verify (4.10), we suppose on the contrary that
there exists a sequence (xn) ⊆ X\Lf (λ) such that ∇f(xn) → 0. Then, by Lemma
4.1 it follows that limn→+∞ f(xn) = η. But this is not possible because η is strictly
smaller than λ and λ < f(xn) for all n.

In the special case when X = Rn, the consideration of an error bound for a
general quadratic function f is equivalent to that for φ of the form

φ(x) :=
1

2

k∑
i=1

x2
i −

1

2

m∑
i=k+1

x2
i +

n∑
i=m+1

cixi + γ,

where 0 � k � m � n (cf. [13]). Note that

φ(x) =
1

2
〈x,Hx〉+ 〈c, x〉+ γ,(4.11)

where H =

⎡
⎣ Ik 0 0

0 −Im−k 0
0 0 0

⎤
⎦, Ik and Im are, respectively, the k × k unit matrix

and the (m − k) × (m − k) unit matrix, c = (0, . . . , 0, cm+1, . . . , cn), and x ∈ Rn.
The (operator associated with) matrix H is certainly of closed range. To compare our
results with those in [13], let us fix λ = 0, and write Sφ for Lφ(0). We assume that
∅ �= Sφ �= Rn; that is, we reject the following trivial cases:

(a) k = m, c = 0, and γ > 0.
(b) 0 = k < m, c = 0, and γ � 0.

Note also that c = 0 if and only if c belongs to the range of H.
Corollary 4.5. Let φ be of the form (4.11).
(I) Suppose that c = 0. Then φ has an error bound for Sφ if and only if γ �= 0.

(II) If c �= 0, then φ has an error bound for Sφ.
Proof. (I) Since ∇φ(x) = Hx + c = Hx, we see that 0 ∈ N∇φ and γ = φ(0) is

the critical value of φ. It follows from Theorem 4.4 that γ �= λ if and only if φ has an
error bound.

(II) This follows from Proposition 4.2.

5. Appendix. We end the paper with an example showing that Theorem 2.5
improves a result in [13].

Example. LetX= �2. Let en∈�2 denote the nth unit vector en:=(0, . . . , 0, 1, 0, . . . 0),
where 1 appears at the nth coordinate. Let Ln be the line segment defined by

Ln := {x ∈ �2;x = ten, n
−1 � t � 1},
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and let A := ∪+∞
n=2Ln. Then A ∪ {0} is closed and for any unit vector v, there exists

ε > 0 such that

tB(v, ε) ∩A = ∅ ∀ 0 � t < ε.(5.1)

In fact, the claim is clearly true if v = en for some n � 2. Moreover, if the claim is
not true for some unit vector v �= en, n = 2, 3, . . . , then there exist sequences (vn)
⊆ �2, (εn) ↓ 0, and (tn) ↓ 0 such that each

vn ∈ tnB(v, εn) ∩A.(5.2)

Since vn ∈ Lmn
for some mn � 2, one can write τnemn

for vn with m−1
n � τn � 1. It

follows from (5.2) that

τn
tn
emn =

vn
tn
→ v,

which implies that τn
tn
→ 1 and that (emn) → v. By definition of en’s, this is impos-

sible. Define a function f : X → R ∪ {+∞} by

f(x) :=

⎧⎪⎪⎨
⎪⎪⎩
−(1− n− 1

3 )

[
t− n−1

1− n−1
− 1

]
, x ∈ Ln, x = ten, n = 2, 3, . . . ,

1 + ‖x‖, x /∈ Ln, ‖x‖ < 1, n = 2, 3, . . . ,

0, ‖x‖ � 1.

Then f is lower semicontinuous and

0 /∈ Lf (0) = {x ∈ �2; ‖x‖ � 1} ∪ {en;n = 2, 3, . . . }.

Let un = n−
1
3 en. Then n−

2
3un = 1

nen ∈ Ln and so one has

d−f(0; 0) � lim
n→+∞

1

n−
2
3

(f(n− 2
3un)− f(0))

= lim
n→+∞

−n− 1
3

n−
2
3

= −∞,

thus showing that 0 /∈ D. Moreover, by (5.1), it is easy to see that

d−f(0; v) � 0 ∀v �= 0.

Thus, one has

inf
‖v‖=1

d−f(0; v) � 0.

Since 0 /∈ Lf (0), this implies that the sufficient condition of [13, Theorem 2.5] is not
satisfied. On the other hand, note that for any x with x /∈ A ∪ {0} and ‖x‖ < 1,

∇f(x) =
x

‖x‖ .

Then for u = − x
‖x‖ ,

d−f(x;u) = ∇f(x)u = −1.(5.3)
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If x ∈ A : x = ten,
1
n � t < 1 for some n � 2, then

d−f(x; en) � −1− n− 1
3

1− n−1
� −(1− 2−

1
3 ).(5.4)

Combining (5.3) and (5.4) and noting that 0 /∈ D, we have

sup
x∈D\Lf (0)

inf
‖v‖=1

d−f(x; v) � −(1− 2−
1
3 ) < 0.

Thus, (2.8) is satisfied and Theorem 2.5 is applicable.
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Abstract. An algorithm for smooth nonlinear constrained optimization problems is described,
in which a sequence of feasible iterates is generated by solving a trust-region sequential quadratic
programming (SQP) subproblem at each iteration and by perturbing the resulting step to retain
feasibility of each iterate. By retaining feasibility, the algorithm avoids several complications of
other trust-region SQP approaches: the objective function can be used as a merit function, and the
SQP subproblems are feasible for all choices of the trust-region radius. Global convergence properties
are analyzed under various assumptions on the approximate Hessian. Under additional assumptions,
superlinear convergence to points satisfying second-order sufficient conditions is proved.

Key words. nonlinear constrained optimization, feasible algorithm, sequential quadratic pro-
gramming, trust-region algorithms
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1. Introduction. We consider the general smooth constrained optimization
problem,

min f(z) subject to c(z) = 0, d(z) ≤ 0,(1.1)

where z ∈ IRn, f : IRn → IR, c : IRn → IRm, and d : IRn → IRr are smooth (twice
continuously differentiable) functions. We denote the set of feasible points for (1.1)
by F .

At a feasible point z, let H be an n× n symmetric matrix. The basic sequential
quadratic programming (SQP) approach obtains a step ∆z by solving the subproblem

min
∆z

m(∆z)
def
= ∇f(z)T∆z + 1

2∆zTH∆z subject to(1.2a)

c(z) +∇c(z)T∆z = 0, d(z) +∇d(z)T∆z ≤ 0.(1.2b)

The matrix H is chosen as some approximation to the Hessian of the Lagrangian, pos-
sibly obtained by a quasi-Newton technique, or possibly a “partial Hessian” computed
in some application-dependent way from some of the objective and constraint func-
tions and Lagrange multiplier estimates. The function m(·) is the quadratic model
for the change in f around the current point z.

Although the basic approach of (1.2a,b) often works well in the vicinity of a
solution to (1.1), trust-region or line-search devices must be added to improve its
robustness and global convergence behavior. In this paper, we consider a trust region
of the form

‖D∆z‖p ≤ ∆,(1.3)
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where the scaling matrix D is uniformly bounded above and p ∈ [1,∞]. The choice
p =∞ makes (1.2a,b), (1.3) a quadratic program since we can then restate the trust-
region constraint as −∆e ≤ D∆z ≤ ∆e, where e = (1, 1, . . . , 1)T . The choice p = 2
produces the quadratic constraint ∆zTDTD∆z ≤ ∆2, and since z is feasible for (1.1),
we can show that the solution ∆z of (1.2a,b), (1.3) is identical to the solution of
(1.2a,b) alone, with H replaced by H + γDTD for some γ ≥ 0. For generality, we
develop most of the convergence theory to apply to any choice of p ∈ [1,∞], making
frequent use of the equivalence between ‖ · ‖p and ‖ · ‖2.

By allowing D to have zero eigenvalues, the constraint (1.3) generally allows ∆z
to be unrestricted by the trust region in certain directions. We assume, however, that
the combination of (1.3) and (1.2b) ensures that the all components of the step are
controlled by the trust region; see Assumption 1 below.

When the iterate z is not feasible for the original problem (1.1) we cannot, in
general, simply add the restriction (1.3) to the constraints in the subproblem (1.2a,b),
since the resulting subproblem will be infeasible for small ∆. Practical trust-region
methods, such as those due to Celis, Dennis, and Tapia [3] and Omojokun [12] do not
insist on satisfaction of the constraints (1.2b) by the step ∆z but, rather, achieve some
reduction in the infeasibility while staying within the trust region (1.3) and reducing
the objective in subproblem (1.2a).

Another issue that arises in the practical SQP methods is the use of a merit or
penalty function to measure the worth of each point z. Typically, this function is
some combination of the objective f(z) and the violations of the constraints, that is,
|ci(z)|, i = 1, 2, . . . ,m and d+

i (z), i = 1, 2, . . . , r. The merit function may also depend
on estimates of the Lagrange multipliers for the constraints in (1.1). It is sometimes
difficult to appropriately choose weighting parameters in these merit functions in a
way that drives the iterates to a solution (or at least a point satisfying Karush–Kuhn–
Tucker (KKT) conditions) of (1.1).

In this paper, we propose an algorithm called Algorithm FP-SQP (feasibility
perturbed SQP), in which all iterates zk are feasible; that is, zk ∈ F for all k. We
obtain a step by solving a problem of the form (1.2a,b)at a feasible point z ∈ F with

a trust-region constraint of the form (1.3). We then find a perturbation ∆̃z of the
step ∆z that satisfies the following two crucial properties. First, feasibility:

z + ∆̃z ∈ F ;(1.4)

second, asymptotic exactness: There is a continuous monotonically increasing function
φ : IR+ → [0, 1/2] with φ(0) = 0 such that

‖∆z − ∆̃z‖2 ≤ φ(‖∆z‖2) ‖∆z‖2.(1.5)

Note that because φ(t) ≤ 1/2 for all t ≥ 0, we have that

(1/2)‖∆z‖2 ≤ ‖∆̃z‖2 ≤ (3/2)‖∆z‖2.(1.6)

These conditions on ∆̃z suffice to prove good global convergence properties for the
algorithm. Additional assumptions on the feasibility perturbation technique can be
made to obtain fast local convergence; see section 4.

The effectiveness of our method depends on its ability to calculate efficiently a
perturbed step ∆̃z with properties (1.4) and (1.5). This task is not difficult for certain
structured problems, including some problems in optimal control. Additionally, in the
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special case in which the constraints c and d are linear, we can simply set ∆̃z = ∆z.
When some constraints are nonlinear, ∆̃z can be obtained from the projection of
z + ∆z onto the feasible set F . For general problems, this projection is nontrivial to
compute, but for problems with structured constraints, it may be inexpensive.

By maintaining feasible iterates, our method gains several advantages. First,
the trust-region restriction (1.3) can be added to the SQP problem (1.2a,b)without
concern as to whether it will yield an infeasible subproblem. There is no need for a
composite-step approach such as those mentioned above [3, 12]. Second, the objective
function f can itself be used as a merit function. Third, if the algorithm is terminated
early, we will be able to use the latest iterate zk as a feasible suboptimal point, which
in many applications is preferable to an infeasible suboptimum.

The advantages stated above are, of course, shared by other feasible SQP methods.
The FSQP approach described in Lawrence and Tits [10] (based on an earlier version
of Panier and Tits [13] and also using ideas from Birge, Qi, and Wei [2]) calculates the
main search direction via a modified SQP subproblem that includes a parameter for
“tilting” the search direction toward the interior of the set defined by the inequality
constraints. A second subproblem is solved to obtain a second-order correction, and an
“arc search” is performed along these two directions to find a new iterate that satisfies
feasibility as well as a sufficient decrease condition in the objective f . The approach
can also handle nonlinear equality constraints, but feasibility is not maintained with
respect to these constraints in general. Our algorithm below differs in that it uses a
trust region rather than arc searches to attain global convergence, it requires feasibility
with respect to both inequality and equality constraints at each iteration, and it is
less specific than in [10] about how the step is calculated. In this sense, Algorithm
FP-SQP represents an algorithmic framework rather than a specific algorithm.

Heinkenschloss [8] considers projected SQP methods for problems with equality
constraints in addition to bounds on a subset of the variables. He specifically targets
optimal control problems with bounds on the controls—a set of problems similar to
those we discuss in a companion paper [15]. The linearized equality constraints are
used to express the free variables in terms of the bounded variables, and a projected
Newton direction (see [1]) is constructed for the bounded variables. The step is
computed by performing a line search along this direction with projection onto the
bound constraints. This method contrasts with ours not only because it uses a line
search rather than a trust region, but also because feasibility is not enforced with
respect to the equality constraints; thus an augmented Lagrangian merit function
must be used to determine an acceptable step length.

Other related work includes the feasible algorithm for problems with convex con-
straints discussed in Conn, Gould, and Toint [5]. At each iteration, this algorithm
seeks an approximate minimizer of the model function over the intersection of the
trust region with the original feasible set. The algorithm is targeted to problems in
which the constraint set is simple (especially bound-constrained problems with ∞-
norm trust regions, for which the intersection is defined by componentwise bounds).
Aside from not requiring convexity, our method could be viewed as a particular in-
stance of Algorithm 12.2.1 of [5, p. 452], in which the model function approximates the
Lagrangian and the trial step is a perturbed SQP step. It may then be possible to ap-
ply the analysis of [5], once we show that the step generated in this fashion satisfies the
assumptions in [5], at least for sufficiently small values of the trust-region radius. It
appears nontrivial, however, to put our algorithm firmly into the framework of [5] and
to extend the latter algorithm to handle a class of problems (featuring nonconvexity)
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which its designers did not have in mind. Therefore, we present an analysis that was
developed independently of that in [5]. We note that several features of the analysis
in [5, Chapter 12] are similar to ours; for instance, χ in [5, p. 452] is similar to C(z, 1)
defined below in (3.1), except that minimization in χ is taken over the original feasible
set rather than over its linearized approximation, as in (3.1). Other aspects of the
analysis in [5] and this paper are different; for instance, the generalized Cauchy point
in [5, section 12.2.1] is defined in a much more complex fashion with respect to the
projected-gradient path, rather than along the straight line as in Lemma 3.3 below.

The remainder of the paper is structured as follows. The algorithm is specified
in section 2, and in section 2.1 we show that it is possible to find a feasible pertur-
bation of the SQP step that satisfies requirements (1.4) and (1.5). We present global
convergence results in section 3. After some basic lemmas in section 3.1, we describe
in section 3.2 conditions under which the algorithm has at least one limit point that
either fails a constraint qualification or satisfies KKT conditions. In particular, we
assume in this section that the approximate Hessian Hk in (1.2) satisfies the bound
‖Hk‖2 ≤ σ0 + σ1k for some constant σ0 and σ1—a type of bound often satisfied by
quasi-Newton update formulae. In section 3.3, we make the stronger assumption that
‖Hk‖ is uniformly bounded and prove the stronger result that all limit points of the
algorithm either fail a constraint qualification or else satisfy KKT conditions. Under
stronger assumptions on the limit point z∗ and the feasibility projection technique,
we prove fast local convergence in section 4. Some final comments appear in section 5.

A companion report of Tenny, Wright, and Rawlings [15] describes application of
the algorithm to nonlinear optimization problems arising in model predictive control.

1.1. Optimality results and notation. The Lagrangian function for (1.1) is

L(z, µ, λ)
def
= f(z) + µT c(z) + λT d(z),(1.7)

where µ ∈ IRm and λ ∈ IRr are Lagrange multipliers for the constraints. The KKT
conditions for (1.1) are as follows:

∇zL(z, µ, λ) = ∇f(z) +∇c(z)µ+∇d(z)λ = 0,(1.8a)

c(z) = 0,(1.8b)

0 ≥ d(z) ⊥ λ ≥ 0,(1.8c)

where ⊥ indicates that λT d(z) = 0. We refer to any point z such that there exist µ
and λ satisfying the conditions (1.8) as a KKT point.

For any feasible point z, we denote the active set A(z) as follows:

A(z)
def
= {i = 1, 2, . . . , r | di(z) = 0}.(1.9)

To ensure that the tangent cone to the constraint set at a feasible point z ad-
equately captures the geometry of the feasible set near z, a constraint qualification
must be satisfied at z. In the global convergence analysis of section 3, we use the
Mangasarian–Fromovitz constraint qualification (MFCQ), which requires that

∇c(z) has full column rank, and(1.10a)

there exists a vector v ∈ IRn such that

∇c(z)T v = 0 and vT∇di(z) < 0 for all i ∈ A(z).(1.10b)
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A more stringent constraint qualification, used in the local convergence analysis of
section 4, is the linear independence constraint qualification (LICQ), which requires
that

{∇ci(z), i = 1, 2, . . . ,m} ∪ {∇di(z), i ∈ A(z)} is linearly independent.(1.11)

If z is a solution of (1.1), at which a constraint qualification such as (1.10) or
(1.11) is satisfied, there exist vectors µ and λ such that (1.8) is satisfied by the triplet
(z, µ, λ).

We say that the strict complementarity condition is satisfied at the KKT point z
if, for some choice of the Lagrange multiplier vectors µ and λ satisfying the conditions
(1.8), we have

λ− d(z) > 0.(1.12)

That is, λi > 0 for all i ∈ A(z).
We use B(z, t) to denote the open ball (in the Euclidean norm) of radius t about

z. When the subscript on the norm ‖ · ‖ is omitted, the Euclidean norm ‖ · ‖2 is to be
understood. The closure of a set L is denoted by cl(L).

We use order notation in the following way: If two matrix, vector, or scalar
quantities M and A are functions of a common quantity, we write M = O(‖A‖) if
there is a constant β such that ‖M‖ ≤ β‖A‖ whenever ‖A‖ is sufficiently small. We
write M = Ω(‖A‖) if there is a constant β such that ‖M‖ ≥ β−1‖A‖ whenever ‖A‖ is
sufficiently small. We write M = o(‖A‖) if there is a continuous, increasing function
φ : IR→ IR with φ(0) = 0 such that ‖M‖ ≤ φ(‖A‖)‖A‖ for all ‖A‖ sufficiently small.

2. The algorithm. In specifying the algorithm, we assume only that the per-
turbed step ∆̃z satisfies (1.4) and (1.5), without specifying how it is calculated. As
with all trust-region algorithms, a critical role is played by the ratio of actual to
predicted decrease, which is defined for a given SQP step ∆zk and its perturbed

counterpart ∆̃z
k

as follows:

ρk =
f(zk)− f

(
zk + ∆̃z

k
)

−mk(∆zk)
.(2.1)

The algorithm is specified as follows.
Algorithm 2.1 (FP-SQP). Given starting point z0 ∈ F , initial radius ∆0 ∈

(0, ∆̄], initial scaling matrix D0, trust-region upper bound ∆̄ ≥ 1, η ∈ (0, 1/4), and
p ∈ [1,∞];
for k = 0, 1, 2, . . .

Obtain ∆zk by solving (1.2), (1.3);
if mk(∆z

k) = 0
STOP;

Seek ∆̃z
k

with the properties (1.4) and (1.5);

if no such ∆̃z
k

is found;
∆k+1 ← (1/2)‖Dk∆z

k‖p;
zk+1 ← zk; Dk+1 ← Dk;

else
Calculate ρk using (2.1);
if ρk < 1/4
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∆k+1 ← (1/2)‖Dk∆z
k‖p;

else if ρk > 3/4 and ‖Dk∆z
k‖p = ∆k

∆k+1 ← min(2∆k, ∆̄);
else

∆k+1 ← ∆k;
if ρk ≥ η

zk+1 ← zk + ∆̃z
k
;

choose new scaling matrix Dk+1;
else

zk+1 ← zk; Dk+1 ← Dk;
end (for).

We now state some assumptions that are used in the subsequent analysis. We
start by defining the level set L0 as follows:

L0
def
= {z | c(z) = 0, d(z) ≤ 0, f(z) ≤ f(z0)} ⊂ F .

Our assumption on the trust-region bound (1.3) is as follows.
Assumption 1. There is a constant δ such that, for all points z ∈ L0 and all

scaling matrices D used by the algorithm, the following conditions hold:
(a) D is uniformly bounded.
(b) We have for any ∆z satisfying the constraints

c(z) +∇c(z)T∆z = 0, d(z) +∇d(z)T∆z ≤ 0

that

δ−1‖∆z‖2 ≤ ‖D∆z‖p ≤ δ‖∆z‖2.(2.2)

In this assumption, the constant that relates ‖·‖2 with the equivalent norms ‖·‖p
for all p between 1 and ∞ is absorbed into δ. Note that the right-hand inequality in
(2.2) is implied by part (a) of the assumption.

Note that for unconstrained problems (in which c and d are vacuous), the left-
hand inequality in (2.2) is satisfied when all scaling matrices D used by the algorithm
have bounded inverse. Another special case relevant to optimal control problems
occurs when the constraints have the form

c(u, v) = 0, c : IRn−m × IRm → IRm,(2.3)

(that is, u ∈ IRn−m and v ∈ IRm), and the trust-region constraint is imposed only on
the u variables; that is,

‖Du∆u‖p ≤ ∆,(2.4)

where Du is a diagonal matrix with positive diagonal elements. The linearized con-
straints (1.2b) then have the form

∇uc(u, v)T∆u+∇vc(u, v)T∆v = 0(2.5)

which, if ∇vc(u, v) is invertible, leads to

∆v = − (∇vc(u, v))−T ∇uc(u, v)T∆u.
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If we assume that ∇vc(u, v) is invertible for all points (u, v) in the region of interest,

with ‖(∇vc(u, v))−1‖ bounded, we can define a constant δ̂ > 0 such that ‖∆v‖p ≤
δ̂‖∆u‖p. We then have

‖(∆u,∆v)‖p ≤ (1 + δ̂)‖∆u‖p ≤ (1 + δ̂)D−1
min‖Du∆u‖p = (1 + δ̂)D−1

min‖D(∆u,∆v)‖p,
where we defineDmin to be a lower bound on the diagonals ofDu, andD=diag(Du, 0).
On the other hand, we have

‖D(∆u,∆v)‖p = ‖Du∆u‖∞ ≤ Dmax‖∆u‖p ≤ Dmax‖(∆u,∆v)‖p,
where Dmax is an upper bound on the diagonals of Du. It follows from the last two
expressions that Assumption 1 is satisfied in this situation.

For some results we make an assumption on the boundedness of the level set L0

and on the smoothness of the objective and constraint functions.
Assumption 2. The level set L0 is bounded, and the functions f , c, and d in

(1.1) are twice continuously differentiable in an open neighborhood N (L0) of this set.
Note that L0 is certainly closed so that, if Assumption 2 holds, it is also compact.

2.1. Algorithm FP-SQP is well defined. We show first that the algorithm
is well defined, in the sense that given a feasible point zk, a step ∆̃zk satisfying (1.4)
and (1.5) can be found for all sufficiently small ∆k, under certain assumptions.

We note first that whenever z = zk is feasible and Assumption 1 holds, the sub-
problem (1.2), (1.3) has a solution. This fact follows from nonemptiness, closedness,
and boundedness of the feasible set for the subproblem. To show that there exists
∆̃zk satisfying (1.4) and (1.5), we use the following assumption.

Assumption 3. For every point ẑ ∈ L0, there are positive quantities ζ and ∆̂3

such that, for all z ∈ cl(B(ẑ, δ∆̂3)), we have

min
v∈F

‖v − z‖ ≤ ζ (‖c(z)‖+ ‖[d(z)]+‖) ,(2.6)

where δ is the constant from Assumption 1 and [d(z)]+ = [max(di(z), 0)]ri=1. (Recall
our convention that ‖ · ‖ denotes ‖ · ‖2.)

This assumption requires the constraint system to be regular enough near each
feasible point that a bound like that of Hoffman [9] for systems of linear equalities
and inequalities is satisfied. Assumption 3 is essentially the same as Assumption C
of Lucidi, Sciandrone, and Tseng [11]. A result of Robinson [14, Corollary 1] shows
that Assumption 3 is satisfied whenever MFCQ is satisfied at all points in L0. The
following result shows that a bound similar to (2.6) also holds locally in the vicinity
of a feasible point satisfying MFCQ.

Lemma 2.1. Let ẑ be a feasible point for (1.1) at which MFCQ is satisfied. Then
there exist positive quantities ζ and R̂1 such that for all z ∈ cl(B(ẑ, R̂1)), the bound
(2.6) is satisfied.

Proof. We first choose R̄1 small enough such that for all z̃ ∈ cl(B(ẑ, R̄1))∩F , we
have that A(z̃) ⊂ A(ẑ), where A(·) is defined by (1.9). Let v be a vector satisfying
(1.10) at z = ẑ and assume, without loss of generality, that ‖v‖2 = 1. Because
∇c(ẑ) has full column rank, we have, by decreasing R̄1 if necessary, that for any
z̃ ∈ cl(B(ẑ, R̄1)), ∇c(z̃) also has full column rank. Moreover, using the full rank of
∇c(z̃), we can find a perturbation ṽ of v satisfying ‖ṽ − v‖ = O(‖z̃ − ẑ‖) and (after
possibly decreasing R̄1 again) ‖ṽ‖ ≥ 0.5, such that

∇c(z̃)T ṽ = 0 and ṽT∇di(z̃) < 0 for all i ∈ A(ẑ) ⊃ A(z̃), for all z̃ ∈ cl(B(ẑ, R̄1)) ∩ F .
Hence, the MFCQ condition is satisfied for all z̃ ∈ cl(B(ẑ, R̄1)) ∩ F .
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We now appeal to Corollary 1 of Robinson [14]. From this result, we have that
there is ζ > 0 (depending on ẑ but not on z̃) and an open neighborhood M(z̃) of each
z̃ ∈ cl(B(ẑ, R̄1)) ∩ F such that (2.6) holds for all z ∈M(z̃). Since

M̂(ẑ)
def
= ∪z̃{M(z̃) | z̃ ∈ cl(B(ẑ, R̄1)) ∩ F}

is an open neighborhood of the compact set cl(B(ẑ, R̄1)) ∩ F , we can define R̂1 ≤ R̄1

small enough that cl(B(ẑ, R̂1)) ⊂ M̂(ẑ). Thus, since (2.6) holds for all z ∈M(z̃), our
proof is complete.

We observed above that, under Assumption 1, the solution ∆z of (1.2a,b), (1.3)

is well defined. Using the other assumptions, we now show that ∆̃z satisfying the
properties (1.4) and (1.5) can also be found, so that Algorithm FP-SQP is well defined.

Theorem 2.2. Suppose that Assumptions 1, 2, and 3 are satisfied. Then there is
a positive constant ∆def such that for any z ∈ L0 and any ∆ ≤ ∆def , there is a step
∆̃z that satisfies the properties (1.4) and (1.5), where ∆z is the solution of (1.2a,b),
(1.3) for the given values of z and δ.

Proof. We show that the result holds for the function φ(t) = min(1/2,
√
t) in

(1.5).
We first choose ∆̂0 small enough that B(z, δ∆̂0) ⊂ N (L0) for all z ∈ L0, where

N (L0) is defined in Assumption 2. Thus, for ∆ ≤ ∆̂0 and ∆z solving (1.2a,b), (1.3),
we have for all α ∈ [0, 1] that

‖α∆z‖ ≤ ‖∆z‖ ≤ δ‖D∆z‖p ≤ δ∆̂0,(2.7)

so that z + α∆z ∈ N (L0).
Given any ẑ∈L0, we seek a positive constant ∆̂ such that for all z∈cl(B(ẑ, δ∆̂/2))∩

F , and all ∆ ≤ ∆̂/2, there is a step ∆̃z that satisfies properties (1.4) and (1.5).
We choose initially ∆̂ = ∆̂0 and assume that ∆z satisfies ‖D∆z‖p ≤ ∆, which

implies from Assumption 1 and the definitions of ∆ and ∆̂ that

‖∆z‖ ≤ δ‖D∆z‖p ≤ δ∆ ≤ δ∆̂/2 < δ∆̂0.

From feasibility of z, (2.7), (1.2b), and the fact that c and d are twice continuously
differentiable in N (L0), we have that

c(z + ∆z) = c(z) +∇c(z)T∆z +O(‖∆z‖2) = O(‖∆z‖2)

and

[d(z + ∆z)]+ =
[
d(z) +∇d(z)T∆z +O(‖∆z‖2)]

+
= O(‖∆z‖2).

We now set ∆̂← min(∆̂, ∆̂3) and apply Assumption 3. Since

‖(z + ∆z)− ẑ‖ ≤ ‖z − ẑ‖+ ‖∆z‖ ≤ δ∆̂/2 + δ∆̂/2 ≤ δ∆̂3,

we have from Assumption 3 and the estimates above that

min
v∈F

‖v − (z + ∆z)‖ ≤ ζ (‖c(z + ∆z)‖+ ‖[d(z + ∆z)]+‖) = O(ζ‖∆z‖2),(2.8)

where ζ may depend on ẑ. Since v = z is feasible for (2.8), we have that any solution
of this projection problem satisfies ‖v − (z + ∆z)‖ ≤ ‖∆z‖. Hence, the minimization
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on the left-hand side of (2.8) may be restricted to the nonempty compact set cl(B(z+
∆z, ‖∆z‖)) ∩ F , so the minimum is attained. If we use the minimizer v to define

∆̃z = v − z, then from (2.8) we have

‖∆̃z −∆z‖ = O(ζ‖∆z‖2).

Therefore, by decreasing ∆̂ if necessary, we find that (1.5) is satisfied for our choice
φ(t) = min(1/2,

√
t).

The set of open Euclidean balls B(ẑ, δ∆̂/2), ẑ ∈ L0, forms an open cover of L0.
Since L0 is compact, we can define a finite subcover. By defining ∆def to be the
minimum of the ∆̂/2 over the subcover, we have that ∆def is positive and has the
desired property.

3. Global convergence. In this section, we prove convergence to KKT points
of (1.1). Our results are of two types. We show first in section 3.2 that if Algorithm
FP-SQP does not terminate finitely (at a KKT point), it has a limit point that either
satisfies the MFCQ and KKT conditions or else fails to satisfy MFCQ. In section 3.3,
we show, under a stronger assumption on the approximate Hessian Hk, that all limit
points either fail to satisfy MFCQ or else satisfy both MFCQ and KKT.

We start with some technical results.

3.1. Technical results. The first result concerns the solution of a linear pro-
gramming variant of the SQP subproblem (1.2a,b), (1.3). Its proof appears in the
appendix.

Lemma 3.1. Let f, c, and d be as defined in (1.1), and let C(z, τ) denote the
negative of the value function of the following problem, for some z ∈ F and τ > 0:

CLP(z, τ): min
w
∇f(z)Tw subject to(3.1a)

c(z) +∇c(z)Tw = 0, d(z) +∇d(z)Tw ≤ 0, wTw ≤ τ2.(3.1b)

For any point z̄ ∈ F , we have C(z̄, 1) ≥ 0 with C(z̄, 1) = 0 if and only if z̄ is a KKT
point (1.8).

When the MFCQ conditions (1.10a,b) are satisfied at z̄, but z̄ is not a KKT point,
there exist positive quantities R2 and ε such that for any z ∈ B(z̄, R2) ∩ F , we have
C(z, 1) ≥ ε.

An immediate consequence of this result is that for any subsequence {zk}k∈K
such that zk → z̄ and C(zk, 1)→ 0, where z̄ satisfies the MFCQ conditions, we must
have that z̄ is a KKT point for (1.1).

Note that C(z, τ) is an increasing concave function of τ > 0. In particular, if
w(z, τ) attains the optimum in CLP(z, τ), the point αw(z, τ) is feasible in CLP(z, ατ)
for all α ∈ [0, 1], so that

C(z, ατ) ≥ αC(z, τ), for all τ > 0, for all α ∈ [0, 1].(3.2)

For convenience, we restate the subproblem (1.2a,b), (1.3) at an arbitrary feasible
point z as follows:

min
∆z

m(∆z)
def
= ∇f(z)T∆z + 1

2∆zTH∆z subject to(3.3a)

c(z) +∇c(z)T∆z = 0, d(z) +∇d(z)T∆z ≤ 0,(3.3b)

‖D∆z‖p ≤ ∆,(3.3c)
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where D satisfies Assumption 1. Consider now the following problem, obtained by
omitting the quadratic term from (3.3a):

min
∆zL
∇f(z)T∆zL subject to(3.4a)

c(z) +∇c(z)T∆zL = 0, d(z) +∇d(z)T∆zL ≤ 0,(3.4b)

‖D∆zL‖p ≤ ∆.(3.4c)

Denote the negative of the value function for this problem by V (z,D,∆). Referring to
(3.1) and Assumption 1, we see that the feasible region for CLP(z, δ−1∆) is contained
in the feasible region for (3.4), and the objectives are the same. Hence for ∆ ∈ (0, 1],
we have from (3.2) that

V (z,D,∆) ≥ C(z, δ−1∆) ≥ δ−1C(z, 1)∆.

For ∆ > 1, on the other hand, we have

V (z,D,∆) ≥ C(z, δ−1∆) ≥ δ−1C(z,∆) ≥ δ−1C(z, 1).

Hence, by combining these observations, we obtain that

V (z,D,∆) ≥ δ−1C(z, 1) min(1,∆).(3.5)

The following result, together with Lemma 3.1, is an immediate consequence of (3.5).
Lemma 3.2. Suppose that Assumption 1 holds. Let z̄ ∈ L0 satisfy the MFCQ

conditions (1.10a,b) but not the KKT conditions (1.8a–c). Then there exist positive
quantities R2 and ε such that for any z ∈ B(z̄, R2) ∩ F and any ∆ > 0, we have

C(z, 1) ≥ ε,(3.6a)

V (z,D,∆) ≥ δ−1εmin(1,∆),(3.6b)

where V (·, ·, ·) is the negative of the value function for (3.4).
If Assumption 1 holds, we have that

‖∆zL‖2 ≤ δ‖D∆zL‖p ≤ δ∆.(3.7)

Hence, since ∆z is optimal for (3.3), and since ∆zL that solves (3.4) is feasible for
this problem, we have

m(∆z) ≤ m(∆zL)

= (∆zL)T∇f(z) + 1
2 (∆zL)TH(∆zL)

≤ −V (z,D,∆) + 1
2δ

2‖H‖∆2

≤ −δ−1 min(1,∆)C(z, 1) + 1
2δ

2‖H‖∆2,(3.8)

where the last inequality follows from (3.5).
We now define the Cauchy point for problem (3.3a–c) as

∆zC = αC∆zL,(3.9)

where

αC = arg min
α∈[0,1]

α∇f(z)T∆zL + 1
2α

2(∆zL)TH∆zL.(3.10)
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We show that ∆zC has the following property:

m(∆zC) ≤ − 1
2C(z, 1) min

[
δ−1, δ−1∆, (δ4∆̄2‖H‖2)−1C(z, 1)

]
,(3.11)

where ∆̄ is defined in Algorithm FP-SQP. We prove (3.11) by considering two cases.
First, when (∆zL)TH∆zL ≤ 0, we have αC = 1 in (3.10), and hence ∆zC = ∆zL.
Similarly to (3.8), but using (∆zL)TH∆zL ≤ 0 together with (3.5), we have

m(∆zC) = m(∆zL) ≤ −V (z,D,∆) ≤ −δ−1C(z, 1) min(1,∆),

so result (3.11) holds in this case. In the alternate case (∆zL)TH∆zL > 0, we have

α = min

(
1,
−∇f(z)T∆zL

(∆zL)TH∆zL

)
.(3.12)

If the minimum is achieved at 1, we have from (∆zL)TH∆zL ≤ −∇f(z)T∆zL and
(3.5) that

m(∆zC) = m(∆zL) ≤ 1
2∇f(z)T∆zL ≤ − 1

2δ
−1C(z, 1) min(1,∆),(3.13)

and therefore (3.11) again is satisfied. If the min in (3.12) is achieved at−∇f(z)T∆zL/
(∆zL)TH∆zL, we have from (3.5) that

m(∆zC) = m(α∆zL) = −1

2

(∇f(z)T∆zL)2

(∆zL)TH∆zL
≤ −1

2

δ−2 min(1,∆2)C(z, 1)2

‖H‖2‖∆zL‖22
.(3.14)

Because of (3.7), we have from (3.14) that

m(∆zC) ≤ −1

2

δ−2 min(1,∆2)C(z, 1)2

δ2∆2‖H‖2
= −1

2
(δ4‖H‖2)−1 min(1,∆−2)C(z, 1)2 ≤ −1

2
(δ4∆̄2‖H‖2)−1C(z, 1)2,

which again implies that (3.11) is satisfied.
Since ∆zC is feasible for (3.3), we have proved the following lemma.
Lemma 3.3. Suppose that z ∈ L0 and that Assumption 1 holds. Suppose that ∆zC

is obtained from (3.4a–c), (3.9), and (3.10). Then the decrease in the model function
m obtained by the point ∆zC satisfies the bound (3.11), and therefore the solution ∆z
of (3.3a–c) satisfies the similar bound

m(∆z) ≤ − 1
2C(z, 1) min

[
δ−1, δ−1∆, (δ4∆̄2‖H‖2)−1C(z, 1)

]
,(3.15)

where C(z, 1) is the negative of the value function of CLP(z, 1) defined in (3.1).
Note that this lemma holds even when we assume only that ∆z is feasible for

(3.3a–c) and satisfies m(∆z) ≤ m(∆zC). This relaxation is significant since, when
H is indefinite, the complexity of finding a solution of (3.3a–c) is greater than the
complexity of computing ∆zC.

3.2. Result I: At least one KKT limit point. We now discuss convergence of
the sequence of iterates generated by the algorithm under the assumptions of section 2
and the additional assumption that the Hessians Hk of (1.2) are bounded as follows:

‖Hk‖2 ≤ σ0 + σ1k, k = 0, 1, 2 . . . .(3.16)
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The style of analysis follows that of a number of earlier works on convergence of
trust-region algorithms for unconstrained, possibly nonsmooth, problems, for exam-
ple, Yuan [17], Wright [16]. However, many modifications are needed to adapt the
algorithms to constrained problems and to the algorithm of section 2.

We first prove a key lemma as a preliminary to the global convergence result of
this section. It finds a lower bound on the trust-region radii for the case when no
subsequence of {C(zk, 1)} approaches zero.

Lemma 3.4. Suppose that Assumptions 1, 2, and 3 are satisfied and that there
are ε > 0 and an index K such that

C(zk, 1) ≥ ε for all k ≥ K,
Then there is a constant T > 0 such that

∆k ≥ T/Nk for all k ≥ K,(3.17)

where

Nk
def
= 1 + max

i=0,1,...,k
‖Hk‖2.

Proof. For ∆k ≥ 1, claim (3.17) obviously holds with T = 1. Hence, we assume
for the remainder of the proof that ∆k ∈ (0, 1].

From Lemma 3.3, we have

−mk(∆z
k) ≥ 1

2εmin
[
δ−1∆k, (δ

4∆̄2‖Hk‖2)−1ε
]

≥ 1
2εmin

[
δ−1∆k, (δ

4∆̄2Nk)
−1ε
]
.(3.18)

We define the constants σ̄ and γ as follows:

σ̄ = sup{‖∇2f(z)‖2 | z ∈ N (L0)}, γ = sup{‖∇f(z)‖2 | z ∈ L0},(3.19)

where N (L0) is the neighborhood defined in Assumption 2. Suppose now that T is
chosen small enough to satisfy the following conditions:

T ≤ 1,(3.20a)

{z |dist(z, L0) ≤ 2δT} ⊂ N (L0),(3.20b)

2T ≤ ε/(δ3∆̄2),(3.20c)

(γ + 2σ̄δ)φ(2δT )δ2 ≤ (1/48)ε,(3.20d)

2σ̄δ3T ≤ (1/48)ε,(3.20e)

δ3T ≤ (1/48)ε,(3.20f)

where φ(·) is defined in (1.5).
For any k with

‖∆zk‖ ≤ 2δT,(3.21)

we have from Taylor’s theorem and the definition of mk that

(3.22)

f(zk)− f(zk + ∆̃z
k
) +mk(∆z

k)

= −∇f(zk)T ∆̃z
k − 1

2 (∆̃z
k
)T∇2f(zkθ )∆̃z

k
+∇f(zk)T∆zk + 1

2 (∆zk)THk∆z
k

=
[∇f(zk) +∇2f(zkθ )∆z

k
]T

(∆zk − ∆̃z
k
)

− 1
2 (∆̃z

k −∆zk)T∇2f(zkθ )(∆̃z
k −∆zk)− 1

2 (∆zk)T (∇2f(zkθ )−Hk)∆z
k,
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where zkθ lies on the line segment between zk and zk+∆̃z
k
. If k is an index satisfying

(3.21), we have from feasibility of both zk and zk + ∆̃z
k

that

dist(zkθ , L0) ≤ 1
2‖∆̃z

k‖2
≤ 1

2

(
‖∆zk‖2 + ‖∆zk − ∆̃z

k‖2
)

≤ 1
2

(‖∆zk‖2 + φ(‖∆zk‖2)‖∆zk‖2
)

≤ 1
2 (2δT + φ(2δT )2δT ) ≤ 2δT,

and therefore from (3.20b) and (3.19) we have ‖∇2f(zkθ )‖2 ≤ σ̄. For k satisfying
(3.21), we have from (3.22) that∣∣∣f(zk)− f(zk + ∆̃z

k
) +mk(∆z

k)
∣∣∣

≤ (‖∇f(zk)‖2 + ‖∇2f(zkθ )‖2‖∆zk‖2
) ‖∆zk − ∆̃z

k‖2
+ 1

2‖∇2f(zkθ )‖2‖∆̃z
k −∆zk‖22 + 1

2 (‖∇2f(zkθ )‖2 + ‖Hk‖2)‖∆zk‖22
≤ (γ + 2σ̄δT )‖∆zk − ∆̃z

k‖2 + 1
2 σ̄‖∆zk − ∆̃z

k‖22 + 1
2 (σ̄ +Nk)‖∆zk‖22.(3.23)

Now using (1.5) and Assumption 1, we have for indices k satisfying (3.21) that

(3.24)∣∣∣f(zk)− f(zk + ∆̃z
k
) +mk(∆z

k)
∣∣∣

≤ (γ + 2σ̄δT )φ(‖∆zk‖2)‖∆zk‖2 +
1

2
σ̄φ(‖∆zk‖2)2‖∆zk‖22 +

1

2
(σ̄ +Nk)‖∆zk‖22

≤
[
(γ + 2σ̄δT )φ(2δT ) +

1

2
σ̄φ(2δT )22δT + σ̄δT +

1

2
Nk‖∆zk‖2

]
‖∆zk‖2

≤
[
(γ + 2σ̄δT )φ(2δT ) + σ̄δT + σ̄δT +

1

2
Nk‖∆zk‖2

]
‖∆zk‖2

≤
[

1

48

ε

δ2
+

1

48

ε

δ2
+

1

2
Nk‖∆zk‖2

]
‖∆zk‖2,

where we used φ ≤ 1/2, (3.20d), and (3.20e) to derive the various inequalities.
Now suppose that (3.17) is not satisfied for all k and for our choice of T , and

suppose that l is the first index at which it is violated, that is,

∆l < T/Nl.(3.25)

We exclude the case l = K (by decreasing T further, if necessary), and consider the
index l − 1. Since ∆k ≥ (1/2)‖Dk−1∆z

k−1‖p for all k, and since Nl ≥ 1, we have

‖∆zl−1‖2 ≤ δ‖Dl−1∆z
l−1‖p ≤ 2δ∆l < 2δT,(3.26)

so that l− 1 satisfies (3.21). Hence, bound (3.24) applies with k = l− 1, and we have∣∣∣f(zl−1)− f
(
zl−1 + ∆̃z

l−1
)

+ml−1(∆z
l−1)

∣∣∣(3.27)

≤
[

1

24

ε

δ2
+

1

2
Nl−1‖∆zl−1‖2

]
‖∆zl−1‖2.
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Since Nl−1 ≤ Nl, we have from (3.26) and (3.25) that

Nl−1‖∆zl−1‖2 ≤ 2δNl∆l < 2δT.(3.28)

Therefore by using (3.27) and (3.20f), we obtain∣∣∣f(zl−1)− f
(
zl−1 + ∆̃z

l−1
)

+ml−1(∆z
l−1)

∣∣∣
≤
(

1

24

ε

δ2
+ δT

)
‖∆zl−1‖2 ≤ 1

16

ε

δ2
‖∆zl−1‖2.(3.29)

Returning to the right-hand side of (3.18), we have for k = l − 1 that

δ−1∆l−1 ≥ δ−1‖Dl−1∆z
l−1‖p ≥ δ−2‖∆zl−1‖2,

and using (3.28) and (3.20c), we have

ε

δ4∆̄2Nl−1
≥ ε

δ4∆̄2

‖∆zl−1‖2
2δT

≥ δ−2‖∆zl−1‖2.

Hence, from (3.18) and the last two inequalities, we have

−ml−1(∆z
l−1) ≥ 1

2

ε

δ2
‖∆zl−1‖2.(3.30)

By comparing (3.29) and (3.30), we have from (2.1) that

ρl−1 =
f(zl−1)− f

(
zl−1 + ∆̃z

l−1
)

−ml−1(∆zl−1)

≥ 1−

∣∣∣f(zl−1)− f
(
zl−1 + ∆̃z

l−1
)

+ml−1(∆z
l−1)

∣∣∣
−ml−1(∆zl−1)

≥ 1− 1

8
=

7

8
.

Hence, by the workings of the algorithm, we have ∆l ≥ ∆l−1. But since Nl−1 ≤ Nl,
we have Nl−1∆l−1 ≤ Nl∆l, so that ∆l−1 < T/Nl−1, which contradicts the definition
of l as the first index that violates (3.17). We conclude that no such l exists, and
hence that (3.17) holds.

The following technical lemma, attributed to M. J. D. Powell, is proved in Yuan
[17, Lemma 3.4]. We modify the statement slightly to begin the sequence at the index
K rather than at 0.

Lemma 3.5. Suppose {∆k} and {Nk} are two sequences such that ∆k ≥ T/Nk
for all k ≥ K, for some integer K and constant T > 0. Let K ⊂ {K,K+1,K+2, . . . }
be defined such that

∆k+1 ≤ τ0∆k if k ∈ K,(3.31a)

∆k+1 ≤ τ1∆k if k /∈ K,(3.31b)

Nk+1 ≥ Nk for all k ≥ K,(3.31c) ∑
k∈K

min(∆k, 1/Nk) <∞,(3.31d)
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where τ0 and τ1 are constants satisfying 0 < τ1 < 1 < τ0. Then

∞∑
k=K

1/Nk <∞.(3.32)

Our main global convergence result for this section is as follows.
Theorem 3.6. Suppose that Assumptions 1, 2, and 3 are satisfied and that

the approximate Hessians Hk satisfy (3.16); that is, ‖Hk‖2 ≤ σ0 + kσ1 for some
nonnegative constants σ0 and σ1. Then Algorithm FP-SQP either terminates at a
KKT point or else has at least one limit point that is either a KKT point or else fails
to satisfy the MFCQ conditions (1.10a,b).

Proof. Consider first the case in which the algorithm terminates finitely at some
iterate zk at which mk(∆z

k) = 0. Then ∆z = 0 is a solution of the subproblem
(1.2a,b), (1.3) at z = zk at which the trust-region bound is inactive. The KKT
conditions for the subproblem at ∆z = 0 correspond exactly to the KKT conditions
(1.8a–c) for the original problem (1.1) at zk.

In the alternate case, the algorithm generates an infinite sequence {zk}. Suppose
first that it is possible to choose ε > 0 and K such that the conditions of Lemma 3.4
are satisfied. We apply Lemma 3.5, choosing K to be the subsequence of {K,K +
1,K+2, . . . } at which the trust-region radius is not reduced. We can then set τ0 = 2,
τ1 = 0.5, and define Nk as in Lemma 3.4. At the iterates k ∈ K, the algorithm takes
a step, and we have ρk ≥ η. By using (3.15) and (3.18), we then have

f(zk)− f
(
zk + ∆̃z

k
)
≥ −ηmk(∆z

k)

≥ 1

2
ηεmin

(
δ−1, δ−1∆k, δ

−4∆̄−2 ε

Nk

)

≥ 1

2
ηεmin(δ−1, δ−4∆̄−2ε) min

(
∆k,

1

Nk

)
,

where the final inequality follows from Nk ≥ 1. By summing both sides of this
inequality over k ∈ K and using the fact that f(zk) is bounded below (since f is
continuous on the compact level set L0), we have that condition (3.31d) is satisfied.
The conclusion (3.32) then holds. However, since from (3.16) we have Nk ≤ 1 + σ0 +
σ1k, (3.32) cannot hold, so we have a contradiction. We conclude therefore that it is
not possible to choose ε > 0 and K satisfying the conditions of Lemma 3.4; that is,
there is a subsequence J ⊂ {0, 1, 2, . . . } such that

lim
k∈J

C(zk, 1) = 0.

Since the points zk, k ∈ J , all belong to the compact set L0, we can identify a
limit point z̄ and assume, without loss of generality, that limk∈J zk = z̄. From the
observation immediately following the statement of Lemma 3.1, we have either that
MFCQ conditions (1.10) fail to hold at z̄ or else that z̄ satisfies both the MFCQ
conditions and the KKT conditions (1.8).

3.3. Result II: All limit points are KKT points. In this section, we replace
the bound (3.16) on the Hessians Hk with a uniform bound

‖Hk‖2 ≤ σ,(3.33)
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for some constant σ, and obtain a stronger global convergence result, namely, that
every limit point of the algorithm either fails to satisfy MFCQ or else is a KKT point.

As a preliminary to the main result of this section, we show that for any limit
point z̄ of Algorithm FP-SQP at which MFCQ but not KKT conditions are satisfied,
there is a subsequence K with zk →k∈K z̄ and ∆k →k∈K 0.

Lemma 3.7. Suppose that Assumptions 1, 2, and 3 are satisfied and that the
Hessians Hk satisfy the bound (3.33) for some σ > 0. Suppose that z̄ is a limit point
of the sequence {zk} such that the MFCQ condition (1.10a,b) holds but the KKT
conditions (1.8) are not satisfied at z̄. Then there exists an (infinite) subsequence K
such that

lim
k∈K

zk = z̄,(3.34)

and

lim
k∈K

∆k = 0.(3.35)

Proof. Since z̄ ∈ L0, we can define ε and R2 as in Lemma 3.1. From this lemma,
we have that C(z, 1) ≥ ε for all z ∈ B(z̄, R2) ∩ F . Hence, for such z, we have from
Lemma 3.3 that the solution ∆z of the trust-region subproblem at (3.3) with ∆ ∈ (0, 1]
satisfies

m(∆z) ≤ − 1
2C(z, 1) min

[
δ−1, δ−1∆, (δ4∆̄2‖H‖2)−1C(z, 1)

]
≤ −1

2εmin
[
δ−1, δ−1∆, (δ4∆̄2σ)−1ε

]
,(3.36)

where we used the bound (3.33) to obtain the second inequality.
Because z̄ is a limit point, we can certainly choose a subsequence K satisfying

(3.34). By deleting the elements from K for which zk /∈ B(z̄, R2), we have from (3.36)
that

mk(∆z
k) ≤ − 1

2εmin
[
δ−1, δ−1∆k, (δ

4∆̄2σ)−1ε
]

for all k ∈ K.(3.37)

We prove the result (3.35) by modifying K and taking further subsequences as
necessary. Consider first the case in which {zk}k∈K takes on only a finite number
of distinct values. We then must have that zk = z̄ for all k ∈ K sufficiently large.
Now, remove from K all indices k for which zk �= z̄. Suppose for contradiction that
some subsequent iterate in the full sequence {zk} is different from z̄. If k̄ ≥ k is some
iterate such that

f
(
zk̄
)
< f(zk) = f(z̄),

we have by monotonicity of {f(zl)} (for the full sequence of function values) that

f(zl) ≤ f
(
zk̄
)
< f(z̄)

for all l > k̄. Hence the function values in the tail of the full sequence are bounded
away from f(z̄), so it is not possible to choose a subsequence K with the property
(3.34). Therefore, we have that zl = z̄ for all l ≥ k so that all steps generated
by Algorithm FP-SQP after iteration k fail the acceptance condition. We then have
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that

∆l+1 = 1
2‖Dl∆z

l‖p ≤ 1
2∆l for all l ≥ k,

so that ∆l → 0 as l → ∞ (for the full sequence). Hence, in particular, (3.35)
holds.

We consider now the second case, in which {zk}k∈K takes on an infinite number
of distinct values. Without loss of generality, we can assume that all elements zk,
k ∈ K, are distinct (by dropping the repeated elements if necessary). Moreover, we
can assume that zk+1 �= zk for all k ∈ K by replacing k if necessary with the largest
index k̄ such that k̄ ≥ k and zk̄ = zk. Thus, we have that the sufficient decrease
condition ρk ≥ η is satisfied at all k ∈ K. Therefore from (2.1) and (3.36), and the
easily demonstrated fact that f(zl) ≥ f(z̄) for all l = 0, 1, 2, . . . , we have

f(zk)− f(z̄) ≥ f(zk)− f(zk+1)

≥ −ηmk(∆z
k)

≥ 1
2ηεmin

[
δ−1, δ−1∆k, (δ

4∆̄2σ)−1ε
] ≥ 0.

Since f(zk)→k∈K f(z̄), we have from this chain of inequalities that (3.35) is satisfied
in this case too. Hence, we have demonstrated (3.35).

We now prove the main global convergence result of this section.
Theorem 3.8. Suppose that Assumptions 1, 2, and 3 are satisfied and that the

Hessian approximations Hk satisfy (3.33). Then all limit points of Algorithm FP-SQP
either are KKT points or else fail to satisfy the MFCQ conditions (1.10a,b).

Proof. Suppose for contradiction that z̄ is a limit point at which (1.10a,b) hold but
(1.8a–c) are not satisfied, and let R2 and ε be defined as in the proof of Lemma 3.7.
We invoke Lemma 3.7 to define the subsequence K with the properties (3.34) and
(3.35). The inequality (3.37) also holds for the subsequence K.

Let σ̄ and γ be defined as in (3.19). We now define the constants R > 0 and
∆φ > 0 such that the following conditions hold:

R ≤ R2,(3.38a)

γφ(∆φ) ≤ 1

16

ε

δ2
,(3.38b)

B(z̄, R+ ∆φ) ∩ F ⊂ N (L0),(3.38c)

∆φ ≤ ∆def ,(3.38d)

where ∆def is defined in Theorem 2.2. Note, in particular from the latter theorem,
that ∆̃z satisfying (1.4) and (1.5) exists whenever ‖D∆z‖2 ≤ ∆φ.

Given R and ∆φ, we can now define ∆̃ > 0 small enough to satisfy the following
properties:

∆̃ ≤ 1,(3.39a) (
2σ̄ +

1

2
σ

)
δ∆̃ ≤ 1

16

ε

δ2
,(3.39b)

∆̃ ≤ 2∆φ

3δ
,(3.39c)

∆̃ ≤ ε

δ3∆̄2σ
,(3.39d)

where ∆̄ is the overall upper bound on a trust-region radius. We then define ε̂ > 0 as
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follows:

ε̂ =
1

2
ηεmin

(
δ−1,

1

4

R

δ2
, (δ4∆̄2σ)−1ε

)
.(3.40)

Finally, we define an index q ∈ K sufficient large that

‖zq − z̄‖2 < R/2,(3.41a)

f(zq)− f(z̄) ≤ ε̂/2.(3.41b)

(Existence of such an index q follows immediately from zk →K z̄.)
Consider the neighborhood

cl (B(zq, R/2)) ∩ F ,(3.42)

which is contained in B(z̄, R) ∩ F because of (3.41a). We consider two cases.
Case I. All remaining iterates zq+1, zq+2, . . . of the full sequence remain inside

the neighborhood (3.42). If

‖Dk∆z
k‖p ≤ ∆̃ for any k = q, q + 1, q + 2, . . . ,(3.43)

we have from (1.6) and (3.39c) that

‖∆̃zk‖2 ≤ (3/2)‖∆zk‖2 ≤ (3/2)δ‖Dk∆z
k‖p ≤ (3/2)δ∆̃ ≤ ∆φ.(3.44)

We now show that whenever (3.43) occurs, the ratio ρk defined by (2.1) is at least
3/4, so that the trust-region radius ∆k+1 for the next iteration is no smaller than the
one for this iteration, ∆k. As in the proof of Lemma 3.4, the relation (3.22) holds,
with zkθ satisfying

dist(zkθ , L0) ≤ 1
2‖∆̃z

k‖2 ≤ 1
2∆φ.

Hence, from (3.19) and (3.38c), we have ‖∇2f(zkθ )‖2 ≤ σ̄. Similarly to (3.23), we have

∣∣∣f(zk)− f
(
zk + ∆̃z

k
)

+mk(∆z
k)
∣∣∣

≤ (‖∇f(zk)‖2 + ‖∇2f(zkθ )‖2‖∆zk‖2
) ‖∆zk − ∆̃z

k‖2
+ 1

2‖∇2f(zkθ )‖2‖∆̃z
k −∆zk‖22 + 1

2 (‖∇2f(zkθ )‖2 + ‖Hk‖2)‖∆zk‖22
≤ (γ + σ̄δ∆̃)φ(‖∆zk‖2)‖∆zk‖2 + 1

2 σ̄φ(‖∆zk‖2)2‖∆zk‖22 + 1
2 (σ̄ + σ)‖∆zk‖22,

where we used (3.19) and ‖∆zk‖2 ≤ δ∆̃ from (3.44) in deriving the second inequality.
Now using (3.44) again, together with monotonicity of φ, φ(·) ≤ 1/2, (3.38b), and
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(3.39b), we have∣∣∣f(zk)− f
(
zk + ∆̃z

k
)

+mk(∆z
k)
∣∣∣

≤ (γ + σ̄δ∆̃)φ(∆φ)‖∆zk‖2 +

[
1

2
σ̄φ(∆φ)

2δ∆̃ +
1

2
(σ̄ + σ)δ∆̃

]
‖∆zk‖2

≤
[
γφ(∆φ) +

(
σ̄δ∆̃ +

1

2
σ̄δ∆̃ +

1

2
(σ̄ + σ)δ∆̃

)]
‖∆zk‖2

=

[
γφ(∆φ) +

(
2σ̄ +

1

2
σ

)
δ∆̃

]
‖∆zk‖2

≤
(

1

16

ε

δ2
+

1

16

ε

δ2

)
‖∆zk‖2 =

1

8

ε

δ2
‖∆zk‖2.(3.45)

Meanwhile, from (3.36) and, since zk ∈ B(z̄, R) ∩ F where R ≤ R2, we have

−mk(∆z
k) ≥ 1

2εmin(δ−1, δ−1∆k, (δ
4∆̄2σ)−1ε).(3.46)

Now from Assumption 1, we have

∆k ≥ ‖Dk∆z
k‖p ≥ δ−1‖∆zk‖2,

while from (3.39a) and (3.43), we have

1 ≥ ∆̃ ≥ ‖Dk∆z
k‖p ≥ δ−1‖∆zk‖2.

From (3.39d) and Assumption 1, we have

ε ≥ δ3∆̄2σ∆̃ ≥ δ3∆̄2σ‖Dk∆z
k‖p ≥ δ2∆̄2σ‖∆zk‖2.

By substituting these last three expressions into (3.46), we obtain

−mk(∆z
k) ≥ 1

2

ε

δ2
‖∆zk‖2.(3.47)

We then have from (2.1), and using (3.45) and (3.47), that

ρk =
f(zk)− f

(
zk + ∆̃z

k
)

−mk(∆zk)

≥ 1−

∣∣∣f(zk)− f
(
zk + ∆̃z

k
)

+mk(∆z
k)
∣∣∣

−mk(∆zk)

≥ 3

4
.

It follows that the algorithm sets

∆k+1 ≥ ∆k(3.48)

for all k satisfying (3.43). For k = q, q + 1, q + 2, . . . not satisfying (3.43), Algorithm
FP-SQP may reduce the trust-region radius to

∆k+1 = (1/2)‖Dk∆z
k‖p ≥ (1/2)∆̃.(3.49)
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By considering both cases, we conclude that

∆k ≥ min(∆q, (1/2)∆̃) for all k = q, q + 1, q + 2, . . . ,

which contradicts (3.35). Hence, Case I cannot occur.
We now consider the alternative case.
Case II. Some subsequent iterate zq+1, zq+2, . . . leaves the neighborhood (3.42).

If zl is the first iterate outside this neighborhood, note that all iterates zk, k =
q, q+ 1, q+ 2, . . . , l− 1 lie inside the set B(z̄, R)∩F , within which (3.36) applies. By
summing over the “successful” iterates in this span, we have the following:

f(zq)− f(zl)

=

l−1∑
k=q

zk �=zk+1

f(zk)− f(zk+1)

≥
l−1∑
k=q

zk �=zk+1

−ηmk(∆z
k) by (2.1) and Algorithm FP-SQP

≥ η
l−1∑
k=q

zk �=zk+1

1

2
εmin

[
δ−1, δ−1∆k, (δ

4∆̄2σ)−1ε
]

by (3.36)

≥ 1

2
ηεmin

⎡
⎢⎢⎣δ−1, δ−1

l−1∑
k=q

zk �=zk+1

∆k, (δ
4∆̄2σ)−1ε

⎤
⎥⎥⎦ .(3.50)

We have from Assumption 1 and (1.6) that

∆k ≥ ‖Dk∆z
k‖p ≥ δ−1‖∆zk‖2 ≥ 1

2δ
−1‖∆̃zk‖2,

so that (3.50) becomes

f(zq)− f(zl) ≥ 1

2
ηεmin

⎡
⎢⎢⎣δ−1,

l−1∑
k=q

zk �=zk+1

1

2
δ−2‖∆̃zk‖2, (δ4∆̄2σ)−1ε

⎤
⎥⎥⎦ .(3.51)

However, because zl lies outside the neighborhood (3.42) we have that

R/2 ≤ ‖zq − zl‖2 ≤
l−1∑
k=q

zk �=zk+1

‖∆̃zk‖2,

so that (3.51) becomes

f(zq)− f(zl) ≥ 1
2ηεmin

[
δ−1, 1

4δ
−2R, (δ4∆̄2σ)−1ε

]
.(3.52)
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By using this estimate together with the definition of ε̂ in (3.40), we have

f(zq)− f(zl) ≥ ε̂.

But since f(zl) ≥ f(z̄) (since z̄ is a limit point of the full sequence), this inequality con-
tradicts (3.41b). Hence, Case II cannot occur either, and the proof is complete.

4. Local convergence. We now examine local convergence behavior of the al-
gorithm to a point z∗ satisfying second-order sufficient conditions for optimality, un-
der the assumption that zk → z∗. We do not attempt to obtain the most general
possible superlinear convergence result, but rather make the kind of assumptions
that are typically made in the local convergence analysis of SQP methods, in which
second derivatives of the objective and constraint functions are available. We also
make additional assumptions on the feasibility perturbation process that is used to

recover ∆̃z
k

from ∆zk. Ultimately, we show that Algorithm FP-SQP converges Q-
superlinearly.

We assume a priori that z∗ satisfies the KKT conditions and define the active set
A∗ as follows:

A∗ def
= A(z∗),(4.1)

where A(·) is defined in (1.9). In this section, we use the following subvector notation:

dI(z)
def
= [di(z)]i∈I , where I ⊂ {1, 2, . . . , r}.

Assumption 4.

(a) The functions f , c, and d are twice continuously differentiable in a neighbor-
hood of z∗.

(b) The LICQ (1.11) is satisfied at z∗.
(c) Strict complementarity holds; that is, for the (unique) multipliers (µ∗, λ∗)

satisfying the KKT conditions (1.8a–c) at z = z∗, we have λ∗i > 0 for all
i ∈ A∗.

(d) Second-order sufficient conditions are satisfied at z∗; that is, there is α > 0
such that

vT∇2
zzL(z∗, µ∗, λ∗)v ≥ α‖v‖2 for all v such that

∇c(z∗)T v = 0, ∇dA∗(z∗)T v = 0,

where the Lagrangian function L is defined in (1.7).
Besides these additional assumptions on the nature of the limit point z∗, we

make additional assumptions on the algorithm itself. As mentioned above, we start
by assuming that zk → z∗. We further assume that estimates Wk of the active set
A∗ and estimates (µk, λk) of the optimal Lagrange multipliers (µ∗, λ∗) are calculated
at each iteration k and that these estimates are asymptotically exact. It is known
(see, for example, Facchinei, Fischer, and Kanzow [6]) that an asymptotically exact
estimate Wk of A∗ is available, given that (zk, µk, λk) → (z∗, µ∗, λ∗), under weaker
conditions than assumed here. On the other hand, it is also known that given an
asymptotically exactWk, we can use a least-squares procedure to compute an asymp-
totically exact estimate (µk, λk) of (µ∗, λ∗). However, the simultaneous estimation of
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Wk and (µk, λk) is less straightforward. We anticipate, however, that a procedure
that works well in practice would be relatively easy to implement, especially under
the LICQ and strict complementarity assumptions. Given an initial guess of Wk,
such a procedure would alternate between a least-squares estimate of (µk, λk) and an
active-set identification procedure, like those in [6], until the estimate of Wk settles
down. We note that the multipliers for the linearized constraints in the subproblem
(1.2a,b), (1.3) (denoted in the analysis below by µ̄k and λ̄k) do not necessarily satisfy
the asymptotic exactness condition, unless it is known a priori that the trust region
is inactive for all k sufficiently large. Fletcher and Sainz de la Maza [7] have analyzed
the behavior of these multipliers in the context of a sequential linear programming
algorithm and show that, under certain assumptions, (µ∗, λ∗) is a limit point of the
sequence {(µ̄k, λ̄k)}.

We summarize the algorithmic assumptions as follows.
Assumption 5.

(a) zk → z∗.
(b) Wk = A∗ for all k sufficiently large, where Wk is the estimate of the optimal

active set.
(c) (µk, λk)→ (µ∗, λ∗).
(d) In addition to (1.4) and (1.5), Algorithm FP-SQP requires the perturbed step

∆̃z
k

to satisfy

di(z
k + ∆̃z

k
) = di(z

k) +∇di(zk)T∆zk for all i ∈ Wk(4.2)

and

‖∆zk − ∆̃z
k‖ = O(‖∆zk‖2).(4.3)

We note the following about Assumption 5.
• For iterations k at which a step is taken (the “successful” iterations), we have

that ∆̃z
k

= zk+1−zk, which approaches zero by Assumption 5(a). Hence, by
(1.6), and defining K to be the subsequence of successful iterations, we have
that

lim
k∈K
‖∆zk‖ = lim

k∈K

∥∥∥∆̃zk∥∥∥ = 0.(4.4)

• The condition (4.2) is an explicit form of “second-order correction,” a family
of techniques that are often needed to ensure fast local convergence of SQP
algorithms.
• It follows from (1.6) and (4.3) that∥∥∥∆zk − ∆̃z

k
∥∥∥ = O

(∥∥∥∆̃zk∥∥∥2
)
.(4.5)

We start with a technical result to show that the various requirements on the

perturbed step ∆̃z
k

are consistent. Note that this result is merely an existence result.

It is not intended to show a practical way of obtaining ∆̃z
k
. There may be other

(less expensive, problem-dependent) ways to calculate the perturbed step that result
in satisfaction of all the required conditions.

Lemma 4.1. Suppose that Assumption 4 and Assumptions 5(a),(b) hold. Then
for all sufficiently large k, it is possible to choose the trust-region radius ∆k small

enough that there exists ∆̃z
k

satisfying (1.4), (1.5), (4.2), and (4.3).
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Proof. Assume first that k is chosen large enough that Wk = A∗. We prove the

result constructively, generating ∆̃z
k

as the solution of the following problem:

min
w

1
2‖w −∆zk‖22 subject to(4.6a)

c(zk + w) = 0,(4.6b)

di(z
k + w) = di(z

k) +∇di(zk)T∆zk for all i ∈ Wk.(4.6c)

When the right-hand sides of (4.6b), (4.6c) are replaced with c(zk+∆zk) and di(z
k+

∆zk), respectively, the solution is w = ∆zk. By the smoothness assumptions on c and
d, these modified right-hand sides represent only an O(‖∆zk‖2) perturbation of the
right-hand sides in (4.6b), (4.6c). Note that the Jacobian of the constraints (4.6b),
(4.6c) has full row rank at zk + ∆zk because of Assumptions 4(b) and 5(a). Hence,
the Jacobian matrix of the KKT conditions for problem (4.6) (which is a “square”
system of nonlinear equations) is nonsingular at zk + ∆zk, and a straightforward
application of the implicit function theorem to this system yields that the solution

w = ∆̃z
k

of (4.6) satisfies property (4.3) for all k sufficiently large. Condition (4.2) is
an immediate consequence of (4.6c).

By decreasing ∆k if necessary and using ‖∆zk‖ ≤ δ∆k, we can derive (1.5) as a
consequence of (4.3).

Because of (1.2b), we have

di

(
zk + ∆̃z

k
)

= di(z
k) +∇di(zk)T∆zk ≤ 0 for all i ∈ A∗,

while for i /∈ A∗ we have from di(z
∗) < 0 and Assumption 5(a) that

di(z
k + ∆̃z

k
) = di(z

k) +O(∆k) ≤ (1/2)di(z
∗) < 0

for all k sufficiently large and ∆k sufficiently small. For the equality constraints, we

have immediately from (4.6b) that c(zk+∆̃z
k
) = 0. Hence zk+∆̃z

k ∈ F , so condition
(1.4) is also satisfied.

We assume that the Hessian matrixHk in the subproblem (1.2a,b), (1.3) at z = zk

is the Hessian of the Lagrangian L evaluated at this point, with appropriate estimates
of the multipliers µk and λk; that is,

Hk = ∇2
zzL(zk, µk, λk) = ∇2f(zk) +

m∑
i=1

µki∇2ci(z
k) +

r∑
i=1

λki∇2di(z
k).(4.7)

We show now that with this choice of Hk, the ratio ρk of actual to predicted decrease

is close to 1 when k is sufficiently large and the steps ∆zk and ∆̃z
k

are sufficiently
small. We prove the result specifically for the Euclidean-norm trust region; a minor
generalization yields the proof for general p ∈ [1,∞].

Lemma 4.2. Suppose that p = 2 in (1.3), that Assumptions 1, 4, and 5 hold, and
that Hk is defined by (4.7). Then there is a threshold value ∆τ and an index K1 such
that if k ≥ K1 and ‖Dk∆z

k‖2 ≤ ∆τ , we have ρk ≥ 1/2, where ρk is defined by (2.1).

Proof. Note first that we can use ∆τ to control the size of both ∆zk and ∆̃z
k
,

since from Assumption 1 we have ‖∆zk‖ ≤ δ‖Dk∆z
k‖2 ≤ δ∆τ , while from (1.6) we

have ‖∆̃zk‖ ≤ (3/2)‖∆zk‖.
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From (2.1) we have

ρk = 1 +
f(zk)− f

(
zk + ∆̃z

k
)

+mk(∆z
k)

−mk(∆zk)
.(4.8)

We prove the result by showing that the numerator of the final term in this expression

is o(‖∆̃zk‖2), while the denominator is Ω(‖∆zk‖2).
We assume initially that K1 is large enough that Wk = A∗ for all k ≥ K1. We

work first with the numerator in (4.8). By elementary manipulation, using Taylor’s
theorem and the definition of mk(·), we have for some θf ∈ (0, 1) that

(4.9)

f(zk)− f
(
zk + ∆̃z

k
)

+mk(∆z
k)

=−∇f(zk)T ∆̃z
k− 1

2

(
∆̃z

k
)T
∇2f

(
zk+θf ∆̃z

k
)

∆̃z
k
+∇f(zk)T∆zk+ 1

2 (∆zk)THk∆z
k

=
(
∇f(zk) +Hk∆̃z

k
)T (

∆zk − ∆̃z
k
)

+ 1
2

(
∆̃z

k
)T (

Hk −∇2f
(
zk + θf ∆̃z

k
))

∆̃z
k

+O

(∥∥∥∆zk − ∆̃z
k
∥∥∥2
)

=∇f(zk)T
(
∆zk − ∆̃z

k
)

+ 1
2

(
∆̃z

k
)T (

Hk −∇2f(zk)
)
∆̃z

k
+ o

(∥∥∥∆̃zk∥∥∥2
)
,

where we used (4.5), boundedness of Hk, and continuity of ∇2f to derive the final
equality. Now from (1.2b) and continuity of ∇2ci for all i = 1, 2, . . . ,m (Assump-
tion 4(a)), we have

0 = ci

(
zk + ∆̃z

k
)

= ci(z
k) +∇ci(zk)T ∆̃z

k
+ 1

2

(
∆̃z

k
)T
∇2ci(z

k)∆̃z
k

+ o

(∥∥∥∆̃zk∥∥∥2
)

= ∇ci(zk)T
(
∆̃z

k −∆zk
)

+ 1
2

(
∆̃z

k
)T
∇2ci(z

k)∆̃z
k

+ o

(∥∥∥∆̃zk∥∥∥2
)
.(4.10)

From (4.2), we have for all i ∈ A∗ that

0 = di

(
zk + ∆̃z

k
)
− di(zk)−∇di(zk)T∆zk

= ∇di(zk)T
(
∆̃z

k −∆zk
)

+ 1
2

(
∆̃z

k
)T
∇2di(z

k)∆̃z
k

+ o

(∥∥∥∆̃zk∥∥∥2
)
.(4.11)

For i /∈ A∗, we have from λki → λ∗i = 0 and (4.5) that

λki∇di(zk)T
(
∆̃z

k −∆zk
)

+ 1
2λ

k
i

(
∆̃z

k
)T
∇2di(z

k)∆̃z
k

= o

(∥∥∥∆̃zk∥∥∥2
)
.(4.12)

We now multiply (4.10) and (4.11) by their corresponding Lagrange multipliers (µki
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and λki , respectively), and subtract them, together with (4.12), from (4.9) to obtain

(4.13)

f(zk)− f
(
zk + ∆̃z

k
)

+mk(∆z
k)

=
(∇f(zk) +∇c(zk)µk +∇d(zk)λk)T (∆zk − ∆̃z

k
)

+ 1
2

(
∆̃z

k
)T [

Hk −∇2f(zk)−
m∑
i=1

µki∇2ci(z
k)−

r∑
i=1

λki∇2di(z
k)

]
∆̃z

k

+ o

(∥∥∥∆̃zk∥∥∥2
)

= O(‖(zk, µk, λk)− (z∗, µ∗, λ∗)‖)
∥∥∥∆zk − ∆̃z

k
∥∥∥+ o

(∥∥∥∆̃zk∥∥∥2
)

= o

(∥∥∥∆̃zk∥∥∥2
)
,

where we used the KKT condition (1.8a) at (z, µ, λ) = (z∗, µ∗, λ∗) and the definition
(4.7) to derive the second equality, and Assumption 5(a),(c), together with (4.5), to
derive the third equality. Hence, we have shown that the numerator of the last term

in (4.8) is o(‖∆̃zk‖2).
In the remainder of the proof we use the following shorthand notation for the

Hessian of the Lagrangian:

(∇2
zzL)k = ∇2

zzL(zk, µk, λk); (∇2
zzL)∗ = ∇2

zzL(z∗, µ∗, λ∗).(4.14)

Given p = 2 in (1.3), we see that the KKT conditions for ∆zk to be a solution of
(1.2a,b), (1.3) at z = zk are that there exist Lagrange multipliers µ̄k, λ̄k, and γk such
that

∇f(zk) + (∇2
zzL)k∆z

k +∇c(zk)µ̄k +∇d(zk)λ̄k + γkD
T
kDk∆z

k = 0,(4.15a)

c(zk) +∇c(zk)T∆zk = 0,(4.15b)

0 ≥ d(zk) +∇d(zk)T∆zk ⊥ λ̄k ≥ 0,(4.15c)

0 ≥ ‖Dk∆z
k‖22 −∆2

k ⊥ γk ≥ 0,(4.15d)

where γk is the Lagrange multiplier for the trust-region constraint ‖Dk∆z
k‖22 ≤ ∆2

k.
From (4.15b), (4.15c), and feasibility of zk, we have

(µ̄k)T∇c(zk)T∆zk = −(µ̄k)T c(zk) = 0,(4.16a)

(λ̄k)T∇d(zk)T∆zk = −(λ̄k)T d(zk) ≥ 0.(4.16b)

We turn now to the denominator in (4.8) and show that it has size Ω(‖∆zk‖2)
for all k sufficiently large. From the definition of mk(·), (4.7), and (4.14), we have

−mk(∆z
k) = −∇f(zk)T∆zk − 1

2 (∆zk)T (∇2
zzL)k∆z

k

= −(∆zk)T
(∇f(zk) + (∇2

zzL)k∆z
k
)

+ 1
2 (∆zk)T (∇2

zzL)k∆z
k.

By substituting from (4.15a), then using (4.15b) and (4.16), we obtain

−mk(∆z
k) = (∆zk)T

(∇c(zk)µ̄k +∇d(zk)λ̄k + γkD
T
kDk∆z

k
)

+ 1
2 (∆zk)T (∇2

zzL)k∆z
k

= −d(zk)T λ̄k + γk‖Dk∆z
k‖22 + 1

2 (∆zk)T (∇2
zzL)k∆z

k.
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By using Assumption 1, we obtain

−mk(∆z
k) ≥ −d(zk)T λ̄k + γkδ

−2‖∆zk‖22 + 1
2 (∆zk)T (∇2

zzL)k∆z
k.(4.17)

We now define the constant γ̄ as follows:

γ̄
def
= max

(
2δ2

∥∥(∇2
zzL)∗

∥∥
2
, 1
)
.(4.18)

By increasing K1 if necessary, we have by smoothness of L together with Assump-
tion 5(a),(c) that∥∥(∇2

zzL)k
∥∥

2
≤ 2

∥∥(∇2
zzL)∗

∥∥
2
≤ δ−2γ̄ for all k ≥ K1.(4.19)

We derive the estimate for −mk(∆z
k) from (4.17) by considering two cases. In

the first case, we assume that γk ≥ γ̄. We then have from (4.17), using (4.16b), that
the following bound holds for all k ≥ K1:

−mk(∆z
k) ≥ γkδ−2‖∆zk‖22 + 1

2 (∆zk)T (∇2
zzL)k∆z

k

≥ γ̄δ−2‖∆zk‖22 − 1
2‖∆zk‖2

∥∥(∇2
zzL)k

∥∥
2

≥ 1
2 γ̄δ

−2‖∆zk‖22,(4.20)

so we see that the estimate −mk(∆z
k) = Ω(‖∆zk‖2) is satisfied in this case.

In the second case of γk ≤ γ̄, a little more analysis is needed. We show first that

lim
k→∞,γk≤γ̄

(µ̄k, λ̄k) = (µ∗, λ∗).

By choosing ∆τ small enough and increasingK1 if necessary, we have, when‖Dk∆z
k‖≤

∆τ and k ≥ K1, that

i /∈ Wk = A∗

⇒ di(z
k) +∇di(zk)T∆zk = di(z

∗) +O(‖zk − z∗‖) +O(‖∆zk‖) ≤ (1/2)di(z
∗) < 0,

where we used Assumption 5(a) for the first equality. Hence, from (4.15c), we have
λ̄ki = 0 for all i /∈ A∗. By rearranging (4.15a), we therefore have

∇c(zk)µ̄k +∇dA∗(zk)λ̄kA∗ = −∇f(zk)− (∇2
zzL)k∆z

k − γkDT
kDk∆z

k.

By comparing this expression with the KKT condition for z∗, namely,

∇c(z∗)µ∗ +∇dA∗(z∗)λ∗A∗ = −∇f(z∗),

and using the LICQ (Assumption 4(b)), Assumption 1, and γk ≤ γ̄, we obtain

‖(µ̄k, λ̄kA∗)− (µ∗, λ∗A∗)‖ = O(‖zk − z∗‖) +O(‖∆zk‖)→ 0.

Hence, by strict complementarity (Assumption 4(c)), and by increasing K1 again if
necessary, we can identify a constant λ̄min > 0 such that

λ̄ki ≥ λ̄min for all i ∈ A∗, for all k ≥ K1 with γk ≤ γ̄.(4.21)

Therefore, by the complementarity condition (4.15c), we have that

∇dA∗(zk)T∆zk = −dA∗(zk).
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Using this expression together with (4.15b), we deduce that[ ∇c(z∗)T
∇dA∗(z∗)T

]
∆zk =

[
(∇c(z∗)−∇c(zk))T∆zk

−dA∗(zk) + (∇dA∗(z∗)−∇dA∗(zk))T∆zk

]
= O(‖dA∗(zk)‖) +O(‖zk − z∗‖‖∆zk‖).(4.22)

By full row rank of the coefficient matrix on the left-hand side of (4.22), we have that
there exists a vector sk with[ ∇c(z∗)T

∇dA∗(z∗)T

]
sk =

[ ∇c(z∗)T
∇dA∗(z∗)T

]
∆zk,(4.23a)

‖sk‖ = O(‖dA∗(zk)‖) +O(‖zk − z∗‖‖∆zk‖).(4.23b)

Since the vector ∆zk − sk satisfies the conditions on v in the second-order sufficient
conditions (Assumptions 4(d)), we have

(∆zk − sk)T (∇2
zzL)∗(∆zk − sk) ≥ α‖∆zk − sk‖22,

so that by increasing K1 again if necessary, we have by Assumption 5(a),(c) that

(∆zk − sk)T (∇2
zzL)k(∆z

k − sk) ≥ 1
2α‖∆zk − sk‖22 for all k ≥ K1.

By using this inequality together with (4.23b) and Assumption 5(a), we obtain (again
increasing K1 if needed) that

(∆zk)T (∇2
zzL)k∆z

k

= (∆zk − sk)T (∇2
zzL)k(∆z

k − sk) +O(‖sk‖‖∆zk‖) +O(‖sk‖2)
≥ 1

2α‖∆zk − sk‖22 +O(‖∆zk‖‖sk‖) +O(‖sk‖2)
= 1

2α‖∆zk‖22 +O(‖∆zk‖‖sk‖) +O(‖sk‖2)
= 1

2α‖∆zk‖22 +O(‖dA∗(zk)‖‖∆zk‖) +O(‖dA∗(zk)‖2)
+O(‖dA∗(zk)‖‖zk − z∗‖‖∆zk‖) + o(‖∆zk‖2)

≥ 1
4α‖∆zk‖22 +O(‖dA∗(zk)‖‖∆zk‖) +O(‖dA∗(zk)‖2)(4.24)

for all k ≥ K1 with γk ≤ γ̄. Because of (4.21), and since λ̄ki = 0 for i /∈ A∗, we have

−(λ̄k)T d(zk) =
∑
i∈A∗

λ̄ki (−di(zk)) ≥ λ̄min‖dA∗(zk)‖1.(4.25)

By substituting (4.24) and (4.25) into (4.17) and dropping the second term on the
right-hand side of (4.17) (which is positive in any case), we obtain

−mk(∆z
k)≥−d(zk)T λ̄k +

1

2
(∆zk)T (∇2

zzL)k∆z
k

≥ λ̄min‖dA∗(zk)‖1+

(
1

8

)
α‖∆zk‖22 +O(‖dA∗(zk)‖‖∆zk‖)+O(‖dA∗(zk)‖2)

≥
(

1

8

)
α‖∆zk‖22 for all k ≥ K1.(4.26)

The last inequality holds because the term λ̄min‖dA∗(zk)‖1 dominates the remainder
terms (after, possibly, another decrease of ∆τ and increase of K1).
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We conclude from (4.20) and (4.26) that for all k sufficiently large, we have
−mk(∆z

k) = Ω(‖∆zk‖2). By combining this estimate with (4.13) and (4.8), and
using (1.6), we obtain that

ρk = 1 +

o

(∥∥∥∆̃zk∥∥∥2
)

Ω(‖∆zk‖2) = 1 +
o(‖∆zk‖2)
Ω(‖∆zk‖2) .

Hence by decreasing ∆τ further if necessary, we have ρk > 1/2 whenever k ≥ K1 and
‖Dk∆z

k‖ ≤ ∆τ , as claimed.
The next lemma takes a few more steps toward our superlinear convergence result.
Lemma 4.3. Suppose that p = 2 in (1.3), that Assumptions 1, 4, and 5 hold, and

that Hk is defined by (4.7). Let K1 and ∆τ be as defined in Lemma 4.2. Then the
following are true:

(a) For all k ≥ K1, we have ∆k ≥ min(∆K1 ,∆τ/2).
(b) There is an index K2 such that the trust-region bound (1.3) is inactive at all

successful iterations k with k ≥ K2.
Proof. For (a), Lemma 4.2 indicates that for k ≥ K1, the trust-region radius can

be decreased only when ‖Dk∆z
k‖2 > ∆τ . Since Algorithm FP-SQP decreases the

trust region by setting it to (1/2)‖Dk∆z
k‖2, we must have ∆k+1 ≥ ∆τ/2 after any

such decrease. On the other hand, if no decreases occur after iteration K1, we have
∆k ≥ ∆K1 for all k ≥ K1. The claim follows by combining these two observations.

For (b), we observed in (4.4) that ‖∆zk‖ → 0 for the successful steps, while from
part (a), the trust-region radius is bounded below by a positive quantity. Hence, we
can identify an index K2 with the required property.

Theorem 4.4. Suppose that p = 2 in (1.3), that Assumptions 1, 4, and 5 hold,
and that Hk is defined by (4.7). Then the sequence {zk} converges Q-superlinearly to
z∗.

Proof. At all successful iterations k with k ≥ K2, the step ∆zk is a (full) standard
SQP step. Hence by the known local convergence properties of SQP with an exact
Hessian, we have that

‖zk + ∆zk − z∗‖ ≤ β‖zk − z∗‖ [‖zk − z∗‖+ ‖(µk, λk)− (µ∗, λ∗)‖] = o(‖zk − z∗‖),
where β is a constant, and we have used Assumption 5(a) and (c) to obtain the final
equality. It follows from this expression that

‖∆zk‖ = O(‖zk − z∗‖).
Using this estimate, together with (4.3), we have

‖zk+1 − z∗‖ =
∥∥∥zk + ∆̃z

k − z∗
∥∥∥

≤ ‖zk + ∆zk − z∗‖+
∥∥∥∆zk − ∆̃z

k
∥∥∥

= o(‖zk − z∗‖) +O(‖∆zk‖2) = o(‖zk − z∗‖),(4.27)

showing that Q-superlinear behavior occurs at all successful steps with k ≥ K2.
We show now that there is an index K3 ≥ K2 such that all iterations k ≥ K3 are

successful. If not, then there are infinitely many unsuccessful iterations, and the trust-
region radius is reduced (by at least a factor of 2) at each such iteration. Since, by
Lemma 4.3(b), the trust region is inactive at the successful steps, the radius is not in-
creased at these steps. Hence, we have ∆k ↓ 0, which contradicts Lemma 4.3(a).
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5. Conclusions. We have described a simple feasibility perturbed trust-region
SQP algorithm for nonlinear programming with good global and local convergence
properties. As discussed above, we believe that the feasibility perturbation often can
be carried out efficiently when the constraints are separable or otherwise structured.
The companion paper [15] describes application of the algorithm to optimal control
problems with constraints on the inputs (controls).

We assert (without proof) the following result concerning global convergence to
points satisfying second-order necessary conditions. When the assumptions used in
section 3 are satisfied, z∗ is a KKT limit point of the sequence {zk} at which LICQ
and strict complementarity are satisfied, asymptotically exact estimates of (µk, λk)
and Wk are available on the convergent subsequence K, Hk is chosen as in (4.7),
and Assumption 5(d) is satisfied, then the following second-order necessary condition
holds at z∗:

vT∇2
zzL(z∗, µ∗, λ∗)v ≥ 0 for all v such that ∇c(z∗)T v = 0, ∇dA∗(z∗)T v = 0,

We omit the proof, which uses many of the same techniques as in sections 3 and 4.

Appendix. Value function of a parametrized linear program. Here we
prove Lemma 3.1.

Proof. Note first that C(z, 1) ≥ 0 for any feasible z, since w = 0 is feasible for
(3.1).

We have C(z, 1) = 0 if and only if w = 0 is a solution of problem (3.1). The
bound wTw ≤ 1 is inactive at w = 0, and the optimality conditions for (3.1) are then
identical to the KKT conditions (1.8a–c) for (1.1). Hence, C(z, 1) = 0 if and only if
z satisfies the KKT conditions.

Suppose now that z̄ ∈ F satisfies MFCQ (1.10a,b) but not KKT conditions (1.8a–
c). Suppose for contradiction that there exists a sequence {zl} with zl → z̄, zl ∈ F ,
such that

0 ≤ C(zl, 1) ≤ l−1, l = 1, 2, 3, . . . .

The KKT conditions for the solution wl of (3.1) at z = zl are that there exist multi-
pliers µl ∈ IRm, λl ∈ IRr, and βl ∈ IR such that

∇f(zl) +∇c(zl)µl +∇d(zl)λl + 2βlwl = 0,(A.1a)

c(zl) +∇c(zl)Twl = 0,(A.1b)

d(zl) +∇d(zl)Twl ≤ 0 ⊥ λl ≥ 0,(A.1c)

(wl)Twl − 1 ≤ 0 ⊥ βl ≥ 0.(A.1d)

We now verify that these are in fact optimality conditions for (3.1) by showing that
MFCQ holds at wl. We define the “linearized” active indices at zl as follows:

Al def
= {i = 1, 2, . . . , r | di(zl) +∇di(zl)Twl = 0}.

Since MFCQ holds for the original problem (1.1) at z̄, we have by the logic in the
proof of Lemma 2.1 that MFCQ is also satisfied at zl for all l sufficiently large. Hence,
there is a vector vl such that

∇c(zl)T vl = 0 and ∇di(zl)T vl < 0 for all i ∈ A(zl).
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Consider now the vector

ul = −wl + εvl

for some ε > 0 to be defined. We show that ul is an “MFCQ direction” for (3.1) at
wl, that is,

‖wl‖2 = 1 ⇒ 2(wl)Tul < 0,(A.2a)

∇c(zl)Tul = 0,(A.2b)

i ∈ Al ∩ A(zl) ⇒ ∇di(zl)Tul < 0,(A.2c)

i ∈ Al\A(zl) ⇒ ∇di(zl)Tul < 0.(A.2d)

For (A.2a) we have, when ‖wl‖2 = 1, that

(2wl)Tul = −2‖wl‖22 + ε(wl)T vl = −2 + ε(wl)T vl < 0

for all ε > 0 sufficiently small. The second condition (A.2b) obviously holds, since
∇c(zl)Twl = 0 and ∇c(zl)T vl = 0. For (A.2c), we have

∇di(zl)Tul = −∇di(zl)Twl + ε∇di(zl)T vl = di(z
l) + ε∇di(zl)T vl ≤ ε∇di(zl)T vl < 0

for all ε > 0, where the second equality follows from i ∈ Al and the third equality
from zl ∈ F . For (A.2d), we have from i /∈ A(zl) that di(z

l) < 0, and so

∇di(zl)Tul = −∇di(zl)Twl + ε∇di(zl)T vl = di(z
l) + ε∇di(zl)T vl < 0

for all ε > 0 sufficiently small. It is clearly possibly to choose ε in such a way that all
conditions (A.2a–d) are satisfied, so we conclude that (A.1a–d) are indeed optimality
conditions for wl.

From these relations, and using the fact that zl ∈ F , we have that

C(zl, 1) = −∇f(zl)Twl

= (wl)T∇c(zl)µl + (wl)T∇d(zl)λl + 2βl(wl)Twl

= −d(zl)Tλl + 2βl ≥ 0.(A.3)

By taking limits as l→∞, and since −d(zl)Tλl and βl are both nonnegative, we have
from (A.3) that

βl → 0, d(zl)Tλl → 0.(A.4)

Consider first the case in which there is a subsequence K of multipliers from (A.1);
that is, {µl, λl}l∈K is bounded. By compactness, and taking a further subsequence of
K if necessary, we can identify µ̄ and λ̄ ≥ 0 such that

(µl, λl)l∈K → (µ̄, λ̄).(A.5)

Then by taking limits in (A.1a), and using (A.4) and (1.7), we have that

∇zL(z̄, µ̄, λ̄) = 0, d(z̄)T λ̄ = 0.(A.6)

By using these relations, together with feasibility of z̄, we see that z̄ is a KKT point,
which is a contradiction.
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In the other case, the sequence {µl, λl} has no bounded subsequence. By taking

another subsequence K, we can identify a vector (µ̂, λ̂) with ‖(µ̂, λ̂)‖2 = 1 and λ̂ ≥ 0
such that

lim
k∈K

(µl, λl)

‖(µl, λl)‖2 = (µ̂, λ̂), lim
k∈K
‖(µl, λl)‖2 =∞.

By dividing both sides of (A.1a) by ‖(µl, λl)‖2 and using (A.4), we obtain

∇c(z̄)µ̂+∇d(z̄)λ̂ = 0, d(z̄)T λ̂ = 0, λ̂ ≥ 0.(A.7)

It is easy to show that (A.7), together with the MFCQ (1.10a,b), implies that (µ̂, λ̂) =

0, which contradicts ‖(µ̂, λ̂)‖2 = 1 (see Clarke [4, pp. 235–236]).
Therefore, we obtain a contradiction, so that no sequence {zl} with the claimed

properties exists, and therefore C(z, 1) is bounded away from zero in a neighborhood
of z̄.
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Abstract. In this paper we establish conditions for stability, metric regularity, and a pseudo-
Lipschitz property of the solution maps of parametric inequality systems involving nonsmooth (not
necessarily locally Lipschitz) continuous functions and closed convex sets. We also derive open
mapping and inverse mapping theorems for nonsmooth continuous functions, Lagrange multiplier
rules for nonsmooth cone-constrained optimization problems, and conditions for the continuity of
the optimal value functions of optimization problems. The main tool used is a generalized Jacobian,
called approximate Jacobian. It provides a flexible nonsmooth local analysis of continuous functions
and often gives sharp calculus rules for locally Lipschitz functions. The regularity condition, which
plays a key role in the local analysis, is a new extension of the Robinson regularity condition for
continuous functions.
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1. Introduction. Consider the generalized inequality system

0 ∈ f(x) +K, x ∈ C,(1.1)

where C ⊂ Rn and K ⊂ Rm are nonempty closed convex sets and f : Rn → Rm is a
continuous function. A perturbation of (1.1) is a parametric inequality system of the
form

0 ∈ f(x, p) +K, x ∈ C,(1.2)

where p is a parameter belonging to a set P ⊂ Rr, f : Rn × P → Rm is a given
function. We assume that for every p ∈ P the function f(·, p) is continuous and there
exists p0 ∈ P such that

f(x, p0) = f(x) ∀x ∈ Rn.(1.3)

The perturbation (1.2) is denoted by {f(x, p), P, p0}. For each p ∈ P , let

G(p) = {x ∈ C : 0 ∈ f(x, p) +K}
be the solution set of (1.2). Thus G(·) is the implicit multifunction defined by the
parametric system (1.2). Note that if

K = Rs+ × {0}m−s
:= {y = (y1, . . . , ym) ∈ Rm : y1 ≥ 0, . . . , ys ≥ 0, ys+1 = · · · = ym = 0},
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then (1.1) (resp., (1.2)) is a system of s inequalities and m − s equalities with the
constraint set C. We say that (1.1) is a smooth (resp., locally Lipschitz, continuous)
generalized inequality system if f is a C1− function (resp., a locally Lipschitz func-
tion, a continuous function). Robinson [23] established a fundamental theorem on the
stability of smooth generalized inequalities systems that states that if the system is
regular at a certain solution, then this solution is stable when the system undergoes
a small admissible perturbation. Robinson’s result has been extended to systems in-
cluding nonsmooth functions (see, for instance, [3, 7, 26, 27]) and to systems including
normal-cone operators (see, for instance, [18, 20, 24]).

The aim of this paper is to establish general conditions for stability of solutions of
nonsmooth (not necessarily locally Lipschitz) continuous generalized inequality system
(1.1) and apply them to obtain inverse function and open mapping theorems, and La-
grange multiplier rules for cone-constrained optimization problems. This is achieved
by employing the recent theory of approximate Jacobians (see [10, 11, 12, 13]) and
using a new extension of the Robinson regularity condition for continuous functions.
It turns out that approximate Jacobians provide a useful device for treating problems
that have continuous, not necessarily locally Lipschitz functions. They enjoy rich
calculus for continuous functions and frequently give sharp rules for locally Lipschitz
functions as the Clarke generalized Jacobian may contain the closed convex hull of
an approximate Jacobian. Moreover, several other known generalized derivatives of
vector functions such as the Ioffe prederivative and the Warga unbounded derivative
containers are examples of approximate Jacobians. On the other hand, the coderiva-
tive (see [19] and [24]) has been shown to be a useful tool for studying nonsmooth
systems. However, the coderivative and the approximate Jacobian are not directly
comparable. See [21] and also section 3 for a detailed comparison between our results
and the corresponding results in [18, 20].

The organization of the paper is as follows. Section 2 presents basic results on
approximate Jacobians and definitions of regularity, admissible perturbation, and sta-
bility of the continuous generalized inequality system (1.1). Section 3 gives sufficient
conditions for the multifunction p �→ G(p) ∩ V , where V is a neighborhood of x0, to
be lower semicontinuous on a neighborhood of p0, for the metric regularity of G(·) at
(p0, x0), and for the pseudo-Lipschitz property of G(·) at (p0, x0). It also provides two
examples showing that, unlike the case of inverse multifunctions, for implicit multi-
functions the metric regularity and the pseudo-Lipschitz property are two independent
concepts. Section 4 gives open mapping and inverse mapping theorems and derives
necessary optimality conditions for optimization problems with continuous data, as
an application of the results of section 3.

2. Definitions and preliminaries. For a Euclidean space Z, ‖ · ‖, 〈·, ·〉, BZ ,
and SZ denote, respectively, the norm, the inner product, the closed unit ball, and
the unit sphere in Z. Subscripts will be deleted if no confusion is possible. The closed
ball with center a and radius δ is denoted by B(a, δ). For a subset M ⊂ Z, we denote
by intM , M , coM , and coneM the interior, the closure, the convex hull, and the cone
generated by M , respectively. For simplicity of notation, the closure of the last two
sets are denoted, respectively, by coM and coneM . The negative dual cone of M is
denoted by M∗, that is, M∗ = {w ∈ Z : 〈w, z〉 ≤ 0 ∀z ∈ M}. The distance from
a ∈ Z to M ⊂ Z is denoted by d(a,M). By convention, d(a, ∅) = +∞. If A is a
linear operator, then A∗ stands for the conjugate of A. A multifunction F : X → 2R

s

,
where X is a subset in Rk, is said to be upper semicontinuous (usc) at x ∈ X if for
any open set V ⊂ Rs satisfying F (x) ⊂ V there exists δ > 0 such that F (x) ⊂ V
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for every x ∈ X ∩ B(x, δ). We say that F is lower semicontinuous (lsc) at x ∈ X if
F (x) �= ∅ and for any open set V ⊂ Rs with F (x) ∩ V �= ∅ there exists δ > 0 such
that F (x) ∩ V �= ∅ for every x ∈ X ∩ B(x, δ). If F is usc (resp., lsc) at any point of
X, then we say that F is usc (resp., lsc) on X. F is said to be pseudo-Lipschitz or
Aubin continuous (see [24]) at (x, y), where y ∈ F (x), if there exist � > 0, ε > 0, and
δ > 0 such that

F (x′) ∩B(y, ε) ⊂ F (x) + �‖x′ − x‖BRs ∀x, x′ ∈ X ∩B(x, δ).

For a subset M ⊂ Z, the recession cone M∞ of M (see [12, 13, 24]) is the set of
all w ∈ Z for which there exists a sequence {tk} of positive numbers converging to 0
and sequence {zk} ⊂ M such that w = limk→∞ tkzk. For a cone M ⊂ Z and for a
number ε ∈ (0, 1), the ε-conic neighborhood Mε of M (see [12, 13]) is defined by the
formula

Mε = {z + ε‖z‖BZ : z ∈M}.
For simplicity, we abbreviate (M∞)ε to Mε

∞.
We will need some facts concerning approximate Jacobians, which have been given

in [10, 11, 12, 13].
Let f : Rn → Rm be a continuous map. A closed subset Jf(x) of the space

L(Rn, Rm) of linear operators from Rn to Rm (which is identified with the set of
(m × n)-matrices) is called an approximate Jacobian of f at x ∈ Rn if, for every
u = (u1, . . . , un) ∈ Rn and v = (v1, . . . , vm) ∈ Rm, one has

(vf)+(x, u) ≤ sup
A∈Jf(x)

〈v,Au〉,

where (vf)(x) = v1f1(x) + · · ·+ vmfm(x) is the composite function of v and f , and

(vf)+(x, v) = lim sup
t↓0

(vf)(x+ tu)− (vf)(x)

t

is the upper Dini directional derivative of vf at x in direction u. If m = 1, then one
also writes ∂f(x) for Jf(x) and calls ∂f(x) a generalized subdifferential of f at x.

If f is Fréchet differentiable at x with the Fréchet derivative f ′(x), then Jf(x) =
{f ′(x)} is an approximate Jacobian of f at x. If f is locally Lipschitz at x, i.e., there
exist � > 0 such that ‖f(x′)− f(x)‖ ≤ �‖x′ − x‖ for all x, x′ in a neighborhood of x,
then the generalized Jacobian in the sense of Clarke [5],

∂cf(x) = co

{
lim
k→∞

f ′(xk) : {xk} ⊂ Ωf , xk → x

}
,

is a compact, convex approximate Jacobian of f at x. Here

Ωf = {x ∈ Rn : ∃ the Fréchet derivative f ′(x) of f at x}.
If f is locally Lipschitz and m = 1, then the set ∂cf(x) collapses to the Clarke
generalized gradient of f at x (see [5]).

Let us consider the following simple illustrative example [12] of approximate
Jacobian of a non-Lipschitz function. Many other examples can be found in [10, 12].

Example 2.1. Let f(x) = x1/3, x ∈ R. For x = 0, it is easily verified that
Jf(x) = [α,+∞), where α ∈ R is an arbitrary number, is an approximate Jacobian
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of f at x. For x �= 0, the set Jf(x) =
{

1
3x

−2/3
}

is an approximate Jacobian of f at x.
It is clear that the approximate Jacobian mapping x �→ Jf(x) is upper semicontinuous
at x = 0.

The following chain rule plays a crucial role in deriving the main results. For
completeness, the proof is given in the appendix.

Proposition 2.2 (chain rule; see [12, Corollary 4.2]). Let f : Rn → Rm be a
continuous map, g : Rm → R a continuous function. Assume that

(i) f admits an approximate Jacobian mapping Jf which is upper semicontinuous
at x ∈ Rn;

(ii) g is Fréchet differentiable in a neighborhood of f(x) and the gradient mapping
∇g is continuous at f(x) with ∇g(f(x)) �= 0.
Then, for every ε > 0, the closure of the set

∇g(f(x)) ◦ [Jf(x) + (Jf(x))ε∞
]

is an approximate Jacobian of g ◦ f at x.
Definition 2.3 (surjectivity). An operator A ∈ L(Rn, Rm) is said to be surjec-

tive on a nonempty closed convex set C ⊂ Rn at x0 ∈ C with respect to a nonempty
closed set K0 ⊂ Rm with 0 ∈ K0 if

0 ∈ int(A[TC(x0)] +K0),(2.1)

where TC(x0) = cone(C − x0) is the tangent cone of C at x0 in the sense of convex
analysis.

In the case where K0 = {0}, it is easy to show that (2.1) is equivalent to the
condition 0 ∈ int(A[C − x0]). Thus the above definition is an extension of the notion
given in [13]. (Note that in [13] the convex set C may not be closed, and instead of
x0 ∈ C one uses the condition x0 ∈ C.)

The following necessary optimality condition, which easily follows from the defi-
nition of the generalized subdifferential, will be useful in the sequel.

Proposition 2.4 (see [13, Proposition 2.1]). Let C ⊂ Rn be a convex set and
let ϕ : Rn → R be continuous. If x ∈ C is a local minimum point of ϕ on C and if
∂f(x) is a generalized subdifferential of ϕ at x, then

sup
η∈∂f(x)

〈η, u〉 ≥ 0 ∀u ∈ TC(x).

We now turn our attention back to the generalized inequality system (1.1). Let
us define an extension of the regularity concept introduced by Robinson [23] to the
system. Let x0 be a solution of (1.1).

Definition 2.5 (regularity condition). For the system (1.1), assume that f
admits an approximate Jacobian mapping Jf . Then the system is said to be regular
at x0 if

0 ∈ int(A[TC(x0)] + f(x0) +K) ∀A ∈ coJf(x0) ∪ co((Jf(x0))∞ \ {0}).(2.2)

In the next section it will be shown (see Lemma 3.1) that this regularity condition
implies a uniform openness property of the operators A ∈ Jf(x), where x belongs to a
neighborhood of x0. A comparison of (2.2) with (2.1) shows that (1.1) is regular at x0

if and only if each operator A of the set coJf(x0) ∪ co((Jf(x0))∞ \ {0}) is surjective
on C at x0 w.r.t. K0 := f(x0) +K.
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It is easily verified that the inequality system (1.1), where n = m = 1, C = R,
K = {0}, and f(x) = x1/3, is regular at the solution x0 = 0. Note that the approx-
imate Jacobian mapping Jf has been described in Example 2.1.

Definition 2.6 (admissible perturbation). A perturbation {f(x, p), P, p0} of
(1.1) is said to be an admissible perturbation of the system at x0 if

(i) the function f(x, p) is continuous at (x0, p0),
(ii) for every x ∈ Rn the function f(x, ·) is continuous on P ,
(iii) for every p ∈ P the function f(·, p) admits an approximate Jacobian mapping

denoted by J1f(·, p),
(iv) there exist a neighborhood U∗ of p0 ∈ P and a number δ∗ > 0 such that, for

every p ∈ U∗, J1f(·, p) is upper semicontinuous on B(x0, δ∗),
(v) the multifunction (x, p) �→ J1f(x, p) is upper semicontinuous at (x0, p0).
Definition 2.7 (stability). We say that solution x0 of (1.1) is stable under

admissible perturbations if for every ε > 0 and for every admissible perturbation
{f(x, p), P, p0} of (1.1) at x0, there exists a neighborhood U of p0 such that

G(p) ∩B(x0, ε) �= ∅ ∀p ∈ U,

where G(p) is the solution set of (1.2).
In the following example, we consider one special type of admissible perturbations

of continuous generalized inequality systems.
Example 2.8. Suppose that f : Rn → Rm is a continuous function, C ⊂ Rn a

closed convex set. We put P = Rm, p0 = 0, and consider the function f : Rn ×
P → Rm defined by the formula f(x, p) = f(x) − p for all (x, p) ∈ Rn × Rm. It
is clear that {f(x, p), P, p0} is a perturbation of (1.1). If, in addition, the function
f : Rn → Rm admits an approximate Jacobian mapping Jf that is usc at any x ∈ Rn,
then {f(x, p), P, p0} is an admissible perturbation of (1.1). Indeed, to verify this it
suffices to note that, for every p ∈ P , formula J1f(x, p) = Jf(x) (x ∈ Rn) defines
an approximate Jacobian mapping of the function f(·, p). It is also clear that the
multifunction (x, p) �→ J1f(x, p) is usc at (x0, p0). To have a concrete example, we

define f : R2 → R2 by setting f(x1, x2) = (x
2/3
1 , x2) for all (x1, x2) ∈ R2. Then the

formulas

J1f(x, p) =

{(
1
3x

−2/3 0
0 1

)}
(∀x �= 0) and J1f(0, p) =

{(
α 0
0 1

)}
,

where α > 0, define an approximate Jacobian mapping of f(·, p), where f(x, p) =
f(x)− p (p ∈ R2).

3. Stability and implicit functions. Conditions for the solution stability of
generalized inequality systems will be established in this section. Theorem 3.2 gives
sufficient conditions for the truncated multifunction p �→ G(p) ∩ V , where V is a
neighborhood of x0, is lsc on a neighborhood of p0. Theorem 3.4 deals with the
metric regularity of G(·) at (p0, x0), and Theorem 3.5 treats the pseudo-Lipschitz
property of that implicit multifunction at (p0, x0).

Throughout this section it is assumed that x0 ∈ C is a solution of (1.1) and
{f(x, p), P, p0} is an admissible perturbation of (1.1) at x0.

The following lemma on uniform openness of a family of linear operators is cru-
cial for obtaining the results of this section. This lemma is an extended version of
Lemma 3.1 from [13] where, in our notation, the case K = {0} and P = {p0} was
treated.
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Lemma 3.1 (uniform openness). If (1.1) is regular at x0, then there exist γ > 0
and δ > 0 such that

BRm ⊂ γ (A [TC(x) ∩BRn ] + [cone(K + f(x, p)) ∩BRm ])(3.1)

for every x ∈ B(x0, δ) ∩ C, p ∈ B(p0, δ) ∩ P , and

A ∈
⋃

x′∈B(x0,δ), p′∈B(p0,δ)∩P
co
(
J1f(x′, p′) + (J1f(x′, p′))δ∞

)
.(3.2)

Proof. We will follow closely the proof scheme of Lemma 3.1 in [13]. Suppose
our lemma were false. Then for each k ≥ 1 and δ = 1/k we could find vk ∈ BRm ,
xk, x

′
k ∈ B(x0, 1/k) ∩ C, pk, p

′
k ∈ B(p0, 1/k) ∩ P , and

Ak ∈ co
(
J1f(x′k, p

′
k) + (J1f(x′k, p

′
k))

1/k
∞
)

such that

vk /∈ k (Ak [TC(xk) ∩BRn ] + [cone(f(xk, pk) +K) ∩BRm ]) .(3.3)

There is no loss of generality in assuming that

lim
k→∞

vk = v0 ∈ BRm .

We claim that, by taking a subsequence if necessary, it can be assumed that either

lim
k→∞

Ak = A0 ∈ coJ1f(x0, p0)(3.4)

or

lim
k→∞

tkAk = A∗ ∈ co ((J1f(x0, p0))∞ \ {0}) ,(3.5)

where {tk} is some sequence of positive numbers converging to 0.
We first show that (3.4) and (3.5) lead to a contradiction.
If (3.4) holds, then by (1.3) and the regularity condition (2.2) we have

0 ∈ int (A0[TC(x0)] + f(x0, p0) +K) .

Since f(x0, p0) +K ⊂ cone(f(x0, p0) +K), from the last inclusion we deduce that

Rm = A0[TC(x0)] + cone(f(x0, p0) +K).(3.6)

It is clear that

Ω := A0[TC(x0) ∩BRn ] + [cone(f(x0, p0) +K) ∩BRm ]

is a compact, convex set, and 0 ∈ Ω. If 0 /∈ intΩ, then, by the separation theorem,
there exists η ∈ SRm such that

Ω ⊂ {y ∈ Rm : 〈η, y〉 ≥ 0}.
For any v ∈ Rm, by (3.6) there exist u ∈ TC(x0) and v ∈ cone(f(x0, p0) + K) such
that v = A0u + w. If we select t > 0 as small as tu ∈ BRn and tw ∈ BRm , then
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tv = A0(tu) + tw ∈ Ω. Therefore 〈η, tv〉 ≥ 0, and hence 〈η, v〉 ≥ 0. Since the last
inequality holds for any v ∈ Rm, we have arrived at a contradiction. Thus 0 ∈ intΩ.
From this it follows that there exist ε > 0 and k0 > 1 such that

B(v0, ε) ⊂ k0 (A0 [TC(x0) ∩BRn ] + [cone(f(x0, p0) +K) ∩BRm ]) .(3.7)

Since Ak → A0, there exists k1 ≥ k0 such that

‖Ak −A0‖ < ε/4 for every k ≥ k1.(3.8)

We now show that there is k2 ≥ k1 such that

B
(
v0,

ε

2

)
⊂ k0 (A0 [TC(xk) ∩BRn ] + [cone(f(xk, pk) +K) ∩BRm ])(3.9)

for every k ≥ k2. Indeed, if this is not valid, then we can assume that for each k there
is an element uk ∈ B(v0, ε/2) satisfying

uk /∈ k0 (A0 [TC(xk) ∩BRn ] + [cone(f(xk, pk) +K) ∩BRm ]) .

By the separation theorem, there exists ξk ∈ SRm such that

〈ξk, uk〉 ≥ 〈ξk, k0(A0z + w)〉(3.10)

for every z ∈ TC(xk)∩BRn and w ∈ cone(f(xk, pk) +K)∩BRm . Using subsequences
if necessary, we can assume that

lim
k→∞

uk = u0 ∈ B
(
v0,

ε

2

)
, lim
k→∞

ξk = ξ0, where ‖ξ0‖ = 1.

From (3.10) we deduce that

〈ξ0, u0〉 ≥ 〈ξ0, k0(A0z + w)〉(3.11)

for all z ∈ TC(x0) ∩ BRn and w ∈ cone(f(x0, p0) +K) ∩ BRm . Indeed, to prove this
claim it suffices to show that (3.11) is valid for any z ∈ cone(C − x0) ∩ BRn and
w ∈ cone(f(x0, p0) +K)∩BRm . Let there be given any pair (z, w) satisfying the last
two inclusions. Suppose that

z = t(c− x0), w = τ(f(x0, p0) + v)

for some c ∈ C, t, τ ∈ [0,+∞) and v ∈ K. For each k, we put

zk = t(c− xk), wk = τ(f(xk, pk) + v).

Then zk ∈ TC(xk), wk ∈ cone(f(xk, pk) + K), zk → z and wk → w as k → ∞. If
zk ∈ BRn , then we set z′k = zk. If zk /∈ BRn , then we set z′k = (‖z‖/‖zk‖)zk. Similarly,
if wk ∈ BRm , then we set w′

k = wk. If wk /∈ BRm , then we set w′
k = (‖w‖/‖wk‖)wk.

Clearly, z′k ∈ TC(xk) ∩ BRn and w′
k ∈ cone(f(xk, pk) + K) ∩ BRm for each k. Note

that z′k → z and w′
k → w as k →∞. By (3.10), we have

〈ξk, uk〉 ≥ 〈ξk, k0(A0z
′
k + w′

k)〉 ∀k.
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Letting k →∞ we obtain (3.11), as desired. Since u0 ∈ B(v0, ε/2), combining (3.11)
with (3.7) gives

〈ξ0, v0〉+ ε

2
≥ 〈ξ0, u0〉 ≥ sup

{〈ξ0, k0(A0z + w)〉 : z ∈ TC(x0) ∩BRn ,

w ∈ cone(f(x0, p0) +K) ∩BRm

}
≥ sup{〈ξ0, v〉 : v ∈ B(v0, ε)}
= 〈ξ0, v0〉+ ε,

a contradiction. We have thus proved that there is k2 ≥ k1 such that (3.9) holds for
every k ≥ k2 . Using (3.8) and (3.9) we have

B
(
v0,

ε

2

)
⊂ k0 (A0 [TC(xk) ∩BRn ] + [cone(f(xk, pk) +K) ∩BRm ])

⊂ k0

(
Ak [TC(xk) ∩BRn ] + (A0 −Ak) [TC(xk) ∩BRm ]

+ [cone(f(xk, pk) +K) ∩BRm ]
)

⊂ k0

(
Ak [TC(xk) ∩BRn ] +B

(
0,
ε

4

)

+ [cone(f(xk, pk) +K) ∩BRm ]

)
.

This implies that

B
(
v0,

ε

4

)
⊂ k0 (Ak [TC(xk) ∩BRn ] + [cone(f(xk, pk) +K) ∩BRm ]) .(3.12)

Choose k ≥ k2 sufficiently large; we have vk ∈ B(v0, ε/4). Then (3.12) yields

vk ∈ k (Ak [TC(xk) ∩BRn ] + [cone(f(xk, pk) +K) ∩BRm ]) ,(3.13)

contrary to (3.3).
We now suppose that (3.5) is valid. By the regularity condition, we have (3.6),

where A0 is replaced by A∗. Then there exist ε > 0 and k0 > 1 such that (3.7), where
A0 is replaced by A∗, holds. The relations (3.8)–(3.10) remain true provided that A0

is replaced by A∗ and Ak by tkAk. Then relation (3.12) has the form

B
(
v0,

ε

2

)
⊂ k0 (tkAk [TC(xk) ∩BRn ] + [cone(f(xk, pk) +K) ∩BRm ])

for all k ≥ k2. By choosing k ≥ k2 sufficiently large so that vk ∈ B(v0, ε/4) and
0 < tk ≤ 1 we obtain (3.13), which contradicts (3.3).

The proof of the lemma will be completed if we can show that either (3.4) or
(3.5) holds. This part of the proof is omitted because it is a routine repetition of the
second part of the proof of Lemma 3.1 in [13], where Mk is replaced by Ak, yk by
(x′k, p

′
k), F (yk) by J1f(x′k, p

′
k), and F (0) by J1f(x0, p0). The upper semicontinuity of

F (·) at 0 is now replaced by the upper semicontinuity of J1f at (x0, p0).
The next theorem will be obtained by the proof scheme of Theorem 3.1 in [27].

Unlike the generalized Jacobians in the sense of Clarke, approximate Jacobians, in
general, are noncompact nonconvex sets of linear operators. Thus, some technical
novelties are to be introduced. One of our key tools will be the lopsided minimax
theorem.
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Theorem 3.2 (solution stability). If (1.1) is regular at x0 and {f(x, p), P, p0} is
an admissible perturbation of the system at x0, then there exist neighborhoods U of p0

and V of x0 such that G(p) ∩ V is nonempty for every p ∈ U , and the multifunction

G̃(·) := G(·) ∩ V is lower semicontinuous on U .
Proof. Since (1.1) is regular at x0 and {f(x, p), P, p0} is an admissible perturbation

of (1.1) at x0, by Lemma 3.1 there exist γ > 0 and δ ∈ (0, δ∗) such that (3.1) holds
for every x ∈ B(x0, δ)∩C, p ∈ B(p0, δ)∩P , and A satisfying (3.2). Here and in what
follows, δ∗ > 0 and U∗ are the number and the neighborhood specified by condition
(iv) of Definition 2.6. Fix a number λ ∈ (0, γ−1). Since 0 ∈ f(x0, p0) + K and the
multifunction p �→ f(x0, p) +K is lsc at p0, there exists δ1 ∈ (0, δ) such that

∀p ∈ B(p0, δ1) ∩ P ∃yp ∈ f(x0, p) +K satisfying ‖yp‖ < λδ.

Let U = B(p0, δ1) ∩ U∗. For every p ∈ U , we consider the restriction of the function

νp(x) := d(0, f(x, p) +K) = inf{‖f(x, p) + v‖ : v ∈ K}
on the compact set B(x0, δ) ∩ C. It is easily seen that vp(·) is a continuous function.
We have

νp(x0) = d(0, f(x0, p)) ≤ ‖yp‖ ≤ λδ′

for some δ′ ∈ (0, δ). By the Ekeland principle [8], there exists x ∈ B(x0, δ) ∩ C such
that

νp(x) ≤ νp(x0), ‖x− x0‖ ≤ δ′,(3.14)

νp(x) ≤ νp(x) + λ‖x− x‖ ∀x ∈ B(x0, δ) ∩ C.(3.15)

From (3.14) it follows that x ∈ intB(x0, δ). We have 0 ∈ f(x, p) +K, i.e., νp(x) = 0.
Indeed, suppose to the contrary that νp(x) �= 0. Since f(x, p) + K is a nonempty
closed convex set, there exists a unique y ∈ f(x, p) +K such that

‖y‖ = d(0, f(x, p) +K) = inf{‖f(x, p) + v‖ : v ∈ K}, y �= 0.

By the standard optimality condition of convex optimization we have

‖y‖−1y ∈ −(f(x, p) +K)∗.

We put η = ‖y‖−1y. Let w = y − f(x, p). We have w ∈ K, so νp(x) ≤ ‖f(x, p) + w‖
for every x ∈ Rn. Define

ψ(x) = ‖f(x, p) + w‖ and ϕ(x) = ψ(x) + λ‖x− x‖
for every x ∈ Rn. From (3.15) we deduce that

ϕ(x) ≤ ϕ(x) ∀x ∈ B(x0, δ) ∩ C.
Since x ∈ intB(x0, δ), the last property implies that x is a local minimum point of ϕ
on C. By Proposition 2.4,

sup
η∈∂f(x)

〈η, u〉 ≥ 0 ∀u ∈ TC(x),(3.16)
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where ∂ϕ(x) is a generalized subdifferential of ϕ at x. According to the chain rule
formulated in Proposition 2.2, for any ε ∈ (0, δ), the closure of the set

η ◦ [J1f(x, p) + (J1f(x, p))ε∞]

is a generalized subdifferential of ψ at x. Applying the formula for computing the
generalized subdifferential of the sum of two functions (see [14, Proposition 2.2]) we
deduce that the closure of the set

{η ◦A+ λξ : A ∈ J1f(x, p) + (J1f(x, p))ε∞, ξ ∈ BRn}
is a generalized subdifferential of ϕ at x. Then the larger set

∂ϕ(x) := {η ◦A+ λξ : A ∈ co (J1f(x, p) + (J1f(x, p))ε∞) , ξ ∈ BRn} ,(3.17)

which is closed and convex, is also a generalized subdifferential of ϕ at x. Let

Q = co (J1f(x, p) + (J1f(x, p))ε∞) , D = TC(x) ∩BRn .

We now show that

−γ−1 ≥ sup
A∈Q

inf
v∈D
〈η,Av〉.(3.18)

Indeed, for any given A ∈ Q we observe that A satisfies (3.2) because (J1f(x, p))ε∞ ⊂
(J1f(x, p))δ∞, x ∈ intB(x0, δ) and p ∈ B(p0, δ) ∩ P . By (3.1), there exists v ∈
TC(x̄) ∩BRn and w ∈ cone(f(x, p) +K) ∩BRm such that

−η = γ(Av + w).

Then

−1 = −〈η, η〉 = γ〈η,Av + w〉.
Since 〈η, w〉 ≥ 0, it follows that −γ−1 ≥ 〈η,Av〉. We have thus shown that −γ−1 ≥
infv∈D〈η,Av〉. Since the last inequality holds for any A ∈ Q, we conclude that (3.18)
is valid. We next show that

inf
v∈D

sup
A∈Q
〈η,Av〉 ≥ −λ.(3.19)

Indeed, let v ∈ D be given arbitrarily. For any ε1 > 0, from (3.16) and (3.17) it
follows that there exist A ∈ Q and ξ ∈ BRn such that

(η ◦A)(v) + λ〈ξ, v〉 ≥ −ε1.
So

〈η,Av〉 ≥ −λ〈ξ, v〉 − ε1 ≥ −λ− ε1.
Hence supA∈Q〈η,Av〉 ≥ −λ−ε1. Since ε1 can be chosen arbitrarily small, we conclude
that supA∈Q〈η,Av〉 ≥ −λ, and hence (3.19) is true. By the lopsided minimax theorem
[1, p. 319], we have

sup
v∈D

inf
A∈Q
〈η,−Av〉 = inf

A∈Q
sup
v∈D
〈η,−Av〉.
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Therefore

inf
v∈D

sup
A∈Q
〈η,Av〉 = sup

A∈Q
inf
v∈D
〈η,Av〉.

Combining this with (3.18) and (3.19) we get the inequality −γ−1 ≥ −λ, which
contradicts the inclusion λ ∈ (0, γ−1). We have thus proved that 0 ∈ f(x, p)+K, and
so x ∈ G(p).

We set V = intB(x0, δ) and G̃(p) = G(p)∩V . From what has already been proved
we can assert that

G̃(p) �= ∅ ∀p ∈ U.

We now prove that the multifunction G̃(·) is lsc on U . Let p ∈ U and x ∈ G̃(p) be
given arbitrarily. Given any ε > 0 we chose τ ∈ (0, ε) so that B(x, τ) ⊂ V . Repeating
the above procedure with (x, p) taking the place of (x0, p0), we find a neighborhood
U ′ of p in P such that

∀p′ ∈ U ′ ∃x′ ∈ B(x, τ) satisfying 0 ∈ f(x′, p′) +K.

The last inclusion shows that x′ ∈ G(p′). Since B(x, τ) ⊂ V ∩ B(x, ε), we have

x′ ∈ G̃(p′) ∩B(x, ε). From this it follows that G̃(·) is lsc at p.
Observe that Theorem 3.2 shows that if the inequality system is regular at a so-

lution, then this solution is stable under admissible perturbations. This implication is
also typical in most of the studies on stability and sensitivity of optimization problems
and variational inequalities. From the conclusions of Theorems 3.4 and 3.5 below it
also follows that the solution x0 is stable under admissible perturbations.

Lemma 3.1 and the procedure to show that the point x found by the Ekeland
principle satisfies the inclusion 0 ∈ f(x, p) +K in the preceding proof will enable us
to obtain metric regularity and the pseudo-Lipschitz property of G(·). The methods of
proof remain the same as in the proofs of Theorems 3.2 and 3.3 in [27]. The technique
of taking some limit in an expression given by the first assertion of the Ekeland
principle is originally due to Aubin and Frankowska [2]. Dien and Yen (see [7, 26, 27])
showed that the technique is useful not only for proving the pseudo-Lipschitz property
but also for proving the metric regularity of implicit multifunctions.

Definition 3.3 (see Borwein [3]). The implicit multifunction G(·) defined by the
generalized inequality system (1.2) is said to be metrically regular at (p0, x0) if there
exist a constant µ > 0 and neighborhoods U1 of p0 and V1 of x0 such that

d(x,G(p)) ≤ µd(0, f(x, p) +K) ∀p ∈ U1, ∀x ∈ V1 ∩ C.(3.20)

Metric regularity of inverse multifunctions (see section 4) is a special case of the
above notion of the metric regularity of implicit multifunctions.

Theorem 3.4 (metric regularity). If (1.1) is regular at x0 and {f(x, p), P, p0}
is an admissible perturbation of the system at x0, then G(·) is metrically regular at
(p0, x0).

Proof. Let constants γ, δ and neighborhoods U of p0, V of x0 be defined as in the
proof of Theorem 3.2. Since the multifunction (x, p) �→ f(x, p) +K is lsc at (x0, p0)
and 0 ∈ f(x0, p0) +K, there exist neighborhoods U1 of p0 and V1 of x0 such that

U1 ⊂ U, V1 ⊂ B
(
x0,

δ

2

)
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and

d(0, f(x, p) +K) <
δ

2γ
∀p ∈ U1, ∀x ∈ V1.(3.21)

We will prove the inequality in (3.20) for µ = γ. Fix any x ∈ V1 ∩C and p ∈ U1. We
put α = d(0, f(x, p) +K). By (3.21), α < 2−1γ−1δ. Hence the interval

(
2δ−1α, γ−1

)
is nonempty. Let τ ∈ (2δ−1α, γ−1

)
. We consider the function

νp(z) = d(0, f(z, p) +K) (z ∈ Rn).
Fix any τ ′ ∈ (τ, γ−1). We have

νp(x) = α < τ−1ατ ′.

By the Ekeland principle, there exists x ∈ B(x0, δ) ∩ C such that

‖x− x‖ ≤ τ−1α,

νp(x) ≤ νp(z) + τ ′‖z − x‖ ∀z ∈ B(x0, δ) ∩ C.
Then

‖x− x0‖ ≤ ‖x− x‖+ ‖x− x0‖ < τ−1α+ 2−1δ < δ.

Since 0 < τ ′ < γ−1, the arguments in the first part of the proof of Theorem 3.2 show
that 0 ∈ f(x, p) +K. Hence x ∈ G(p) and we have

d(x,G(p)) ≤ ‖x− x‖ ≤ τ−1α.

Letting τ → γ−1 we get the estimation d(x,G(p)) ≤ γα, which can be written equiv-
alently as

d(x,G(p)) ≤ γd(0, f(x, p) +K).

The proof is complete.
Theorem 3.5 (pseudo-Lipschitz property). In addition to the assumptions of

Theorem 3.2, suppose that there exist κ > 0 and neighborhoods U0 of p0 in P and V0

of x0 such that

‖f(x, p′)− f(x, p)‖ ≤ κ‖p′ − p‖ ∀p, p′ ∈ U0, ∀x ∈ V0.(3.22)

Then the multifunction G(·) is pseudo-Lipschitz at (p0, x0).
Proof. Let γ, δ, U, and V be defined as in the proof of Theorem 3.2. We choose

θ > 0 as small as

B(x0, θκ) ⊂ V ∩ V0, B(p0, γ
−1θ) ∩ P ⊂ U ∩ U0.

Let

� = 2γκ, Ũ = intB(p0, 8
−1γ−1θ) ∩ P, Ṽ = intB(x0, 2

−1θκ).

We claim that

G(p) ∩ Ṽ ⊂ G(p′) + �‖p− p′‖BRn ∀p, p′ ∈ Ũ .
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To prove this, it suffices to show that for any p, p′ ∈ Ũ and x ∈ G(p) ∩ Ṽ we have

d(x,G(p′)) ≤ �‖p− p′‖.(3.23)

Since ‖p− p′‖ < 4−1γ−1θ, there exists an ε satisfying

2θ−1‖p− p′‖ < ε < 2−1γ−1.(3.24)

Let

ϕ(z) = νp′(z) + ε‖z − x‖ ∀z ∈ Rn,
where νp′(z) = d(0, f(z, p′) +K). By (3.22), ‖f(x, p′)− f(x, p)‖ ≤ κ‖p′ − p‖. Hence,
if w ∈ K is such that νp(x) = ‖f(x, p) + w‖ = 0, then

ϕ(x) = νp′(x) = νp′(x)− νp(x)
≤ ‖f(x, p′) + w‖ − ‖f(x, p) + w‖
≤ κ‖p− p′‖.

Combining this with (3.24) we get

ϕ(x) ≤ 2−1κεθ.

Applying the Ekeland principle we find x ∈ B(x0, θκ) ∩ C such that

ϕ(x) ≤ ϕ(x), ‖x− x‖ ≤ 2−1θκ,

and

ϕ(x) ≤ ϕ(z) + ε‖z − x‖ ∀z ∈ B(x0, θκ) ∩ C.
Therefore

νp′(x) + ε‖x− x‖ ≤ νp′(x),(3.25)

‖x− x‖ ≤ 2−1θκ,(3.26)

νp′(x) ≤ νp′(z) + 2ε‖z − x‖ ∀z ∈ B(x0, θκ) ∩ C.(3.27)

Since x ∈ intB(x0, 2
−1θκ), (3.26) yields x ∈ intB(x0, θκ). Since 0 < ε < 2−1γ−1, we

have 2ε ∈ (0, γ−1). By a procedure similar to that in the proof of Theorem 3.2, from
(3.27) we deduce that 0 ∈ f(x, p′) +K, and hence x ∈ G(p′). Inequality (3.25) shows
that

‖x− x‖ ≤ ε−1νp′(x) ≤ ε−1κ‖p− p′‖;
hence

d(x,G(p′)) ≤ ε−1κ‖p− p′‖.
Due to (3.24), letting ε → 2−1γ−1 from the last inequality we obtain (3.23). The
proof is complete.
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If f and f(·, p) (p ∈ P ) are locally Lipschitz functions, then as Jf(x) and J1f(x, p)
we can choose the Clarke generalized Jacobian of f(·) and f(·, p), respectively, at x.
Hence Theorems 3.1–3.3 in [27] follow from the above implicit function theorems
provided that C is closed and convex. (In [27] it is assumed only that C is a closed
subset of Rn. In this case, TC(x) stands for the Clarke tangent cone.)

Let us consider a simple example showing that, in general, the metric regularity
of implicit multifunctions does not imply the pseudo-Lipschitz property.

Example 3.6. Let n = m = r = 1, C = R, K = {0}, f(x, p) = x(p + 1) − p1/3

for all x, p ∈ R. Let p0 = 0 and x0 = 0. Then the map p �→ G(p), where G(p) =
{x ∈ C : 0 ∈ f(x, p) + K}, is metrically regular at (p0, x0), but it is not pseudo-
Lipschitz at (p0, x0). It is easily verified that the assumptions of Theorem 3.4 are
satisfied, while the assumptions of Theorem 3.5 are not.

Here is another simple example showing that for implicit multifunctions the
pseudo-Lipschitz property does not imply the metric regularity.

Example 3.7. Let n = m = r = 1, C = R, K = {0}, f(x, p) = x3 − p3, p0 = 0,
and x0 = 0. Since G(p) = {x ∈ C : 0 ∈ f(x, p) + K} = {p} for every p, G(·) is
pseudo-Lipschitz at (p0, x0). However, there does not exist any µ > 0 such that

d(x,G(p)) ≤ µd(0, f(x, p) +K)

for all (x, p) in a neighborhood of (x0, p0). Indeed, since

d(x,G(p)) = |x− p| and d(0, f(x, p) +K) = |x3 − p3|,
such a constant µ cannot exist.

So, for implicit multifunctions, both statements “the metric regularity implies
the pseudo-Lipschitz property” and “the pseudo-Lipschitz property implies the metric
regularity” are not true in general. Meanwhile, it is well known that for inverse
multifunctions the metric regularity is equivalent to the pseudo-Lipschitz property
(see [4, 17, 22]).

Effective sufficient conditions for the pseudo-Lipschitz property of implicit mul-
tifunctions in term of coderivatives have been given in [18, Theorems 4.1 and 5.1]
and [20, Theorems 5.1, 5.8, and 6.1]. The above remark shows that these condi-
tions may not guarantee the metric regularity of the implicit multifunctions. Under
some restrictive assumptions (see [18, Theorem 4.9]), the metric regularity of implicit
multifunctions is equivalent to the pseudo-Lipschitz property.

Relationships between the concept of approximate Jacobian and the concept of
coderivative are discussed in detail in [21]. In particular, it has been shown that if
f : Rn → Rm is a continuous vector valued function and Jf(x) is a representative for
the coderivative mapping D∗f(x)(·) : Rn ⇒ Rm, that is, Jf(x) is a nonempty closed
subset of L(Rn, Rm) and

sup
x∗∈D∗f(x)(y∗)

〈x∗, u〉 = sup
A∈Jf(x)

〈A∗y∗, u〉 ∀u ∈ Rn, ∀y∗ ∈ Rm,

then f is locally Lipschitz at x and Jf(x) is an approximate Jacobian of f at x.
Example 3.5 in [21] shows that, for continuous real functions, the Mordukhovich sub-
differential, even if it is nonempty, may not be an approximate Jacobian. Conversely,
there exist many examples showing that nontrivial approximate subdifferentials ex-
ist, but the Mordukhovich subdifferential is empty. Therefore one can assert that,
for continuous vector valued mappings, the concepts of coderivative and approximate
Jacobian are not comparable.



1120 V. JEYAKUMAR AND N. D. YEN

We conclude this section with a simple example to which the abovementioned
implicit function theorems in [18] and [20] cannot be applied, while Theorems 3.2–3.5
are applicable.

Example 3.8. Let f(x) = x1/3 for every x ∈ R and f(x, p) = (p+ 1)x1/3 − p for
every (x, p) ∈ R × R. Let P = R, C = R, K = {0}, p0 = 0, and x0 = 0. For every
p ∈ (−1, 1), the solution set G(p) of (1.2) is given by the formula G(p) = {p3/(p+1)3}.
It is clear that

J1f(x, p) =

{
[α,+∞) if x = 0
{ 1

3 (p+ 1)x−2/3} if x �= 0,

where α > 0 is chosen arbitrarily, is an approximate mapping of f(·, p). It is easily
verified that {f(x, p), P, p0} is an admissible perturbation of the system (1.1) at x0 in
the sense of Definition 2.6. Note that (1.1) is regular at x0 in the sense of Definition 2.5.
Since the assumptions of Theorem 3.2 are satisfied, there exist neighborhoods U of p0

and V of p0 such that G(p) ∩ V is nonempty for every p ∈ U , and the multifunction

G̃(·) := G(·) ∩ V is lower semicontinuous on U . By Theorem 3.4, G(·) is metrically
regular at (P0, x0), that is, there exist constant µ > 0 and neighborhoods U1 of p0

and V1 of x0 such that (3.20) is valid. Since (3.22) is satisfied for κ = 2, U0 = R, and
V0 = (−1, 1), Theorem 3.5 asserts that the multifunction G(·) is pseudo-Lipschitz at
(p0, x0).

4. Open mappings and Lagrange multipliers. In this section, we will derive
from the results of the preceding section a general open mapping theorem, an inverse
mapping theorem, Lagrange multiplier rules for cone-constrained optimization prob-
lems, and sufficient conditions for the continuity and the locally Lipschitz property of
optimal value functions in parametric optimization problems with continuous data.

Theorem 4.1 (open mapping theorem). Let C ⊂ Rn and K ⊂ Rm be nonempty
closed convex sets, f : Rn → Rm a continuous function. Let x0 ∈ C. Assume that
f admits an approximate Jacobian mapping Jf which is upper semicontinuous on a
neighborhood of x0, and each A ∈ coJf(x0) ∪ co((Jf(x0))∞ \ {0}) is surjective on C
at x0 w.r.t. f(x0) +K. Then

0 ∈ int(f(C) +K).(4.1)

Proof. Let P = Rm, p0 = 0, f(x, p) = f(x)− p (x ∈ Rn). It is clear that x0 is a
solution of the generalized inequality system

0 ∈ f(x) +K, x ∈ C,(4.2)

and {f(x, p), P, p0} is a perturbation of (4.2) at x0. Since Jf(·, p) := Jf(·) is an
approximate Jacobian mapping of f(·, p) for every p ∈ P , from the hypothesis it
follows that {f(x, p), P, p0} is an admissible perturbation of (4.2) at x0 and (4.2) is
regular at x0. It is clear that for each x ∈ Rn, f(x, ·) is a continuous function on P .
Moreover,

‖f(x, p′)− f(x, p)‖ ≤ ‖p′ − p‖ ∀p, p′ ∈ P.
Applying Theorem 3.2 to the system (4.2) we conclude that there exist a neighborhood
U of p0 = 0 and a neighborhood V of x0 such that G(p) := {x ∈ C : p ∈ f(x)+K}∩V
is nonempty for all p ∈ U . This implies that U ⊂ f(C ∩ V ) +K, and hence (4.1) is
valid.
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Theorem 4.2 (inverse mapping theorem). Under the assumptions of Theo-
rem 4.1, the multifunction p �→ G(p), where G(p) := {x ∈ C : p ∈ f(x) + K}, is
pseudo-Lipschitz at (0, x0), and there exist µ > 0 and neighborhoods U of 0 ∈ Rm and
V of x0 such that

d(x,G(p)) ≤ µd(p, f(x) +K) ∀p ∈ U, ∀x ∈ V,

that is, the inverse multifunction G(·) is metrically regular at (0, x0).
Proof. Let P = Rm, p0, and f(x, p) be defined as in the preceding proof. Ap-

plying Theorems 3.4 and 3.5 to the system (4.2) with the admissible perturbation
{f(x, p), P, p0} we obtain the desired conclusions.

Theorem 4.1 specializes to the open mapping theorem in [13] if K = {0}. Here we
have to assume additionally that C is closed. Note that in the formulation of Theorem
3.3 in [13] one has to assume that the approximate Jacobian mapping Jf(·) is upper
semicontinuous on a neighborhood of x0, because in the proof of the theorem one uses
the chain rule for an arbitrary point from a neighborhood of x0. In [12], an open map-
ping theorem under the assumption that every A ∈ coJf(x0) ∪ co((Jf(x0))∞\{0}) is
an invertible operator, has been established for the case where C = Rn and K = {0}.

Theorem 4.2 describes some local properties of the inverse multifunction of the
map x �→ f(x) + K with respect to the constraint set C. In the case where K =
{0}, we have thus proved that under the hypothesis that every A ∈ coJf(x0) ∪
co((Jf(x0))∞\{0}) is surjective on C at x0, the inverse multifunction is metric regular
at (0, x0) and pseudo-Lipschitz at (f(x0), x0). As noted in the preceding section, the
last two properties are equivalent. Metric regularity of inverse multifunctions has been
considered by Borwein and Zhuang [4], Ioffe [9], Jourani [15], Mordukhovich [17, 18],
Penot [22], and many other authors (see the references given in [15, 18]).

From Theorem 3.2 and the separation theorem we can easily derive necessary
optimality conditions for the optimization problem

Minimize ϕ(x) subject to x ∈ C, 0 ∈ f(x) +K,(4.3)

where ϕ : Rn → R and f : Rn → Rm are continuous functions and C ⊂ Rn and
K ⊂ Rm are nonempty closed convex sets. Suppose that ϕ admits a generalized sub-
differential mapping ∂ϕ(·) and f admits an approximate Jacobian mapping Jf(·). In
the case whereK = Rm, if x0 ∈ C is a local solution of (4.3), then from Proposition 2.4
and the separation theorem it follows that

0 ∈ co∂f(x0) +NC(x0).

We now consider the case where K �= Rm.
Theorem 4.3 (generalized Fritz–John conditions). Let x0 ∈ C be a local solution

of (4.3). Assume that the multifunctions ∂ϕ(·) and Jf(·) are upper semicontinuous
on a neighborhood of x0. Then there exist a nonzero vector (λ0, λ) ∈ R+× (−(f(x0)+
K)∗), a vector x∗ ∈ co∂ϕ(x0)∪ co((∂ϕ(x0))∞ \{0}), and an operator A ∈ coJf(x0)∪
co((Jf(x0))∞ \ {0}) such that

0 ∈ λ0x
∗ +A∗(λ) +NC(x0).(4.4)

If K is a cone, then λ ∈ −K∗ and 〈λ, f(x0)〉 = 0.

Proof. Let x0 ∈ C be a local solution of (4.3). Define f̃(x) = (ϕ(x)−ϕ(x0), f(x))

for all x ∈ Rn. It is easily seen that the formula Jf̃(x) = ∂ϕ(x) × Jf(x) (x ∈ Rn)
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defines an approximate Jacobian mapping of f̃ . We claim that there exists Ã ∈
coJ̃f(x0) ∪ co((J̃f(x0))∞ \ {0}) such that

0 /∈ int
{
Ã(TC(x0)) + f̃(x0) + K̃

}
,(4.5)

where K̃ := R+ ×K. Indeed, we have

0 ∈ f̃(x0) + K̃, x0 ∈ C.
Since x0 is a local solution of (4.3), there cannot exist any sequence {xk} ⊂ C satis-
fying

0 ∈ f̃(xk)− qk + K̃ (∀k),
where qk := (−1/k, 0) ∈ R × Rm. This implies that for any neighborhood V of x0,

the multifunction q �→ G̃(q) ∩ V , where

G̃(q) = {x ∈ C : 0 ∈ f̃(x)− q +K} (∀q = (α, p) ∈ R×Rm),

is not lsc at q0 := (0, 0). According to Theorem 3.2, the inequality system

0 ∈ f̃(x) + K̃, x ∈ C,

cannot be regular at x0. Thus there must exist Ã ∈ coJ̃f(x0) ∪ co((J̃f(x0))∞ \ {0})
satisfying (4.5). By the separation theorem, from (4.5) we can assert that there exists
a nonzero vector (λ0, λ) ∈ R×Rm satisfying

〈(λ0, λ), w〉 ≥ 0 ∀w ∈ Ã(TC(x0)) + f̃(x0) + K̃.(4.6)

Let Ã = (x∗, A), where x∗ ∈ co∂ϕ(x0) ∪ co((∂ϕ(x0))∞ \ {0}) and A ∈ coJf(x0) ∪
co((Jf(x0))∞\{0}). From (4.6) it follows that λ0α ≥ 0 for every α ≥ 0 and 〈λ,w〉 ≥ 0

for all w ∈ f(x0)+K. So (λ0, λ) ∈ R+× (−(f(x0)+K)∗). Since 0 ∈ f̃(x0)+ K̃, (4.6)
also implies that

〈(λ0, λ), w〉 ≥ 0 ∀w ∈ Ã(TC(x0));

hence (4.4) is valid. If K is a cone, then the inclusion λ ∈ −(f(x0) + K)∗ yields
λ ∈ −K∗ and 〈λ, f(x0)〉 = 0. The proof is complete.

If C = Rn and K = Rs+ × {0}m−s, where 0 ≤ s ≤ m, then Theorem 4.3 just
describes the multiplier rule stated in [13, Theorem 5.1]. Other Lagrange multiplier
rules using the concept of approximate Jacobian have been obtained in [16, 25].

Theorem 4.4 (generalized Kuhn–Tucker conditions). Suppose that x0 ∈ C is
a local solution of (4.3). Assume that the multifunctions ∂ϕ(·) and Jf(·) are upper
semicontinuous on a neighborhood of x0. If the regularity condition (2.2) is satisfied,
then there exist λ ∈ −(f(x0) + K)∗, x∗ ∈ co∂ϕ(x0) ∪ co((∂ϕ(x0))∞ \ {0}), and
A ∈ coJf(x0) ∪ co((Jf(x0))∞ \ {0}) such that

0 ∈ x∗ +A∗(λ) +NC(x0).(4.7)

If K is a cone, then λ ∈ −K∗ and 〈λ, f(x0)〉 = 0.
Proof. Let x0 ∈ C be a local solution of (4.3). According to Theorem 4.3, there

exist a nonzero vector (λ0, λ) ∈ R+×(−(f(x0)+K)∗), x∗ ∈ co∂ϕ(x0)∪ co((∂ϕ(x0))∞\
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{0}), and A ∈ coJf(x0) ∪ co((Jf(x0))∞ \ {0}) such that (4.4) holds. If λ0 = 0, then
(4.4) and the inclusion λ ∈ −(f(x0) +K)∗ imply that

〈λ,Au+ v〉 ≥ 0 ∀(u, v) ∈ TC(x0)× (f(x0) +K).

Then (2.2) cannot hold, because λ �= 0. Thus λ0 > 0. Dividing both sides of (4.4)
by λ0 and replacing λ by λ−1

0 λ if necessary, we can assert that (4.7) holds for some
λ ∈ −(f(x0) +K)∗.

If ϕ and f are locally Lipschitz functions, then as ∂ϕ(x) and Jf(x), respectively,
one can choose the Clarke generalized gradient ∂cϕ(x) of ϕ at x and the Clarke
generalized Jacobian ∂cf(x) of f at x. In this case, the above Lagrange multiplier
rule is stated as follows.

Corollary 4.5. Suppose that x0 ∈ C is a local solution of (4.3). Assume that
ϕ and f are locally Lipschitz functions. If the regularity condition

0 ∈ int(A[TC(x0)] + f(x0) +K) ∀A ∈ ∂cf(x0)

is satisfied, then there exist λ ∈ −(f(x0) +K)∗, x∗ ∈ ∂cϕ(x), and A ∈ ∂cf(x0) such
that (4.7) holds. If K is a cone, then λ ∈ −K∗ and 〈λ, f(x0)〉 = 0.

In passing, observe that the method for deriving the Kuhn–Tucker conditions for
smooth cone-constrained optimization problems from a stability theorem based on
Robinson’s concept of regularity was given in [6, p. 60].

From Theorems 3.2 and 3.5 it is easy to derive sufficient conditions for the conti-
nuity and locally Lipschitz properties of the optimal value function of an optimization
problem involving continuous functions.

Let C,K,P be as above. Let f : Rn×P → Rm and ϕ : Rn×P → R be continuous
functions. Suppose that for each p ∈ P , the function f(·, p) has an approximate
Jacobian J1f(·, p) which is usc on Rn. Consider the parametric optimization problem

Minimize ϕ(x, p) subject to x ∈ C, 0 ∈ f(x, p) +K(4.8)

depending on the parameter p ∈ P . Denote by G(p), ν(p), and Q(p) the constraint
set, the optimal value, and the solution set of (4.8).

Proposition 4.6 (continuity of the optimal value function). Suppose that
(a) there exists a compact set Σ ⊂ Rn such that Q(p) ∩ Σ �= ∅ for every p in a

neighborhood of p0;
(b) there exists x0 ∈ Q(p0) ∩ Σ such that the map (x, p) �→ J1f(x, p) is upper

semicontinuous at (x0, p0) and

0 ∈ int{A[TC(x0)] + f(x0, p0) +K}
∀A ∈ coJ1f(x0, p0) ∪ co((J1(f(x0, p0))∞ \ {0})).(4.9)

Then, ν is continuous at p0.
The proof of this proposition is omitted because it is similar to the proof of

Theorem 4.1 in [27]. Instead of using an implicit function with the Clarke generalized
Jacobian, one can use Theorem 3.2.

Proposition 4.7 (locally Lipschitz property of the optimal value function). Let
ϕ be locally Lipschitz on Rn × P . Assume the fulfillment of (a) and the following
condition:

(c) for each x0 ∈ Q(p0) ∩ Σ, the multifunction (x, p) �→ J1f(x, p) is upper semi-
continuous at (x0, p0), and there exist κ > 0 and neighborhoods U0 of p0 in
P and V0 of x0 such that (3.22) is valid.
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Then, ν is locally Lipschitz at p0.
For proving this proposition, it suffices to use Theorem 3.5 and follow the scheme

of the proof of Theorem 4.2 in [27].
The following statement describes a typical situation where condition (a) is sat-

isfied.
Proposition 4.8. Suppose that
(d) there exists x0 ∈ Q(p0) such that the multifunction (x, p)→ J1f(x, p) is upper

semicontinuous at (x0, p0) and condition (4.9) holds.
If

either lim inf‖x‖→+∞; p→p0 ϕ(x, p) > ϕ(x0, p0),
or lim‖x‖→+∞; p→p0 ϕ(x, p) = +∞,

then condition (a) is fulfilled.
This proposition can be proved similarly as Theorem 4.3 in [27].
Following the schemes developed by Borwein [3], one can derive from Theo-

rems 3.2–3.5 some formulas for tangent cones of closed sets and for directional deriva-
tives of the optimal value function.

Appendix. This appendix contains the proof of Proposition 2.2. For the benefit
of the reader we present the details here. We need the following lemma for this proof.

Lemma A.1 (see [12]). Let F : Rn → 2R
s

be a multifunction that is upper
semicontinuous at x0 ∈ Rn. Let ti > 0 converge to 0, qi ∈ coF (x0 + tiBRn) with
limi→∞ ‖qi‖ =∞ and limi→∞ qi/‖qi‖ = q∗ for some q∗ ∈ Rs. Then q∗ ∈ (coF (x0))∞.
Moreover, if co(F (x0))∞ is pointed, then q∗ ∈ co(F (x0))∞ = (coF (x0))∞.

Proof. By the upper semicontinuity of F at x0, for every ε > 0, there is i0
sufficiently large such that

F (x0 + tiBRn) ⊂ F (x0) + εBRs for all i ≥ i0.
Hence

qi ∈ co(F (x0) + εBRs) ⊂ co(F (x0) + εBRs) + εBRs for all i ≥ i0.
Consequently,

q∗ ∈ [co(F (x0) + εBRs) + εB(0, 1)]∞ ⊂ [co(F (x0) + εBRs)]∞
⊂ (coF (x0))∞.

The inclusion co(F (x0))∞ ⊂ (coF (x0))∞ always holds because F (x0) ⊂ coF (x0)
and (coF (x0))∞ is a closed convex cone. We now prove the reverse inclusion. Let
p ∈ (coF (x0))∞, p �= 0. By Caratheodory’s theorem, there exist convex combinations

pi =
∑s+1
j=1 λijpij with λij ≥ 0, pij ∈ F (x0), and

∑s+1
j=1 λij = 1 such that

p/‖p‖ = lim
i→∞

pi/‖pi‖ and lim
i→∞

‖pi‖ =∞.
Without loss of generality we can assume that limi→∞ λij = λj ≥ 0 for j = 1, . . . , s+1

and
∑s+1
j=1 λj = 1. For every j, consider the sequence {λijpij/‖pi‖}i≥1. We claim

that this sequence is bounded; hence we may assume that it converges to some p0j ∈
(F (x0))∞. Then p =

∑s+1
j=1 p0j ∈ co(F (x0))∞ as desired. To prove the claim we

suppose to the contrary that {λijpij/‖pi‖}i≥1 is unbounded. Let aij = λijpij/‖pi‖.
By taking a subsequence if necessary, we can assume that

‖aij0‖ = max{‖aij‖ : j = 1, . . . , s+ 1}
for every i. Hence limi→∞ ‖aij0‖ =∞. Since pi/‖pi‖ =

∑s+1
j=1 aij , we have
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0 = lim
i→∞

pi/(‖pi‖.‖aij0‖) = lim
i→∞

s+1∑
j=1

aij/‖aij0‖.

Again we can assume that {aij/‖aij0‖}i≥0 converges to some a0j ∈ (F (x0))∞ for
j = 1, . . . , s + 1 because these sequences are bounded. As a0j0 �= 0, the equality

0 =
∑s+1
j=1 a0j shows that co(F (x0))∞ is not pointed, a contradiction.

Using Lemma A.1, we now give a simplified form of the proof of Theorem 4.1 in
[12].

Proof of Proposition 2.2. We wish to show that for every u ∈ Rn, α ∈ R,

(αg ◦ f)+(x, u) ≤ sup
q∈Q

(αp0qu),(A.1)

where p0 = ∇g(f(x)) and Q := Jf(x) + (Jf(x))ε∞. Since the case u = 0 or α = 0
is obvious, we assume that u �= 0 and α �= 0. Let ti > 0 be a sequence of numbers
converging to 0 such that

(αg ◦ f)+(x, u) = lim
i→∞

α(g(f(x+ tiu))− g(f(x)))

ti
.(A.2)

It follows from the mean value theorem [11, Corollary 5.1] that for each ti, there exist
pi ∈ co∇g[f(x), f(x+ tiu)] and qi ∈ co Jf [x, x+ tiu] such that{

f(x+ tiu)− f(x) = tiqiu,
g(f(x+ tiu))− g(f(x)) = pi(f(x+ tiu)− f(x)).

(A.3)

By our hypothesis, limi→∞ pi = p0. By taking a subsequence if necessary, we need to
deal with two cases:

(a) {qi} converges to some q0;
(b) limi→∞ ‖qi‖ =∞ with {qi/‖qi‖} converging to some q∗.
It follows from (A.2) and (A.3) that

(αg ◦ f)+(x, u) = lim
i→∞

(αpiqiu).

In case (a) we have q0 ∈ coJf(x) by the upper semicontinuity of Jf at x. Therefore

(αg ◦ f)+(x, u) = αp0q0u ≤ sup
q∈Q

(αp0qu).

For case (b), by Lemma A.1, q∗ ∈ (coJf(x))∞. If co(Jf(x))∞ is not pointed, then
it is easily seen that co(J(f(x))ε∞ coincides with the whole space L(Rn, Rm). Since
u �= 0, the last property and the assumption p0 �= 0 imply

sup
q∈Q

(αp0qu) ≥ sup
q∈L(Rn,Rm)

(αp0qu) = +∞;

hence (A.1) is valid. If the cone co(Jf(x))∞ is pointed, then by Lemma A.1 it contains
q∗. Let β := αp0q∗u. If β > 0, then from the fact that λq∗ ∈ co(Jf(x))∞ for all λ ≥ 0
we deduce the following relation, which implies (A.1):

sup
q∈Q

(αp0qu) ≥ sup
q∈qr+co(Jf(x))ε∞

(αp0qu) ≥ lim sup
λ→∞

(αp0(qr + λq∗)u) ≥ +∞,

where qr is an arbitrary element of Jf(x).
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If β < 0, then for i sufficiently large, one has

αpi
qi
‖qi‖u <

β

2
< 0.

Hence

(αg ◦ f)+(x, u) = lim
i→∞

(αpiqiu) ≤ lim
i→∞

‖qi‖.β
2

= −∞.

This shows that (A.1) is true.
Now, suppose that β = 0. From the inclusion q∗ ∈ co(Jf(x))∞ and the definition

of the set co(Jf(x))ε∞ = (co(Jf(x))∞)ε it follows that q∗ ∈ int(co(Jf(x))ε∞). We
claim that there exists q1 ∈ co(Jf(x))ε∞ such that

αp0q1u > 0.(A.4)

Indeed, consider the linear functional φ : L(Rn, Rm) → R defined by setting φ(q) =
αp0qu for every q ∈ L(Rn, Rm). If our claim is not true, then φ(q) ≤ 0 for every
q ∈ co(Jf(x))ε∞. Since φ(q∗) = β = 0 and q∗ ∈ int(co(Jf(x))ε∞), we conclude that
φ = 0. As u �= 0 and p0 �= 0, there exists q ∈ L(Rn, Rm) such that qu does not belong
to the kernel of the functional p0. Then we have αp0qu �= 0, which is impossible
because φ = 0. Our claim has been proved. Fixing one element qr ∈ Jf(x), from
(A.4) we deduce that

sup
q∈Q

(αp0qu) ≥ sup
q∈qr+co(Jf(x))ε∞

(αp0qu) ≥ lim
λ→∞

(αp0(qr + λq1)u) ≥ +∞;

hence (A.1) holds.

Acknowledgments. Helpful comments of the referees are gratefully acknowl-
edged. The second author would like to thank Professor V. Jeyakumar for his hospi-
tality at Sydney.

REFERENCES

[1] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984.
[2] J.-P. Aubin and H. Frankowska, On inverse function theorem for set-valued maps, J. Math.

Pures Appl. (9), 66 (1987), pp. 71–89.
[3] J. M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl., 48

(1986), pp. 9–52.
[4] J. M. Borwein and D. M. Zhuang, Verifiable necessary and sufficient conditions for regularity

of set-valued and single-valued maps, J. Math. Anal. Appl., 134 (1988), pp. 441–459.
[5] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
[6] B. D. Craven, Mathematical Programming and Control Theory, Chapman and Hall, London,

1978.
[7] P. H. Dien and N. D. Yen, On implicit function theorems for set-valued maps and their ap-

plications to mathematical programming under inclusion constraints, Appl. Math. Optim.,
24 (1991), pp. 35–54.

[8] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), pp. 324–353.
[9] A. D. Ioffe, Codirectional compactness, metric regularity and subdifferential calculus, Cana-

dian Math. Soc. Conference Proc., 27 (2000), pp. 123–163.
[10] V. Jeyakumar and D. T. Luc, Approximate Jacobian matrices for nonsmooth continuous

maps and C1-optimization, SIAM J. Control Optim., 36 (1998), pp. 1815–1832.
[11] V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convex-

ificators, J. Optim. Theory Appl., 101 (1999), pp. 599–621.



SOLUTION STABILITY OF NONSMOOTH CONTINUOUS SYSTEMS 1127

[12] V. Jeyakumar and D. T. Luc, An open mapping theorem using unbounded generalized Jaco-
bians, Nonlinear Anal., 50 (2002), pp. 647–663.

[13] V. Jeyakumar and D. T. Luc, Convex interior mapping theorems for continuous nonsmooth
functions and optimization, J. Nonlinear Convex Anal., 3 (2002), pp. 251–266.

[14] V. Jeyakumar and X. Wang, Approximate Hessian matrices and second-order optimality
conditions for nonlinear programming problems with C1-data, J. Austral. Math. Soc. Ser.
B, 40 (1999), pp. 403–420.

[15] A. Jourani, Hoffman’s error bound, local controllability, and sensitivity analysis, SIAM J.
Control Optim., 38 (2000), pp. 947–970.

[16] D. T. Luc, A multiplier rule for multiobjective programming problems with continuous data,
SIAM J. Optim., 13 (2002), pp. 168–178.

[17] B. S. Mordukhovich, Complete characterization of openness, metric regularity, and Lips-
chitzian properties of multifunctions, Trans. Amer. Math. Soc., 340 (1993), pp. 1–36.

[18] B. S. Mordukhovich, Lipschitzian stability of constraint systems and generalized equations,
Nonlinear Anal., 22 (1994), pp. 173–206.

[19] B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued map-
pings, J. Math. Anal. Appl., 183 (1994), pp. 250–288.

[20] B. S. Mordukhovich, Stability theory for parametric generalized equations and variational
inequalities via nonsmooth analysis, Trans. Amer. Math. Soc., 343 (1994), pp. 609–657.

[21] N. M. Nam and N. D. Yen, Relationships between approximate Jacobians and coderivatives,
submitted.

[22] J.-P. Penot, Metric regularity, openness, and Lipschitzian behavior of multifunctions, Non-
linear Anal., 13 (1989), pp. 629–643.

[23] S. M. Robinson, Stability theory for systems of inequalities, Part II: Differentiable nonlinear
systems, SIAM J. Numer. Anal., 13 (1976), pp. 497–513.

[24] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin,
Heidelberg, 1998.

[25] X. Wang and V. Jeyakumar, A sharp Lagrange multiplier rule for nonsmooth mathematical
programming problems involving equality constraints, SIAM J. Optim., 10 (2000), pp. 1136–
1148.

[26] N. D. Yen, Implicit function theorems for set-valued maps, Acta Math. Vietnam., 12 (1987),
pp. 7–28.

[27] N. D. Yen, Stability of the solution set of perturbed nonsmooth inequality systems and appli-
cation, J. Optim. Theory Appl., 93 (1997), pp. 199–225.



CONTINUUM OF ZERO POINTS OF A MAPPING ON A
COMPACT, CONVEX SET ∗

A. J. J. TALMAN† AND Y. YAMAMOTO‡

SIAM J. OPTIM. c© 2004 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 1128–1139

Abstract. Let X be a nonempty, compact and convex set in Rn and φ be an outer semicontin-
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1. Introduction. Whenever a mathematical model of some phenomenon is con-
structed either in engineering or in economics, the first question to ask is whether a
solution to the model exists. A very powerful tool to this end is Brouwer’s fixed point
theorem; see Brouwer [2]. When the model is not a system of equations but a system
of correspondences, Kakutani’s fixed point theorem [12] is invoked. An alternative
to fixed point theorems may be intersection theorems on polytopes, with the KKM
theorem of Knaster, Kuratowski, and Mazurkiewicz [13] perhaps the most prominent
example. A close relationship between fixed point theorems and intersection theorems
is well known. Yet another alternative consists of results that claim the existence of
solutions to variational inequality problems, the existence of stationary points, or the
existence of zero points.

For certain models, it not only is important to know that there exists at least
one solution, but one would like to show the existence of a continuum of solutions. In
economics the existence of a continuum of solutions leads to difficulties in expectation
formation of agents and as a consequence provides scope for endogenously generated
fluctuations. A particular example comes from general equilibrium theory with price
rigidities. In Herings [6], the existence of a continuum of zero points of the underlying
constrained excess demand function on the unit cube is shown; see also [9]. The
continuum contains all types of interesting equilibria. It is therefore important to have
generally applicable tools that guarantee the existence of a continuum of solutions to
a certain system of equations.

This leads us to the following problem: Given a point-to-set mapping ϕ : X ⇒ R
n,
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with X an arbitrary nonempty, convex, compact set, what reasonable conditions can
guarantee the existence of a continuum of solutions to the system

0 ∈ ϕ(x) ?

Our approach to prove the existence of a continuum of solutions is to show that
there is a connected subset of solutions that links two distinct points in X, thereby
guaranteeing the continuum.

It is well known that under certain conditions a point-to-set mapping defined on a
nonempty, convex, compact set has a solution to the variational inequality or station-
ary point problem; e.g., see Eaves [4]. In this paper we generalize this problem and
define a parametric stationary point problem with respect to some given nonzero vec-
tor c ∈ Rn. We show that under the same conditions a point-to-set mapping defined
on a nonempty, convex, compact set has a connected set of solutions to the para-
metric stationary point problem, called parameterized stationary points or stationary
points with respect to the given vector c. The connected set contains two distinct
points in the boundary of X. At one of these points the value c�x is minimized for
x ∈ X, while at the other point the value c�x is maximized for x ∈ X. We give several
conditions under which there exists a connected set of zero points linking these two
distinct boundary points of X.

Intersection results with a continuum of intersection points can be found in Frei-
denfelds [5] on the unit simplex and Herings and Talman [8] on the unit cube. We
provide sufficient conditions for a collection of closed sets covering a nonempty, con-
vex, compact set to have a connected set of intersection points containing two distinct
points in the boundary of the set.

The results in the paper generalize earlier results of Browder [3], Mas-Colell [14],
and Herings, Talman, and Yang [10]. In the case of Browder’s theorem, the compact,
convex set is the Cartesian product of the unit interval [0, 1] and a compact, convex
set of one dimension less, while c is the unit vector with the one on the last posi-
tion. Mas-Colell’s result is an extension of Browder’s result to deal with point-to-set
mappings. Both Browder and Mas-Colell proved their results via a rather sophisti-
cated machinery. Herings, Talman, and Yang [10] deal with a polytope. In Browder’s
theorem and in Mas-Colell’s theorem a connected set of fixed points is obtained, con-
necting the levels 0 and 1, whereas the result on the polytope yields a connected set
of zero points connecting two different faces of the polytope.

This paper is organized as follows. In section 2 we state the problem and give
a general existence result. In section 3 we give sufficient conditions for the existence
of a connected set of zero points of the mapping. Section 4 states the intersection
result. Section 5 gives an application of the result to a pure exchange economy with
restricted price set.

2. Continuum of parameterized stationary points. Let X be an arbitrary
nonempty, convex, compact set of Rn and let c be an arbitrary nonzero vector in
R
n. Without loss of generality we assume that X is of full dimension and that

min{ c�x | x ∈ X } = 0 and max{ c�x | x ∈ X } = 1. Let

H(α) = {x | x ∈ Rn; c�x = α } for α ∈ [0, 1],

X(α) = X ∩H(α) for α ∈ [0, 1],

H =
⋃

α∈[0,1]

H(α),(2.1)

C = {βc | β ∈ R }.
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For notational convenience, we write F : A ⇒ B to denote that F is a point-to-set
mapping from set A into the class of subsets of set B. The domain of F : A ⇒ B,
denoted by domF , is the set {x | x ∈ A; F (x) �= ∅ }, and its graph, denoted by gphF ,
is the set { (x, y) | x ∈ A; y ∈ F (x) }.

Definition 2.1. For F : Rn ⇒ R
m and x ∈ Rn let

lim sup
x→x

F (x) = {u | ∃xν → x ∃uν → u such that ∀ν ∈ N uν ∈ F (xν) },
lim inf
x→x

F (x) = {u | ∀xν → x ∃uν → u such that ∃N ∈ N ∀ν ≥ N uν ∈ F (xν) },

where N is the set of natural numbers. The sets lim supx→x F (x) and lim infx→x F (x)
are called the outer limit and inner limit, respectively. The point-to-set mapping
F is said to be outer semicontinuous at x if lim supx→x F (x) ⊆ F (x) and inner
semicontinuous at x if lim infx→x F (x) ⊇ F (x). F is continuous at x if both conditions
hold. A mapping F is outer or inner semicontinuous on A ⊆ Rn if F is outer or inner
semicontinuous at every point of A.

We refer some basic results about the continuity in Rockafellar and Wets [15].
Lemma 2.2 (see [15, Theorems 5.7 and 5.9]). A point-to-set mapping F : Rn ⇒

R
m is outer semicontinuous on Rn if and only if its graph is a closed set of Rn×Rm.

It is inner semicontinuous on the interior of its domain if its graph is a convex set of
R
n × Rm.

Since X(·) can be considered as a point-to-set mapping which assigns α ∈ [0, 1]
to a convex subset X(α) of Rn, we also use the symbol X to denote the mapping.

Lemma 2.3. The mapping X : [0, 1] ⇒ R
n in (2.1) is continuous on [0, 1].

Proof. Clearly, the graph of the mapping X is a closed convex set in Rn+1. Hence
it is outer semicontinuous on [0, 1] and inner semicontinuous on (0, 1) by Lemma 2.2.
We show that it is inner semicontinuous at α = 0. Let y be an arbitrary point of X(1).
For a given point x ∈ X(0) and a given sequence αν → 0 define xν = ανy+(1−αν)x.
Then clearly xν ∈ X(αν) and xν → x. This proves X(0) ⊆ lim infα→0X(α). The
case where α = 1 is proved in exactly the same way.

For x ∈ Rn let S(x) be given by

S(x) = X(c�x);

then by Lemma 2.3 and, for example, Proposition 5.52 of [15] we have the following
lemma.

Lemma 2.4. The mapping S : H ⇒ R
n is a continuous point-to-set mapping on

H.
The normal cone is defined as follows.
Definition 2.5. Let Y ⊆ Rn and y ∈ Y . The normal cone NY (y) of Y at y is

the closed convex cone given by

NY (y) = { v ∈ Rn | (y′ − y)�v ≤ 0 for all y′ ∈ Y }.

It should be noticed that convex sets enjoy the Clarke regularity of Definition 6.4
of [15]; i.e., regular normal cone and normal cone coincide. The former is denoted by
N̂ and the latter by N in [15], but we need not to distinguish them because of the
convexity shared by the sets we consider in this paper.

In the following we denote NS(x)(x) simply by NS(x). We readily obtain the
outer semicontinuity of NS .



CONTINUUM OF ZERO POINTS 1131

Lemma 2.6. The mapping NS : X ⇒ R
n is outer semicontinuous on X, and

NS(x) = NS(x) + C for each x ∈ X.
Proof. The second assertion is straightforward from the definition of NS and that

S(x) ⊆ H(c�x). We show that

lim sup
x→x

NS(x) ⊆ NS(x)

holds for an arbitrary point x ∈ X. Take a point y of lim supx→xNS(x). Then there
are sequences {xν} ⊆ X and {yν} ⊆ Rn such that xν → x, yν → y, and yν ∈ NS(xν)
for each ν ∈ N. Let z be an arbitrary point of S(x). Then by the continuity of S
in Lemma 2.4 there is a sequence {zν} such that zν → z and zν ∈ S(xν) for each
ν ∈ N. Note that (yν)�(zν − xν) ≤ 0. Taking the limit of this inequality yields
(y)�(z − x) ≤ 0. Since z is an arbitrary point of S(x), this inequality implies that
y ∈ NS(x).

Remark. It is known that the normal cone mapping NY : Y ⇒ R
n defined for a

closed convex set Y is outer semicontinuous. See Proposition 6.6 of [15]. Furthermore,
for two closed convex sets Y1 and Y2 Proposition 6.42 of [15] says that

NY1 ∩Y2
(y) ⊇ NY1

(y) +NY2
(y)

holds for y ∈ Y1 ∩ Y2, where + means Minkowsky sum. If in addition Y1 and Y2

cannot be separated,

NY1 ∩Y2(y) = NY1
(y) +NY2

(y).

Applying this result to S(x) = X ∩H(c�x) we see that

NS(x) ⊇ NX(x) + C for x ∈ X,
NS(x) = NX(x) + C for x ∈ X \ (X(0) ∪X(1)).

See Figure 2.1.

X

X(α)=S(x) x

c

x+NS(x)

Fig. 2.1. Section X(α) = S(x) and normal cone mapping NS .

For a subset Y of Rn and a mapping ψ : Y ⇒ R
n we say that a point y ∈ Y is

a stationary point of ψ or a solution to the variational inequality problem for ψ on Y
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when

ψ(y) ∩NY (y) �= ∅.

In what follows, we consider an outer semicontinuous point-to-set mapping φ :
X ⇒ R

n defined on X. We assume that the mapping φ is uniformly bounded, i.e.,
φ(X) =

⋃
x∈X φ(x) is bounded, and that for all x ∈ X the set φ(x) is a nonempty,

convex, compact subset of Rn.
Definition 2.7. A point x ∈ X is a stationary point of φ : X ⇒ R

n with respect
to the nonzero vector c when x is a stationary point of φ on S(x); i.e.,

φ(x) ∩NS(x) �= ∅.

A point x ∈ X is a zero point of φ if 0 ∈ φ(x).
We call the problem of finding a stationary point with respect to a nonzero vector

a parametric variational inequality problem, and we call a solution to it a parameterized
stationary point. It is known (e.g., see Eaves [4]) that for each α ∈ [0, 1] there exists
a stationary point of φ on X(α); therefore there exists a stationary point x of φ on
X with respect to c satisfying c�x = α. Varying α from 0 to 1, we want to show that
there exists a connected set of parameterized stationary points having a nonempty
intersection with both X(0) and X(1), and we give conditions for the set of zero points
of φ to connect these two sets.

For x ∈ H let

p(x) = argmin { ‖x− y‖2 | y ∈ S(x) },

be the projection of x on S(x), which is a singleton because of the convexity of S(x),
where ‖ · ‖2 is the Euclidean norm. Clearly

x− p(x) ∈ NS(p(x)) for each x ∈ H.(2.2)

Lemma 2.8. The function p : H → X is a continuous function.
Proof. By Lemma 2.4 we have seen that S : H ⇒ R

n is continuous. Applying
Corollary 8.1 of Hogan [11] or Theorem 6, Section 1.2 of Aubin and Cellina [1] yields
the continuity of p on H.

Using the results above we are ready to prove the main result.
Theorem 2.9. Let X be a full-dimensional, compact, convex set in Rn, let c be

an arbitrary nonzero vector in Rn, and let φ : X ⇒ R
n be an outer semicontinuous,

uniformly bounded, nonempty, convex, compact-valued point-to-set mapping. Then
there exists a connected set L of stationary points of φ on X with respect to c such
that L ∩X(0) �= ∅ and L ∩X(1) �= ∅.

Proof. Let r be the orthogonal projection from R
n onto H(0); i.e., r(x) = x −

(c�x/c�c)c. Since X is bounded and φ is uniformly bounded, the set r(X +φ(X)) =
{ y | y = r(x + f) for some x ∈ X and f ∈ φ(X) } is a bounded set in H(0). Let D
be a compact, convex subset of H(0) containing r(X + φ(X)) in its relative interior
and let the mapping ψ : D × [0, 1] ⇒ R

n be defined by

ψ(y, α) = r
(
p(y + αc) + φ

(
p(y + αc)

))
.(2.3)

Owing to the continuity of p and r and the outer semicontinuity of φ we yield the
outer semicontinuity of ψ on D × [0, 1]. With D being a nonempty, convex, compact
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set, it follows from Mas-Colell [14] that there exists a connected set L′ in D × [0, 1]
of fixed points of ψ satisfying L′ ∩ (D × {0}) �= ∅ and L′ ∩ (D × {1}) �= ∅, where
(y, α) ∈ D × [0, 1] is said to be a fixed point of ψ if y ∈ ψ(y, α).

Let y ∈ ψ(y, α). Denoting y+αc by z, we have y ∈ r(p(z)+φ(p(z))) or equivalently
z−p(z)+(β−α)c ∈ φ(p(z)) for some β ∈ R. We also have z−p(z)+(β−α)c ∈ NS(p(z))
by (2.2) and Lemma 2.6. Therefore φ(p(z))∩NS(p(z)) �= ∅, meaning that x = p(y+αc)
is a stationary point of φ on X with respect to c. Finally, let the set L be defined by

L = {x | x = p(y + αc) for some (y, α) ∈ L′ } .

Since p is continuous and L′ is connected, so is L. Moreover, L′ ∩ (D × {0}) �= ∅
implies L ∩X(0) �= ∅ and L′ ∩ (D × {1}) �= ∅ implies L ∩X(1) �= ∅.

The theorem says that for any given nonzero vector c and any Kakutani-type
point-to-set mapping on a full-dimensional compact, convex set, the set of stationary
points with respect to c connects the pair of extreme sets X(0) and X(1).

3. Continuum of zero points. In this section we give sufficient conditions un-
der which there exists in X a connected set of zero points of the mapping φ connecting
X(0) and X(1).

Theorem 3.1. Let X, φ, and c satisfy the conditions of Theorem 2.9. If for each
x ∈ X

φ(x) ∩NS(x) = ∅ or φ(x) contains 0,(3.1)

then there exists a connected set L of zero points of φ in X such that L ∩X(0) �= ∅
and L ∩X(1) �= ∅.

Proof. Let L be the connected set of parameterized stationary points in Theo-
rem 2.9. For each point x ∈ L we have φ(x)∩NS(x) �= ∅, which means that 0 ∈ φ(x)
by the above assumption. Therefore all elements of L are zero points of φ.

The condition in the theorem says that at any x ∈ X no nonzero element of
the image φ(x) is allowed to lie in the normal cone NS(x), unless x is a zero point.
Although the condition itself is rather weak, it has to hold for every element in φ(x).
A sufficient condition that is much stronger but has only to hold for at least one
element of the image set uses the notion of tangent cone.

Definition 3.2. For x ∈ X the outer limit

lim sup
τ↘0

S(x)− x
τ

is called the tangent cone of S(x) at x and is denoted by TS(x).
Let Y be a cone of Rn. The polar cone of Y , which is denoted by Y ∗, is defined

by

{ z | z ∈ Rn; y�z ≤ 0 for all y ∈ Y }.

Because of the convexity of S(x), the tangent cone TS(x) of S(x) at x coincides with
the polar cone of the normal cone NS(x).

Lemma 3.3 (see [15, Proposition 6.5]). TS(x) = N∗
S(x) for every x ∈ X.

Theorem 3.4. Let X, φ and c satisfy the conditions of Theorem 2.9. If

φ(x) ∩ TS(x) �= ∅(3.2)



1134 A. J. J. TALMAN AND Y. YAMAMOTO

for every x ∈ X, there exists a connected set L of zero points of φ in X such that
L ∩X(0) �= ∅ and L ∩X(1) �= ∅.

The proof of this theorem does not follow immediately from Theorem 2.9, because
the mapping TS may not be outer semicontinuous on X. Take a polytope as X, and
it is seen that TS is not outer semicontinuous at vertices of X. To prove the theorem,
let B denote the closed unit ball {x | x ∈ Rn; ‖x‖2 ≤ 1 } of Rn, and let

X(α) = X(α) + (B ∩H(0)) for α ∈ [0, 1],

X =
⋃

α∈[0,1]

X(α).

The set X(α) is the unit neighborhood of X(α) restricted to H(α). See Figure 3.1.
The relative interior and relative boundary of X(α) are denoted by intX(α) and
bdX(α), respectively. By construction, X(α) ⊆ X(α) for each α ∈ [0, 1], and X is a
full-dimensional compact convex subset of H.

S(q)=X(α)

S(q)=X(α)
R(q)

p(q)

NS(p(q))

q

Fig. 3.1. Unit neighborhood X(α) and normal cone NS(p(q)).

For q ∈ X let us denote

R(q) = {p(q)}+ (B ∩H(0)),

S(q) = X(c�q)

and employ the abbreviations

NS(q)(q) = NS(q),

NR(q)(q) = NR(q).

Lemma 3.5. For each q ∈ X it holds that

NS(q) ⊆ NR(q) ⊆ NS(p(q)).

Proof. By construction R(q) is a subset of S(q), which directly implies the first
inclusion NS(q) ⊆ NR(q). When q ∈ intX, we have NR(q) = C, which is clearly

included in NS(p(q)) by Lemma 2.6. When q ∈ bdX, we have NR(q) = {µ(q−p(q)) |
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µ ≥ 0 } + C, which is again a subset of NS(p(q)) by (2.2). See also Proposition 1,
Section 0.6 of Aubin and Cellina [1].

Lemma 3.6. The point-to-set mapping N∗
R : X ⇒ R

n is outer semicontinuous on
X.

Proof. As we have seen in the previous proof NR(q) = C when q ∈ intX and
NR(q) = {µ(q − p(q)) | µ ≥ 0 }+ C when q ∈ bdX. Hence, N∗

R(q) = { y | c�y = 0 }
when q ∈ intX and N∗

R(q) = { y | c�y = 0; (q − p(q))�y ≤ 0 } when q ∈ bdX. It
is straightforward to see that the continuity of p yields the outer semicontinuity of
N∗
R.

For q ∈ X let

ψ(q) = φ(p(q)) ∩ TS(p(q))(3.3)

and denote its closure mapping by Ψ; i.e., gph Ψ is the closure of gphψ. Then by
Lemma 2.2 Ψ : X ⇒ R

n is an outer semicontinuous, uniformly bounded, nonempty,
convex, compact-valued point-to-set mapping. Applying Theorem 2.9 to Ψ yields a
connected set, say L′, of stationary points of Ψ on X with respect to c having a
nonempty intersection with both X(0) and X(1).

Lemma 3.7. Let q̂ be a stationary point of Ψ on X with respect to c; i.e.,

Ψ(q̂) ∩NS(q̂) �= ∅.(3.4)

Then p(q̂) is a zero point of φ.
Proof. We start the proof by showing

Ψ(q̂) ⊆ φ(p(q̂)) ∩N∗
R(q̂).(3.5)

Let f be an arbitrary point of Ψ(q̂). Then there are sequences {qν} ⊆ X and {fν}
such that qν → q̂, fν → f and fν ∈ ψ(qν) = φ(p(qν))∩TS(p(qν)) for each ν = 1, 2, . . ..
Since φ is outer semicontinuous and p is continuous, we obtain f ∈ φ(p(q̂)). Applying
Lemmas 3.3 and 3.5 we see fν ∈ TS(p(qν)) = N∗

S(p(qν)) ⊆ N∗
R(qν) for each ν, and

hence by Lemma 3.6 f ∈ N∗
R(q̂).

Furthermore, NS(q̂) ⊆ NR(q̂) by Lemma 3.5. Thus we obtain from (3.4) and (3.5)

∅ �= Ψ(q̂) ∩NS(q̂) ⊆ φ(p(q̂)) ∩N∗
R(q̂) ∩NR(q̂) ⊆ N∗

R(q̂) ∩NR(q̂) = {0}.
This means that 0 ∈ φ(p(q̂)).

Proof of Theorem 3.4. Let L′ be the connected set of stationary points of Ψ on
X with respect to c and let L = p(L′). By the continuity of p and Lemma 3.7 L is a
connected set of zero points of φ. Clearly, L′ ∩X(0) �= ∅ implies L ∩X(0) �= ∅ and
L′ ∩X(1) �= ∅ implies L ∩X(1) �= ∅.

The next theorem is a combination of the latter two theorems. It relaxes the
rather strong condition of Theorem 3.4 to hold for at least one element of every
image set and adds a condition for all elements in every image set, which is a weaker
condition than that in Theorem 3.1.

Theorem 3.8. Let X, φ and c satisfy the conditions of Theorem 2.9. If for each
x ∈ X it holds that both

φ(x) ∩ (TS(x) + C) �= ∅(3.6)

and

φ(x) ∩ C = ∅ or φ(x) contains 0,(3.7)
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then there exists a connected set L of zero points of φ such that L ∩ X(0) �= ∅ and
L ∩X(1) �= ∅.

Proof. Let r : Rn → H(0) denote the orthogonal projection onto the subspace
H(0), and let ψ be the composition rφ. Then it is straightforward to see that ψ
satisfies the conditions of Theorem 2.9 and (3.6) implies ψ(x) ∩ TS(x) �= ∅; i.e., ψ
satisfies the conditions of Theorem 3.4. Therefore we have a connected set of zero
points of ψ = rφ in X having a nonempty intersection with X(0) and X(1). From
(3.7) we readily see that every zero point of ψ is a zero point of φ.

4. Intersection theorem. Suppose we are given k vectors d1, d2, . . . , dk of Rn,
and k closed subsets D1, D2, . . . , Dk of X in Rn that cover X; i.e.,

⋃
j∈K D

j = X,

where K = {1, 2, . . . , k}. For each x ∈ X let d(x) denote the convex hull of { dj | j ∈
K; x ∈ Dj }. We say that x is an intersection point with respect to a nonzero vector
c in Rn when

d(x) ∩ C �= ∅,

or equivalently the orthogonal projection r(d(x)) of d(x) ontoH(0) contains the origin.
Theorem 4.1. Let {Dj | j ∈ K } be a closed covering of a full-dimensional,

convex, compact set X in Rn and let { dj | j ∈ K } be a set of vectors in Rn. Then
with respect to any nonzero vector c ∈ Rn, there exists a connected set L of intersection
points in X satisfying L ∩ X(0) �= ∅ and L ∩ X(1) �= ∅ if one of the following two
conditions is satisfied:

1. for every x ∈ X, d(x) ∩NS(x) = ∅ or intersects C;
2. for every x ∈ X, r(d(x)) ∩ TS(x) �= ∅.

Proof. The proof follows from the fact that if we define φ be the composition rd,
i.e., φ(x) = r(d(x)) for each x ∈ X, the mapping φ satisfies the conditions of either
Theorem 3.1 or 3.4 and, therefore, there exists a connected set L of zero points of φ
in X having a nonempty intersection with both X(0) and X(1). Clearly, a zero point
of φ is an intersection point in X.

5. Application. The results in this paper will be used to show the existence of
a connected set of constrained equilibria in a pure exchange economy with restricted
price set. Let there be n commodities and m consumers in the economy. Consumer
i initially owns wi = (wi1, . . . , w

i
n)

� ∈ Rn+, where wij is his endowment of commodity

j, and Rn+ = {x ∈ Rn | x ≥ 0 }. Here we assume that
∑m
i=1 w

i is a positive vector.
Preference of consumer i on the commodity space Rn+ is represented by a continuous,
strictly monotone, and strictly quasi-concave utility function ui, where ui(y) denotes
the utility level of consumer i when he consumes the commodity vector y ∈ Rn+. Given
a price vector π = (π1, . . . , πn)

� ∈ Rn+ \ {0} with πj the price of commodity j, each
consumer i maximizes his utility ui over his budget set

Bi(π) = { y ∈ Rn+ | π�y ≤ π�wi }.

The solution yi(π), called the demand of consumer i at price vector π, is continuous
and homogeneous of degree zero in π. Letting z(π) =

∑m
i=1(y

i(π) − wi) denote the
total excess demand at price vector π, the function z : Rn+ \ {0} → R

n satisfies
continuity, homogeneity of degree zero, and Walras’s law, that is, π�z(π) = 0 at
all π. When the excess demand is zero for all commodities at price vector π∗, i.e.,
z(π∗) = 0, an equilibrium is obtained and exchange of commodities between the
consumers can take place. Such an equilibrium price vector always exists, and due to



CONTINUUM OF ZERO POINTS 1137

the homogeneity of degree zero of z, it holds that if π∗ is an equilibrium price vector,
then λπ∗ is also an equilibrium price vector for any λ > 0. Hence, there exists a
continuum {λπ∗ | λ > 0 } of equilibria.

When the set of feasible prices is restricted (e.g., minimum wage, price indexation,
maximum commodity price) to some smaller set, the latter set may not contain an
equilibrium price vector. To restore the equilibrium individual demand or supply
could be rationed (e.g., quota); i.e., net demand and net supply of each consumer
is constrained. When commodities are being rationed separately, a connected set
of constrained equilibria is shown to exist in Herings, van der Laan, and Talman [7].
Instead of rationing commodities one by one, one may also constrain excess demand by
one constraint for every consumer. Schalk [16] showed in this way that a constrained
equilibrium always exist. We will now show that, in general, a connected set of such
equilibria exists.

Let P denote the set of feasible prices. For simplicity we assume that P is a
full-dimensional convex and compact subset of Rn+ \ {0}. A natural choice for the
nonzero vector c is the total initial endowment vector w =

∑m
i=1 w

i. We define, in
the same way as before, α0 = min{w�π | π ∈ P }, α1 = max{w�π | π ∈ P }, and
P (α) = {π ∈ P | w�π = α } for α ∈ [α0, α1]. To determine the constraints on the
individual excess demands, we extend the set P (α) to the set X(α), and then P to
X by

X(α) = P (α) + (B ∩H(0)) and

X =
⋃

α∈[α0,α1]

X(α),

or equivalently

X = {x ∈ Rn | ‖x− π‖2 ≤ 1 for some π ∈ P with w�x = w�π },
where B is the closed unit ball of Rn and H(0) = {x ∈ Rn | w�x = 0 }. Note that X
is a full-dimensional compact and convex set in Rn. Let p(x) denote the projection of
a point x ∈ X on P (w�x). Clearly, p is a continuous function on X. Then, for every
x ∈ X, we define the constrained budget set of consumer i by

Bi(x) = { y ∈ Rn+ | p�(x)y ≤ p�(x)wi; (x− p(x))�(y − wi) ≤ 1− ‖x− p(x)‖2 }.
The vector p(x) ∈ P is the price vector and the vector x−p(x) is the constraint vector
induced by x ∈ X. When x ∈ P , then p(x) = x and no constraint on the budget
set is needed. When x /∈ P , then x cannot be a price vector and rationing will take
place. As price vector, the point in P (w�x) closest to x is taken and the difference
x − p(x) becomes the vector of rationing. Notice that x − p(x) is an element of the
normal cone of the set P (w�x) at the point p(x).

Since the constrained budget set Bi is a continuous mapping on X for i =
1, . . . ,m, the solution yi(x) to the optimization problem of maximizing utility ui

over Bi(x) is a continuous function of x and satisfies the budget constraint.
The aggregated constrained excess demand function is defined by

z(x) =

m∑
i=1

(yi(x)− wi).

We see that this function z is continuous and satisfies Walras’s law; i.e., p�(x)z(x) = 0
for all x ∈ X. In fact, if the equality p�(x)y = p�(x)wi does not hold at y ∈ Bi(x), we
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can choose ε > 0 such that y+εw satisfies the equality, and it holds by w�(x−p(x)) = 0
that

(x− p(x))�(y + εw − wi) = (x− p(x))�(y − wi) + ε(x− p(x))�w
= (x− p(x))�(y − wi)
≤ 1− ‖x− p(x)‖2.

Hence y + εw remains in Bi(x). Since w > 0 and the utility function ui is strictly
monotone, we obtain that yi(x) satisfies p�(x)yi(x) = p�(x)wi. Summing up this
equality for i = 1, . . . ,m yields Walras’s law.

Moreover, if x lies on the boundary of X, ‖x − p(x)‖2 = 1, and by the second
constraint of Bi(x)

(x− p(x))�z(x) ≤ 0(5.1)

holds. The latter property guarantees that the function z satisfies the conditions of
Theorem 3.1. We denote X(w�x) by S(x) as in the preceding sections.

Theorem 5.1. The constrained excess demand function z satisfies z(x) /∈ NS(x)
unless z(x) = 0.

Proof. We suppose z(x) ∈ NS(x) and show that z(x) = 0.
When x ∈ intX, NS(x) = {βw | β ∈ R }, implying z(x) = βw for some β ∈ R.

From Walras’s law it follows that

0 = p�(x)z(x) = βw�p(x).

Since w�p(x) > 0, we have β = 0 and so z(x) = 0.
Suppose now that x ∈ bdX. Then

z(x) = βw + γ(x− p(x))
for some γ ≥ 0 and β ∈ R. Moreover, ‖x− p(x)‖2 = 1 and w�(x− p(x)) = 0. Hence
by (5.1)

0 ≥ (x− p(x))�z(x) = βw�(x− p(x)) + γ = γ ≥ 0.

Therefore, γ = 0. From Walras’s law it now follows again that also β = 0 and so
z(x) = 0.

From Theorem 3.1 it now follows that there exists a continuum of zero points
of z in X connecting X(α0) and X(α1). This connected set induces a continuum of
constrained price equilibria connecting P (α0), the set of feasible prices minimizing
the value of total initial endowment, and P (α1), the set of feasible prices maximizing
the value of total initial endowment.
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Abstract. In this paper, we study several issues related to the characterization of specific classes
of multivariate quadratic mappings that are nonnegative over a given domain, with nonnegativity de-
fined by a prespecified conic order. In particular, we consider the set (cone) of nonnegative quadratic
mappings, defined with respect to the positive semidefinite matrix cone, and study when it can be
represented by linear matrix inequalities. We also discuss the applications of the results in robust
optimization, especially the robust quadratic matrix inequalities and the robust linear programming
models. In the latter application the implementational errors of the solution are taken into account,
and the problem is formulated as a semidefinite program.
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1. Introduction. Let C ⊂ �n be a closed and pointed convex cone. We can
define a natural notion of conic ordering as follows: For vectors x, y ∈ �n, we say
x �C y if and only if x− y ∈ C. Thus, x ∈ �n is nonnegative if and only if x ∈ C. In
this paper, we will be primarily interested in the conic ordering induced by the cone
of positive semidefinite matrices, which is a very popular subject of study thanks to
the recently developed high performance interior methods for conic optimization.

In general, given a closed and pointed convex cone C, we wish to derive efficiently
verifiable conditions under which a multivariate nonlinear mapping is nonnegative over
a given domain (typically a unit ball), where nonnegativity is defined with respect
to C. In [17], Sturm and Zhang studied the problem of representing all nonnegative
(defined with respect to the cone of nonnegative reals �+) quadratic functions over a
given domain. They showed that it is possible to characterize the set of nonnegative
quadratic functions over some specific domains, e.g., the intersection of an ellipsoid
and a half-space. Moreover, the characterization is a necessary and sufficient condition
in the form of linear matrix inequalities (LMIs) which is easy to verify. This type of
easily computable necessary and sufficient condition is particularly useful in systems
theory and robust optimization, where the problem data themselves may contain cer-
tain design variables to be optimized. In particular, using these LMI conditions, many
robust control or minimax-type of robust optimization problems can be reformulated
as semidefinite programming (SDP) problems, which can be efficiently solved using
modern interior point methods.

The problems to be studied in this paper belong to the same category as SDP
problems. In particular, we show that it is possible to characterize, by LMIs, when
a certain type of nonlinear matrix inequality holds over a domain. The first case of
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this type involves quadratic matrix inequalities (QMIs), where the quadratic matrix
function is assumed to take a specific form. We prove that it is possible to give an
LMI description, in terms of the problem data (i.e., the coefficients of the QMIs), for
the quadratic matrix function to be positive semidefinite for all variables satisfying
either a spectral or Frobenius norm bound. In fact, our methodology works for general
quadratic matrix functions as well. What we derive is an equivalent condition in the
dual conic space. However, the membership verification problem of this dual condition
is NP-hard in general. There are several special cases in which the membership
verification boils down to checking a system of LMIs, thus verifiable in polynomial
time. The first such case is when the variable is one-dimensional (the dimension of
the matrix-valued mapping is arbitrary). Alternatively, if the dimension of the matrix
mapping is 2× 2 (the variable can be in any dimension), then we prove that the QMI
can again be characterized by LMIs of the problem data. We also show that our
results can be applied to robust optimization. Specifically, we show that the robust
linear programming models, where the implementational errors of the solution are
taken into account, can be formulated as SDP problems.

This paper is organized as follows. In section 2, we introduce the general conic
framework and problem formulation. In section 3, we present several results concern-
ing the representation of matrix-valued quadratic matrix functions which are non-
negative over a domain. The discussion is continued in section 4 for the general
matrix-valued mappings. A characterization for the nonnegativity of the mapping, in
terms of the input data, over a general domain, is presented in the same section. This
characterization is further shown to reduce to an LMI system in several special cases
when the underlying variable is one-dimensional—or two-dimensional in the homoge-
neous case. Similarly, and in fact equivalently, we obtain LMI characterizations when
the underlying variable is n-dimensional, but the mapping is 2 × 2 matrix valued.
Particular attention is given to the case where the domain is an n-dimensional unit
ball. In section 5 we discuss the applications of our results in robust optimization.

The notation we use is fairly standard. Vectors are lowercase letters, and matrices
are capital letters. The transpose is expressed by T . The set of n × n symmetric
matrices is denoted by Sn; the set of n×n positive (semi)definite matrices is denoted
by (Sn+) Sn++. For two given matrices A and B, we use A � B (A � B) to indicate
that A−B is positive (semi)definite, A⊗B to indicate the Kronecker product between
A and B, and A •B :=

∑
i,j AijBij = Tr(ABT ) to indicate the matrix inner-product.

For a given matrix A, ‖A‖F stands for its Frobenius norm, and ‖A‖2 stands for its
spectrum norm. By cone {x | x ∈ S} (span {x | x ∈ S}) we mean the convex cone
(respectively, linear subspace) generated by the set S. The acronym SOC stands for
the second order cone {(t, x) ∈ �n | t ≥ ‖x‖}, and ‖·‖ represents the Euclidean norm.
Given a Euclidean space L with an inner-product X • Y and a cone K ⊆ L, the dual
cone K∗ is defined as

K∗ = {Y ∈ L | X • Y ≥ 0 for all X ∈ K}.
Since the choice of L can be ambiguous, we call K∗ the dual cone of K in L. Often,
L is chosen as span(K).

2. Cones of nonnegative mappings. One fundamental problem in optimiza-
tion is checking the membership with respect to a given cone. Any polynomial-time
ε-approximation procedure for the membership problem will lead to a polynomial-time
ε-approximation algorithm for optimizing a linear function over the cone intersected
with some affine subspace; see [11] for a precise statement. Checking the membership
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for the dual cone is equivalent to asking whether a linear function is nonnegative
over the whole cone itself. In Sturm and Zhang [17], a problem of this nature is sur-
veyed and investigated in detail. In particular, the authors studied the structure of
all quadratic functions that are nonnegative over a certain domain D. Such functions
are characterized by the well-known S-lemma in the special case where D is the level
set of a quadratic function; see Polyak [16] for a good survey on the S-lemma and its
relation to range convexity. As a consequence, the cone generated by all nonnegative
quadratic functions over this domain can be described using LMIs; see [5]. Moreover,
it is shown in [17] that if D either is the contour of a strictly convex quadratic function
or is the intersection of the level set of a convex quadratic function with a half-space,
then the cone generated by all nonnegative quadratic functions over this domain can
again be described using LMIs (even though the S-procedure is inexact in the second
case). A consequence of this result is that the robust quadratic inequality over D can
be converted equivalently to a single LMI.

If we consider a general vector-valued mapping, then questions such as the one
posed in [17] can be generally formulated as follows:

Determine a finite convex representation for the cone

K = {f : �n → �m | f ∈ F , f(D) ⊆ C}
where F is a certain vector space of functions, D ⊆ �n is a given
domain, and C ⊆ �m is a given closed convex cone.

Solutions to problems of this type are essential ingredients in robust optimiza-
tion [4], since they allow conversion of semi-infinite constraints into finite convex ones.
To appreciate the difficulty of these problems, let us quote a useful result from [4] as
follows.

Proposition 2.1. Let F be the set of all affine linear mappings, D be a unit
sphere, C be the cone of positive semidefinite matrices. Then, it is NP-complete to
decide the membership problem for K. More explicitly, for given symmetric matri-
ces A0, A1, . . . , An of size m × m, it is NP-complete to test whether the following
implication holds:

n∑
i=1

x2
i ≤ 1 =⇒ A0 +

n∑
i=1

xiAi � 0.

However, there exist positive results as well. It is known [7, 14] that if F is the
set of polynomials of order no more than d, D = �1, and C is the cone of positive
semidefinite matrices, then there is a polynomial reduction of K to an LMI. In other
words, K can be described by a reasonably sized LMI. In the next section, we will
show that if F is a certain quadratic matrix function set, and D is a unit ball defined
by either the spectrum norm or the Frobenius norm, then K can still be described by
reasonably sized LMIs. Before we discuss specific results, we need to introduce some
definitions.

Let D ⊆ �n be a given domain. Then, its homogenization is given as

H(D) = cl

{[
t
x

] ∣∣∣∣ x/t ∈ D
}
⊆ �1+n.

We consider the cone of copositive matrices over D to be

C+(D) = {Z ∈ Sn | xTZx ≥ 0 for all x ∈ D}.(2.1)
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Let D1 ⊆ �n and D2 ⊆ �m be two domains. The bilinear positive cone is defined as

B+(D1, D2) = {Z ∈ �n×m | xTZy ≥ 0 for all x ∈ D1, y ∈ D2}.
Obviously, the descriptions of C+ and B+ are the same as that of K, where F is taken
as the set of quadratic forms, and C is simply �+.

If we have a general nonhomogeneous quadratic function q(x) = c+2bTx+xTAx,
then we introduce

M(q(·)) =

[
c bT

b A

]
.

Consider

FC+(D) = {M(q(·)) | q(x) ≥ 0 for all x ∈ D}.
It can be shown [17] that

FC+(D) = C+(H(D)).

This implies that we need only concentrate on the homogeneous form.
The following lemma plays a key role in our analysis.
Lemma 2.2. Let K, K1, and K2 be closed cones. It holds that

C∗+(K) = cone {xxT | x ∈ K}
and

B∗+(K1,K2) = cone {xyT | x ∈ K1, y ∈ K2}.
Proof. Let us consider only the second assertion. It can be shown [17, Lemma 1]

that cone {xyT | x ∈ K1, y ∈ K2} is convex. Using the bipolar theorem, it therefore
suffices to prove that

B+(K1,K2) = (cone {xyT | x ∈ K1, y ∈ K2})∗.(2.2)

It is clear that

B+(K1,K2) ⊆ (conv {xyT | x ∈ K1, y ∈ K2})∗.
We now show the inclusion in the reverse direction. Suppose, by contradiction, that
there is

Z ∈ (conv {xyT | x ∈ K1, y ∈ K2})∗ \ B+(K1,K2).

Then, since Z /∈ B+(K1,K2), by definition there exist u ∈ K1 and v ∈ K2 such that
uTZv < 0. We arrive now at a contradiction, namely,

0 > uTZv = Z • (uvT ) ≥ 0,

where the latter inequality holds, since Z ∈ (conv {xyT | x ∈ K1, y ∈ K2})∗. For a
proof of the first statement of the lemma, see Proposition 1 in [17].

We note that, although we are primarily interested in C+(K) and B+(K1,K2), it
can be advantageous to work with their dual counterparts first and then dualize to
get the original cone. For instance, in [17], Sturm and Zhang used this technique to
show that

C∗+(SOC(1 + n)) =

{[
z11 zT

z Z

]
� 0

∣∣∣∣ z11 ≥ Tr(Z)

}
,(2.3)

which is an explicit LMI system [1]. Relation (2.3) is dual to the S-lemma [19]; see
Proposition 3.1 below.
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3. Robust QMIs. Suppose that we consider an ordinary inequality, say f(x) ≥
0, where x can be viewed as a parameter, which is uncertain. Assume that this
uncertain parameter x can attain any value within a set D. We call the inequality
f(x) ≥ 0 robust if f(x) ≥ 0 for all x ∈ D.

In this regard, the S-lemma of Yakubovich [19] plays a key role in robust analysis,
where f is quadratic and D is given as either the level set or the contour of a quadratic
function. Actually, there are several variants of the S-lemma of Yakubovich, of which
we list two. For proofs, see, e.g., [17].

Proposition 3.1 (S-lemma, level set). Let f : �n → � and g : �n → � be
quadratic functions with g(x̄) > 0 for some x̄. It holds that

f(x) ≥ 0 for all x such that g(x) ≥ 0

if and only if there exists t ≥ 0 such that

f(x)− tg(x) ≥ 0 for all x ∈ �n.
Proposition 3.2 (S-lemma, contour). Let f : �n → � and g : �n → � be

quadratic forms with g(x(1)) < 0 and g(x(2)) > 0 for some x(1) and x(2). It holds that

f(x) ≥ 0 for all x such that g(x) = 0

if and only if there exists t ∈ � such that

f(x) + tg(x) ≥ 0 for all x ∈ �n.
In this section, we derive extensions of the S-lemma to the matrix case, namely,

the robust QMI.
Our first extension of Proposition 3.1 concerns the following robust QMI:

(S1): C +XTB +BTX +XTAX � 0 for all X with I −XTDX � 0.

We show that this robust QMI holds if and only if the data matrices (A,B,C,D)
satisfy a certain LMI relation.

Theorem 3.3. The robust QMI (S1) is equivalent to[
C BT

B A

]
∈
{
Z

∣∣∣∣ Z − t
[
I 0
0 −D

]
� 0, t ≥ 0

}
.(3.1)

Proof. We first show that the robust QMI (S1) is equivalent to the following
robust quadratic inequality (S2):

(S2): ξTCξ + 2ηTBξ + ηTAη ≥ 0 for all ξ, η with ξT ξ − ηTDη ≥ 0.

To see that (S2) implies (S1), we fix an X satisfying

I −XTDX � 0.

Then, by letting ξ be an arbitrary vector, and η := Xξ, we see that

ξT ξ − ηTDη ≥ 0,

which, in light of (S2), implies

ξTCξ + 2ηTBξ + ηTAη ≥ 0,
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or, equivalently,

ξT (C +XTB +BTX +XTAX)ξ ≥ 0.

This shows that

C +XTB +BTX +XTAX � 0.

Next we shall show that (S1) implies (S2). Suppose that (S1) holds, and let ξ
and η be such that

ξT ξ − ηTDη ≥ 0.(3.2)

Consider first the case that ξ = 0, and let X(u) = ηuT /uTu for u = 0. Due to (3.2),
we have

X(u)TDX(u) =
ηTDη

(uTu)2
uuT � 0 ≺ I for all u = 0.

It thus follows from (S1) that

0 ≤ uT (C +X(u)TB +BTX(u) +X(u)TAX(u)
)
u = ηTAη + o(‖u‖),

and hence ηTAη ≥ 0. This establishes (S2) for the case where ξ = 0. If ξ = 0, we let
X = ηξT /ξT ξ. Due to (3.2), we have

XTDX =
ηTDη

(ξT ξ)2
ξξT � 1

ξT ξ
ξξT � I.

Then, by (S1) we have

C +XTB +BTX +XTAX � 0.

By pre- and postmultiplying on both sides of the above matrix inequality by ξT and ξ,
respectively, we get

ξTCξ + 2ηTBξ + ηTAη ≥ 0.

This establishes the equivalence between (S1) and (S2). Now, applying Proposition 3.1
to (S2), Theorem 3.3 follows.

Theorem 3.3 may be applied with D = I (or a multiple of the identity matrix)
to yield a robust QMI, where the uncertainty set is a level set of the spectral radius.
At first sight, this is a more conservative robustness than one based on the Frobenius
norm, since ‖X‖2 ≤ ‖X‖F with a strict inequality if the rank of X is more than one.
Nevertheless, these uncertainty sets turn out to be equivalent for the form of QMIs
treated in this section. More precisely, we have the following.

Proposition 3.4. If D � 0, then (S1) is equivalent to the following robust QMI:

(S3): C +XTB +BTX +XTAX � 0 for all X with Tr(D(XXT )) ≤ 1.

Proof. Observe first that if X is such that 1 ≥ Tr(D(XXT )) = Tr(XTDX) with
D � 0, then also I −XTDX � 0. Therefore, (S1) implies (S3).
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Now we wish to show the converse. Suppose that (S3) holds, and let ξ and η be
such that

ξT ξ − ηTDη ≥ 0.

Then by letting X = ηξT /ξT ξ, we have Tr(D(XXT )) = ηTDη/ξT ξ ≤ 1. It thus
follows from (S3) that

C +XTB +BTX +XTAX � 0.

By pre- and postmultiplying both sides by ξT and ξ, we further get

ξTCξ + 2ηTBξ + ηTAη ≥ 0,

establishing (S2). By Theorem 3.3, (S3) also implies (S1).
As a consequence of the above results, we have derived an LMI description (3.1)

for the data (A,B,C,D), where the following quadratic matrix function inequality
holds:

C +XTB +BTX +XTAX � 0 for all I −XTDX � 0.

If D � 0, then the same LMI description (3.1) applies to the nonnegativity condition

C +XTB +BTX +XTAX � 0 for all Tr(D(XXT )) ≤ 1.

Below we shall further extend the results in Theorem 3.3 to a setting where a
matrix quadratic fraction is present.

Consider data matrices (A,B,C,D, F,G,H) satisfying the following robust frac-
tional QMI:⎧⎨

⎩
H � 0,
C +XTB +BTX +XTAX � 0,
H − (F +GX)(C +XTB +BTX +XTAX)+(F +GX)T � 0,

(3.3)

whenever I − XTDX � 0, where M+ stands for the pseudo-inverse of M � 0. We
remark that (A,B,C,D) satisfies (S1) if and only if (A,B,C,D, 0, 0, 0) satisfies (3.3).

Theorem 3.5. The data matrices (A,B,C,D, F,G,H) satisfy the robust frac-
tional QMI (3.3) if and only if there is t ≥ 0 such that⎡

⎣ H F G
FT C BT

GT B A

⎤
⎦− t

⎡
⎣ 0 0 0

0 I 0
0 0 −D

⎤
⎦ � 0.

Proof. Consider the QMI[
H F +GX

(F +GX)T C +XTB +BTX +XTAX

]
� 0 for all I −XTDX � 0.(3.4)

By taking Schur complements, it is clear that (3.3) and (3.4) are equivalent. Un-
fortunately, the above QMI is not in the form of (S1); Theorem 3.3 is therefore not
applicable. Nevertheless, we can use a similar argument as in the proof of Theorem 3.3.

We shall show that the QMI (3.4) is equivalent to the following robust quadratic
inequality (3.5):

ξTHξ + 2ξTFη + 2ξTGγ + ηTCη + γTBη + ηTBT γ + γTAγ ≥ 0(3.5)
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for all ηT η − γTDγ ≥ 0. Suppose first that (3.5) holds, and fix an X satisfying
I −XTDX � 0. Let ξ and η be arbitrary vectors, and let γ := Xη. By construction,
we have ηT η − γTDγ ≥ 0 so that (3.5) implies

0 ≤ ξTHξ + 2ξTFη + 2ξTGγ + ηTCη + γTBη + ηTBT γ + γTAγ

=

[
ξ
η

]T [
H F +GX

(F +GX)T C +XTB +BTX +XTAX

] [
ξ
η

]
,

establishing (3.4). Conversely, suppose that (3.4) holds, and let ξ, η, and γ be such
that

ηT η − γTDγ ≥ 0.(3.6)

Consider first the case where η = 0, and let X(u) = γuT /uTu for u = 0. Due to (3.6),
we have

X(u)TDX(u) =
γTDγ

(uTu)2
uuT � 0 ≺ I for all u = 0.

It thus follows from (3.4) that

0 ≤
[
ξ
u

]T [
H F +GX(u)

(F +GX(u))T C +X(u)TB +BTX(u) +X(u)TAX(u)

] [
ξ
u

]

=

[
ξ
γ

]T [
H G
GT A

] [
ξ
γ

]
+ o(‖u‖).

This establishes (3.5) for the case where η = 0. If η = 0, we let X = γη/ηT η. Due to
(3.6), we have XTDX � I. Then, by (3.4) we have

0 ≤
[
ξ
η

]T [
H F +GX(u)

(F +GX(u))T C +X(u)TB +BTX(u) +X(u)TAX(u)

] [
ξ
η

]
= ξTHξ + 2ξTFη + 2ξTGγ + ηTCη + γTBη + ηTBT γ + γTAγ,

establishing (3.5). We have proved the equivalence between (3.3) and (3.5). The
theorem now follows by applying Proposition 3.1 to (3.5).

Analogous to Proposition 3.4, we have the following equivalence result.
Proposition 3.6. If D � 0, then (3.3) is equivalent to the following robust

fractional QMI:

Tr(DXXT ) ≤ 1 =⇒
⎧⎨
⎩
H � 0,
C +XTB +BTX +XTAX � 0,
H − (F +GX)(C +XTB +BTX +XTAX)+(F +GX)T � 0.

It is interesting to note a related, but somewhat surprising, result which we for-
mulate in the following theorem; see also [1].

Theorem 3.7. The data matrices (A,B,C, F,G,H) satisfy[
H F +GX

(F +GX)T C +XTB +BTX +XTAX

]
� 0 for all XTX = I(3.7)
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if and only if

⎡
⎣ H F G
FT C BT

GT B A

⎤
⎦− t

⎡
⎣ 0 0 0

0 I 0
0 0 −I

⎤
⎦ � 0 for some t ∈ �.

Proof. Just as in the proof of Theorem 3.5, the robust QMI (3.7) is equivalent to
the following robust quadratic inequality:

ξTHξ + 2ξTFη + 2ξTGγ + ηTCη + γTBη + ηTBT γ + γTAγ ≥ 0 for all ηT η − γT γ = 0.

Applying Proposition 3.2 to the above relation, the theorem follows.
Theorem 3.7 allows us to model the robust QMI over the orthonormal matrix

constraints as a linear matrix inequality.
Matrix orthogonality constrained quadratic optimization problems were studied

in [2, 18], where it was shown that if the objective function is homogeneous, either
purely linear or quadratic, then by adding some seemingly redundant constraints one
achieves strong duality with its Lagrangian dual problem.

4. General robust QMIs. Section 3 shows how we can transform some special
type of robust QMIs into an LMI. In this section, we consider general robust QMIs.

We remark that the matrix inequality Z � 0 is equivalent to the fact that
xTZx ≥ 0 for all x ∈ �n. Thus, the LMI itself is nothing but a special type of
robust quadratic inequality. The same is true for the copositive matrix cone (2.1).
From this viewpoint, we may formulate the general robust QMIs as an ordinary robust
inequality involving polynomials of order no more than 4.

Consider a domain D ⊆ �n and a domain ∆ ⊆ �m. In the same spirit as (2.1),
let us define

C+(D,∆) :=

{
Z ∈ Ln,m

∣∣∣∣∣
n∑
i=1

n∑
j=1

xixjy
TZijy ≥ 0 for all x ∈ D, y ∈ ∆

}
,(4.1)

where Ln,m represents the mn(m+1)(n+1)/4-dimensional linear space of biquadratic
forms. More precisely, Ln,m is defined as follows:

Ln,m :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
G11 G12 · · · G1n

G21 G22 · · · G2n

...
...

...
...

Gn1 Gn2 · · · Gnn

⎤
⎥⎥⎥⎦ ∈ Sn×m

∣∣∣∣∣∣∣∣∣
GTij = Gij ∈ Sm, i, j = 1, 2, . . . , n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.
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Notice that C+(D) = C+(D,�+) = C+(D,�).
Certainly, C+(∆) is a well-defined closed convex cone. It is easy to see that

C+(D,∆) can be equivalently viewed as a robust QMI over D in the conic order
defined by C+(∆), i.e.,

C+(D,∆) =

{
Z ∈ Ln,m

∣∣∣∣∣
n∑
i=1

n∑
j=1

xixjZij ∈ C+(∆) for all x ∈ D
}
.

Given a quadratic function q : �n → Sm,

q(x) = C + 2

n∑
j=1

xjBj +

n∑
i=1

n∑
j=1

xixjAij ,(4.2)

we let M(q(·)) ∈ Ln+1,m denote the matrix representation of q(·), i.e.,

M(q(·)) =

⎡
⎢⎢⎢⎣

C B1 · · · Bn
B1 A11 · · · A1n

...
...

...
...

Bn An1 · · · Ann

⎤
⎥⎥⎥⎦ .

The cone of C+(∆)-nonnegative quadratic functions overD is now conveniently defined
as

FC+(D,∆) = {M(q(·)) | q(x) ∈ C+(∆) for all x ∈ D}.

Clearly, FC+(D) = FC+(D,�). Furthermore, it can be shown [17] that

FC+(D,∆) = C+(H(D),∆).

This implies that we need only concentrate on the homogeneous form.
Similar to Lemma 2.2, we have the following representation.
Lemma 4.1. Let D ⊆ �n and ∆ ⊆ �m. In the linear space Ln,m it holds that

C∗+(D,∆) = cone {(xxT )⊗ (yyT ) | x ∈ D, y ∈ ∆}(4.3)

= cone {(xxT )⊗ Y | x ∈ D, Y ∈ C+(∆)∗}(4.4)

= cone {X ⊗ Y | X ∈ C+(D)∗, Y ∈ C+(∆)∗}.(4.5)

Proof. It can be shown [17, Lemma 1] that cone {(xxT )⊗(yyT ) | x ∈ D, y ∈ ∆} is
convex. Using also the bipolar theorem, an equivalent statement of (4.3) is therefore

C+(D,∆) = cone {(xxT )⊗ (yyT ) | x ∈ D, y ∈ ∆}∗.(4.6)

If Z ∈ C∗+(D,∆), then for all x ∈ D and y ∈ ∆, we have

0 ≤ yT
(

n∑
i=1

n∑
j=1

xixjZij

)
y = (x⊗ y)TZ(x⊗ y) = Z • ((xxT )⊗ (yyT )).

This shows that

C∗+(D,∆) ⊆ cone {(xxT )⊗ (yyT ) | x ∈ D, y ∈ ∆}.
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In order to establish the converse relation, suppose by contradiction that there exists

Z ∈ cone {(xxT )⊗ (yyT ) | x ∈ D, y ∈ ∆}∗ \ C+(D,∆).(4.7)

Since Z /∈ C+(D,∆), there must exist x ∈ D and y ∈ ∆ such that

0 > yT

(
n∑
i=1

n∑
j=1

xixjZij

)
y = Z • ((xxT )⊗ (yyT )) ≥ 0,

where the latter inequality follows from (4.7). This impossible inequality completes
the proof of (4.6), and hence (4.3). The equivalence between (4.3) and (4.4) and (4.5)
follows from Lemma 2.2.

It can be seen that

Ln,m = span {X ⊗ Y | X ∈ Sn, Y ∈ Sm}.

To verify this relation, we first notice that the right-hand-side linear subspace is
contained in Ln,m, since each matrix of the form X ⊗ Y is in Ln,m. Then we check
that the dimensions of the two linear subspaces are actually equal. This establishes
the above equality.

There is a one-to-one correspondence between Ln,m and Lm,n by means of a
permutation operator. In particular, we implicitly define the permutation matrix
Nm,n by

Nm,n vec(X) = vec(XT ) for all X ∈ �m×n.(4.8)

We are now in a position to list some standard results on the Kronecker product.
Proposition 4.2. Let A ∈ �p×m, B ∈ �m×n, and C ∈ �n×q. Then

vec(ABC) = (CT ⊗A) vec(B),(4.9)

N−1
m,n = NT

m,n = Nn,m,(4.10)

Np,q(C
T ⊗A)Nn,m = A⊗ CT .(4.11)

Proof. We prove only (4.11), since the other two results are straightforward. We
have

Np,q(C
T ⊗A)Nn,m vec(BT )

(4.8)
= Np,q(C

T ⊗A) vec(B)

(4.9)
= Np,q vec(ABC)

(4.8)
= vec(CTBTAT )

(4.9)
= (A⊗ CT ) vec(BT )

for arbitrary B. Hence we have (4.11).
Notice that, in particular, from (4.11) we have

Nm,n(X ⊗ Y )Nn,m = Y ⊗X for all X ∈ Sn, Y ∈ Sm,

so that

Lm,n = {Nm,nZNn,m | Z ∈ Ln,m}.
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Theorem 4.3. Let D ⊆ �n and ∆ ⊆ �m. Consider the cones C+(D,∆),
C+(∆, D) and their duals in Ln,m and Lm,n respectively. It holds that

C+(∆, D) = {Nm,nXNn,m ∈ Lm,n | X ∈ C+(D,∆)}(4.12)

and

C∗+(∆, D) = {Nm,nZNn,m ∈ Lm,n | Z ∈ C∗+(D,∆)}.(4.13)

Proof. Relation (4.13) follows from applying (4.11) to Lemma 4.1. Relation (4.12)
follows by dualization.

We shall first consider the cone C+(�n,�m) residing in Ln,m. The following
theorem provides an LMI characterization if either n = 2 or m = 2.

Theorem 4.4. Consider the cone C+(�2,�m) and its dual in L2,m. It holds that

C+(�2,�m) = FC+(�,�m) = (L2,m ∩ S2m
+ )∗

=

{[
A B
B C

]
∈ Ln,m

∣∣∣∣
[

A B + B̃

B − B̃ C

]
∈ S2m

+ for some B̃ = −B̃T
}
.

The cone

C+(�n,�2) = FC+(�n−1,�2) = (Ln,2 ∩ S2n
+ )∗

has a similar LMI characterization, which is due to Theorem 4.3.
Proof. The relation FC+(�,�m) = (L2,m ∩ S2m

+ )∗ is a special case of Theorem
4.2 in Genin et al. [8] on matrix polynomials. The second part of the lemma follows
from Theorem 4.3. For completeness, we provide a direct proof below.

By Lemma 4.1, we have

C∗+(�2,�m) ⊆ S2m
+ ∩ L2,m.

We now show the inclusion in the reverse direction. For this purpose, we take any

G =

[
G11 G12

G12 G22

]
∈ S2m

+ ∩ L2,m

and prove that G ∈ C∗+(�2,�m). We will use the obvious invariance relation

C∗+(�2,�m) =

{[
P 0
0 P

]
Z

[
PT 0
0 PT

] ∣∣∣∣ Z ∈ C∗+(�2,�m)

}
,

where P is any nonsingular real matrix.
Let G(ε) = G + εI � 0, where ε > 0 is an arbitrarily small (but fixed) positive

number. Since G22(ε) � 0, and G12(ε) = G12 is symmetric, there exists a nonsingular
matrix Pε such that

PεG22(ε)P
T
ε = I and PεG12(ε)P

T
ε = Λε,

where Λε = diag (λ1(ε), . . . , λm(ε)) is a diagonal matrix. In fact, Pε = G22(ε)
−1/2Qε

for some orthogonal matrix Qε. To show G(ε) ∈ C∗+(�2,�m), we need only prove[
Pε 0
0 Pε

]
G(ε)

[
PTε 0
0 PTε

]
=

[
PεG11(ε)P

T
ε Λε

Λε I

]
∈ C∗+(�2,�m).
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By the well-known Schur complement lemma, we have

PεG11(ε)P
T
ε − Λ2

ε � 0.

Therefore, we obtain the following representation:[
PεG11(ε)P

T
ε Λε

Λε I

]
=

[
PεG11(ε)P

T
ε − Λ2

ε 0
0 0

]
+

[
Λ2
ε Λε

Λε I

]

=

[
1 0
0 0

]
⊗ (PεG11(ε)P

T
ε − Λ2

ε)

+

m∑
i=1

[
λ2
i λi
λi 1

]
⊗ (eie

T
i ),(4.14)

where ei ∈ �m is the ith column of the m ×m identity matrix. By Lemma 4.1, the
above representation shows that the matrix[

PεG11(ε)P
T
ε Λε

Λε I

]

lies in C∗+(�2,�m). Consequently, G(ε) ∈ C∗+(�2,�m). Since C∗+(�2,�m) is a closed
cone, we have G = limε→0G(ε) ∈ C∗+(�2,�m). This proves the first part of the
theorem. The characterization of the primal cone C+(�2,�m) follows by dualization,
namely,

C+(�2,�m) = cl(C+(�2,�m)) = C∗∗+ (�2,�m)

= cl(L⊥
n,m + S2m

+ ) ∩ Ln,m
=

{[
A B
B C

]
∈ Ln,m

∣∣∣∣
[

A B + B̃

B − B̃ C

]
∈ S2m

+ for some B̃ = −B̃T
}
.

This completes the proof.
We remark that C+(�2,�m) (or equivalently, C+(�m,�2)) is not self-dual. For

instance, we have⎡
⎢⎢⎣

1 0 0 1/2
0 0 1/2 0
0 1/2 0 0

1/2 0 0 1

⎤
⎥⎥⎦ ∈ C+(�2,�2) \ C∗+(�2,�2).

The membership problem of C+(�n,�m) for general n and m is a hard problem; see
Corollary 4.10 later in this paper.

We study now the mixed copositive/positive semidefinite biquadratic forms, i.e.,
C+(�n+,�m) and C+(�n,�m+ ). For m = 2, we arrive at a special case of nonnegative
polynomial matrices on the positive real half-line (see [14] for the scalar case).

Theorem 4.5. There holds

C∗+(�2
+,�m) =

{[
G11 G12

G12 G22

]
∈ L2,m ∩ S2m

+

∣∣∣∣ G12 � 0

}
.(4.15)

Consequently, the primal cone C+(�2
+,�m) can be characterized as

C+(�2
+,�m) = FC+(�+,�m)

=

{[
C B
B A

]
∈ L2,m

∣∣∣∣
[
C B
B A

]
−
[

0 E
ET 0

]
� 0, E + ET � 0 for some E

}
.



MULTIVARIATE NONNEGATIVE QUADRATIC MAPPINGS 1153

Proof. First, it follows from Lemma 4.1 that

C∗+(�2
+,�m) ⊆

{[
G11 G12

G12 G22

]
∈ S2m

+ ∩ L2,m

∣∣∣∣ G12 � 0

}
.

It remains to argue the inclusion in the reverse direction. To this end, let

G ∈
{[

G11 G12

G12 G22

]
∈ S2m

+ ∩ L2,m

∣∣∣∣ G12 � 0

}

be arbitrary. We follow the same proof technique for Theorem 4.4, and we use G(ε),
Pε, and Λε defined there. The only difference is that Λε � 0, due to the fact that
G12 � 0. Relation (4.14) states that[

PεG11(ε)P
T
ε Λε

Λε I

]
=

[
1 0
0 0

]
⊗ (PεG11(ε)P

T
ε − Λ2

ε) +

m∑
i=1

[
λ2
i λi
λi 1

]
⊗ (eie

T
i ).

Obviously,
[
1
0

]
,
[
λi

1

] ∈ �2
+. By Lemma 4.1, the above representation thus shows that

the matrix [
PεG11(ε)P

T
ε Λε

Λε I

]

lies in C∗+(�2
+,�m). Consequently, G(ε) ∈ C∗+(�2

+,�m), and by continuity G ∈
C∗+(�2

+,�m).
The remaining claim about the characterization of the primal cone C+(�2

+,�m)
can be easily verified by taking the dual on both sides of (4.15).

As a special case of the above theorem, we see that C+(�2
+) = S2

+ +�2×2
+ , which

is a well-known characterization of the 2× 2 copositive cone. However, for n > 2 one
merely has Sn+ +�n×n+ ⊂ C+(�n+). In fact, the membership problem of the copositive
cone is co-NP-complete [13]. Hence the membership problem of C+(�n+,�m) also is
co-NP-complete.

Consider the case of D = [0, 1]. This is a special case of nonnegative polynomial
matrices on an interval (see [14] for the scalar case).

Theorem 4.6. Let D = [0, 1]. Then, we have

C∗+(H([0, 1]),�m) =

{[
G11 G12

G12 G22

]
∈ L2,m ∩ S2m

+

∣∣∣∣ G12 −G22 � 0

}
.(4.16)

As a result, the primal cone C+(H([0, 1]),�m) = FC+([0, 1],�m) can be characterized
as

FC+([0, 1],�m)

=

{[
C B
B A

]
∈ L2,m

∣∣∣∣
[

C B − E
B − ET A+ E + ET

]
� 0, E + ET � 0 for some E

}
.

Proof. First, it follows from Lemma 4.1 that

C∗+(H([0, 1]),�m) ⊆
{[

G11 G12

G12 G22

]
∈ S2m

+ ∩ L2,m

∣∣∣∣ G12 � G22

}
.

(Of course, one also has G11 � G12, but this relation is implied by G � 0 and
G12 � G22.)
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It remains to argue the inclusion in the reverse direction. To this end, let

G ∈
{[

G11 G12

G12 G22

]
∈ S2m

+ ∩ L2,m

∣∣∣∣ G12 � G22

}

be arbitrary. We follow the same proof technique for Theorem 4.4, and we use G(ε),
Pε, and Λε defined there. The only difference is that Λε � I, due to the fact that
G12 � G22. Relation (4.14) states that[

PεG11(ε)P
T
ε Λε

Λε I

]
=

[
1 0
0 0

]
⊗ (PεG11(ε)P

T
ε − Λ2

ε) +

m∑
i=1

[
λ2
i λi
λi 1

]
⊗ (eie

T
i ).

Obviously,
[
1
0

]
,
[
λi

1 ] = λi
[

1
1/λi

] ∈ H([0, 1]) because 1/λi ∈ [0, 1] for all i. By Lemma

4.1, the above representation thus shows that the matrix[
PεG11(ε)P

T
ε Λε

Λε I

]

lies in C∗+(�2
+,�m). Consequently, G(ε) ∈ C∗+(�2

+,�m), and by continuity G ∈
C∗+(�2

+,�m).
The characterization of the primal cone FC+([0, 1],�m) can be easily established

by taking the dual on both sides of (4.16).
Quadratic programming over a box [0, 1]n is well known to be NP-complete

for general n; see [13]. Hence, the membership problems of FC+([0, 1]n) and
FC+([0, 1]n,�m) with general n also are co-NP-complete.

Recall from (2.3) that

C+(SOC(n)) = FC+({x ∈ �n | xTx ≤ 1}) = {Z ∈ Sn+ | J • Z ≥ 0}∗,
where J := 2e1e

T
1 − I. Using Lemma 4.1, we have

C∗+(SOC(n),�m) = cone {X ⊗ Y | X ∈ C+(SOC(n))∗, Y ∈ C+(�m)∗}
= cone {X ⊗ Y | X ∈ Sn+, Y ∈ Sm+ , J •X ≥ 0}.(4.17)

Furthermore, we know from Theorem 4.3 that this cone is isomorphic to (i.e., in
one-to-one correspondence with)

C∗+(�m,SOC(n)) = cone {X ⊗ Y | X ∈ Sm+ , Y ∈ Sn+, J • Y ≥ 0}.(4.18)

From this relation, it is clear that

C∗+(�2,SOC(m)) ⊆
{[

Z11 Z12

Z21 Z22

]
∈ L2,m ∩ S2m

+

∣∣∣∣
[
J • Z11 J • Z12

J • Z21 J • Z22

]
� 0

}
.

(4.19)

A natural conjecture is that (4.19) might be an equality. Unfortunately, this conjecture
turns out to be false.

Counterexample. Let p = [ 2 1 0 ]T and

Z11 = ppT + 2e3e
T
3 , Z12 = Z21 = ppT , Z22 = ppT + 6e1e

T
1 ,

that is,

Z =

[
p
p

] [
p
p

]T
+ 2

[
e3
0

] [
e3
0

]T
+ 6

[
0
e1

] [
0
e1

]T
,
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where e1 = [ 1 0 0 ]T and e3 = [ 0 0 1 ]T . Clearly, Z ∈ L2,3 and Z � 0. Moreover,
we find that

[
J • Z11 J • Z12

J • Z21 J • Z22

]
=

[
1
3

] [
1
3

]T
.(4.20)

So Z lies in the cone defined by the right-hand side of (4.19). We claim that Z /∈
C∗+(�2,SOC(3)). Suppose to the contrary that Z ∈ C∗+(�2,SOC(3)). Then Z =∑k
i=1(xix

T
i )⊗ (yiy

T
i ), where xi ∈ �2, yi ∈ SOC(3). Notice that

[
J • Z11 J • Z12

J • Z21 J • Z22

]
=

k∑
i=1

(J • (yiy
T
i ))xix

T
i =

[
1
3

] [
1
3

]T
,

where the last step follows from (4.20). Since yi ∈ SOC(3), it follows that J •(yiyTi ) ≥
0 for all i. Therefore, the above relation implies that each xi must be a constant
multiple of the vector [ 1 3 ]T . By a renormalization, if necessary, we can assume
xi = [ 1 3 ]T for all i. As a result, we obtain

Z =

([
1
3

] [
1
3

]T)
⊗ Y =

[
1 3
3 9

]
⊗ Y,

where Y =
∑
i yiy

T
i . This implies that Z22 = 3Z12 = 9Z11. This clearly con-

tradicts the definitions of Z11, Z12, and Z22. We therefore have proved that Z /∈
C∗+(�2,SOC(3)).

It remains an open question as to whether the cone C∗+(�2,SOC(m)) is repre-
sentable by LMIs. Below, we shall characterize the cone

{
(A,C) ∈ Ln,m × Sm

∣∣∣∣
[
C 0
0 A

]
∈ C+(SOC(n),∆)

}
(4.21)

for given ∆ ⊆ �m. In other words, we consider quadratic functions q : {x ∈ �n |
xTx ≤ 1} → C+(∆), where the Bj ’s in (4.2) are all zero. Our result is the following.

Theorem 4.7. Let r > 0 be a given scalar quantity and let ∅ = ∆ ⊆ �m be a
given domain. It holds that A ∈ Ln,m, C ∈ Sm satisfy

yTCy +

n∑
i=1

n∑
j=1

xixj y
TAijy ≥ 0 for all xTx ≤ r, y ∈ ∆(4.22)

if and only if

C ∈ C+(∆) and rA+ I ⊗ C ∈ C+(�n,∆).(4.23)

Proof. We shall use the Rayleigh–Ritz characterization of the smallest eigen-
value of a symmetric matrix Z = ZT . The smallest eigenvalue, denoted λmin(Z), is
characterized as follows:

λmin(Z) = min{uTZu | uTu = 1}.(4.24)
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Suppose now that (4.22) holds. Setting x = 0, we obtain that C ∈ C+(∆). It also
follows immediately from (4.22) that for arbitrary y ∈ ∆,

0 ≤ yTCy + min
x

{
n∑
i=1

n∑
j=1

xixj y
TAijy

∣∣∣∣∣ xTx = r

}

= yTCy + rmin
ξ
{ξT (I ⊗ y)TA(I ⊗ y)ξ | ξT ξ = 1}

= yTCy + rλmin

(
(I ⊗ y)TA(I ⊗ y)) ,

where we used (4.24). It follows that

r(I ⊗ y)TA(I ⊗ y) � −(yTCy)I for all y ∈ ∆.

By pre- and postmultiplying both sides with an arbitrary ξ ∈ �n, we obtain that

0 ≤ r(ξ ⊗ y)TA(ξ ⊗ y) + (yTCy)ξT ξ

= (ξ ⊗ y)T (rA+ I ⊗ C)(ξ ⊗ y)
= (rA+ I ⊗ C) • ((ξξT )⊗ (yyT )

)
for all ξ ∈ �n, y ∈ ∆. From Lemma 4.1, this in turn is equivalent to

rA+ I ⊗ C ∈ C+(�n,∆).

We have shown that (4.22) implies (4.23). Conversely, suppose that (A,C) satisfies
(4.23), and let x ∈ �n, y ∈ ∆, xTx ≤ r be arbitrary. We have

yTCy +

n∑
i=1

n∑
j=1

xixj y
TAijy =

(x⊗ y)T (rA+ I ⊗ C)(x⊗ y) + (r − xTx)yTCy
r

≥ 0,

where the inequality follows immediately from (4.23) and the nonnegativity of r−xTx.
This completes the proof.

By the same argument, the following theorem is readily proven.
Theorem 4.8. Let ∅ = ∆ ⊆ �m and let r > 0 be a given scalar quantity. It

holds that A ∈ Ln,m, C ∈ Sm satisfy

yTCy +

n∑
i=1

n∑
j=1

xixj y
TAijy ≥ 0 for all xTx = r, y ∈ ∆

if and only if

rA+ I ⊗ C ∈ C+(�n,∆).

Recall from Theorems 4.4–4.6 that C+(�n,�2), C+(�n,�2
+), and FC+(�n, [0, 1])

are efficiently LMI representable. Theorems 4.7–4.8 therefore provide an efficient LMI
characterization for the class of 2× 2 robust multivariate QMIs whose entries are co-
centered (e.g., centered at the origin) over the unit ball. Stated more clearly, we have
obtained an efficient LMI representation for the following robust QMI:[

xTCx+ c xTBx+ b
xTBx+ b xTAx+ a

]
∈ FC+(∆) for all x ∈ D,

where D is either {x ∈ �n | xTx ≤ r} or {x ∈ �n | xTx = r}, and ∆ is either �, �+,
or [0, 1]. In particular, we have the following equivalences:
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1. For symmetric matrices A, B, and C, the robust QMI[
xTCx+ c xTBx+ b
xTBx+ b xTAx+ a

]
� 0 for all ‖x‖2 ≤ r

holds if and only if[
C B
B A

]
∈ L2,m,

[
rC + cI rB + bI − E

rB + bI + E rA+ aI

]
� 0,

[
c b
b a

]
� 0

for some E with E + ET = 0.
2. For symmetric matrices A, B, and C, the condition

yT
[
xTCx+ c xTBx+ b
xTBx+ b xTAx+ a

]
y ≥ 0 for all ‖x‖2 ≤ r and for all y ∈ �2

+

holds if and only if[
C B
B A

]
∈ L2,m,

[
rC + cI rB + bI − E

rB + bI − ET rA+ aI

]
� 0,[

c b− e
b− e a

]
� 0

for some e ≥ 0 and some E with E + ET � 0.
3. For symmetric matrices A, B, and C, the condition

yT
[
xTCx+ c xTBx+ b
xTBx+ b xTAx+ a

]
y ≥ 0 for all ‖x‖2 ≤ r and

for all y ∈ �2
+ with y1 ≥ y2

holds if and only if[
C B
B A

]
∈ L2,m,

[
rC + cI rB + bI − E

rB + bI − ET rA+ aI + E + ET

]
� 0,[

c b− e
b− e a+ 2e

]
� 0

for some e ≥ 0 and some E with E + ET � 0.
Similar equivalence relations hold for the case where ‖x‖2 ≤ r is replaced with
‖x‖2 = r. In this case, we need only remove from the above equivalence relations
the nonnegative parameter e and the respective conditions on the 2×2 matrix involv-
ing a, b, c, d.

It remains an open question whether one can obtain an LMI description for the
general 2× 2 robust QMIs over the unit ball without the cocenteredness condition.

For ∆ = �m with general m, however, checking the membership problem (4.21)
is a hard problem.

Theorem 4.9. For general n and m, the (ε-approximate) membership problem[
C 0
0 A

]
∈ C+(SOC(n),�m)(4.25)

with data (A,C) ∈ Ln,m × Sm is co-NP-complete.
Proof. We choose to use the following well-known NP-complete partition problem

for the purpose of reduction:
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Decide whether or not one can partition a given set of integers a1, . . . , an
such that the two subsets will have the same subset sum.

The above decision problem can be further reduced to the following decision
problem:

Given a ∈ Zn (the n-dimensional integer lattice) and a scalar t ≥ 0,
decide whether or not p(x; t) ≥ 0 for all ‖x‖22 = n, where p(x; t) =
(t+ (aTx)2)2 − n2 +

∑n
i=1 x

4
i .

To see why it is so, we notice that for t ≥ 0 and x with ‖x‖2 = n,

p(x; t) = (t+ (aTx)2)2 − n2 +

n∑
i=1

x4
i ≥ t2 − n2 +

n∑
i=1

x4
i

≥ t2 − n2 +
(
∑n
i=1 x

2
i )

2

n
= t2 − n(n− 1),

where the second inequality is based on the Cauchy–Schwarz inequality.
The lower bound is attained, i.e., p(x; t) = t2 − n(n − 1), if and only if x2

i = 1
for all i = 1, . . . , n, and aTx = 0, which is equivalent to the existence of a partition.
Thus, a partition does not exist if and only if for t =

√
n(n− 1) − 1 there holds

p(x; t) ≥ 0 for all ‖x‖22 = n.
Next we notice that

‖x‖42 =

(
n∑
i=1

x2
i

)2

=

n∑
i=1

x4
i +

∑
i �=j

x2
ix

2
j ,

so that

p(x; t) = (t+ (aTx)2)2 + (‖x‖42 − n2)−
∑
i �=j

x2
ix

2
j ,

where the second term vanishes if ‖x‖22 = n. It follows that p(x; t) ≥ 0 for all ‖x‖22 = n
if and only if

t+ (aTx)2 ≥ ‖{xixj}i �=j‖2 for all xTx = n.(4.26)

The above robust quadratic SOC-constraint can be transformed into an equivalent
robust QMI in the familiar way, namely,

L(t+ (aTx)2, {xixj}i �=j) ∈ S1+n(n−1)
+ for all xTx = n,(4.27)

where L(·, ·) denotes the so-called arrow-hat (or Jordan product representation) ma-
trix

L(s, y) =

[
s yT

y sI

]
.

We have reduced the partitioning problem to the robust QMI (4.27), which is of
form (4.25).

Corollary 4.10. The membership problem X ∈ C+(�n,�m) is co-NP-complete.
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Proof. Due to Theorem 4.8, the co-NP-complete problem in Theorem 4.9 can be
reduced to the membership problem for C+(�n,�m), which must therefore also be
co-NP-complete.

To close the section, we remark that it is NP-hard in general to check whether a
fourth order polynomial is nonnegative over the unit sphere (or over the whole space).
The same partition problem as in the proof of Theorem 4.9 can also be used to reduce
to the unconstrained minimization of the following fourth order polynomial:

n∑
i=1

(x2
i − 1)2 + (aTx)2.

In particular, a partition exists if and only if the polynomial attains zero. Now we
pose as an open question the complexity of deciding whether a third order polynomial
is nonnegative over the unit sphere. If this can be done in polynomial time, then the
next question will be: Can we describe the set of the coefficients of such nonnegative
third order polynomials (over the unit sphere) by (L)MIs?

5. Applications in robust linear programming. Robust optimization mod-
els in mathematical programming have received much attention recently; see, e.g.,
[3, 4, 9]. In this section we will discuss some of these models using the techniques
developed in the previous sections.

Consider the following formulation of a robust linear program:

Minimize max‖∆x‖≤δ,‖∆c‖≤ε0(c+ ∆c)T (x+ ∆x)

subject to (ai + ∆ai)
T (x+ ∆x) ≥ (bi + ∆bi)

for all ‖(∆ai,∆bi)‖ ≤ εi, i = 1, 2, . . . ,m, ‖∆x‖ ≤ δ.
(5.1)

Here two types of perturbation are considered. First, the problem data ({ai}, {bi}, c)
might be affected by unpredictable perturbation (e.g., measurement error). Second,
the optimal solution xopt is subject to implementation errors caused by the finite
precision arithmetic of digital hardware. That is, we have xactual := xopt + ∆x,
where xactual is the actually implemented solution. To ensure xactual remains feasible
and delivers a performance comparable to that of xopt, we need to make sure xopt is
robust against both types of perturbation. This is essentially the motivation of the
above robust linear programming model. Notice that our model is more general than
the ones proposed by Ben-Tal and Nemirovskii [4] in that the latter only considers
perturbation error in the data ({ai}, {bi}, c).

The above model of robust linear programming arises naturally from the design
of a linear phase FIR (finite impulse response) filter for digital signal processing. In
particular, for a linear phase FIR filter h = (h1, . . . , hn) ∈ �n, the frequency response
is

H(ejω) = e−jnω(h1 + h2 cosω + · · ·+ hn cos(nω)) = e−jnω(cos ω)Th,

where cos ω = (1, cosω, . . . , cos(nω))T . The FIR filter usually must satisfy a given
spectral envelope constraint (typically specified by design requirement or industry
standards); see Figure 1 for an example.

This gives

L(e−jω) ≤ (cos ω)Th ≤ U(e−jω) for all ω ∈ [0, π].(5.2)
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Fig. 1. An example of spectral mask constraint.

Finding a discrete h (say, a 4-bit integer) satisfying (5.2) is NP-hard. Ignoring the
discrete structure of h, we can find an h satisfying (5.2) in polynomial time [6].
However, rounding such a solution to the nearest discrete h may degrade performance
significantly. Our design strategy is then to first discretize the frequency [0, π], then
find a solution that is robust against discretization and rounding errors. This leads
to the following notion of a robustly feasible solution:

L(e−jωi) ≤ (cos ωi + ∆i)
T (h+ ∆h) ≤ U(e−jωi) for all ‖∆i‖ ≤ ε, ‖∆h‖ ≤ δ,(5.3)

where ∆i accounts for the discretization error, while ∆h models the rounding errors.
We now reformulate the robust linear program (5.1) as a semidefinite program.

We say the solution x is robustly feasible if, for all i = 1, 2, . . . ,m,

(ai + ∆ai)
T (x+ ∆x) ≥ (bi + ∆bi) for all ‖(∆ai,∆bi)‖ ≤ εi, ‖∆x‖ ≤ δ, i = 1, 2, . . . ,m.

It can be shown [4] that x is robustly feasible if and only if

aTi (x+ ∆x)− bi − εi
√
‖x+ ∆x‖2 + 1 ≥ 0 for all ‖∆x‖ ≤ δ, i = 1, 2, . . . ,m.(5.4)

Constraint (5.4) can be formulated as

⎡
⎣ (aTi (x+ ∆x)− bi)I εi

[
x+ ∆x

1

]
εi
[

(x+ ∆x)T 1
]

aTi (x+ ∆x)− bi

⎤
⎦ � 0 for all ‖∆x‖ ≤ δ, i = 1, 2, . . . ,m.

(5.5)
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Now the objective function can also be modeled by introducing an additional variable t
to be minimized. At the same time we set as a constraint t−(c+∆c)T (x+∆x) ≥ 0 for
all ‖∆c‖ ≤ ε0 and ‖∆x‖ ≤ δ. Then the objective can be modeled by t− cT (x+∆x) ≥
ε0‖x+ ∆x‖ for all ‖∆x‖ ≤ δ, which is equivalent to[

(t− cT (x+ ∆x))I ε0(x+ ∆x)

ε0(x+ ∆x)T t− cT (x+ ∆x)

]
� 0 for all ‖∆x‖ ≤ δ.(5.6)

Using Proposition 3.3, we can show that (5.5) is equivalent to the following: There
exists a µi ≥ 0 such that⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(aTi x− bi)I εi

[
x
1

]
εi

[
I
0

]

εi

[
xT

1

]
aTi x− bi 1

2a
T
i

εi

[
I
0

]
1
2ai 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
− µi

⎡
⎣ 0 0 0

0 δ2 0
0 0 −I

⎤
⎦ � 0.(5.7)

Similarly, (5.6) holds for all ‖∆x‖ ≤ δ if and only if there is a µ0 ≥ 0 such that⎡
⎢⎣ (t− cTx)I ε0x ε0I

ε0x
T t− cTx − 1

2c
T

ε0I − 1
2c 0

⎤
⎥⎦− µ0

⎡
⎣ 0 0 0

0 δ2 0
0 0 −I

⎤
⎦ � 0.(5.8)

Therefore, the robust linear programming model becomes a semidefinite program:
minimize t subject to (5.7) and (5.8).

Some computational results demonstrating the effectiveness of the robust linear
programming formulation (5.1) have been reported recently in [12]. In particular, it
was shown that for the robust magnitude filter design problem (5.3), the quantized
versions of the robust filter still satisfy the spectral mask constraints, while the quan-
tized nonrobust filters violate both the passband and the stopband spectral mask
specifications. Thus, it is important to consider rounding errors in the robust filter
design problem.
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A ROBUST PRIMAL-DUAL INTERIOR-POINT ALGORITHM
FOR NONLINEAR PROGRAMS∗
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Abstract. We present a primal-dual interior-point algorithm for solving optimization problems
with nonlinear inequality constraints. The algorithm has some of the theoretical properties of trust
region methods, but works entirely by line search. Global convergence properties are derived without
assuming regularity conditions. The penalty parameter ρ in the merit function is updated adaptively
and plays two roles in the algorithm. First, it guarantees that the search directions are descent
directions of the updated merit function. Second, it helps to determine a suitable search direction in
a decomposed SQP step. It is shown that if ρ is bounded for each barrier parameter µ, then every
limit point of the sequence generated by the algorithm is a Karush–Kuhn–Tucker point, whereas
if ρ is unbounded for some µ, then the sequence has a limit point which is either a Fritz–John
point or a stationary point of a function measuring the violation of the constraints. Numerical
results confirm that the algorithm produces the correct results for some hard problems, including
the example provided by Wächter and Biegler, for which many of the existing line search–based
interior-point methods have failed to find the right answers.

Key words. nonlinear optimization, interior-point method, global convergence, regularity con-
ditions

AMS subject classifications. 49M30, 49M37, 65K10, 90C22, 90C26, 90C30, 90C51

DOI. 10.1137/S1052623402400641

1. Introduction. Applying an interior-point approach to nonlinear program-
ming has been the subject of intensive studies in recent years; see [1, 4, 5, 11, 12, 15,
16, 18, 23, 24, 25, 27, 28, 29]. For simplicity of presentation, we concentrate in this
paper on inequality constrained nonlinear programs

minimize f(x) subject to c(x) ≤ 0,(1.1)

where c(x) = (c1(x), . . . , cm(x))�, f : �n → �, and c : �n → �m. We do not assume
any convexity on f and c. However, we suppose that f and c are twice continuously
differentiable throughout this paper.

The interior-point approach solves, as µ ↓ 0, the barrier problems

minimize f(x)− µ
m∑
i=1

ln yi subject to c(x) + y = 0.(1.2)

The direction-finding Newton equations then include

c(x) + y +∇c(x)�dx + dy = 0.(1.3)

Note that (1.3) is always feasible even if the linearized inequality

c(x) +∇c(x)�dx ≤ 0(1.4)
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may be inconsistent, which presents difficulties in convergence of interior-point–based
methods. The examples discussed by Byrd, Marazzi, and Nocedal [7] and Wächter
and Biegler [26] show that the interior-point methods using (1.3) may not find a
feasible point of the original problem or a point with stationary properties. We also
notice that the global convergence analysis of most existing interior-point methods
requires rather strong assumptions on regularity at all iterates. Wächter and Biegler
[26] indicate that these assumptions may not hold even though the local minima have
very good regularity properties.

A remedy to these problems is to apply sequential quadratic programming (SQP)
techniques to the barrier problems and to use a trust region strategy to ensure the
robustness of the algorithm. Such algorithms have recently been proposed by Byrd,
Gilbert, and Nocedal [4] and Tseng [24], for example. The numerical experiments in
[5] show that the trust region–type algorithm is very promising.

We provide a different approach in this paper. Instead of introducing additional
trust region constraints, we use refined line search rules to generate a new iterate
in a decomposed SQP framework. The search direction is determined by either a
Newton-type step or a Cauchy-type step with the choice being made with reference
to a penalty parameter in the merit function. In addition, we adjust the penalty
parameter of the merit function adaptively. As a result, we have been able to analyze
convergence without regularity conditions and to avoid the convergence problems
mentioned above. However, unlike the trust region methods, the algorithm does not
have the flexibility to allow the direct use of indefinite second order derivatives.

The convergence properties of the algorithm can be summarized as follows. Let ρk
be the value of the penalty parameter of the merit function at iterate k. If {ρk}∞k=0 is
bounded independent of the barrier parameter µ, then every convergent subsequence
produced by the algorithm converges to a Karush–Kuhn–Tucker (KKT) point of the
problem. If ρk → ∞ for some µ, then the sequence has a limit point that is either
feasible with linearly dependent gradients of the active constraints (i.e., a Fritz–John
point) or infeasible but stationary with respect to the function ‖max[0, c(x)]‖, which
is obviously a measure of the violation of the constraints (�2-infeasibility for short).

Besides, we show that, if the penalty parameters are bounded, then the algorithm
generates the identical search directions with the original primal-dual methods such
as LOQO (see Shanno and Vanderbei [23, 25]) after a finite number of iterations.
Thus, superlinear convergence may be derived by existing works, such as [6, 29],
under suitable conditions; while in the unbounded case, the algorithm may have linear
convergence. For brevity, we mainly consider global convergence in this paper. By the
same token, practical implementation techniques are not discussed. The interested
reader is referred to the related literature, such as [6, 8, 11, 15, 16, 23, 25, 28, 29], for
details.

Our numerical results show that the proposed algorithm can find solutions of the
examples in [7, 26] and the least �2-infeasibility solution for an infeasible example in
[3], among others.

The paper is organized as follows. In section 2, we present a two-step decompo-
sition scheme of SQP and specify the requirement for an approximate solution to the
resulting unconstrained penalty subproblems. In section 3, this scheme is applied to
the barrier problem 1.2 and we present a modified primal-dual system of equations
that is used in the algorithm for the barrier problem. The global convergence of the
algorithm is analyzed in section 4. In section 5 we present the overall algorithm for
problem (1.1) and its global convergence results. We provide some computational for-
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mulae for the approximate solutions of the unconstrained penalty subproblems and
report our preliminary numerical results in section 6.

We use standard notation from the literature of interior-point methods and non-
linear programming. For example, a letter with superscript k is related to the kth
iteration; the subscript i is the ith component for a vector or the ith column for a
matrix. The norm ‖ · ‖ is the Euclidean norm. We also use simplified notation, such
as fk = f(xk), gk = ∇f(xk), ck = c(xk), and Ak = ∇c(xk). For vector y, Y = diag(y)
is the diagonal matrix whose ith diagonal element is yi. All vector inequalities are
understood componentwise. For two symmetric matrices A and B, A � (	)B means
that A−B is positive definite (semidefinite).

2. A decomposition scheme of SQP.

2.1. The basic idea. The barrier problem

minimize f(x)− µ
m∑
i=1

ln yi subject to c(x) + y = 0

is simply expressed as

minimize ψµ(z)(2.1)

subject to h(z) = 0,(2.2)

where z = (x, y), h(z) = c(x) + y, and ψµ(z) = f(x) − µ∑m
i=1 ln yi. It is obvious

that ψµ(z) is a continuously differentiable function for y > 0. At the current iteration
point z, the SQP approach for (2.1)–(2.2) generates the search direction dz by solving
the quadratic programming problems

minimize ∇ψ(z)�d+
1

2
d�Qd(2.3)

subject to h(z) +∇h(z)�d = 0,(2.4)

where Q is a positive definite approximation to the Lagrangian Hessian at z. Then
the new iteration point z+ is derived by a line search procedure,

z+ = z + αdz,(2.5)

where α ∈ (0, 1] is the steplength along dz. This general framework requires regularity
assumptions on h(z) at all iterates. Otherwise, some of the slack variables may tend
to zero too quickly and the algorithm may fail to find the right solution [26].

Our idea is rooted in the work of Fletcher [13, 14], Liu [19], and Yuan and Liu
[20], although in the original works [19, 20] the authors need to exactly solve all the
subproblems, including a nonsmooth unconstrained optimization problem. For the
barrier problem, we first approximately solve the penalty optimization problem

minimized∈�n

1

2
d�Qd+ ρ‖h(z) +∇h(z)�d‖,(2.6)

where ρ > 0 is the penalty parameter in the merit function

φ(z; ρ) = ψµ(z) + ρ‖h(z)‖.(2.7)
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Let d̃z be an approximate solution to (2.6). Then we generate the search direction dz
by solving the subproblem

minimize ∇ψ(z)�d+
1

2
d�Qd(2.8)

subject to ∇h(z)�d = ∇h(z)�d̃z.(2.9)

We consider subproblem (2.8)–(2.9) since it can provide us with the estimates of the
multipliers, which are needed in the primal-dual interior-point approach. It can be
proved (see Proposition 3.1) that, for sufficiently large ρ, the solution dz to (2.8)–(2.9)
is a descent direction of the merit function.

The idea is similar to the trust region interior-point method, in which the auxiliary
step d̃z is generated by minimizing ‖h(z) +∇h(z)�d‖ on a trust region; see [4, 9, 10,
21, 22]. Here, by adding a quadratic term, we remove the trust region constraint in
deriving the auxiliary step for the modified system of primal-dual equations.

2.2. The approximate solution to subproblem (2.6). In this subsection we
describe how to generate the approximate solution to subproblem (2.6). Subproblem
(2.6) can be simply written as

minimize q(d) =
1

2
d�Qd+ ρ‖r +R�d‖,(2.10)

where ρ > 0, Q is any positive definite matrix, r is a vector, and R is a matrix with
full column rank. It is easy to note that the exact solution is d = 0 if r = 0. Thus, in
the following discussion, we assume that r �= 0.

We generate the approximate solution d̃z to problem (2.10) by the following pro-
cedure.

Procedure 2.1.

(1) Compute the Q-weighted Newton step for minimizing ‖r +R�d‖:
d̃Nz = −Q−1R(R�Q−1R)−1r.(2.11)

If q(d̃Nz ) ≤ νq(0) (ν ∈ (0, 1) is a fixed constant), then d̃z = d̃Nz ; else go
to (2).

(2) Calculate the Q-weighted steepest descent step (Cauchy step)

d̃Cz = −Q−1Rr.(2.12)

Find d̃z in the subspace spanned by d̃Nz and d̃Cz (see details in section
6.1) such that

q(d̃z) ≤ max{νq(0), q(αC d̃Cz )},(2.13)

where αC = argmin α∈[0,1]q(αd̃
C
z ).

Let us point out that, when our algorithm produces a sequence converging to a
KKT point of the barrier problem, the Q-weighted Newton step will eventually be
accepted under suitable conditions, so the direction-finding process (2.6)–(2.9) will
generate an identical direction with the original primal-dual interior-point methods
(see section 3). Intuitively, the Newton step can be rejected only if q(d̃Nz ) > νq(0),
namely,

1

2
r�(R�Q−1R)−1r > ρν‖r‖.(2.14)
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With a moderate value of ρ, if R�Q−1R is nonsingular, the above relationship indi-
cates that ‖r‖ is large, or at least is of the order of ρ. This cannot happen for an
iterate close to a KKT point x∗ since this iterate must be nearly feasible, i.e., ‖r‖ must
be small. Later, we will present more detailed analysis on this point (see Propositions
3.2 and 3.3).

We next provide a technical result on the decrement of the Cauchy step for later
reference.

Proposition 2.2. There holds

q(αC d̃Cz )− q(0) ≤ 1

2

{
1− ρmin

[
1

‖r‖ ,
η

‖r‖
]}

r�(R�Q−1R)r,(2.15)

where η = [r�(R�Q−1R)r]/[r�(R�Q−1R)2r].
Proof. Let χ(d) = ‖r +R�d‖. We have

χ(0)2 − χ(αd̃Cz )2 = ‖r‖2 − ‖(I − αR�Q−1R)r‖2
= 2αr�(R�Q−1R)r − α2r�(R�Q−1R)2r.(2.16)

Suppose that α̃ ∈ [0, 1] minimizes χ(αd̃Cz ). Then we have the following two cases:
(i) If η ≤ 1, then

χ(0)2 − χ(α̃d̃Cz )2 = ηr�(R�Q−1R)r,(2.17)

which implies that

χ(0)− χ(α̃d̃Cz ) ≥ η

2‖r‖r
�(R�Q−1R)r.(2.18)

(ii) If η > 1, then α̃ = 1 and r�(R�Q−1R)r > r�(R�Q−1R)2r; thus

χ(0)− χ(α̃d̃Cz ) ≥ 1

2‖r‖r
�(R�Q−1R)r.(2.19)

Then it follows from (2.18), (2.19), and α̃ ≤ 1 that

q(α̃d̃Cz )− q(0) ≤ 1

2

{
1− ρmin

[
1

‖r‖ ,
η

‖r‖
]}

r�(R�Q−1R)r.(2.20)

Since q(αC d̃Cz ) ≤ q(α̃d̃Cz ), we obtain (2.15).

3. The algorithm for the barrier problem. We now specialize the formulae
in the last section to the barrier problem (1.2) and present a modified primal-dual
system of equations for generating the search directions. Later, based on this modifi-
cation, we will propose our algorithm for the barrier problem.

By writing z as (x, y), ψµ(z) as ψµ(x, y), and h(z) as h(x, y), the barrier problem
is

minimize ψµ(x, y) = f(x)− µ
m∑
i=1

ln yi(3.1)

subject to h(x, y) = c(x) + y = 0,(3.2)

where y = (y1, . . . , ym)� > 0, and µ is a fixed positive scalar. The Lagrangian of
problem (3.1)–(3.2) is

L(x, y, λ) = ψµ(x, y) + λ�h(x, y),(3.3)
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and its Hessian is

∇2L(x, y, λ) =

( ∇2�(x, λ)
µY −2

)
,(3.4)

where λ ∈ �m is a multiplier vector associated with (3.2) and �(x, λ) = f(x)+λ�c(x).
The KKT conditions of program (3.1)–(3.2) can be written as

Fµ(x, y, λ) =

⎛
⎝ g(x) +A(x)λ

Y Λe− µe
c(x) + y

⎞
⎠ = 0,(3.5)

where g(x) = ∇f(x), A(x) = ∇c(x), Y = diag(y), Λ = diag(λ), and e = (1, . . . , 1)�.
Byrd, Marazzi, and Nocedal [7] showed that the algorithm using the norm of

the residual function ‖Fµ(x, y, λ)‖ as the merit function may fail in converging to
a stationary point of the problem. In this paper, as mentioned in (2.7), our merit
function is

φµ(x, y; ρ) = ψµ(x, y) + ρ‖h(x, y)‖,(3.6)

where ρ > 0 is the penalty parameter and is updated automatically during the itera-
tions. Then we have the following result.

Proposition 3.1. For any ρ ≥ 0, y > 0, and (dx, dy) ∈ �n+m, the directional

derivative φ
′
ρ((x, y); (dx, dy))of φµ(x, y; ρ) along (dx, dy) exists, and

φ
′
ρ((x, y); (dx, dy)) ≤ πρ((x, y); (dx, dy)),(3.7)

where

πρ((x, y); (dx, dy))

= g(x)�dx − µe�Y −1dy + ρ(‖c(x) + y +A(x)�dx + dy‖ − ‖c(x) + y‖).(3.8)

Proof. The first term on the right-hand side of (3.6), ψµ, is continuously differ-
entiable. Its directional derivative is

ψ
′
µ((x, y); (dx, dy)) = g(x)�dx − µe�Y −1dy.(3.9)

Let θ(x, y) = ‖h(x, y)‖. Its directional differentiability follows from its convexity.
Since

θ
′
((x, y); (dx, dy))

= lim
α↓0

[θ(x+ αdx, y + αdy)− θ(x, y)]
α

= lim
α↓0

[‖c(x) + αA(x)�dx + y + αdy + o(α)‖ − ‖c(x) + y‖]
α

≤ lim
α↓0

[‖c(x) + y + α(A(x)�dx + dy)‖ − ‖c(x) + y‖
α

+
‖o(α)‖
α

]

≤ ‖c(x) + y +A(x)�dx + dy‖ − ‖c(x) + y‖+ lim
α↓0

o(α)

α
,

where the last two inequalities follow from the triangle inequality and the convexity
of the norm, the result follows immediately.
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Suppose that (xk, yk) is the current iteration point and λk is the corresponding
approximation of the multiplier vector. For problem (3.1)–(3.2), by substituting

Q =

(
Bk

Y −1
k Λk

)
, R =

(
Ak
I

)
, d =

(
dx
dy

)
and r = (ck + yk)(3.10)

into (2.10), our approach first approximately solves the problem

minimize qk(dx, dy) =
1

2
d�xBkdx +

1

2
d�y Skdy + ρk‖ck + yk +A�

k dx + dy‖,(3.11)

where Bk � 0 is an approximation to matrix∇2�(xk, λk), Sk = Y −1
k Λk, Yk = diag(yk),

Λk = diag(λk), ck = c(xk), and Ak = A(xk), and ρk is the current value of the penalty
parameter. The Q-weighted Newton step and the Q-weighted steepest descent step
defined in Procedure 2.1 are, respectively,

(d̃kx)
N = −B−1

k Ak(A
�
k B

−1
k Ak + S−1

k )−1(ck + yk),(3.12)

(d̃ky)
N = −S−1

k (A�
k B

−1
k Ak + S−1

k )−1(ck + yk),(3.13)

and

(d̃kx)
C = −B−1

k Ak(c
k + yk), (d̃ky)

C = −S−1
k (ck + yk).(3.14)

Let (d̃kx, d̃
k
y) be the approximate solution obtained through Procedure 2.1. We

generate the search direction (dkx, d
k
y) for the new iterate by solving

minimize (gk)�dx − µe�Y −1
k dy +

1

2
d�xBkdx +

1

2
d�y Skdy(3.15)

subject to A�
k dx + dy = A�

k d̃
k
x + d̃ky ,(3.16)

where gk = ∇f(xk). Since (d̃kx, d̃
k
y) is a feasible solution to problem (3.15)–(3.16), by

(3.8), we have the formula

πρk( (xk, yk); (dkx, d
k
y)) +

1

2
(dkx)

�Bkdkx +
1

2
(dky)

�Skdky

≤ πρk((xk, yk); (d̃kx, d̃
k
y)) +

1

2
(d̃kx)

�Bkd̃kx +
1

2
(d̃ky)

�Skd̃ky ,(3.17)

which plays an important role in our later global convergence analysis for the case
ρk →∞.

The KKT conditions of problem (3.15)–(3.16) are

Bkdx +Akλ̃ = −gk,(3.18)

Skdy + λ̃ = µY −1
k e,(3.19)

A�
k dx + dy = A�

k d̃
k
x + d̃ky ,(3.20)

which, by letting dλ = λ̃−λk, can be equivalently written as the modified primal-dual
system of equations

Bkdx +Akdλ = −(gk +Akλ
k),(3.21)

Λkdy + Ykdλ = −(YkΛke− µe),(3.22)

A�
k dx + dy = A�

k d̃
k
x + d̃ky .(3.23)
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It is well known that the original primal-dual interior-point approach generates the
search direction by solving the system of equations

Bkdx +Akdλ = −(gk +Akλ
k),(3.24)

Λkdy + Ykdλ = −(YkΛke− µe),(3.25)

A�
k dx + dy = −(ck + yk),(3.26)

which follows from the Newton method applied to (3.5); for example, see [11, 16, 23,
25, 28]. Then we have the following results.

Proposition 3.2. The modified approach using (3.21)–(3.23) generates the same
search directions as the original primal-dual interior-point methods using (3.24)–(3.26)
if the weighted Newton step (3.12)–(3.13) is used.

Proof. If d̃kx = (d̃kx)
N and d̃ky = (d̃ky)

N , then A�
k d̃

k
x + d̃ky = −(ck + yk). Thus the

system (3.21)–(3.23) is the same as the system (3.24)–(3.26).
Proposition 3.3. Suppose that the two sets {(xk, yk)}∞k=0 and {(A�

k B
−1
k Ak +

S−1
k )−1}∞k=0 are bounded. Then there exists a positive constant ρ̂ (which is not depen-

dent on k) such that for ρk ≥ ρ̂, the Newton step ((d̃kx)
N , (d̃ky)

N ) defined in (3.12)–
(3.13) will be accepted by Procedure 2.1.

Proof. We have

qk((d̃
k
x)
N , (d̃ky)

N )− νqk(0, 0)

=
1

2
(ck + yk)�(A�

k B
−1
k Ak + S−1

k )−1(ck + yk)− νρk‖ck + yk‖(3.27)

≤
[
1

2
‖(A�

k B
−1
k Ak + S−1

k )−1(ck + yk)‖ − νρk
]
‖ck + yk‖.

By the assumptions of the proposition, there exists a constant ρ̂ > 0 such that for all
k we have

‖(A�
k B

−1
k Ak + S−1

k )−1(ck + yk)‖ ≤ 2νρ̂.(3.28)

Thus, for every ρk ≥ ρ̂, qk((d̃kx)N , (d̃ky)N ) ≤ νqk(0, 0).
In the following, we describe our algorithm for the barrier problem (3.1)–(3.2),

which solves the problem (3.11) and the system of equations (3.21)–(3.23) at each
iteration.

Algorithm 3.4 (the algorithm for problem (3.1)–(3.2)).
Step 1. Given (x0, y0, λ0) ∈ �n × �m++ × �m++, 0 ≺ B0 ∈ �n×n, 0 < β1 < 1 < β2,

ρ0 > 0, 0 < δ < 1, 0 < σ0 <
1
2 , ε1 > 0, ε2 > ε3 > 0. Let k := 0.

Step 2. Compute an approximate solution (d̃kx, d̃
k
y) of problem (3.11) by Procedure 2.1

(see section 6.1 on its implementation).
Step 3. Calculate the search direction (dkx, d

k
y , d

k
λ) by solving the system of equations

(3.21)–(3.23).
Step 4 (update ρk). If

πρk((xk, yk); (dkx, d
k
y)) ≤ −

1

2
(dkx)

�Bkdkx −
1

2
(dky)

�Skdky ,(3.29)

then set ρk+1 = ρk; otherwise, we update ρk by

ρk+1 = max

{
ψ′
µ((x

k, yk); (dkx, d
k
y)) + 1

2 (dkx)
�Bkdkx + 1

2 (dky)
�Skdky

∆k
, 2ρk

}
,

(3.30)
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where

πρk((xk, yk); (dkx, d
k
y)) = (gk)�dkx − µe�Y −1

k dky − ρk∆k(3.31)

and

∆k = ‖ck + yk‖ − ‖ck + yk +A�
k d

k
x + dky‖.(3.32)

Step 5 (line search). Compute

α̂k =
−0.995

min{(yki )−1(dky)i, i = 1, . . . ,m;−0.995} .(3.33)

Select the least nonnegative integer l such that

φµ(x
k + δlα̂kd

k
x, y

k + δlα̂kd
k
y ; ρk+1)− φµ(xk, yk; ρk+1)

≤ σ0δ
lα̂kπρk((xk, yk); (dkx, d

k
y)).(3.34)

Let αk = δlα̂k. The new primal iterate is generated as

xk+1 = xk + αkd
k
x,(3.35)

yk+1 = max{yk + αkd
k
y ,−ck+1}.(3.36)

Step 6 (update dual iterate). If there exists γ ∈ [0, 1] such that

β1µe ≤ Yk+1(Λk + γDk
λ)e ≤ β2µe,(3.37)

where Dk
λ = diag(dkλ), then we select the maximum γk ∈ [0, 1] satisfying (3.37)

and then update λk by

λk+1 = λk + γkd
k
λ;(3.38)

otherwise, we increase l by 1 successively such that (3.37) holds, and then
update the primal and dual iterates in the same way as in (3.35), (3.36), and
(3.38).

Step 7 (check the stopping criteria). We terminate the algorithm if one of the fol-
lowing conditions is satisfied:

(i) ‖Fµ(xk+1, yk+1, λk+1)‖ < ε1;

(ii) ‖ck+1 + yk+1‖ ≥ ε2 and ‖( Ak+1

Yk+1
)(ck+1 + yk+1)‖ < ε3;

(iii) ‖ck+1 + yk+1‖ < ε3 and det(A�
Ik+1

AIk+1
) < ε3,

where Ik+1 = {i|ck+1
i ≥ −ε3}, and AIk+1

is a submatrix of Ak+1 consisting of all
columns indexed by Ik+1. Else update the approximate Hessian Bk by Bk+1, let
k := k + 1, and go to Step 2.

We make the following remarks on the algorithm:
• The new primal and dual iterates are generated, respectively, by using differ-

ent steplengths. Such a strategy has been used in [8, 28, 29]. We hope that
γk = 1 can be accepted even if αk < 1.

• By (3.33), we have yk+ α̂kd
k
y ≥ 0.005yk. If dkyi ≥ 0, we have yki +αkd

k
yi ≥ yki ;

else αkd
k
yi ≥ α̂kd

k
yi since αk ≤ α̂k. Thus we always have yk+1 ≥ 0.005yk by

(3.36).
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• Formula (3.36) was first introduced in [4]; a similar, but more sophisticated,
technique is also used in [24]. Since yk+1 ≥ yk + αkd

k
y and ‖ck+1 + yk+1‖ ≤

‖ck+1 + yk + αkd
k
y‖, we have

φµ(x
k+1, yk+1; ρk+1)− φµ(xk, yk; ρk+1)

≤ φµ(xk + αkd
k
x, y

k + αkd
k
y ; ρk+1)− φµ(xk, yk; ρk+1);(3.39)

thus φµ(x
k+1, yk+1; ρk+1) ≤ φµ(xk, yk; ρk+1) for all k ≥ 0.

• A way to implement (3.37) will be introduced in section 6.2. The well-
definedness of this step is shown in Lemma 4.4.
• Since we do not assume any regularity on the constraints, the stopping con-

dition (i) may never hold, in which case the algorithm will terminate at con-
dition (ii) or (iii) of Step 7 by the convergence results in the next section.

4. The analysis of global convergence. The global convergence of Algorithm
3.4 is analyzed in this section. Suppose that in the algorithm the tolerance ε2 is small,
tolerances ε1 and ε3 are very small, and an infinite sequence {(xk, yk, λk)} is generated.

We need the following blanket assumption for all analysis in what follows.
Assumption 4.1.

(1) Functions f and c are twice continuously differentiable functions on �n.
(2) The set {xk}∞k=0 is bounded.
(3) There exist positive constants ν1 and ν2 such that ν1I � Bk � ν2I for all k,

where I stands for the identity matrix.
Assumptions (1) and (2) are used in the convergence analysis of most algorithms

for nonlinear programming. Assumption (3) guarantees the existence of the solution
of system (3.21)–(3.23). Similar assumptions are also used by most line search–based
interior-point methods for nonlinear programming. An exception is [8], in which the
global convergence results are derived by assuming Bk to be uniformly positive definite
and bounded on the null space of the linear equality constraints.

By Algorithm 3.4, for each integer k ≥ 0, we have either ρk+1 = ρk or ρk+1 ≥ 2ρk.
Thus, the sequence {ρk} is a monotonically nondecreasing sequence.

Lemma 4.2. If there exist a positive integer k̂ and a positive constant ρ̂ such that
ρk = ρ̂ for all k ≥ k̂, then we have that

(i) both {yk} and {λk} are bounded above and componentwise bounded away from
zero. The same is true for the diagonal of Sk.

(ii) {(dkx, dky , dkλ)} is bounded.
Proof. Without loss of generality, we suppose that ρk = ρ̂ for all k ≥ 0. By (3.34)

and (3.39), φµ(x
k, yk; ρ̂) is monotonically decreasing; thus φµ(x

k, yk; ρ̂) ≤ φµ(x0, y0; ρ̂)
for all k. Now we prove that yk is bounded above by contradiction. Suppose that
maxi{yki } → ∞. We have also that

fk − µ
m∑
i=1

ln yki + ρ̂‖ck + yk‖ ≤ φµ(x0, y0; ρ̂).(4.1)

Dividing both sides of (4.1) by maxi{yki } and taking the limit when k →∞, we have
that ρ̂ ≤ 0 since each term approaches zero except limk→∞ ‖ck + yk‖/maxi{yki } ≥ 1.
This is a contradiction.

By the fact that xk and yk are bounded and that

−µ
m∑
i=1

ln yki ≤ −fk − ρ̂‖ck + yk‖+ φµ(x
0, y0; ρ̂),(4.2)
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yk is componentwise bounded away from zero. It follows from (3.37) that λk is
bounded above and componentwise bounded away from zero; so is the diagonal of Sk
since Sk = Y −1

k Λk.

(ii) By Assumption 4.1(3), matrix B̂k = Bk + AkY
−1
k ΛkA

�
k is invertible. By

simple computation, the system (3.21)–(3.23) can be written as

(
Bk Ak
A�
k −Λ−1

k Yk

)(
dkx
dkλ

)
=

( −(gk +Akλ
k)

(Yk − µΛ−1
k )e+ (A�

k d̃
k
x + d̃ky)

)
(4.3)

and

dky = (µΛ−1
k − Yk)e− Λ−1

k Ykd
k
λ.(4.4)

Since (
Bk Ak
A�
k −Λ−1

k Yk

)−1

=

(
B̂−1
k B̂−1

k AkY
−1
k Λk

ΛkY
−1
k A�

k B̂
−1
k Pk

)
,(4.5)

where Pk = −Y −1
k Λk + Y −1

k ΛkA
�
k B̂

−1
k AkY

−1
k Λk, the boundedness of (dkx, d

k
λ) follows

from (4.3). By (4.4), dky is bounded.

By Lemma 4.2, there exist constants b1 > 0 and b2 > 0 such that yk ≥ b1e and
‖dky‖ ≤ b2 for all k. If α̂1 = min{1, 0.995b1/b2}, then yk + α̂1d

k
y ≥ 0.005yk. Thus, for

all α ∈ [0, α̂1],

yk + αdky ≥ 0.005yk.(4.6)

Lemma 4.3. If {ρk} is bounded, then there is a constant α̂2 ∈ (0, α̂1] such that,
for every α ∈ (0, α̂2] and for all k ≥ 0, there holds that

φµ(x
k + αdkx, y

k + αdky ; ρk+1)− φµ(xk, yk; ρk+1) ≤ ασ0πρk+1
((xk, yk); (dkx, d

k
y)).(4.7)

Proof. Without loss of generality, we suppose that ρk = ρ̂ for all k ≥ 0. Then
(3.29) holds at all iterates. For α ∈ (0, α̂1], by (4.6), we have

(Yk + αDk
y)

−1 � 200Y −1
k ,(4.8)

where Dk
y = diag(dky). Thus, for α ∈ (0, α̂1],

−
m∑
i=1

ln[yki + α(dky)i] +

m∑
i=1

ln yki + αe�Yk−1dky

= e�
∫ α

0

[Y −1
k − (Yk + tDk

y)
−1]dkydt(4.9)

= e�
∫ α

0

Y −1
k (Yk + tDk

y)
−1(tDk

y)d
k
ydt ≤ 100α2‖Yk−1dky‖2.

Since f and c are twice continuously differentiable, there are positive constants
b3 and b4 such that

f(xk + αdkx)− f(xk)− αg(xk)�dkx ≤
1

2
α2b3‖dkx‖2(4.10)
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and

‖c( xk + αdkx) + yk + αdky‖ − ‖c(xk) + yk + αA(xk)
�dkx + αdky‖

≤ ‖c(xk + αdkx)− c(xk)− αA(xk)�dkx‖ ≤
1

2
α2b4‖dkx‖2.(4.11)

The constants b3 and b4 are the first order Lipschitzian constants of f and c, respec-
tively.

Let b5 = max{100µ, 1
2 (b3 + ρ̂b4)}. Since

πρ̂((x
k, yk); (αdkx, αd

k
y))

= αψ
′
µ((x

k, yk); (dkx, d
k
y)) + ρ̂(‖ck + yk + αA�

k d
k
x + αdky‖ − ‖ck + yk‖)(4.12)

by (3.8), it follows from (4.9), (4.10), and (4.11) that

φµ (xk + αdkx, y
k + αdky ; ρ̂)− φµ(xk, yk; ρ̂)− πρ̂((xk, yk); (αdkx, αdky))

≤ α2b5(‖dkx‖2 + ‖Y −1
k dky‖2).(4.13)

It is easy to note that πρ̂((x
k, yk); (αdkx, αd

k
y)) is a convex function on α ∈ [0, 1].

Thus, we have

πρ̂((x
k, yk); (αdkx, αd

k
y))− απρ̂((xk, yk); (dkx, dky)) ≤ 0,(4.14)

and as a result,

πρ̂((x
k, yk); (αdkx, αd

k
y))− ασ0πρ̂((x

k, yk); (dkx, d
k
y))

≤ α(1− σ0)πρ̂((x
k, yk); (dkx, d

k
y))(4.15)

≤ −1

2
α(1− σ0)δ̂(‖dkx‖2 + ‖Y −1

k dky‖2),

where δ̂ = min{ν1, β1µ} and the last inequality follows from (3.29), Assumption 4.1(3),
and (3.37).

Let α̂2 = min{α̂1, (1− σ0)δ̂/(2b5)}. Then, by (4.13) and (4.15), (4.7) holds for
all α ∈ [0, α̂2] and k ≥ 0.

Lemma 4.4. Under the assumption of Lemma 4.2, if β1µe ≤ YkΛke ≤ β2µe, then
there exists a constant α̂3 ∈ (0, 1] such that

β1µe ≤ (Λk + αDk
λ) max{yk + αdky ,−c(xk + αdkx)} ≤ β2µe(4.16)

for all α ∈ [0, α̂3] and all k.
Proof. At first, we prove that

β1µe ≤ (Yk + αDk
y)(Λk + αDk

λ)e ≤ β2µe(4.17)

for all α ∈ [0, ᾱ3] and all k, where ᾱ3 ∈ (0, 1] is a constant.
By (3.22), we have (Yk + αDk

y)(Λk + αDk
λ)e = αµe+ (1− α)YkΛke+ α2Dk

yD
k
λe.

Thus,

(Yk + αDk
y)(Λk + αDk

λ)e ≥ β1µe+ α(1− β1)µe+ α2Dk
yD

k
λe,(4.18)

(Yk + αDk
y)(Λk + αDk

λ)e ≤ β2µe− α(β2 − 1)µe+ α2Dk
yD

k
λe.(4.19)
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Since (dky , d
k
λ) is bounded and 0 < β1 < 1 < β2, there exists a constant ᾱ3 ∈ (0, 1]

such that (4.17) holds for all α ∈ [0, ᾱ3] and all k ≥ 0.
If max{yk +αdky ,−c(xk +αdkx)} = yk +αdky for all k ≥ 0 and all α ∈ [0, ᾱ3], then

the lemma follows from (4.17) directly. Now we suppose that, for some k and some
constant ᾱ

′
3 ∈ (0, ᾱ3], we have yki + αdkyi < −ci(xk + αdkx) for all α ∈ (0, ᾱ

′
3]. We

prove that there exists a constant α̃3 ∈ (0, 1] not dependent on k such that, for all
α ∈ [0, α̃3],

−(λki + αdkλi)ci(x
k + αdkx) ≤ β2µ.(4.20)

For convenience of statement, we define pi(α) = −(λki + αdkλ)ci(x
k + αdkx). Then

pi(0) = −cki λki . We show that there exists a positive constant ε̄ such that we have

either pi(0) ≤ β2µ− ε̄ or p
′
i(0) ≤ −ε̄ < 0. Then (4.20) follows from the continuity of

function pi and the boundedness of (dkx, d
k
λ).

By (3.36), we have ck+yk ≥ 0 and λk > 0 for k ≥ 1. Thus, pi(0) ≤ yki λki . For any
given small constant ε > 0 satisfying β2µ− cε > µ (c > 1 is a constant), if cki +yki ≥ ε,
or cki +yki < ε and yki λ

k
i ≤ β2µ− ε, then pi(0) ≤ β2µ− ε̄ for some constant ε̄ > 0. Now

suppose cki + yki < ε and yki λ
k
i > β2µ − ε. Then, by Procedure 2.1 and Lemma 4.2,

there exists a small positive constant ε
′
dependent on ε such that A�

kid
k
x + dkyi ≥ −ε

′
.

Thus, p
′
i(0) = −λkiA�

kid
k
x−cki dkλi ≤ λki dkyi+yki d

k
λi+ε

′′
for some small positive constant

ε
′′
. By (3.22), we have p

′
i(0) ≤ µ − yki λ

k
i + ε

′′
< ε + ε

′′ − (β2 − 1)µ < 0 since
β2 > 1.

Let α̂4 = min{α̂2, α̂3}, where α̂2 and α̂3 are defined as in Lemmas 4.3 and 4.4,
respectively. Then 0 < α̂4 ≤ 1. By Step 5 of Algorithm 3.4, αk > δα̂4 for all k, which
implies that our line search procedure is well defined.

Lemma 4.5. If ρk = ρ̂ for all k ≥ k̂ and if {(xk, yk, λk)} is an infinite sequence
generated by Algorithm 3.4, then we have

lim
k→∞

dkx = 0, lim
k→∞

dky = 0,(4.21)

lim
k→∞

‖ck+1 + yk+1‖ = 0,(4.22)

lim
k→∞

Yk+1Λk+1e = µe,(4.23)

lim
k→∞

‖gk+1 +Ak+1λ
k+1‖ = 0.(4.24)

Proof. It follows from Lemma 4.2 that the sequence {φµ(xk, yk; ρ̂)} is bounded.
Combined with its monotonicity, the limit of {φµ(xk, yk; ρ̂)} exists as k → ∞. Since
αk > δα̂4 > 0 and πρ̂((x

k, yk); (dkx, d
k
y)) ≤ 0 for all k, by taking the limit on the

two sides of (3.34), we have limk→∞ πρ̂((x
k, yk); (dkx, d

k
y)) = 0, which implies that

limk→∞(dkx, d
k
y) = 0 by (3.29) and Lemma 4.2.

By (4.21) and (3.23), we have A�
k d̃

k
x + d̃ky → 0 as k → ∞. If (d̃kx, d̃

k
y) satisfies

qk(d̃
k
x, d̃

k
y) ≤ νqk(0, 0), then

‖ck + yk +A�
k d̃

k
x + d̃ky‖ − ν‖ck + yk‖ ≤ 0,(4.25)

which implies that (4.22) holds. Otherwise, since qk(d̃
k
x, d̃

k
y) ≤ qk(0, 0), for k →∞ we

have

0 ≥ − 1

2ρk

(
d̃k�x Bkd̃

k
x + d̃k�y Skd̃

k
y

)
≥ ‖ck + yk +A�

k d̃
k
x + d̃ky‖ − ‖ck + yk‖ → 0.(4.26)
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It follows that (d̃kx, d̃
k
y) → 0 as k → ∞. Thus, by Procedure 2.1, formulae (3.12)–

(3.14), Lemma 4.2, and Assumption 4.1, we have limk→∞ ‖ck + yk‖ = 0. This proves
(4.22) by (4.21).

It follows from (3.22) that Yk(λ
k + dkλ) = µe−Λkd

k
y . Thus, by (4.21) and Lemma

4.2, limk→∞ Yk+1(λ
k+dkλ) = limk→∞ Yk(λ

k+dkλ) = µe. Then, by Step 6 of Algorithm
3.4, we have λk+1 = λk + dkλ for sufficiently large k; thus (4.23) holds. Moreover, for
sufficiently large k, by (3.21), we have

gk +Akλ
k+1 = −Bkdkx.(4.27)

Thus, (4.24) follows immediately from Assumption 4.1 and (4.21).
It follows from Lemmas 4.2 and 4.5 that the weighted Newton step will be accepted

at last if {ρk}∞k=0 is bounded, since (3.28) is satisfied after a finite number of iterations.
Now we consider the case of ρk → ∞. For simplicity of statement, we give the

following definitions.
Definition 4.6.

(1) x∗ ∈ �n is called a singular stationary point of the problem (1.1) if c(x∗) ≤ 0
and Ai(x

∗), i ∈ I, are linearly dependent, where I = {i|ci(x∗) = 0, i = 1, . . . ,m};
(2) x∗ ∈ �n is called an infeasible stationary point of the problem (1.1), if x∗

is an infeasible point of the problem (1.1) and A(x∗)c(x∗)+ = 0, where c(x∗)+ =
max{c(x∗), 0}.

It is easy to see that both the singular stationary point and the infeasible sta-
tionary point have some first order stationary properties. Similar definitions are also
used in [2, 20, 30]. A singular stationary point is also a Fritz–John point, where the
linearly independent constraint qualification does not hold. An infeasible stationary
point is also a stationary point for minimizing ‖c(x)+‖ because A(x∗)c(x∗)+ = 0.
Moreover, if all constraint functions are convex, then the infeasible stationary point
is the “least infeasible solution” in �2 sense.

Lemma 4.7. If ρk →∞, then
(i) the sequence {yk} is bounded;
(ii) {yk} is not componentwise bounded away from zero.
Proof. (i) By (3.34), we have φµ(x

k+1, yk+1; ρk+1) ≤ φµ(x
k, yk; ρk+1) for all

k ≥ 0. The boundedness of {xk} implies that there exists a constant b7 > 0 such that
|fk| < b7. Thus,

1

ρk+1
φµ(x

k+1, yk+1; ρk+1)− 1

ρk
φµ(x

k, yk; ρk)

≤
(

1

ρk
− 1

ρk+1

)
(−ψµ(xk, yk))(4.28)

≤
(

1

ρk
− 1

ρk+1

)
(b7 + µm ln ‖yk‖).

It follows from (4.28) that

1

ρk+1
φµ(x

k+1, yk+1; ρk+1)

≤ 1

ρ0
φµ(x

0, y0; ρ0) +

(
1

ρ0
− 1

ρk+1

)(
b7 + µm max

0≤j≤k+1
ln ‖yj‖

)
.(4.29)

On the other hand, we have

1

ρk+1
φµ(x

k+1, yk+1; ρk+1)
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≥ − 1

ρk+1

(
b7 + µm max

0≤j≤k+1
ln ‖yj‖

)
+ ‖yk+1‖ − ‖ck+1‖.(4.30)

Thus, by (4.29) and (4.30), there is a constant b8 > 0 such that

b8 +
µm

ρ0
max

0≤j≤k+1
ln ‖yj‖ ≥ ‖yk+1‖ for all k ≥ 0,(4.31)

which implies that {yk} is bounded.
(ii) If {yk} is componentwise bounded away from zero, then, by (i) and (3.37), the

sequence {λk} is also bounded above and componentwise bounded away from zero.
Thus, matrix Sk is uniformly bounded. Let K = {k|ρk < ρk+1}. Then K is an infinite
index set. It follows from Assumption 4.1 and Proposition 3.3 that there exists a
positive constant ρ̂ such that the weighted Newton step defined by (3.12) and (3.13)
is accepted at iterate k ∈ K if ρk > ρ̂. Thus, ∆k = ‖ck + yk‖ by Proposition 3.2 and
(3.32). Moreover, there exists a constant b9 > 0 such that, for sufficiently large k ∈ K,

‖d̃kx‖ ≤ b9‖ck + yk‖, ‖d̃ky‖ ≤ b9‖ck + yk‖, and ‖Skd̃ky‖ ≤ b9‖ck + yk‖.(4.32)

Hence, by the boundedness of ‖ck+yk‖ and Assumption 4.1(3), there exists a constant
b10 > 0 such that, for all sufficiently large k ∈ K,

πρk((xk, yk); (d̃kx, d̃
k
y)) +

1

2
(d̃kx)

�Bkd̃kx +
1

2
(d̃ky)

�Skd̃ky

≤ b10‖ck + yk‖ − ρk‖ck + yk‖,(4.33)

which, by (3.17), implies that we have (3.29) for all iterates k ∈ K with ρk ≥
max{ρ̂, b10}. This contradicts the fact that K is an infinite set.

By Lemma 4.7 and (3.37), λk is componentwise bounded away from zero. Thus,
both Λ−1

k and S−1
k are bounded above.

Lemma 4.8. Let K = {k | ρk < ρk+1}. If ρk → ∞ and if K̃ is any subset of K
such that (xk, yk)→ (x∗, y∗) as k ∈ K̃ and k →∞, then

det[(A∗
J )�A∗

J ] = 0,(4.34)

where J = {i|y∗i = 0, i = 1, . . . ,m}.
Proof. We prove this lemma by contradiction. Suppose that there is a set K̃ ⊆ K

such that, as k ∈ K̃ and k → ∞, (xk, yk) → (x∗, y∗) and Ai(x
∗), i ∈ J , are linearly

independent. Then, by Assumption 4.1 and (3.37), there exists a constant b11 > 0
such that A(x∗)�(B∗)−1A(x∗) + G∗ 	 b11I, where I is the identity matrix, and for
simplicity we assume that Bk → B∗ and S−1

k → G∗ as k ∈ K̃ and k → ∞. Thus, by
the continuity of A(x), there exists a constant b12 > 0 such that

‖(A�
k B

−1
k Ak + S−1

k )−1‖ ≤ b12(4.35)

for all sufficiently large k ∈ K̃. It follows from (3.27) that the weighted Newton step
defined by (3.12) and (3.13) is accepted. Hence, we have the same results as (4.32)
and (4.33), which result in a contradiction to the definition of K.

Lemma 4.9. If ρk → ∞, then there must be a limit point which is either a
singular stationary point or an infeasible stationary point.

In order to prove Lemma 4.9, we need to prove three other lemmas first.
Lemma 4.10. If {(d̃kx, d̃ky)} is a sequence such that qk(d̃

k
x, d̃

k
y) ≤ ωqk(0, 0) for

0 < ω ≤ 1, then ‖d̃kx‖/
√
ρk and ‖Y −1

k d̃ky‖/
√
ρk are uniformly bounded above.
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Proof. Let (d̂kx, d̂
k
y) = (d̃kx/

√
ρk, Y

−1
k d̃ky/

√
ρk). Then by qk(d̃

k
x, d̃

k
y) ≤ ωqk(0, 0), we

have

1

2
d̂k�x Bkd̂

k
x +

1

2
d̂k�y YkΛkd̂

k
y + ‖ck + yk +

√
ρkA

�
k d̂

k
x +
√
ρkYkd̂

k
y‖ ≤ ω‖ck + yk‖.(4.36)

The boundedness of (d̂kx, d̂
k
y) follows from the uniform lower boundedness of the

quadratic terms by Assumption 4.1 and (3.37).
Lemma 4.11. Suppose that (d̃kx, d̃

k
y) is an approximate solution of program (3.11)

such that qk(d̃
k
x, d̃

k
y) ≤ qk(α

C
k (d̃kx)

C , αCk (d̃ky)
C), where ((d̃kx)

C , (d̃ky)
C) is the weighted

steepest descent step (see Procedure 2.1 and (3.10)), αCk ∈ [0, 1] minimizes the function

qk(α(d̃kx)
C , α(d̃ky)

C). Then there exist positive constants ρ̃ and ω̃ such that, for ρk ≥ ρ̃,
we have

qk(d̃
k
x, d̃

k
y)− qk(0, 0) ≤ −ω̃ρk

∥∥∥∥
(
Ak
Yk

)
(ck + yk)

∥∥∥∥
2

.(4.37)

Proof. By (3.10), the value of η in Proposition 2.2 is

ηk = ‖(A�
k B

−1
k Ak + S−1

k )1/2(ck + yk)‖2/‖(A�
k B

−1
k Ak + S−1

k )(ck + yk)‖2.(4.38)

It follows from Assumption 4.1 and (3.37) that

(ck + yk)�
(
Ak
I

)�(
B−1
k

YkΛ
−1
k

)(
Ak
I

)
(ck + yk)

≥ ω1

∥∥∥∥
(
Ak
Yk

)
(ck + yk)

∥∥∥∥
2

,(4.39)

where ω1 = min{ν−1
2 , β−1

2 µ−1}. By Assumption 4.1 and Lemma 4.7(i), there is a
constant ω2 > 0 such that ‖ck + yk‖ ≤ ω2. Let ρ̃1 = 2ω2. Then, for ρk ≥ ρ̃1, we
have 1 − (ρk/‖ck + yk‖) ≤ −ρk/(2ω2). If ηk ≥ 1, by Proposition 2.2, we have (4.37)
if ω̃ ≤ ω1/(4ω2).

Now we suppose that ηk < 1. By Assumption 4.1, Lemma 4.7, and (3.37), there
is a constant ω3 > 0 such that ‖(A�

k B
−1
k Ak + S−1

k )1/2‖2‖ck + yk‖ ≤ ω3 for all k.
Since ηk ≥ 1/‖(A�

k B
−1
k Ak + S−1

k )1/2‖2 by (4.38), if we select ρ̃2 = 2ω3, then, for
ρk ≥ ρ̃2, we have 1 − (ρkηk/‖ck + yk‖) ≤ −ρk/(2ω3). Thus, for ρk ≥ ρ̃2, it follows
from Proposition 2.2 and (4.39) that (4.37) holds if ω̃ ≤ ω1/(4ω3).

Let ω̃ = min{ω1/(4ω2), ω1/(4ω3)}. Then the result follows by taking the constant
ρ̃ = max{ρ̃1, ρ̃2}.

Lemma 4.12. Let K = {k | ρk < ρk+1}. If ρk →∞, then∥∥∥∥
(
Ak
Yk

)
(ck + yk)

∥∥∥∥→ 0(4.40)

as k ∈ K and k →∞.
Proof. Suppose that (4.40) does not hold. Then there exist an infinite subset

K̃ ⊆ K, positive constants τ1 and τ2 such that∥∥∥∥
(
Ak
Yk

)
(ck + yk)

∥∥∥∥ ≥ τ1,(4.41)

and ‖ck + yk‖ ≥ τ2 for all k ∈ K̃.
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The approximate solution (d̃kx, d̃
k
y) is generated such that either qk(d̃

k
x, d̃

k
y) ≤

νqk(0, 0) or qk(d̃
k
x, d̃

k
y) ≤ qk(α

C
k (d̃kx)

C , αCk (d̃ky)
C) (which implies that qk(d̃

k
x, d̃

k
y) ≤

qk(0, 0)). Then, by Lemma 4.10, there is a constant τ3 > 0 such that ‖d̃kx‖ ≤ τ3
√
ρk,

‖Y −1
k d̃ky‖ ≤ τ3

√
ρk.

If qk(d̃
k
x, d̃

k
y) ≤ νqk(0, 0) for all k ∈ K̃, then there exists a constant τ4 > 0 such

that

πρk ((xk, yk); (d̃kx, d̃
k
y)) +

1

2
(d̃kx)

�Bkd̃kx +
1

2
(d̃ky)

�Skd̃ky

≤ (gk)�d̃kx − µe�Y −1
k d̃ky − (1− ν)ρk‖ck + yk‖(4.42)

≤ τ4√ρk − (1− ν)τ2ρk.
Thus, by (3.17), we can select a positive constant ρ̂ such that (3.29) holds for all
ρk ≥ ρ̂. This contradicts the definition of K. Hence, there must exist an infinite
subset K̂ of K̃ such that qk(d̃

k
x, d̃

k
y) ≤ qk(α

C
k (d̃kx)

C , αCk (d̃ky)
C) for all k ∈ K̂. It follows

from Lemma 4.11 that (4.37) holds for all k ∈ K̂. Then, by (4.41), there is a positive
constant b13 such that, for all k ∈ K̂,

qk(d̃
k
x, d̃

k
y)− qk(0, 0) ≤ −b13τ2

1 ρk.(4.43)

Thus, we have

πρk ((xk, yk); (d̃kx, d̃
k
y)) +

1

2
(d̃kx)

�Bkd̃kx +
1

2
(d̃ky)

�Skd̃ky

≤ (gk)�d̃kx − µe�Y −1
k d̃ky − b13τ2

1 ρk(4.44)

≤ τ4√ρk − b13τ2
1 ρk

for all sufficiently large k ∈ K̄, which implies a contradiction to the definition of
K.

Proof of Lemma 4.9. Since (xk, yk) is bounded, without loss of generality, we
suppose that (Ak, c

k, xk, yk, Yk)→ (A∗, c∗, x∗, y∗, Y ∗) as k ∈ K and k →∞, where K
is defined as in Lemma 4.12, A∗ = A(x∗), and c∗ = c(x∗). If the limit point (x∗, y∗)
is such that c∗ + y∗ = 0, i.e., c∗i = 0 if and only if y∗i = 0, then this limit point is a
singular stationary point by Lemma 4.8 since I = J , where I and J are defined as in
Definition 4.6 and Lemma 4.8, respectively. Now we consider the case of ‖c∗+y∗‖ �= 0.
By Lemma 4.12, (

A∗

Y ∗

)
(c∗ + y∗) = 0,(4.45)

and so for any i,

y∗i > 0 ⇒ c∗i + y∗i = 0 ⇒ c∗i < 0.(4.46)

Since ck + yk ≥ 0 and yk ≥ 0 for all k ≥ 1 by the algorithm, for each i such that
c∗i +y∗i �= 0, one has y∗i = 0 by (4.45), and hence c∗i > 0, implying that x∗ is infeasible.
Then c∗ + y∗ = c∗+ = max{c∗, 0}. It follows from (4.45) that A∗c∗+ = 0. Therefore, x∗

is an infeasible stationary point. The proof is finished.
Now we can state our global convergence theorem on Algorithm 3.4.
Theorem 4.13. Suppose that {(xk, yk, λk)} is an infinite sequence generated by

applying Algorithm 3.4 to the barrier problem (3.1)–(3.2), and suppose that Assump-
tion 4.1 holds. The penalty parameter sequence {ρk} is automatically updated and
monotonically nondecreasing.
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(i) If {ρk} is bounded, then any cluster point of {(xk, yk, λk)} is a KKT point of the
barrier problem (3.1)–(3.2). In this case, {yk} is componentwise bounded away from
zero, {xk} is asymptotically strictly feasible for the constraints (1.1), and gk+Akλ

k →
0.

(ii) If ρk → ∞, then {yk} is not componentwise bounded away from zero, and
there is at least one cluster point of {(xk, yk, λk)} which is either a singular stationary
point or an infeasible stationary point. In the latter case, if (xk, yk) is asymptotically
feasible for constraints (3.2), then {xk} is asymptotically feasible for and close to the
boundary of constraints (1.1). At the limit the gradients of active constraints of (1.1)
are linearly dependent. If (xk, yk) is not asymptotically feasible for constraints (3.2),
then at the limit point x∗ we have A∗c∗+ = 0.

Proof. Part (i) follows from Lemma 4.5. Part (ii) can be derived directly by
Lemma 4.9.

5. The overall interior-point algorithm and its convergence. We denote
by F the class of continuous functions θ : �++ → �++ satisfying limµ→0 θ(µ) = 0.
Now we present our algorithm for nonlinearly constrained optimization (1.1).

Algorithm 5.1 (the line search–based interior-point algorithm for (1.1)).
Step 1. Given initial point (x0, y0, λ0) ∈ �n × �m++ × �m++, initial barrier pa-

rameter µ0 > 0, τ ∈ (0, 1), tolerance ε > 0, and function θ ∈ F . Let
j := 0.

Step 2. For the given barrier parameter µj, we apply Algorithm 3.4 to the barrier
problem (3.1)–(3.2). If the iterate (xkj , ykj , λkj ) satisfies

‖Fµj (x
kj , ykj , λkj )‖ < θ(µj),(5.1)

then let

(xj+1, yj+1, λj+1) = (xkj , ykj , λkj )(5.2)

and ρj+1 = ρkj , and go to Step 3; if one of conditions (ii) and (iii) of
Algorithm 3.4 holds, stop.

Step 3. If µj < ε stop; otherwise, let µj+1 = τµj, j := j + 1 and go to Step 2.
Now we consider the convergence of Algorithm 5.1. The result closely depends on

how Algorithm 3.4 behaves for each µj . For θ(µj) > 0, if condition (5.1) is satisfied,
then Algorithm 5.1 will proceed with µj+1. The global convergence results of the
algorithm are as follows.

Theorem 5.2. Suppose that θ ∈ F and {(xj , yj , λj)} is a sequence generated by
Algorithm 5.1. If Assumption 4.1 holds for each barrier problem, and if {(xk, yk, λk)}
is a sequence generated by Algorithm 3.4, then, for sufficiently small ε, Algorithm 5.1
may terminate in finitely many steps in one of the following two cases:

(i) For some µj, Algorithm 5.1 terminates at Step 2. If the termination point is
an approximately feasible point, then it is an approximately singular stationary point.
Otherwise, it is an approximately infeasible stationary point.

(ii) For each µj, Algorithm 3.4 terminates at (5.1). Then Algorithm 5.1 terminates
at Step 3, in which case an approximate KKT point of the original problem (1.1) is
obtained.

Proof. The results follow immediately from Theorem 4.13 and Algorithm 5.1.
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6. Numerical experiment.

6.1. Formulae used in Procedure 2.1. We present an implementation of
Procedure 2.1 in this subsection.

Suppose that the full Q-weighted Newton step is not accepted. Then we compute
the weighted Cauchy step d̃Cz and try to get an approximate solution d̃z to (2.10)
along the Q-weighted Newton step, or the so-called dog-leg step, so that (2.13) holds
and q(d̃z) has as much reduction as possible. If this is impossible, then we do a line
search along the Q-weighted steepest descent step and take the approximate solution
d̃z to be either the truncated Q-weighted Newton step or the truncated Q-weighted
steepest descent step so that q(d̃z) has more reduction. Thus, (2.13) holds. The
details are as follows.

We first compute the optimal steplength along the Q-weighted Newton step to
derive as much reduction as possible in this direction. Thus, we solve the single-
variable minimizing problem

minimizeα∈[0,1] q̂(α) =
1

2
α2d̃N�

z Qd̃Nz + ρ‖r + αR�d̃Nz ‖.(6.1)

By direct computation, we have the solution

α̃1 = min

{
ρ‖r‖

r�(R�Q−1R)−1r
, 1

}
.(6.2)

Set d1
z = α̃1d̃

N
z . Then we have q̂(α̃1) ≤ q̂(0). It is more convenient in the implementa-

tion to compute a dog-leg step in the line segment spanned by the Q-weighted Newton
step d̃Nz and the following scaled Cauchy step (where η is defined as in Proposition
2.2):

d̃Cz = −min{η, 1}Q−1Rr.(6.3)

It is apparent that this scaling on d̃Cz will not result in any change in our theoretical
results. If η ≤ 1, then d̃Cz is the so-called Cauchy point in minimizing ‖r + R�d‖2
with starting point d = 0. Let dz(α) = αd̃Nz + (1− α)d̃Cz . Then we calculate α̃2 by

minimizeα∈[0,1]q̃(α) =
1

2
dz(α)�Qdz(α) + ρ‖r +R�dz(α)‖.(6.4)

By setting q̃
′
(α) = 0, we have

α∗
2 =

ρ‖r +R�d̃Cz ‖ − (d̃Nz − d̃Cz )�Qd̃Cz
(d̃Nz − d̃Cz )�Q(d̃Nz − d̃Cz )

.(6.5)

If α∗
2 ≤ 0, then α̃2 = 0; else if α∗

2 ≥ 1, then α̃2 = 1; else we have α̃2 = α∗
2.

If min{q̂(α̃1), q̃(α̃2)} ≤ νq(0) (where ν is defined as in Procedure 2.1), we define
d2
z = dz(α̃2), else we set d2

z = α̃3d̃
C
z , where α̃3 ∈ (0, 1] minimizes the function

q̄(α) =
1

2
α2(d̃Cz )�Qd̃Cz + ρ‖r + αR�d̃Cz ‖.(6.6)

We select the approximate solution d̃z from d1
z or d2

z, whichever gives a lower value of
q(d̃z).

The process for solving (2.10) approximately is summarized into the following
algorithm.
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Algorithm 6.1 (the algorithm for solving problem (2.10) approximately).
Step 1. Compute the Newton step d̃Nz by (2.11). If q(d̃Nz ) ≤ νq(0), then d̃z = d̃Nz .

Stop.
Step 2. Compute the steepest descent step d̃Cz by (2.13).
Step 3. Calculate d1

z = α̃1d̃
N
z by (6.2) and d2

z = α̃2d̃
N
z + (1− α̃2)d̃

C
z by (6.4). If

min{q̂(α̃1), q̃(α̃2)} ≤ νq(0), then go to Step 5.
Step 4. Calculate d2

z = α̃3d̃
C
z by (6.6). If q̂(α̃1) ≤ q̄(α̃3), we have the approximate

solution d̃z = d1
z; else we select d̃z = d2

z. Stop.
Step 5. If q̂(α̃1) ≤ q̃(α̃2), then d̃z = d1

z; else we have d̃z = d2
z. Stop.

6.2. Numerical results. The algorithm is programmed in MATLAB 6.1 and is
run on a personal computer under Windows 98. In order to obtain rapid convergence,
it is also necessary to carefully control the rate at which the barrier parameter µ and
the tolerance θ(µ) are decreased. This question has been studied in [6, 11, 29].

It is restrictive to require that (3.37) holds for given β1 and β2 for all iterates of
Algorithm 3.4 in practice. In our implementation, we update the dual iterate flexibly
by selecting the maximal γk ∈ [0, 1] such that

min{Yk+1Λke, β̄1µe} ≤ Yk+1Λk+1e ≤ max{Yk+1Λke, β̄2µe},(6.7)

where 0 < β̄1 < 1 < β̄2, Λk+1 = diag(λk+1), and λk+1 = λk + γkd
k
λ. If {ρk}∞k=0 is

bounded, then, by Lemma 4.2 and (6.7), there exist β1 and β2 such that (3.37) holds
for all iterates. In the case of ρk → ∞, suppose that Algorithm 3.4 is terminated
within a given number of iterations (for example, 300 iterations). Then, by the
fact that yk+1 ≥ 0.005yk and (6.7), Yk+1Λk+1e ≥ min{0.005YkΛke, β̄1µe}. Thus,
YkΛke ≥ β1µe if we select β1 = 0.005300 min{µ−1Y0Λ0e, 200β̄1e}. If yki λ

k
i → ∞ as

k → ∞ for some i, then, by (6.7), λki ≤ λk−1
i and λki → ∞ as k → ∞ since {yk} is

bounded. This is a contradiction. Thus, there exist a constant β2 > 0 and an infinite
index set K such that YkΛke ≤ β2µe for k ∈ K. Hence, we have (3.37) for all k ∈ K.

We select the initial parameters µ0 = 0.01, β̄1 = 0.01, β̄2 = 10, σ0 = 0.1, δ = 0.8,
and the initial matrix B0 to be the n × n identity matrix. The scalar in Algorithm
6.1 is ν = 0.98. The choice of the initial penalty parameter ρ0 is scale dependent and
ρ0 = 1 is chosen for our experiment. Simply, we select θ(µ) = µ, τ = 0.01, ε = 10−6.
For conditions (ii) and (iii) of Step 7 of Algorithm 3.4, we select ε2 = ε and ε3 = ε2.

The approximate Lagrangian Hessian Bk+1 is computed by the damped BFGS
update formula

Bk+1 = Bk − Bks
k(sk)�Bk

(sk)�Bksk
+
wk(wk)�

(sk)�wk
,(6.8)

where

wk =

{
ŵk if (ŵk)�sk ≥ 0.2(sk)�Bksk,
θkŵ

k + (1− θk)Bksk otherwise,
(6.9)

and ŵk = gk+1−gk+(Ak+1−Ak)λk+1, sk = xk+1−xk, θk = 0.8(sk)�Bksk/((sk)�Bksk−
(sk)�ŵk). For all test problems, we select the initial slack and dual variables as

y0 = e, λ0 = e(6.10)

if not specified.
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Table 1. Numerical results by Algorithm 3.4 when µ = 0.01.

IT x1 x2 x3 RC1 RC2 ρ d̃x
0 -4 1 1 14 -7 1 full-Newton
1 -3.6590 12.3880 0.0050 0 -5.6640 2 dog-leg
2 -2.2786 4.1919 0.0040 0 -4.2826 4 full-Newton
3 -1.3633 0.8586 0.0030 0 -3.3663 4 full-Newton
4 -1.0500 0.1025 0.0026 0 -3.0525 8 dog-leg
5 -0.8756 0.0005 0.0019 -0.2339 -2.8775 8 dog-leg
6 -0.4536 0.0015 0.0000 -0.7957 -2.4537 8 dog-leg
7 0.4972 0.0430e-03 0.5770e-03 -0.7528 -1.5033 8 dog-leg
8 1.4035 0.9697 0.0009 0 -0.5975 8 full-Newton
9 2.0008 3.0031 0.0008 0 -0.9324e-09 8 full-Newton
10 2.0017 3.0067 0.0017 0 0 8

Table 2. Numerical results by the ordinary approach
with yk+1 generated by (3.36) when µ = 0.01.

IT x1 x2 x3 RC1 RC2 ρ
0 -4 1 1 14 -7 1
1 -3.6590 12.3880 0.0050 0 -5.6640 2
2 -1.9746 2.8990 0.0028 0 -3.9774 5.2958
3 -1.2442 0.5480 0.0018 0 -3.2460 11.9755
4 -1.0251 0.0508 0.0007 0 -3.0258 101.7079
5 -1.0004 0.8606e-03 0.1721e-03 0 -3.0006 4.4576e+03
6 -1.0000 0.0449e-04 0.1219e-04 0 -3.0000 1.1483e+06
7 -1.0000 0.0224e-06 0.1183e-06 0 -3.0000 7.7089e+08
8 -1.0000 0.1122e-09 0.5969e-09 0 -3.0000 9.1419e+12
9 -1.0000 0.0561e-11 0.2984e-11 0 -3.0000 3.0875e+17

First, we apply our algorithm to three simple examples. The first one is the
example presented by Wächter and Biegler and further discussed by Byrd, Marazzi,
and Nocedal [7, 26]:

Minimize x1(6.11)

(TP1) subject to x2
1 − x2 − 1 = 0,(6.12)

x1 − x3 − 2 = 0,(6.13)

x2 ≥ 0, x3 ≥ 0.(6.14)

Note that the initial point (x0
1, x

0
2, x

0
3) = (−4, 1, 1) satisfies the conditions of The-

orem 1 of [26]. There is a unique stationary point for this problem, which is the global
minimizer. Moreover, this problem is well-posed, since at the solution the second or-
der sufficient optimality condition, strict complementarity, and nondegeneracy hold.
However, it is proved by [26] that many existing interior-point methods using line
search (let us call them the “ordinary” interior-point methods for convenience) fail to
converge to the stationary point.

Algorithm 5.1 terminates at the approximate KKT point (2, 3, 0) with the La-
grangian multiplier (0, 1) in 16 iterations. The residuals, respectively, are ‖gk +
Akλ

k‖ = 6.3283e-14, ‖YkΛke− µke‖ = 2.0000e-08, and ‖ck + yk‖ = 0.8232e-17. The
value of the penalty parameter is ρ̂ = 8. In order to see the performance clearly, we
give the numerical results of Algorithm 3.4 when µ = 0.01, which is listed in Table
1, where RC1 and RC2 are residual values of constraints, (6.12) and (6.13), respec-
tively. The last column in Table 1 shows the performance of Algorithm 6.1, where
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Table 3. Numerical results by the ordinary approach
with yk+1 = yk + αkd

k
y when µ = 0.01.

IT x1 x2 x3 RC1 RC2 ρ
0 -4 1 1 14 -7 1
1 -3.6590 0.9438 0.0050 11.4442 -5.6640 2
2 -3.4809 0.0047 0.0029 11.1118 -5.4838 11.9086
3 -3.4789 0.0236e-03 0.3727e-03 11.1028 -5.4793 5.4425e+03
4 -3.4788 0.0118e-05 0.8007e-05 11.1017 -5.4788 3.8388e+05
5 -3.4787 0.0059e-07 0.4240e-07 11.1017 -5.4787 8.9516e+08
6 -3.4787 0.0029e-09 0.2121e-09 11.1017 -5.4787 3.3359e+13

“full-Newton” means that the approximate solution to (3.11) is the full weighted
Newton step, and “dog-leg” represents the dog-leg step. In order to observe how the
ordinary interior-point approach using (3.24)–(3.26) behaves, we also solve this ex-
ample by solving (3.24)–(3.26) with yk+1 generated by (3.36) and yk+1 = yk + αkd

k
y ,

respectively; the results are presented in Tables 2 and 3.
It is easy to note from Table 1 that Algorithm 3.4 terminates at the approximate

feasible point when µ = 0.01. The approximate feasibility will be further improved
when µ is decreased in Algorithm 5.1. However, the results in Tables 2 and 3 show that
the ordinary interior-point approach using (3.24)–(3.26) terminates at the infeasible
points as µ = 0.01. The infeasibility cannot be improved by decreasing µ since x2

and x3 are close to the boundary of the feasible region.
The last column of Table 1 shows that the weighted Newton steps are accepted

as the iterates are nearly feasible, which is important for the algorithm to have rapid
convergence.

Our second test example is taken from [3], which minimizes any objective function
on an obviously infeasible set defined by the constraints:

(TP2) x2 + 1 ≤ 0, x ≤ 0.(6.15)

We select to minimize x as the objective. The initial point is x0 = 4. For µ = 0.01,
Algorithm 3.4 terminates at the point x∗ = -6.0363e-07, and correspondingly the slack
variables y∗1 = 6.3712e-13 and y∗2 = 6.0363e-07 after 38 iterations. It is easy to see that
x∗ is close to a point by which the norm ‖c(x)+‖ is minimized. Algorithm 6.1 takes
four full weighted Newton steps at first and then uses the truncated weighted Newton
steps in 34 later iterations. The value of the penalty parameter is ρ̂ = 1.2767e+10.

The third simple test problem is a standard one taken from [17, Problem 13]:

Minimize (x1 − 2)2 + x2
2(6.16)

(TP3) subject to (1− x1)
3 − x2 ≥ 0,(6.17)

x1 ≥ 0, x2 ≥ 0.(6.18)

The standard initial point (−2,−2) is an infeasible point. The optimal solution (1, 0)
is not a KKT point but is a singular stationary point, at which the gradients of active
constraints are linearly dependent. This problem has not been solved in [23, 25, 28],
but has been solved in [5, 24].

Algorithm 5.1 applied to problem (TP3) terminates at the singular stationary
point in 44 iterations and µ = 0.01, y∗ = (0, 1, 0), λ∗ = (3.4923e+10, 0.0, 3.4923e+10).
The residuals, respectively, are ‖gk + Akλ

k‖ = 1.2716, ‖YkΛke− µke‖ = 0.0292, and
‖ck + yk‖ = 0.0. The value of the penalty parameter is ρ̂ = 2.6370e+10.
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Table 4. Numerical results by Algorithm 5.1.

Problem Iter RD RP RG ρ̂
TP001 25 2.5953e-11 0 1.0000e-08 1
TP002 22 3.8447e-12 0 1.0000e-08 2
TP003 16 1.9997e-09 0 1.0000e-08 1
TP004 10 1.7656e-13 8.8947e-17 2.0001e-08 4.9402
TP010 18 2.4976e-14 3.0564e-14 1.0000e-08 1
TP011 15 1.1383e-14 9.2021e-16 1.0000e-08 4
TP012 15 2.5011e-14 1.8881e-15 1.0000e-08 1
TP020 38 9.0994e-14 0.5983e-17 5.0000e-08 512
TP021 18 1.3468e-09 0 5.0000e-08 1
TP022 11 1.0991e-12 1.4037e-16 2.0000e-08 1
TP023 14 7.1677e-12 7.1056e-15 9.0000e-08 1
TP024 14 2.5103e-12 4.3581e-16 5.0000e-08 1
TP038 95 7.6785e-09 0 8.0000e-08 1
TP043 22 2.7486e-10 7.2071e-13 3.0000e-08 2
TP044 15 1.3328e-13 7.8580e-16 1.0000e-07 2
TP076 17 2.6222e-09 1.1974e-15 7.0000e-08 1

We also apply our algorithm to some other test problems taken from [17], which
are numbered in the same way as that in [17]. For example, “TP022” is Problem 22
in the book. We use these test problems (but not all test problems) since they have
only inequality constraints, and thus are suitable for testing the algorithm. The initial
points are the same as in [17]. The numerical results are reported in Table 4, where
“Iter” represents the number of iterations, RD = ‖gk + Akλ

k‖, RP = ‖ck + yk‖,
RG = ‖YkΛke−µke‖, and ρ̂ is the value of the penalty parameter when the algorithm
terminates.
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Abstract. This work is devoted to a class of stochastic approximation problems with regime
switching modulated by a discrete-time Markov chain. Our motivation stems from using stochastic
recursive algorithms for tracking Markovian parameters such as those in spreading code optimization
in CDMA (code division multiple access) wireless communication. The algorithm uses constant step
size to update the increments of a sequence of occupation measures. It is proved that least squares
estimates of the tracking errors can be developed. Assume that the adaptation rate is of the same
order of magnitude as that of the time-varying parameter, which is more difficult to deal with than
that of slower parameter variations. Due to the time-varying characteristics and Markovian jumps,
the usual stochastic approximation (SA) techniques cannot be carried over in the analysis. By a
combined use of the SA method and two-time-scale Markov chains, asymptotic properties of the
algorithm are obtained, which are distinct from the usual SA results. In this paper, it is shown for
the first time that, under simple conditions, a continuous-time interpolation of the iterates converges
weakly not to an ODE, as is widely known in the literature, but to a system of ODEs with regime
switching, and that a suitably scaled sequence of the tracking errors converges not to a diffusion but
to a system of switching diffusion. As an application of these results, the performance of an adaptive
discrete stochastic optimization algorithm is analyzed.
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1. Introduction. In this paper, we consider a class of stochastic approximation
(SA) algorithms for tracking the invariant distribution of a conditional Markov chain
(conditioned on another Markov chain whose transition probability matrix is “near”
identity). Here and henceforth, we refer to such a Markov chain with infrequent
jumps as a slow Markov chain, for simplicity. It is well known that if the parameter
changes too drastically, there is no chance one can track the time-varying properties
using an SA algorithm. Such a phenomenon is known as tracking capability; see [4]
for related discussions. Our objectives include evaluating the tracking capability of
the SA algorithm in terms of mean squares tracking error, characterizing the dynamic
behavior of the iterates, revealing the structure of a scaled sequence of tracking errors,
and obtaining the asymptotic covariance of the associated limit process.

Motivation. While there are several papers that analyze tracking properties of
SA algorithms when the underlying parameter varies according to a slow random
walk [4, 19], fewer papers consider the case when the underlying parameter evolves
according to a slow Markov chain. Yet such slow Markov chain models arise in several
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applications. The main motivation for our work stems from applications in discrete
stochastic optimization. Such problems appeared in [21] and were subsequently con-
sidered in [2, 3, 10] among others; we refer the reader to [20] for a recent survey of
several methods for discrete stochastic optimization including selection and multi-
ple comparison methods, multi-armed bandits, the stochastic ruler, nested partition
methods, and discrete stochastic optimization algorithms based on simulated anneal-
ing [1, 2, 3, 9].

The discrete stochastic optimization algorithms in [2, 3] can be thought of as
random search procedures, in which there is a feasible set S that contains the minima
together with other potential search candidates. One devises a strategy so that the
optimal parameter (minimum) is estimated with minimal effort. An important varia-
tion of this is to devise and analyze the performance of an adaptive discrete stochastic
optimization algorithm when the underlying parameter (minimum) is slowly time-
varying. Such tracking problems lie at the heart of applications of SA algorithms.
In such cases, because the parameter set is finite, it is often reasonable to assume
that the underlying parameter (termed “hypermodel” in [4]) evolves according to a
slow finite state Markov chain. As will be shown in section 6, the general tracking
analysis presented in this paper for a slow Markov chain parameter readily applies to
analyzing the tracking performance of such adaptive discrete stochastic optimization
algorithms. To the best of our knowledge, this is the first time a tracking analysis has
been presented for a discrete stochastic optimization algorithm.

Applications. Discrete stochastic optimization problems arise in emerging appli-
cations such as adaptive coding in wireless CDMA (code division multiple access)
communication networks. In our recent work [11], we considered optimizing the
spreading code of the CDMA system at the transmitter. This was formulated as a dis-
crete stochastic optimization problem (since the spreading codes are finite-length and
finite-state sequences), and the random-search–based discrete stochastic optimization
algorithm of [2] was used to compute the optimal spreading code. In addition to the
random-search–type algorithms, we also designed adaptive SA algorithms with both
fixed step size and adaptive step sizes to track slowly time-varying optimal spread-
ing codes caused by fading characteristics of the wireless channel. The numerical
results in [11, 12] have shown remarkable improvement compared with that of several
heuristic algorithms. Section 6 explicitly derives performance bounds in terms of error
probabilities for the adaptive discrete stochastic optimization algorithm.

Outline. This paper considers an algorithm with constant step size and updates
that are essentially of the form of occupation measures. We are interested in the
analysis of tracking errors. First, using perturbed Lyapunov function methods [16],
we derive mean squares–type error bounds. The argument is mainly based on sta-
bility analysis. Naturally, one then asks whether an associated limit ODE (ordinary
differential equation) can be derived via ODE methods as in the usual analysis of SA
and stochastic optimization–type algorithms. The standard ODE method cannot be
carried over due to the fact that the system is now time-varying, and the adaptation
rate is the same as that of the parameter variation. By a combined use of the updated
treatment on SA [16] and two-time-scale Markov chains [22, 23], we demonstrate that
a limit system can still be obtained. However, very different from the usual stochas-
tic approximation methods in the existing literature, the limit system is no longer a
single ODE, but a system of ODEs modulated by a continuous-time Markov chain.
Thus, the limit is not deterministic but stochastic. Such systems are referred to as
ODEs with regime switching. Based on the system of switching ODEs obtained, we
further examine a sequence of suitably normalized errors aiming at understanding the
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rate of variation (rate of convergence) of the scaled sequence of tracking errors. It
is well known that for an SA algorithm, if the true parameter is a fixed constant,
then a suitably scaled sequence of estimation errors has a Gaussian diffusion limit. In
contrast, somewhat remarkably, the scaled tracking error sequence generated by the
SA algorithm in this paper does not have a diffusion limit. Instead, the limit is a sys-
tem of diffusions with regime switching. In the limit system, the diffusion coefficient
depends on the modulating Markov chain, which reveals the distinctive time-varying
nature of the underlying system and provides new insight on Markov modulated SA
problems.

Context. The main weak convergence results in this paper in sections 4 and 5
assume that the dynamics of the true parameter (modeled as a slow Markov chain
with transition probability matrix I + εQ) evolves on the same time scale as the
adaptive SA algorithm with step size µ, i.e., ε = O(µ). We note that the case
ε = O(µ) addressed in this paper is much more difficult to handle than ε = o(µ)
(e.g., ε = O(µ2)), which is widely used in the analysis of tracking algorithms [4].
The meaning of ε = o(µ) is that the true parameter evolves much more slowly than
the adaptation speed of the stochastic optimization algorithm and is more restrictive
than ε = O(µ). Furthermore, with ε = o(µ) one obtains a standard ODE and linear
diffusion limit, whereas with ε = O(µ) we show for the first time in this paper that one
obtains a randomly switching system of ODEs and switching diffusion limit. Finally,
in several applications arising in wireless telecommunication network optimization,
e.g., signature code optimization in spread spectrum systems over fading channels
[11, 12], the optimal signature sequence (true parameter) changes as quickly as the
adaptation of the algorithm, i.e., ε = O(µ).

The rest of the paper is organized as follows. Section 2 contains the formulation
of the problem. Section 3 is devoted to obtaining mean squares error bounds. In sec-
tion 4, we obtain a weak convergence result of an interpolated sequence of the iterates.
Section 5 further examines a suitably scaled tracking error sequence of the iterates
and derives a switching diffusion limit. Section 6 presents an example of an adaptive
discrete stochastic optimization algorithm, which is motivated by [11], where such al-
gorithms have been used to perform adaptive spreading code optimization in wireless
CDMA systems. The analysis of section 3 and section 5 is used to derive bounds on
the error probability of this adaptive discrete stochastic optimization algorithm.

Before proceeding, a bit of notation is in order. Throughout the paper, z′ denotes
the transpose of z ∈ R�×r for some �, r ≥ 1; unless otherwise noted, all vectors are
column vectors; |z| denotes the norm of z; K denotes a generic positive constant
whose values may vary for different usage (the conventions K+K = K and KK = K
will be used without notice).

2. Formulation of the problem. We will use the following conditions through-
out the paper. Condition (M) characterizes the time-varying underlying parameter
as a Markov chain with infrequent transitions, while condition (S) characterizes the
observed signal.

(M) Let {θn} be a discrete-time Markov chain with finite state space

M = {θ1, . . . , θm0
}(2.1)

and transition probability matrix

P ε = I + εQ,(2.2)
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where ε > 0 is a small parameter, I is an m0 ×m0 identity matrix, and
Q = (qij) ∈ Rm0×m0 is a generator of a continuous-time Markov chain (i.e.,
Q satisfies qij ≥ 0 for i �= j and

∑m0

j=1 qij = 0 for each i = 1, . . . ,m0).

For simplicity, suppose that the initial distribution P (θ0 = θi) = p0,i is
independent of ε for each i = 1, . . . ,m0, where p0,i ≥ 0 and

∑m0

i=1 p0,i = 1. Q
is irreducible.

(S) Let {Xn} be an S-state conditional Markov chain (conditioned on the pa-
rameter process). The state space of {Xn} is S = {e1, . . . , eS}, where ei
for i = 1, . . . , S denotes the ith standard unit vectors, with the ith com-
ponent being 1 and the rest of the components being 0. For each θ ∈ M,
A(θ) = (aij(θ)) ∈ RS×S , the transition probability matrix of Xn is defined
by

aij(θ) = P (Xn+1 = ej |Xn = ei, θn = θ) = P (X1 = ej |X0 = ei, θ0 = θ),

where i, j ∈ {1, . . . , S}. For θ ∈M, A(θ) is irreducible and aperiodic.
Remark 2.1. Note that the underlying Markov chain {θn} is in fact ε-dependent.

We suppress the ε-dependence for notational simplicity. The small parameter ε in
(2.2) ensures that the entries of the transition probability matrix are nonnegative,
since pεij = δij + εqij ≥ 0 for ε > 0 small enough, where δij denotes the Kronecker δ
satisfying δij = 1 if i = j and 0 otherwise. The use of the generator Q makes the
row sum of the matrix P be one. The main idea is that, although the true parameter
is time-varying, it is piecewise constant. Moreover, due to the dominating identity
matrix in (2.2), {θn} varies slowly in time. The time-varying parameter takes a
constant value θi for a random duration and jumps to another state θj with j �= i at
a random time.

The assumptions on irreducibility and aperiodicity of A(θ) imply that for each
θ ∈M there exists a unique stationary distribution π(θ) ∈ RS×1 satisfying

π′(θ) = π′(θ)A(θ) and π′(θ)1lS = 1,

where 1l� ∈ R�×1 with all entries being equal to 1. We aim to use an SA algorithm
to track the time-varying distribution π(θn) that depends on the underlying Markov
chain θn.

2.1. Adaptive algorithm. We use the following adaptive algorithm of least
mean squares (LMS) type with constant step size in order to construct a sequence of
estimates {π̂n} of the time-varying distribution π(θn),

π̂n+1 = π̂n + µ(Xn+1 − π̂n),(2.3)

where µ denotes the step size. Define π̃n = π̂n−Eπ(θn). Then (2.3) can be rewritten
as

π̃n+1 = π̃n − µπ̃n + µ(Xn+1 −Eπ(θn)) + E(π(θn)− π(θn+1)).(2.4)

Note that π̂n, π(θn), and hence π̃n are column vectors (i.e., they take values in RS×1).
The underlying parameter θn is called a hypermodel in [4]. Note that while the

dynamics of the hypermodel θn is used in our analysis, it does not explicitly enter the
implementation of the LMS algorithm (2.3).

To accomplish our goal, we derive a mean squares error bound, proceed with the
examination of an interpolated sequence of the iterates, and derive a limit result for
a scaled sequence. These three steps are realized in the following three sections.
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3. Mean square error. This section establishes a mean square estimate for
E|π̃n|2 = E|π̂n − Eπ(θn)|2. Analyzing SA algorithms often requires the use of
Lyapunov-type functions for proving stability; see [7, 16]. In what follows, we obtain
the desired estimate via a stability argument using the perturbed Lyapunov function
method [16]. Use En to denote the conditional expectation with respect to Fn, the
σ-algebra generated by {Xk, θk : k ≤ n}.

Theorem 3.1. Assume (M) and (S). In addition, suppose that ε2 � µ. Then
for sufficiently large n,

E|π̃n|2 = O

(
µ+ ε+

ε2

µ

)
.(3.1)

Proof. Define V (x) = (x′x)/2. Direct calculations lead to

EnV (π̃n+1)− V (π̃n) = En{π̃′
n[−µπ̃n + µ(Xn+1 −Eπ(θn)) + E[π(θn)− π(θn+1)]]}

+ En|−µπ̃n + µ(Xn+1 −Eπ(θn)) + E[π(θn)− π(θn+1)]|2.(3.2)

In view of the Markovian assumption and the structure of the transition probability
matrix given by (2.2),

En[π(θn)− π(θn+1)] = E[π(θn)− π(θn+1)|θn]

=

m0∑
i=1

E[π(θi)− π(θn+1)|θn = θi]I{θn=θi}

=

m0∑
i=1

⎡
⎣π(θi)−

m0∑
j=1

π(θj)p
ε
ij

⎤
⎦ I{θn=θi}

= −ε
m0∑
i=1

m0∑
j=1

π(θj)qijI{θn=θi}

= O(ε),

(3.3)

and likewise, detailed computation also shows that

En|π(θn)− π(θn+1)|2 = O(ε).(3.4)

Owing to (2.2), the transition probability matrix P ε is independent of time n. As
a result, the k-step transition probability depends only on the time lags and can be
denoted by (P ε)k. By an elementary inequality, we have |π̃n| = |π̃n|·1 ≤ (|π̃n|2+1)/2.
Thus,

O(ε)|π̃n| ≤ O(ε)(V (π̃n) + 1).

Noting that the sequence of signals {Xn} is bounded, the boundedness of {π̂n},
and O(εµ) = O(µ2 + ε2) via the elementary inequality ab ≤ (a2 + b2)/2 for any real
numbers a and b, the estimate (3.4) yields

En|−µπ̃n + µ(Xn+1 −Eπ(θn)) + E[π(θn)− π(θn+1)]|2

≤ KEn

[
µ2|π̃n|2 + µ2|Xn+1 −Eπ(θn)|2 + µ2|π̃′

nE(Xn+1 −Eπ(θn))|

+ µ|π̃′
nE(π(θn)− π(θn+1))|+ µ|(Xn+1 −Eπ(θn))

′E(π(θn)− π(θn+1))|
]

+ |E(π(θn)− π(θn+1))|2
= O(µ2 + ε2)(V (π̃n) + 1) + |E(π(θn)− π(θn+1))|2

(3.5)

and
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En{π̃′
n[−µπ̃n + µ(Xn+1 −Eπ(θn)) + E(π(θn)− π(θn+1))]}

= −2µV (π̃n) + µEnπ̃
′
n(Xn+1 −Eπ(θn)) + Enπ̃

′
nE(π(θn)− π(θn+1)).

(3.6)

Using (3.5) and (3.6) in (3.2) together with (3.3), we obtain

EnV (π̃n+1)− V (π̃n)

= −2µV (π̃n) + µEnπ̃
′
n(Xn+1 −Eπ(θn)) + Enπ̃

′
nE(π(θn)− π(θn+1))

+O(µ2 + ε2)(V (π̃n) + 1).

(3.7)

To obtain the desired estimate, we need to “average out” the second to the fourth
terms on the right-hand side of (3.7). To do so, for any 0 < T < ∞, we define the
following perturbations:

V ε1 (π̃, n) = µ

T/ε∑
j=n

π̃′En(Xj+1 −Eπ(θj)),

V ε2 (π̃, n) =

T/ε∑
j=n

π̃′E(π(θj)− π(θj+1)).

(3.8)

In the above and hereafter, T/ε is understood to be �T/ε�, i.e., the integer part of T/ε.
Throughout the rest of the paper, we often need to use the notion of fixed-θ

processes. For example, by Xj(θ) for n ≤ j ≤ O(1/ε), we mean a process in which
θj = θ is fixed for all j with n ≤ j ≤ O(1/ε).

For V ε1 (π̃, n) defined in (3.8),∣∣∣∣∣∣
T/ε∑
j=n

En[Xj+1 − π(θj)]

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
T/ε∑
j=n

En[Xj+1 −EXj+1]

∣∣∣∣∣∣
+

∣∣∣∣∣∣
T/ε∑
j=n

[EXj+1 −Eπ(θj)]

∣∣∣∣∣∣ .
(3.9)

Using the φ-mixing property of {Xj} (see [5, p. 166]),∣∣∣∣∣∣
T/ε∑
j=n

En[Xj+1 −EXj+1]

∣∣∣∣∣∣ ≤ K <∞ uniformly in n.(3.10)

We can also show ∣∣∣∣∣∣
T/ε∑
j=n

[EXj+1 −Eπ(θj)]

∣∣∣∣∣∣ <∞.(3.11)

Thus, using (3.9)–(3.11), for each π̃,

|V ε1 (π̃, n)| ≤ O(µ)(V (π̃) + 1).(3.12)

By virtue of the definition of V ε2 (·) and (2.2), it follows that there exists an Nε
for all n ≥ Nε such that

|V ε2 (π̃, n)| =
∣∣∣∣∣∣
T/ε∑
j=n

π̃′[E(π(θj)− π(θj+1))]

∣∣∣∣∣∣
=
∣∣π̃′E[π(θn)− π(θT/ε)]

∣∣
≤ |π̃|O(ε)

≤ O(ε)(V (π̃) + 1).

(3.13)
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We next show that they result in the desired cancellation in the error estimate.
Note that

EnV
ε
1 (π̃n+1, n+ 1)− V ε1 (π̃n, n)

= En[V
ε
1 (π̃n+1, n+ 1)− V ε1 (π̃n, n+ 1)] + EnV

ε
1 (π̃n, n+ 1)− V ε1 (π̃n, n).

(3.14)

It can be seen that

EnV
ε
1 (π̃n, n+ 1)− V ε1 (π̃n, n) = −µEnπ̃′

n(Xn+1 −Eπ(θn))(3.15)

and

EnV
ε
1 (π̃n+1, n+ 1)−EnV

ε
1 (π̃n, n+ 1)

= µ

T/ε∑
j=n+1

Enπ̃
′
n+1En+1(Xj+1 −Eπ(θj))− µ

T/ε∑
j=n+1

Enπ̃
′
nEn+1(Xj+1 −Eπ(θj))

= µ

T/ε∑
j=n+1

En(π̃n+1 − π̃n)′En+1(Xj+1 −Eπ(θj))

= µ

T/ε∑
j=n+1

En[−µπ̃n + µ(Xn+1 −Eπ(θn)) + E(π(θn)− π(θn+1))]
′En+1[Xj+1 −Eπ(θj)]

= O(µ2)(V (π̃n) + 1) +O(µε) = O(µ2)(V (π̃n) + 1) +O(ε2).

(3.16)

In the above, we have used O(µε) = O(µ2 + ε2), (2.4), and (3.2) to obtain

|En[π̃n+1 − π̃n]| ≤ µEn|π̃n|+ µEn|Xn+1 −Eπ(θn)|+O(ε)

= O(µ)(V (π̃n) + 1) +O(ε).
(3.17)

Thus

EnV
ε
1 (π̃n+1, n+ 1)− V ε1 (π̃n, n)

= −µEnπ̃′
n(Xn+1 −Eπ(θn)) +O(µ2)(V (π̃n) + 1) +O(ε2).

(3.18)

Analogous estimates yield that

EnV
ε
2 (π̃n+1, n+ 1)−EnV

ε
2 (π̃n, n+ 1)

=

T/ε∑
j=n+1

En(π̃n+1 − π̃n)′E(π(θj)− π(θj+1))

= O(µε)(V (π̃n) + 1) +O(ε2) = O(ε2 + µ2)(V (π̃n) + 1),

(3.19)

and that

EnV
ε
2 (π̃n, n+ 1)− V ε2 (π̃n, n) = −π̃′

nE(π(θn)− π(θn+1)).(3.20)

Thus,

EnV
ε
2 (π̃n+1, n+ 1)− V ε2 (π̃n, n)

= −π̃′
nE(π(θn)− π(θn+1)) +O(µ2 + ε2)(V (π̃n) + 1).

(3.21)
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Redefine V ε1 and V ε2 with T/ε replaced by ∞. Estimates (3.9)–(3.21) still hold.
Define

W (π̃, n) = V (π̃) + V ε1 (π̃, n) + V ε2 (π̃, n).

Then, using the above estimates, we have

EnW (π̃n+1, n+ 1)−W (π̃n, n)

= EnV (π̃n+1)− V (π̃n) + En[V
ε
1 (π̃n+1, n+ 1)− V ε1 (π̃n, n)]

+ En[V
ε
2 (π̃n+1, n+ 1)− V ε2 (π̃n, n)]

= −2µV (π̃n) +O(µ2 + ε2)(V (π̃n) + 1).

(3.22)

This, together with (3.12) and (3.13) and T/ε replaced by ∞, implies

EnW (π̃n+1, n+ 1)−W (π̃n, n)

≤ −2µW (π̃n, n) +O(µ2 + ε2)(W (π̃n, n) + 1).
(3.23)

Choose µ and ε small enough so that there is a λ > 0 satisfying

−2µ+O(ε2) +O(µ2) ≤ −λµ.

Then, we get

EnW (π̃n+1, n+ 1) ≤ (1− λµ)W (π̃n, n) +O(µ2 + ε2).(3.24)

Taking the expectation and iterating on the resulting inequality yields

EW (π̃n+1, n+ 1) ≤ (1− λµ)n−NεEW (π̃0, 0) +

n∑
j=Nε

(1− λµ)j−NεO(µ2 + ε2)

≤ (1− λµ)n−NεEW (π̃0, 0) +O

(
µ+

ε2

µ

)
.

(3.25)

By taking n large enough, we can make (1− λµ)n−Nε = O(µ). Then

EW (π̃n+1, n+ 1) ≤ O
(
µ+

ε2

µ

)
.(3.26)

Finally, applying (3.12) and (3.13) again, replacing W (π̃, n) by V (π̃) adds another
O(ε) term. Thus we obtain

EV (π̃n+1) ≤ O
(
µ+ ε+

ε2

µ

)
.(3.27)

This concludes the proof.
Remark 3.2. In view of Theorem 3.1, in order that our adaptive algorithm can

track the time-varying parameter, the ratio ε/µ must not be large. Given the order-
of-magnitude estimate O(µ+ε+ε2/µ), to balance the two terms µ and ε2/µ, we need
to choose ε = O(µ). Therefore, we obtain the following result.

Corollary 3.3. Under the conditions of Theorem 3.1, if ε = O(µ), then for
sufficiently large n, E|π̃n|2 = O(µ).
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4. Limit system of regime switching ODEs. Our objective in this section
is to derive a limit system for an interpolated sequence of the iterates. Different
from the usual approach of stochastic approximation [4], where ε = o(µ), here and
henceforth, we take ε = O(µ). For notational simplicity, however, we use ε = µ.
For 0 < T < ∞, we construct a sequence of piecewise constant interpolation of the
stochastic approximation iterates π̂n as

π̂µ(t) = π̂n, t ∈ [µn, µn+ µ).(4.1)

The process π̂µ(·) so defined is in D([0, T ];RS), which is the space of functions defined
on [0, T ] taking values in RS that are right continuous, have left limits, and are
endowed with the Skorohod topology. We use weak convergence methods to carry
out the analysis. The application of weak convergence ideas usually requires proof
of tightness and the characterization of the limit processes. Different from the usual
approach of stochastic approximation, the limit is not a deterministic ODE but rather
a system of ODEs modulated by a continuous-time Markov chain.

Lemma 4.1. Under conditions (M) and (S), {πµ(·)} is tight in D([0, T ];RS).
Proof. By using the tightness criteria [14, p. 47], it suffices to verify that for any

δ > 0 and 0 < s ≤ δ,

lim
δ→0

lim sup
µ→0

E|π̂µ(t+ s)− π̂µ(t)|2 = 0.(4.2)

To begin, note that

π̂µ(t+ s)− π̂µ(t) = π̂(t+s)/µ − π̂t/µ

= µ

(t+s)/µ−1∑
k=t/µ

(Xk+1 − π̂k).
(4.3)

Note also that both the iterates and the observations are bounded uniformly. Then
the boundedness of {Xk} and {π̂k} implies that

E|π̂µ(t+ s)− π̂µ(t)|2

= E

⎡
⎣µ (t+s)/µ−1∑

k=t/µ

(Xk+1 − π̂k)′
⎤
⎦
⎡
⎣µ (t+s)/µ−1∑

j=t/µ

(Xj+1 − π̂j)
⎤
⎦

= µ2

(t+s)/µ−1∑
k=t/µ

(t+s)/µ−1∑
j=t/µ

E(Xk+1 − π̂k)′(Xj+1 − π̂j)

≤ Kµ2

(
t+ s

µ
− t

µ

)2

= K((t+ s)− t)2 = O(s2).

(4.4)

Taking lim supµ→0 and then limδ→0 in (4.4), equation (4.2) is verified, and so the
desired tightness follows.

4.1. Limit of the modulating Markov chain. Consider the Markov chain θn.
Regarding the probability vector and the n-step transition probability matrix, we have
the following approximation results.
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Lemma 4.2. Suppose that αηn is a Markov chain with a finite state space M =
M1 ∪M2 ∪ · · · ∪Ml and transition probability matrix

P η = diag(P 1, . . . , P l) + ηQ,(4.5)

where for each i, P i is a transition probability matrix that is irreducible and aperiodic,
and Q is a generator of a continuous-time Markov chain. For simplicity, denoteM =
{1, . . . ,m0}, pηn = (P (αηn = 1), . . . , P (αηn = m0)) with pη0 = p0, and the stationary
distribution of P i by νi (a row vector) for i = 1, . . . , l. Then for some k0 > 0,

pηn = diag(ν1, . . . , νl)z(t) +O

(
η + exp

(−k0t

η

))
,(4.6)

where z(t) ∈ R1×l (with t = ηn) satisfies

dz(t)

dt
= z(t)Q, z(0) = p0 diag(1lm1 , . . . , 1lml

),

with

Q = diag(ν1, . . . , νl)Qdiag(1lm1 , . . . , 1lml
).(4.7)

In addition, for n ≤ O(1/η), the n-step transition probability matrix satisfies (with
t = ηn),

(P η)n = Ξ(t) +O

(
η + exp

(−k0t

η

))
,(4.8)

where

Ξ(t) = diag(1lm1 , . . . , 1lml
)Θ(t) diag(ν1, . . . , νl),

dΘ(t)

dt
= Θ(t)Q, Θ(0) = I.

(4.9)

Proof. The proof is that of Theorems 3.5 and 4.3 of [23].
Lemma 4.3. Suppose that αηn is the Markov chain given in Lemma 4.2. Define

an aggregated process αηn = i if αηn ∈ Mi, and define an interpolated process αη(·)
by αη(t) = αηn if t ∈ [nη, nη + η). Then αη(·) converges weakly to α(·), which is a
continuous-time Markov chain generated by Q given in (4.7).

Proof. The proof of this result can be found in [24].
With the above two lemmas, we can now derive a result that will be used in the

subsequent analysis. The proof is essentially an application of the above lemmas.
Proposition 4.4. Assume (M). Choose ε = µ and consider the Markov chain

θn. Then the following assertions hold:
• Denote pµn = (P (θn = θ1), . . . , P (θn = θm0)). Then

pµn = z(t) +O

(
µ+ exp

(−k0t

µ

))
, z(t) ∈ R1×m0 ,

dz(t)

dt
= z(t)Q, z(0) = p0,

(Pµ)n = Z(t) +O

(
µ+ exp

(−k0t

µ

))
,

dZ(t)

dt
= Z(t)Q, Z(0) = I.

(4.10)
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• Define the continuous-time interpolation of θµn by θµ(t) = θn if t ∈ [nµ,
nµ + µ). Then θµ(·) converges weakly to θ(·), which is a continuous-time
Markov chain generated by Q.

Proof. Observe that the identity matrix in (2.2) can be written as

I = diag(1, . . . , 1) ∈ Rm0×m0 .

Each of the 1’s can be thought of as a 1 × 1 “transition matrix.” Note that under
the conditions for the Markov chain θn, the diag(ν1, . . . , νl) defined in (4.7) becomes
I ∈ Rm0×m0 , and diag(1lm1

, . . . , 1lml
) in (4.7) is also I. Moreover, the Q defined in

(4.7) is now simply Q. Straightforward applications of Lemmas 4.2 and 4.3 then yield
the desired results.

4.2. Characterization of the limit. Consider the pair (π̂µ(·), θµ(·)). Then
{π̂µ(·), θµ(·)} is tight in D([0, T ];RS ×M) for T > 0 by virtue of Proposition 4.4
and Lemma 4.1 together with the Cramér–Wold device [5, p. 48]. By virtue of Pro-
horov’s theorem, we can extract convergent subsequences. Do that, and still index
the subsequence by µ for notational simplicity. Denote the limit by π̂(·). By virtue
of the Skorohod representation, π̂µ(·) converges to π̂(·) w.p.1, and the convergence is
uniform on any compact set. We proceed to characterize the limit π̂(·). The result is
stated in the following theorem.

Theorem 4.5. Under conditions (M) and (S), (π̂µ(·), θµ(·)) converges weakly to
(π̂(·), θ(·)), which is a solution of the following switching ODE:

d

dt
π̂(t) = π(θ(t))− π̂(t), π̂(0) = π̂0.(4.11)

Remark 4.6. The above switching ODE displays a very different behavior than
the trajectories of systems derived from the classical ODE approach for SA. It involves
a random element since θ(t) is a continuous-time Markov chain with generator Q. Be-
cause of the regime switching, the system is qualitatively different from the existing
literature on SA methods. To analyze SA algorithms, the ODE methods (see [15, 16]
and [17]) are now standard and widely used in various applications. The rationale
is that the discrete iterations are compared with the continuous dynamics given by
a limit ODE. The ODE is then used to analyze the asymptotic properties of the
recursive algorithms. Dealing with tracking algorithms having time-varying features,
sometimes, one may obtain a nonautonomous differential equation [16, section 8.2.6],
but the systems are still purely deterministic. Unlike those mentioned above, the limit
dynamic system in Theorem 4.5 is only piecewise deterministic due to the underly-
ing Markov chain. In lieu of one ODE, we have a number of ODEs modulated by
a continuous-time Markov chain. At any given instance, the Markov chain dictates
which regime the system belongs to, and the corresponding system then follows one
of the ODEs until the modulating Markov chain jumps into a new location, which
explains the time-varying and regime switching nature of the systems under consid-
eration.

Proof. To obtain the desired limit, we prove that the limit (π̂(·), θ(·)) is the
solution of the martingale problem with operator L1 given by

L1f(x, θi) = ∇f ′(x, θi)(π(θi)− x) +Qf(x, ·)(θi) for each θi ∈M,(4.12)

where

Qf(x, ·)(θi) =
∑
j∈M

qijf(x, θj) =
∑
j �=i

qij [f(x, θj)− f(x, θi)] for each θi ∈M,
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and for each θi ∈M, f(·, θi) is twice continuously differentiable with compact support.
In the above, ∇f(x, θi) denotes the gradient of f(x, θi) with respect to x. Using
an argument as in [22, Lemma 7.18], it can be shown that the martingale problem
associated with the operator L1 has a unique solution. Thus, it remains to show that
the limit (π̂(·), θ(·)) is the solution of the martingale problem. To this end, we need
only show that for any positive integer �0, any t > 0, s > 0, and 0 < tj ≤ t, and any
bounded and continuous function hj(·, θi) for each θi ∈M with j ≤ �0,

E

�0∏
j=1

hj(π̂(tj), θ(tj))

×
[
f(π̂(t+ s), θ(t+ s))− f(π̂(t), θ(t))−

∫ t+s

t

L1f(π̂(u), θ(u))du

]
= 0.

(4.13)

To verify (4.13), we work with the processes indexed by µ and prove that the above
equation holds as µ→ 0.

First by the weak convergence of (π̂µ(·), θµ(·)) to (π̂(·), θ(·)) and the Skorohod
representation,

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj)) [f(π̂µ(t+ s), θµ(t+ s))− f(π̂µ(t), θµ(t))]

= E

�0∏
j=1

hj(π̂(tj), θ(tj)) [f(π̂(t+ s), θ(t+ s))− f(π̂(t), θ(t))] .

(4.14)

On the other hand, choose a sequence nµ such that nµ →∞ as µ→ 0, but µnµ → 0.
Divide [t, t+ s] into intervals of width δµ = µnµ. We have

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj)) [f(π̂µ(t+ s), θµ(t+ s))− f(π̂µ(t), θµ(t))]

= E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

[f(π̂lnµ+nµ
, θlnµ+nµ

)− f(π̂lnµ+nµ
, θlnµ

)]

+

(t+s)/µ−1∑
lnµ=t/µ

[f(π̂lnµ+nµ , θlnµ)− f(π̂lnµ , θlnµ)]

⎤
⎦ .

(4.15)

By virtue of the smoothness and boundedness of f(·, θ), it can be seen that

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

[f(π̂lnµ+nµ , θlnµ+nµ)− f(π̂lnµ+nµ , θlnµ)]

⎤
⎦

= lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

[f(π̂lnµ , θlnµ+nµ)− f(π̂lnµ , θlnµ)]

⎤
⎦ .

(4.16)
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Thus we need only work with the latter term. Moreover, letting µ → 0 and lδµ =
µlnµ → u and using nested expectation, we can insert Ek and obtain

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

[f(π̂lnµ
, θlnµ+nµ

)− f(π̂lnµ
, θlnµ

)]

⎤
⎦

= E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

m0∑
j=1

m0∑
i=1

lnµ+nµ−1∑
k=lnµ

[f(π̂lnµ
, θi)

× P (θk+1 = θi
∣∣θk = θj)− f(π̂lnµ

, θj)]I{θk=θj)}

⎤
⎦

= E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

⎡
⎣ δµ
nµ

m0∑
j=1

lnµ+nµ−1∑
k=lnµ

Qf(π̂lnµ
, ·)(θk)I{θk=θj}

⎤
⎦
⎤
⎦

→ E

�0∏
j=1

hj(π̂(tj), θ(tj))

[∫ t+s

t

Qf(π̂(u), θ(u))du

]
as µ→ 0.

(4.17)

Since π̂µlnµ
and θlnµ are Flnµ -measurable, by virtue of the continuity and bound-

edness of ∇f(·, θ),

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

(t+s)/µ−1∑
lnµ=t/µ

[f(π̂lnµ+nµ , θlnµ)− f(π̂lnµ , θlnµ)]

= E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

(t+s)/µ−1∑
lnµ=t/µ

⎡
⎣µ∇f ′(π̂lnµ

, θlnµ
)

lnµ+nµ−1∑
k=lnµ

Elnµ
(Xk+1 − π̂k)

⎤
⎦

+ o(1),

where o(1)→ 0 as µ→ 0. Next, consider the term

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

δµ

⎡
⎣ 1

nµ

lnµ+nµ−1∑
k=lnµ

ElnµXk+1

⎤
⎦
⎤
⎦ .(4.18)

Consider a fixed-θ process Xk(θ), which is a process with θk fixed at θk = θ for
lnµ ≤ k ≤ O(1/µ). Close scrutiny of the inner summation shows that

1

nµ

lnµ+nµ−1∑
k=lnµ

ElnµXk+1 can be approximated by
1

nµ

lnµ+nµ−1∑
k=lnµ

ElnµXk+1(θ)(4.19)

with an approximation error going to 0, since, Elnµ
[Xk+1 −Xk+1(θ)] = O(ε) = O(µ)
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by use of the transition matrix (2.2). Thus we have

1

nµ

lnµ+nµ−1∑
k=lnµ

Elnµ
Xk+1

=

m0∑
j=1

1

nµ

lnµ+nµ−1∑
k=lnµ

E
(
Xk+1(θj)I{θlnµ=θj}

∣∣θlnµ = θj

)
+ o(1)

=

m0∑
j=1

1

nµ

lnµ+nµ−1∑
k=lnµ

S∑
j1=1

ej1 [A(θj)]
k+1−lnµI{θlnµ=θj} + o(1),

where o(1) → 0 in probability as µ → 0. Henceforth, we write 1l in lieu of 1lS . Note
that for each j = 1, . . . , S, as nµ →∞ (recall that δµ = µnµ),

1

nµ

lnµ+nµ−1∑
k=lnµ

[A(θj)]
k+1−lnµ → 1lπ′(θj).

Note that I{θlnµ=θj} can be written as I{θµ(lδµ)=θj}. As µ → 0 and lδµ → u, by the

weak convergence of θµ(·) to θ(·) and the Skorohod representation, I{θµ(µlnµ)=θj} →
I{θ(u)=θj} w.p.1. Consequently, since 1lπ′(θj) has identical rows,

1

nµ

lnµ+nµ−1∑
k=lnµ

Elnµ
Xk+1 →

m0∑
j=1

π(θj)I{θ(u)=θj}

= π(θ(u)).

(4.20)

That is, the limit does not depend on the value of initial state, a salient feature of
Markov chains. As a result,

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

1

nµ

lnµ+nµ−1∑
k=lnµ

Elnµ
Xk+1

⎤
⎦

= E

�0∏
j=1

hj(π̂(tj), θ(tj))

⎡
⎣m0∑
j=1

∫ t+s

t

π(θj)I{θ(u)=θj}du

⎤
⎦

= E

�0∏
j=1

hj(π̂(tj), θ(tj))

[∫ t+s

t

π(θ(u))du

]
.

(4.21)

Likewise, it can be shown that, as µ→ 0,

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

δµ
1

nµ

lnµ+nµ−1∑
k=lnµ

π̂k

⎤
⎦

= E

�0∏
j=1

hj(π̂(tj), θ(tj))

[∫ t+s

t

π̂(u)du

]
.

(4.22)

Combining (4.14), (4.17), (4.21), and (4.22), the desired result follows.
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5. Switching diffusion limit. By Theorem 3.1,
{ π̂n−Eπ(θn)√

µ

}
is tight for n ≥

n0, for some positive integer n0. In an effort to evaluate the rate of variation of the
tracking error sequence, we define a scaled sequence of the tracking errors {vn} and
its continuous-time interpolation vµ(·) by

vn =
π̂n −E{π(θn)}√

µ
, n ≥ n0, vµ(t) = vn for t ∈ [nµ, nµ+ µ).(5.1)

We will derive a limit process for vµ(·) as µ→ 0. Similarly to the rate of convergence
study when θ is a fixed parameter (see [16, Chapter 10]), the scaling factor

√
µ,

together with the asymptotic covariance of the limit process, gives us a “rate of
convergence” result.

Note that from Proposition 4.4

E{π(θn)} = π̄(µn) +O(µ+ exp(−k0n)), where π̄(µn)
def
=

S∑
i=1

zi(µn)π(θi),(5.2)

where zi(t) is the ith component of z(t) given in Proposition 4.4. By (M), {θn} is a
Markov chain with stationary (time-invariant) transition probabilities, so in view of
(2.3),

vn+1 = vn − µvn +
√
µ(Xn+1 −E{π(θn)}) +

E[π(θn)− π(θn+1)]√
µ

.(5.3)

Our task in what follows is to figure out the asymptotic properties of vµ(·). We aim to
show that the limit is a switching diffusion using a martingale problem formulation.

5.1. Truncation and tightness. Owing to the definition (5.1), {vn} is not
a priori bounded. A convenient way to circumvent this difficulty is to use a truncation
device [16]. Let N > 0 be a fixed but otherwise arbitrary real number, SN (z) =
{z ∈ RS : |z| ≤ N} be the sphere with radius N , and τN (z) be a smooth function
satisfying

τN (z) =

{
1 if |z| ≤ N,
0 if |z| ≥ N + 1.

Note that τN (z) is “smoothly” connected between the sphere SN and SN+1. Now
define

vNn+1 = vNn − µvNn τN (vNn ) +
√
µ(Xn+1 −Eπ(θn)) +

E[π(θn)− π(θn+1)]√
µ

,(5.4)

and define vµ,N (·) to be the continuous-time interpolation of vNn . It then follows that

lim
k0→∞

lim sup
µ→0

P

(
sup

0≤t≤T
|vµ,N (t)| ≥ k0

)
= 0 for each T <∞

and that vµ,N (·) is a process that is equal to vµ(·) up until the first exit from SN ,
and hence an N -truncation process of vµ(·) [16, p. 284]. To proceed, we work with
{vµ,N (·)} and derive its tightness and weak convergence first. Finally, we let N →∞
to conclude the proof.
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Lemma 5.1. Under conditions (M) and (S), {vµ,N (·)} is tight in D(S[0, T ];RS),
and the process {vµ,N (·), θµ(·)} is tight in D([0, T ];RS ×M).

Proof. In fact, only the first assertion needs to be verified. In view of (5.4), for
any δ > 0 and t, s ≥ 0 with s ≤ δ,

vµ,N (t+ s)− vµ,N (t) = −µ
(t+s)/µ−1∑
k=t/µ

vNk τ
N (vNk ) +

√
µ

(t+s)/µ−1∑
k=t/µ

(Xk+1 −Eπ(θk))

+
1√
µ

(t+s)/µ−1∑
k=t/µ

E(π(θk)− π(θk+1)).

(5.5)

Owing to the N -truncation used,∣∣∣∣∣∣µ
(t+s)/µ−1∑
k=t/µ

vNk τ
N (vNk )

∣∣∣∣∣∣ ≤ Ks,
and as a result,

lim
δ→0

lim sup
µ→0

E

∣∣∣∣∣∣µ
(t+s)/µ−1∑
k=t/µ

vNk τ
N (vNk )

∣∣∣∣∣∣
2

= 0.(5.6)

Next, by virtue of (M), the irreducibility of the conditional Markov chain {Xn} implies
that it is φ-mixing with exponential mixing rate [5, p. 167], Eπ(θk) − EXk+1 → 0
exponentially fast, and consequently

E

∣∣∣∣∣∣µ
(t+s)/µ−1∑
k=t/µ

(Xk+1 −Eπ(θk))

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣µ
(t+s)/µ−1∑
k=t/µ

[(Xk+1 −EXk+1)− (Eπ(θk)−EXk+1)]

∣∣∣∣∣∣
2

= O(s).

This yields that

lim
δ→0

lim sup
µ→0

E

∣∣∣∣∣∣µ
(t+s)/µ−1∑
k=t/µ

(Xk+1 −Eπ(θk))

∣∣∣∣∣∣
2

= 0.(5.7)

In addition,

1√
µ

(t+s)/µ−1∑
k=t/µ

E(π(θk)− π(θk+1)) =
1√
µ

[Eπ(θt/µ)−Eπ(θ(t+s)/µ)] = O(
√
µ).(5.8)

Combining (5.5)–(5.8), we have

lim
δ→0

lim sup
µ→0

E
∣∣vµ,N (t+ s)− vµ,N (t)

∣∣2 = 0,

and hence the criterion [14, p. 47] implies that {vµ,N (·)} is tight.
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5.2. Representation of covariance. The main results to follow, Lemma 5.4
and Corollary 5.5 for the diffusion limit in section 5.3, require representation of the
covariance of the conditional Markov chain {Xk}. This is again worked out via the
use of fixed-θ process Xk(θ) similar in spirit to (4.19). For any integer m ≥ 0, for
m ≤ k ≤ O(1/µ), with θk fixed at θ, Xk+1(θ) is a finite-state Markov chain with
1-step irreducible transition matrix A(θ) and stationary distribution π(θ). Thus [5,
p. 167] implies that {Xk+1(θ) − EXk+1(θ)} is a φ-mixing sequence with zero mean
and exponential mixing rate, and hence it is strongly ergodic. Similarly to (4.19),
Xk+1−EXk+1 can be approximated by a fixed θ process Xk+1(θ)−EXk+1(θ). Taking
n = nµ ≤ O(1/µ) as µ→ 0, n→∞, and

lim
µ→0

1

n

n+m−1∑
k1=m

n+m−1∑
k=m

(Xk+1(θ)−EXk+1(θ))(Xk1+1(θ)−EXk1+1(θ))
′ = Σ(θ) w.p.1,

(5.9)

where Σ(θ) is an S × S deterministic matrix and

lim
µ→0

1

n

n+m−1∑
k1=m

n+m−1∑
k=m

E {(Xk+1(θ)−EXk+1(θ))(Xk1+1(θ)−EXk1+1(θ))
′} = Σ(θ).

(5.10)

Note that (5.9) is a consequence of φ-mixing and strong ergodicity, and (5.10) follows
from (5.9) by means of the dominated convergence theorem. Clearly, Σ(θ) is symmet-
ric and nonnegative definite. The following lemma gives an explicit formula for Σ(θ)
in terms of π(θ) and A(θ) and is useful for computational purposes.

Lemma 5.2. The covariance matrix Σ(θ) in (5.10) can be explicitly computed as

Σ(θ) = Z ′(θ)D(θ) +D(θ)Z(θ)−D(θ)− π(θ)π′(θ),(5.11)

where D(θ) = diag(π1(θ), . . . , πm0
(θ)) and Z(θ) is given by

Z(θ) = (I −A(θ) + 1lπ′(θ))−1
.

Remark 5.3. The Z(θ) is termed the “fundamental” matrix [6, p. 226]. As shown
in the aforementioned reference, because A(θ) is irreducible, Z(θ) is nonsingular.

Proof. Note that Σ(θ) = limµ→0 Σµ(θ), where Σµ(θ) can be expressed in terms of
π(θ) as

Σµ(θ) = Eξ0(θ)ξ
′
0(θ) +

−1∑
k=−
1/µ�

Eξk(θ)ξ
′
0(θ) +


1/µ�∑
k=1

Eξk(θ)ξ
′
0(θ),

ξk(θ)
def
= Xk(θ)− π(θ),

(5.12)

and {Xk(θ)} is a fixed-θ Markov chain with θ−
1/µ� = θ and θk = θ for all integer
k ≤ O(1/µ). Consider the terms in the above equation. For 0 < k ≤ O(1/µ),

Eξk(θ)ξ
′
0(θ) = EXk(θ)X

′
0(θ)− π(θ)π′(θ) = (Ak(θ))′E{X0(θ)X

′
0(θ)} − π(θ)π′(θ).

Since {Xk(θ)} is geometrically ergodic and starts at k = −�1/µ�, X0(θ) has distri-
bution π(θ), so E{X0(θ)X

′
0(θ)} = D(θ). Then using the fact that π(θ) = D(θ)1l, it
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follows that Eξk(θ)ξ
′
0(θ) = (Ak(θ)− 1lπ′(θ))′D(θ). Thus it is easily checked that

lim
µ→0


1/µ�∑
k=1

Eξk(θ)ξ
′
0(θ) = lim

µ→0


1/µ�∑
k=1

(
Ak(θ)− 1lπ′(θ)

)′
D(θ) = (Z(θ)− I)′D(θ);(5.13)

see also [6, p. 226], where it was shown that limµ→0

∑
1/µ�
k=1 (Ak(θ)(θ) − 1lπ′(θ)) =

Z(θ)− I. Similarly,

lim
µ→0

−1∑
k=−
1/µ�

Eξk(θ)ξ
′
0(θ) = D(θ)(Z(θ)− I),

Eξ0(θ)ξ
′
0(θ) = D(θ)− π(θ)π′(θ).

(5.14)

The expression (5.12) and the limits in (5.13) and (5.14) yield (5.11).

5.3. Weak limit via a martingale problem solution. To obtain the desired
weak convergence result, we work with the pair (vµ,N (·), θµ(·)). By virtue of the
tightness and Prohorov’s theorem, we can extract a weakly convergent subsequence
(still denoted by (vµ,N (·), θµ(·)) for simplicity) with limit (vN (·), θ(·)). We will show
that the limit is a switching diffusion.

To proceed with the diffusion approximation, similarly as in the proof of Theo-
rem 4.5, we will use the martingale problem formulation to derive the desired result.
For v ∈ RS , θ ∈ M, and any twice continuously differentiable function f(·, θ) with
compact support, consider the operator L defined by

Lf(v, θ) = −∇f ′(v, θ)v +
1

2
tr[∇2f(v, θ)Σ(θ)] +Qf(v, ·)(θ),(5.15)

where Σ(θ) is given by (5.10) and ∇2f(v, θ) denotes (∂2/∂vi∂vj)f(v, θ), the mixed
second-order partial derivatives. For any positive integer �0, any t > 0, s > 0, any
0 < tj ≤ t with j ≤ �0, and any bounded and continuous function hj(·, θ) for each
θ ∈M, we aim to derive an equation similar to (4.13) with the operator L1 replaced
by L. As in the proof of Theorem 4.5, we work with the sequence indexed by µ.
Choose nµ such that nµ → ∞ but δµ = µnµ → 0. The tightness of {vµ,N (·), θµ(·)}
and the Skorohod representation yield that (4.14)–(4.16) hold with π̂µ(·) and π̂(·)
replaced by vµ,N (·) and vN (·), respectively.

Lemma 5.4. Assume the conditions of Lemma 5.1 and that (vµ,N (0), θµ(0)) con-
verges weakly to (vN (0), θ(0)). Then (vµ,N (·), θµ(·)) converges weakly to (vN (·), θ(·)),
which is a solution of the martingale problem with operator LN given by

LNf(v, θ) = −∇f ′(vN , θ)vNτN (vN ) +
1

2
tr[∇2f(vN , θ)Σ(θ)] +Qf(vN , ·)(θ),(5.16)

or equivalently vN (·) satisfies

dvN (t) = −vN (t)τN (vN (t)) + Σ1/2(θ(t))dw,(5.17)

where w(·) is a standard S-dimensional Brownian motion and Σ(θ) is given by (5.10).

Proof. In view of (5.8), the term
∑(t+s)/µ−1
k=t/µ [Eπ(θk) − Eπ(θk+1)]/

√
µ = O(

√
µ)
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can be ignored in the characterization of the limit process. Moreover,

√
µ

(t+s)/µ−1∑
k=t/µ

[Xk+1 −Eπ(θk)]

=
√
µ

(t+s)/µ−1∑
k=t/µ

(Xk+1 −EXk+1) +
√
µ

(t+s)/µ−1∑
k=t/µ

(EXk+1 −Eπ(θk)).

Since EXk+1 − Eπ(θk)→ 0 exponentially fast owing to the elementary properties of
a Markov chain, the last term above is o(1) that goes to 0 as µ→ 0. Thus,

vµ,N (t+ s)− vµ,N (t) = −µ
(t+s)/µ−1∑
k=t/µ

vNk τ
N (vNk ) +

√
µ

(t+s)/µ−1∑
k=t/µ

(Xk+1 −EXk+1) + o(1).

(5.18)

Similarly to the argument in the proof of Theorem 4.5,

lim
µ→0

E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

[f(vNlnµ
, θlnµ+nµ

)− f(vNlnµ
, θlnµ

)]

⎤
⎦

= E

�0∏
j=1

hj(v
N (tj), θ(tj))

[∫ t+s

t

Qf(vN (u), θ(u))du

]
.

(5.19)

In addition,

lim
µ→0

E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡
⎣− (t+s)/µ−1∑

lnµ=t/µ

δµ
nµ

lnµ+nµ−1∑
k=lnµ

∇f ′(vNlnµ
, θlnµ)vNk τ

N (vNk )

⎤
⎦

= lim
µ→0

E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡
⎣− (t+s)/µ−1∑

lnµ=t/µ

δµ∇f ′(vNlnµ
, θlnµ)vNlnµ

τN (vNlnµ
)

⎤
⎦

= E

�0∏
j=1

hj(v
N (tj), θ(tj))

[
−
∫ t+s

t

∇f ′(vN (u), θ(u))vN (u)τN (vN (u))du

]
.

(5.20)

Next we note that

∣∣∣∣∣∣E
�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡
⎣√µ (t+s)/µ−1∑

lnµ=t/µ

∇f ′(vNlnµ
, θlnµ)

lnµ+nµ−1∑
k=lnµ

[Xk+1 −EXk+1]

⎤
⎦
∣∣∣∣∣∣

≤
∣∣∣∣∣∣E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡
⎣√µ (t+s)/µ−1∑

lnµ=t/µ

|∇f ′(vNlnµ
, θlnµ

)|

×
lnµ+nµ−1∑
k=lnµ

|Elnµ [Xk+1 −EXk+1]|
⎤
⎦
∣∣∣∣∣∣

→ 0 as µ→ 0

(5.21)
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owing to the mixing property.
Finally, define

glnµg
′
lnµ

=
1

nµ

lnµ+nµ−1∑
k=lnµ

lnµ+nµ−1∑
k1=lnµ

Elnµ [Xk+1 −EXk+1][Xk1+1 −EXk1+1]
′.

It follows that

E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

tr[∇2f(vNlnµ
, θlnµ)(vNlnµ+nµ

− vNlnµ
)

× (vNlnµ+nµ
− vNlnµ

)′]

⎤
⎦

= E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡
⎣m0∑
j=1

(t+s)/µ−1∑
lnµ=t/µ

tr[∇2f(vNlnµ
, θlnµ)(vNlnµ+nµ

− vNlnµ
)

× (vNlnµ+nµ
− vNlnµ

)′]I{θlnµ=θj}

⎤
⎦

= E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡
⎣m0∑
j=1

(t+s)/µ−1∑
lnµ=t/µ

δµtr[∇2f(vNlnµ
, θlnµ)Elnµglnµg

′
lnµ

]

× I{θlnµ=θj}

⎤
⎦+ ρµ,

where ρµ → 0 as µ → 0. Since it is conditioned on θlnµ
= θj , Xk+1 − EXk+1 can

be approximated by a fixed-θj process Xk+1(θj)−EXk+1(θj), and since Xk+1(θj)−
EXk+1(θj) is a finite-state Markov chain with irreducible transition matrix A(θj), it is
φ-mixing, and the argument in (5.10) implies that for each θj ∈M with j = 1, . . . ,m0,

1

nµ

lnµ+nµ−1∑
k=lnµ

lnµ+nµ−1∑
k1=lnµ

Elnµ(Xk+1(θj)−EXk+1(θj))(Xk1+1(θj)−EXk1+1(θj))
′

→ Σ(θj) w.p.1 as µ→ 0,

(5.22)

where Σ(θ) is defined in (5.10). By virtue of Lemma 4.3, θµ(·) converges weakly to
θ(·). As a result, by Skorohod representation, sending µ → 0 and lδµ → u leads to
θµ(µlnµ) converging to θ(u) w.p.1. In addition, I{θµ(lδµ)=θj} → I{θ(u)=θj} w.p.1. It
follows that
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E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡
⎣(t+s)/µ−1∑

lnµ=t/µ

tr
[∇2f(vNlnµ

, θlnµ
)(vNlnµ+nµ

− vNlnµ
)

× (vNlnµ+nµ
− vNlnµ

)′
]⎤⎦

→ E

�0∏
j=1

hj(v
N (tj), θ(tj))

⎡
⎣∫ t+s

t

m0∑
j=1

tr
[∇2f(vN (u), θj)Σ(θj)

]
I{θ(u)=θj}du

⎤
⎦

= E

�0∏
j=1

hj(v
N (tj), θ(tj))

[∫ t+s

t

tr
[∇2f(vN (u), θ(u))Σ(θ(u))

]
du

]
.

(5.23)

In view of (5.19)–(5.23), the desired result follows.
Corollary 5.5. Under the conditions of Lemma 5.4, the untruncated process

(vµ(·), θµ(·)) converges weakly to (v(·), θ(·)) satisfying the switching diffusion equation

dv(t) = −v(t)dt+ Σ1/2(θ(t))dw,(5.24)

where w(·) is a standard Brownian motion and Σ(θ) is given by (5.10).
Proof. The uniqueness of the associated martingale problem can be proved simi-

larly to that of [22, Lemma 7.18]. The rest of the proof follows from a similar argument
as in [16, Step 4, p. 285].

Combining Lemma 5.1, Lemma 5.4, and Corollary 5.5, we have proved the fol-
lowing result.

Theorem 5.6. Assume conditions (M) and (S) and that (vµ(0), θµ(0)) converges
weakly to (v(0), θ(0)). Then (vµ(·), θµ(·)) converges weakly to (v(·), θ(·)), which is the
solution of the martingale problem with operator defined by (5.15), or equivalently, it
is the solution of the system of diffusions with regime switching (5.24).

Remark 5.7. The reason for obtaining a result such as Theorem 5.6 stems from
the motivation for figuring out rates of convergence. If θ were a fixed parameter, we
would obtain a diffusion limit as those in [16, Chapter 10]. As a consequence, the
sequence vn will be approximately normal. Now, our motivation is still for getting
the rate of convergence. However, Theorem 5.6 reveals that vn is an asymptotically
Gaussian mixture. The mixture results from the time-varying parameter.

Remark 5.8. Occupation measure for hidden Markov model. The development
thus far concerns recursive estimation of the occupation measure π(θn), given exact
measurements of the conditional Markov sequence {Xn}. The above results can be ex-
tended to the hidden Markov model (HMM) case where the process {Xn} is observed
in noise as {Yn}, where

Yn = Xn + ζn.(5.25)

Assume that {ζn} satisfies the standard noise assumptions of an HMM [8, 13], i.e., it is
a mutually independent and identically distributed (i.i.d.) noise process independent
of Xn and θn. Then, given {Yn}, to recursively estimate π(θn), the following modified
version of the LMS algorithm (2.3) can be used. Replace Xn+1 in algorithm (2.3) by
Yn+1. The mean square error analysis, switching ODE, and switching diffusion results
of the previous sections carry over to this HMM case. More precisely, the following
theorem holds.
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Theorem 5.9. Consider the LMS algorithm (2.3), where Xn+1 is replaced by
the HMM observation Yn+1 defined in (5.25). Assume that the conditions of Theo-
rem 5.6 hold, that {ζn} is a sequence of i.i.d. random variables with zero mean and
E|ζ1|2 <∞, and that {ζn} is independent of {Xn} and {θn}. Then the conclusions
of Theorems 3.1, 4.5, and 5.6 continue to hold.

6. Application—Adaptive discrete stochastic optimization. In this sec-
tion we apply the results developed in sections 3–5 to analyzing the tracking per-
formance of an adaptive version of a discrete stochastic optimization algorithm pro-
posed by Andradóttir [2]. Throughout this section we assume that the M in (2.1) is
M = S = {e1, . . . , eS}, where ei denotes the standard unit vector. In what follows,
M denotes the set of candidate values from which the time-varying global minimizer
is chosen at each time instant (according to a slow Markov chain). S is the set of
candidate solutions for the discrete optimization. Because we assume M = S, we do
not use the notation S in this section. Note that the assumption thatM = S is made
purely for notational convenience. Indeed, the set M of possible values from which
the time-varying optimum is drawn can be any subset of S.

6.1. Static discrete stochastic optimization. Consider the following discrete
stochastic optimization problem:

min
θ∈M

E{cn(θ)},(6.1)

where for each fixed θ ∈M, {cn(θ)} is a sequence of i.i.d. random variables with finite
variance. Let K ⊂ M denote the set of global minimizers for (6.1). The problem is
static in the sense that the set K of global minima does not evolve with time.

When the expected value E{cn(θ)} can be evaluated analytically, (6.1) may be
solved using standard integer programming techniques. A more interesting and im-
portant case motivated by applications in operations research [20] and wireless com-
munication networks [11] is when E{cn(θ)} cannot be evaluated analytically and only
cn(θ) can be measured via simulation.

If a closed form solution of E{cn(θ)} cannot be obtained, a brute force method
[18, Chapter 5.3] of solving the discrete stochastic optimization problem involves an
exhaustive enumeration. It proceeds as follows: For each possible θ ∈ M, compute
the empirical average

ĉN (θ) =
1

N

N∑
i=1

ci(θ)

via simulation for large N , and pick out θ̂ = arg minθ∈M ĉN (θ).

Since for any fixed θ ∈ M, {cn(θ)} is an i.i.d. sequence of random variables
with finite variance, by virtue of Kolmogorov’s strong law of large numbers, ĉN (θ)→
E{c1(θ)} w.p.1 as N →∞. This and the finiteness ofM imply that, as N →∞,

arg min
θ∈M

ĉN (θ)→ arg min
θ∈M

E
{
c1(θ)
}

w.p.1.(6.2)

In principle, the above brute force simulation method can solve the discrete stochastic
optimization problem (6.1) for large N and the estimate is consistent, i.e., (6.2) holds.
However, the method is highly inefficient since ĉN (θ) needs to be evaluated for each
θ ∈ M. The evaluations of ĉN (θ) for θ /∈ K are wasted because they contribute
nothing to the estimation of ĉN (θ), θ ∈ K.
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The idea of discrete stochastic optimization in [3] is to design an algorithm that
is both consistent and attracted to the minimum. That is, the algorithm should
spend more time obtaining observations cn(θ) in areas of the state space M near
the minimizer θ, and less so in other areas. Thus in discrete stochastic optimization
the aim is to devise an efficient [18, Chapter 5.3] adaptive search (sampling plan),
which allows us to find the maximizer with as few samples as possible by not making
unnecessary observations at nonpromising values of θ.

In the papers [2] and [3], Andradóttir has proposed random search–based discrete
stochastic optimization algorithms for computing the global minimizer in (6.1). In this
subsection a brief outline of the assumptions and algorithm in [2] is given. Sections 6.2
and 6.3 analyze the performance of an adaptive version of the algorithm for tracking
a time-varying minimum. In [2], the following stochastic ordering assumption was
used.

(O) For each ei, ej ∈ M, there exists some random variable Y ei,ej such that for
all ei ∈ K, ej ∈ K, and el ∈M, l �= i, j,

P (Y ej ,ei > 0) ≥ P (Y ei,ej > 0), P (Y el,ei > 0) ≥ P (Y el,ej > 0),

P (Y ei,el ≤ 0) ≥ P (Y ej ,el ≤ 0).
(6.3)

Roughly speaking, this assumption ensures that the algorithm is more likely to
jump towards a global minimum than away from it; see [2] for details. Some examples
on how to choose Y ei,ej are given in [2]. For example, suppose cn(θ) = θ + wn(θ) in
(6.1) for each θ ∈M, where {wn(θ)} has a symmetric continuous probability density
function with zero mean. In this case simply choose Y ei,ej = cn(ei) − cn(ej). It is
easily established that such a Y ei,ej satisfies assumption (O). In [10] a stochastic
comparison algorithm is presented for this example.

The static discrete stochastic optimization algorithm presented in [2] is as follows.
Algorithm 1 (static discrete stochastic optimization algorithm).

a. Step 0: (Initialization) At time n = 0, select starting point X0 ∈ M. Set

π̂0 = X0, and select θ̂∗0 = X0.

b. Step 1: (Random search) At time n, sample X̃n with uniform distribution
fromM−{Xn}.

c. Step 2: (Evaluation and acceptance) Generate observation Y Xn,X̃n . If

Y Xn,X̃n > 0, set Xn+1 = X̃n; else, set Xn+1 = Xn.
d. Step 3: (LMS algorithm for updating occupation probabilities of Xn) Con-

struct π̂n+1 as

π̂n+1 = π̂n +
1

n
(Xn+1 − π̂n).

e. Step 4: (Compute estimate of the solution) θ̂∗n = ei∗ , where

i∗ = arg max
i∈{1,...,S}

π̂∗
n+1;

set n → n + 1 and go to Step 1 (π̂in+1 denotes the ith component of the
S-dimensional vector π̂n+1).

The main convergence results in [2] for the above algorithm can be summarized
as follows.

Theorem 6.1. Under assumption (O), the sequence {Xn} generated by Algo-
rithm 1 is a homogeneous, aperiodic, irreducible Markov chain with state space M.
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Furthermore, for sufficiently large n, {Xn} spends more time in K than other states;
i.e., if θ = ei is a global minimizer of (6.1), then the stationary distribution π(θ) of
{Xn} satisfies πi(θ) ≥ πj(θ), ej ∈ M − K, where πi(θ) denotes the ith component
of π(θ).

The theorem shows that θ̂∗n is attracted to and converges almost surely to an
element in K.

6.2. Adaptive discrete stochastic optimization algorithm. Motivated by
problems in spreading code optimization of CDMA wireless networks [11], we consider
a variant of Algorithm 1 where the optimal solution θ ∈ M of (6.1) is time-varying.
Denote this time-varying optimal solution as θn. We subsequently refer to θn as the
true parameter or hypermodel. Tracking such time-varying parameters is at the very
heart of applications of adaptive SA algorithms. We propose the following adaptive
algorithm.

Algorithm 2 (adaptive discrete stochastic optimization algorithm).

a. Steps 0-2: identical to Algorithm 1.
b. Step 3: (Constant step-size) Replace Step 3 of Algorithm 1 with a fixed-

step-size algorithm, i.e.,

π̂n+1 = π̂n + µ (Xn+1 − π̂n) ,(6.4)

where the step size µ is a small positive constant.
c. Step 4: identical to Algorithm 1.

Note that as long as 0 < µ < 1, π̂n is guaranteed to be a probability vector.
Intuitively, the constant step size µ introduces exponential forgetting of the past
occupation probabilities and permits tracking of slowly time-varying θn. The rest of
this section is devoted to obtaining bounds on the error probability of the estimate θ̂∗n
generated by Algorithm 2.

6.3. Convergence analysis of adaptive discrete SA algorithm. In adap-
tive filtering (e.g., LMS), a typical method for analyzing the tracking performance
of an adaptive algorithm is to postulate a hypermodel for the variation in the true
parameter {θn}. Since θn ∈ M and M is a finite state space, it is reasonable to
describe {θn} as a slow Markov chain onM for the subsequent analysis. Henceforth,
we assume that (M) holds for {θn}. Note that the hypermodel assumption is used
only for the analysis and does not enter the actual algorithm implementation; see
Algorithm 2.

Theorem 6.1 says that for fixed θn = θ the sequence {Xn} generated by Algo-
rithm 2 is a conditional Markov chain (conditioned on θn); i.e., assumption (S) of
section 2 holds. The update of the occupation probabilities (6.4) is identical to (2.3).
Thus the behavior of the sequence {π̂n} generated by Algorithm 2 exactly fits the
model of section 2 with m0 = S. In particular, the mean squares analysis of section 3,
the limit system of switching ODEs, and switching diffusion limit of section 5 hold.

Owing to the discrete nature of the underlying parameter θn, it makes sense to
give bounds on the probability of error of the estimates θ̂∗n generated by Step 4 of
Algorithm 2. Define the error event E and probability of error P (E) as

E = {θ̂∗n �= θn}, P (E) = P (θ̂∗n �= θn).(6.5)

Clearly E depends on n and the step size µ; we suppress the n here for notational
simplicity. When we wish to emphasize the n- and µ-dependence, we write it as Eµn .
Based on the mean square error of Theorem 3.1, the following result holds.
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Theorem 6.2. Under conditions (M) and (S), if µ = ε, then there is an n1 such

that for all n ≥ n1 the error probability of the estimate θ̂∗n generated by Algorithm 2
satisfies

P (E) = P (Eµn) ≤ Kµ1−2γ , 0 < γ <
1

2
,(6.6)

where K is a positive constant independent of µ and ε.
The above result can be used to check the consistency: As µ→ 0, the probability

of error P (E) of the tracking algorithm goes to zero. The constant K can be explicitly
determined; however, it is highly conservative.

Proof. The estimate of the maximum generated by the discrete stochastic opti-
mization algorithm at time n is π̂∗

n = arg maxj π̂
j
n (where π̂jn denotes the jth com-

ponent of the S-dimensional vector π̂n). Thus the error event E in (6.5) is equiva-
lent to E =

{
arg maxi π

i(θn) �= arg maxj π̂
j
n

}
. Then clearly the complement event

Ē =
{
arg maxi π

i(θn) = arg maxj π̂
j
n

}
satisfies

Ē ⊇
{∣∣∣∣max

i
πi(θn)−max

j
π̂jn

∣∣∣∣ ≤ min
i,j
|πi(θn)− π̂jn|

}

⊇
{∣∣∣∣max

i
πi(θn)−max

j
π̂jn

∣∣∣∣ ≤ L
}
,

where

L ≤ min
i,j
|πi(θn)− π̂jn|(6.7)

is a positive constant. Then the probability of no error is

P (Ē) = P

(
arg max

i
πi(θn) = arg max

j
π̂jn

)
> P

(∣∣∣∣max
i
πi(θn)−max

j
π̂jn

∣∣∣∣ ≤ L
)

for any sufficiently small positive number L. Then, using the above equation and
Theorem 3.1,

P (E) ≤ P
(∣∣∣∣max

i
πi(θn)−max

j
π̂jn

∣∣∣∣ > L

)

≤ P
(
max
i
|πi(θn)− π̂in| > L

)
.

(6.8)

Applying Chebyshev’s inequality to (3.1) yields, for any i,

P (|πi(θn)− π̂in| > L) ≤ 1

L2
Kµ

for some constant K. Thus (6.8) yields

P
(
max
i
|πi(θn)− π̂in| > L

)
≤ 1

L2
Kµ.(6.9)

It only remains to pick a sufficiently small L. Choose L = µγ , where 0 < γ < 1
2 is

arbitrary. It is clear that, for sufficiently small µ, L satisfies (6.7). Then (6.9) yields
P (E) ≤ Kµ1−2γ .
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Using the diffusion approximation Corollary 5.5 and Theorem 5.6, a sharper upper
bound for the error probability can be obtained as follows. First, without loss of
generality we may order the states θi ∈ M so that the covariances Σ(θ) are, in
ascending order,

Σ(θ1) ≤ Σ(θ2) ≤ · · · ≤ Σ(θS),(6.10)

where Σ(θi) ≤ Σ(θj) (resp., Σ(θi) < Σ(θj)) means that Σ(θi)− Σ(θj) is nonnegative
definite (resp., positive definite). Note that Σ(θi) is explicitly computable using (5.11).
Define

eji
def
= ej − ei, σji(θ)

def
=

√
eji,′Σ(θ)eji.(6.11)

Theorem 6.3. Assume that conditions (M) and (S) hold and that µ = ε. Then

for sufficiently large n the error probability of the estimate θ̂n generated by Algorithm 2
satisfies

P (E) =

S∑
i=1

P (θn = θi)P (E|θn = θi) =

S∑
i=1

zi(µn)P (E|θn = θi) +O(µ+ exp(−k0n)),

(6.12)

P (E|θn = θi) ≤
S∑
j=1

j �=i

[
I(eji,′π̄(µn) ≤ 0)Φc

(−eji,′π̄(µn)/
√
µ

σji(θ1)/2

)

+ I(eji,′π̄(µn) > 0)Φc
(−eji,′π̄(µn)/

√
µ

σji(θS)/2

)]
,

(6.13)

where zi(·), π̄(·) are defined in (5.2), and σji(·) are defined in (6.11), which can be
computed using (5.11) and Φc(·) = 1 − Φ(·), with Φ(·) being the standard normal
distribution function.

Proof. Clearly P (E) =
∑S
i=1 P (θn = θi)P (E|θn = θi). Then (5.2) yields (6.12).

Now

P (E|θn = θi) = P

(
arg max

j
π̂jn �= ei|θn = θi

)

= P

⎛
⎜⎜⎝

S⋃
j=1

j �=i

{π̂jn − π̂in > 0} | θn = θi

⎞
⎟⎟⎠

≤
S∑
j=1

j �=i

P
(
π̂jn − π̂in > 0 | θn = θi

)
(union bound).

Upper bounds for each of the S − 1 terms in the above summation will now be
constructed.

Using (5.1), with π̄(µn) defined in (5.2),

π̂n = E{π(θn)}+
√
µvn = π̄(µn) +

√
µvn +O(µ+ exp(−k0n)),(6.14)
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where v(t), the limit of the interpolation of vn, satisfies the switching diffusion (5.24),
and Σ(θi) are in ascending order as in (6.10).

Define scalar processes βjin and βji(t) as βjin = eji,′vn and βji(t) = eji,′v(t). Then
βji(t) satisfies the real-valued switching diffusion

dβji(t) = −βji(t)dt+ σji(θ(t))db(t),

where σji(θ(t)) is defined in (6.11) and b(t) is a real-valued standard Brownian motion.
Owing to (6.14), π̂jn − π̂in = eji,′π̂n = eji,′π̄(µn) +

√
µβjin + O(µ + exp(−k0n)).

Since the O(µ+ exp(−k0n)) does not contribute to the limit in distribution, we drop
it henceforth. We have

P
(
π̂jn − π̂in > 0 | θn = θi

)
= P

(
βjin >

−eji,′π̄(µn)√
µ

∣∣∣∣ θn = θi

)
.(6.15)

Since the process βjin is a Gaussian mixture and the limiting process βji(t) is a
switching diffusion, it is difficult to explicitly compute the right-hand side of (6.15).
However, it can be upper-bounded by considering the Gaussian diffusion processes

βji(t) and β
ji

(t), which are defined as follows:

dβji(t) = −βji(t)dt+ σji(θ1)db(t), βji(0) = βji(0),

dβ
ji

(t) = −βji(t)dt+ σji(θS)db(t), β
ji

(0) = βji(0).

Due to the ordering of the positive definite matrices Σ(θi) in (6.10), the scalars σji(θi)
satisfy

σji(θ1) ≤ σji(θ2) ≤ · · · ≤ σji(θS).(6.16)

To proceed, we claim the following result and postpone the proof until later.
Lemma 6.4. For any a > 0, P (βji(t) ≤ a) ≥ P (βji(t) ≤ a|θ(t) = θi) ≥

P (β
ji

(t) ≤ a). For any a ≤ 0, P (βji(t) ≤ a) ≤ P (βji(t) ≤ a|θ(t) = θi) ≤
P (β

ji
(t) ≤ a).

Lemma 6.4 implies that

P (βji(t) > a|θ(t) = θi) ≤ I(a > 0)P (βji(t) > a) + I(a ≤ 0)P (β
ji

(t) > a).(6.17)

Since βji(t) and β
ji

(t) are real-valued diffusions and are stable, their stationary co-

variances are easily computed as σ2 = σ2
ji(θ1)/2 and σ2 = σ2

ji(θS)/2, respectively.

Thus, asymptotically βji(t), β
ji

(t) are Gaussian random variables with zero mean

and variance σ2
ji(θ1)/2 and σ2

ji(θS)/2, respectively. Then (6.17) yields

P (βji(t) > a|θ(t) = θi) ≤ I(a > 0)Φc
(

a

σji(θ1)/2

)
+ I(a ≤ 0)Φc

(
a

σji(θS)/2

)
.

Thus for sufficiently large n and sufficiently small µ > 0,

P (βjin > a|θn = θi) ≤ I(a > 0)Φc
(

a

σji(θ1)/2

)
+ I(a ≤ 0)Φc

(
a

σji(θS)/2

)
.

Using this in (6.15) proves the theorem.
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Proof of Lemma 6.4. Let t1 < t2 < · · · < tN ≤ t denote the sequence of jump
times of the Markov chain {θ(t)}. Let Gt denote the σ-algebra generated by {θ(s) :
s < t, θ(t)}. Then

βji(t) = e−t
[
σji(θ(0))

∫ t1−

0

eτdb(τ) + σji(θ(t1))

∫ t2−

t1

eτdb(τ) + · · ·

+ σji(θ(tN ))

∫ t

tN

eτdb(τ)

]
,

βji(t) = e−t
[
σji(θ1)

∫ t1−

0

eτdb(τ) + σji(θ1)

∫ t2−

t1

eτdb(τ) + · · ·

+ σji(θ1)

∫ t

tN

eτdb(τ)

]
,

where βji(t) is a zero mean scalar Gaussian variable. Conditioned on Gt, βji(t) is

a zero mean scalar Gaussian random variable. Since σji(θ1) ≤ σji(θ(t)) for all t
by (6.16), clearly E{βji(t)}2 ≤ E{βji(t)}2. Hence for x > 0, E{I(βji(t) ≤ x)} >
E{I(βji(t) ≤ x)|Gt, θ(t)}. Taking E{·|θ(t)} on both sides and using the fact that
βji(t) is independent of θ(t) yields P (βji(t) ≤ x) > P (βji(t) ≤ x|θ(t)). The result for

β
ji

(t) is established similarly.
Remark 6.5. First, Markov chain Monte Carlo–based simulation methods can be

used to evaluate the probability of error of the algorithm. In addition, a Gaussian
approximation–based heuristic expression can be obtained for the probability error
bounds of Algorithm 2 in lieu of Theorem 6.3. Consider a real-valued switching
diffusion process

dx = −xdt+ σ(θ(t))db,

where θ(t) is the limit Markov chain as in section 5. The negative term −x implies
that the system is stable. Thus, by virtue of an argument as in [16, p. 323], the
covariance is given by

Ex(t)x(0) = E

(∫ t

−∞
exp(−(t− s))σ(θ(s))db(s)

)(∫ 0

−∞
exp(−s)σ(θ(s))db(s)

)
.

Assume in addition that the generator Q of the Markov chain θ(t) (the one given
in condition (M)) is irreducible, which implies (see [22]) that, except for zero, all
other eigenvalues are on the left half of the complex plan. As a result, the stationary
covariance exists and is given by

σ̃2 = E

S∑
l=1

∫ ∞

0

exp(−2s)σ2(θl)I{θ(s)=θl}ds.(6.18)

This covariance may be computed via the Monte Carlo method. Using σ̃2, an approx-
imation of the probability of error for Algorithm 2 can be computed.
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PATTERN SEARCH METHODS FOR USER-PROVIDED POINTS:
APPLICATION TO MOLECULAR GEOMETRY PROBLEMS∗
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Abstract. This paper deals with the application of pattern search methods to the numerical
solution of a class of molecular geometry problems with important applications in molecular physics
and chemistry. The goal is to find a configuration of a cluster or a molecule with minimum total
energy.

The minimization problems in this class of molecular geometry problems have no constraints,
and the objective function is smooth. The difficulties arise from the existence of several local minima
and, especially, from the expensive function evaluation (total energy) and the possible nonavailability
of first-order derivatives.

We introduce a pattern search approach that attempts to exploit the physical nature of the
problem by using energy lowering geometrical transformations and to take advantage of parallelism
without the use of derivatives. Numerical results for a particular instance of this new class of pattern
search methods are presented, showing the promise of our approach.

The new pattern search methods can be used in any other context where there is a user-provided
scheme to generate points leading to a potential objective function decrease.

Key words. pattern search methods, expensive function evaluations, parallel computing, user-
provided points, molecular geometry, geometrical transformations

AMS subject classifications. 49M37, 65K05, 65Z05, 81V55, 90C30, 90C56, 90C90, 92E99
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1. Introduction. The motivation behind the study of the geometrical arrange-
ment of atoms in a molecule or cluster is its close relation to their chemical and
physical properties (e.g., optical response). For example, patterns in the structure
of related systems can give a powerful insight into their physical properties. This is
the case, for instance, of atomic clusters of different sizes of a single element, or of
different elements in the same group of the periodic table. In most cases, clear and
unambiguous structural information is difficult to obtain experimentally; theory then
plays a particularly important role.

The stable configurations of atoms in any material can be found by minimization
of the total energy of the system with respect to the atomic positions. The most stable
structure is the one with the lowest total energy. The theoretical procedure can be
seen as two separate problems: obtaining the total energy for a given configuration
and minimizing it with respect to the atomic coordinates. Only the second problem
is to be addressed in this work. There are several geometrically distinct structures
(isomers) (i.e., structures with the same number of atoms but different shapes) for
which the total energy is locally minimized. As some of these can be simultaneously
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present in an experiment, it is sometimes desirable not only to find the lowest energy
structure but also to find other low-lying local minima. The number of these local
energy minima grows exponentially with the number of atoms, making it hard to find
the lowest energy configuration of a moderately sized cluster or molecule,1 even when
using two-body potentials that give rise to smooth energy surfaces. For Lennard–
Jones clusters, it has been found that the number of isomers grows from 2 for a
6-atom cluster to 988 for a 13-atom cluster [14], although realistic potentials yield
fewer local minima.

With the exception of noble gases, Lennard–Jones potentials provide very unre-
alistic descriptions of physical systems. We are interested in more realistic approx-
imations such as the local density plane-wave total energy calculation [18] briefly
described in Appendix B. The expensive numerical minimization of the total energy
calculated with this method motivated the work reported in this paper.

Methods commonly used to minimize the total energy include simulated anneal-
ing, steepest descent and other gradient-based methods, and genetic algorithms. Good
results have been obtained by coupling some of these. An example is the so-called
Langevin dynamics method, proposed some years ago by Biswas and Hamann [3]. This
minimization method is a combination of simulated annealing and gradient techniques,
and has proved to be very efficient for small molecules. The total energy gradient gives
the internal forces on the atoms, which can be used to “guide” the annealing process,
i.e., to introduce a bias in the minimization process, turning it into a “smart simu-
lated annealing,” as the system does not evolve at random. Despite the use of the
gradient, the Langevin dynamics method retains the possibility of moving away from
local minima that are not global. But this approach has several drawbacks. On one
hand, it is not by itself parallelizable. On the other hand, it is developed to run for
a given fixed number of iterations, instead of incorporating an autonomous stopping
criterion. Furthermore, the method requires the possibly expensive calculation of the
gradient. Another popular method that combines simulated annealing and gradient
techniques is the method of Car and Parrinello [6] that also shares these numerical
inconveniences.

In many cases, obtaining the gradient of the total energy can be too time-
consuming. Only in the simpler (least accurate) methods of calculating the total
energy of a cluster is the gradient available at moderate cost. Moreover, there are sit-
uations where the gradient is not available [33]. Therefore, many interesting problems
in physics are being tackled using methods where no calculation of the total energy
gradient is required. Among the methods which do not require the computation of
the gradient are pattern search methods. In this paper, we develop a class of pattern
search methods suited for molecular geometry problems and apply it to sodium clus-
ters to determine the geometry that minimizes the total energy. (Sodium clusters are
a typical, well-known test system in cluster physics.) This paper does not address the
local refinement that could be achieved by applying local optimization techniques af-
ter the conformational searching has been applied, in order to identify more precisely
the global optimizer; pattern search methods are used only in the conformational
searching.

Pattern search methods are an instance of direct search methods where the
step directions are not modified at the end of each iteration. Examples of pat-
tern search methods are the coordinate search with fixed step lengths, evolutionary

1The terms cluster and molecule will be used without any distinction being made between them.
In all cases they should be interpreted as referring simply to a collection of atoms.
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operation using factorial designs [5], the original pattern search algorithm of Hooke
and Jeeves [16], and the multidirectional search algorithm of Dennis and Torczon [10]
(see also [28]), also referred to as the parallel direct search (PDS) method. A unified
framework for pattern search methods was proposed by Torczon [29] and improved
by Audet and Dennis [2] (see also the essay [21]). Surveys of other derivative free
methods, including other direct search methods for unconstrained optimization (such
as the well-known Nelder–Mead algorithm [23]) can be found in [8, 27, 30, 32].

The application of pattern search methods to molecular geometry is not new.
Meza and Martinez [22] have compared PDS, genetic algorithms, and simulated an-
nealing using Lennard–Jones potentials, concluding that PDS could also be used in
conformational searching, and showing that it performed as well as genetic algorithms
and substantially better than simulated annealing for large molecules. Pattern search
methods have also been combined with evolutionary techniques (see the work by Hart
[12, 13]), and the resulting evolutionary pattern search method compared favorably
with evolutionary algorithms.

This paper is divided as follows. We start in section 2 by introducing pattern
search methods in a quite general framework. In section 3 we introduce our new class
of pattern search methods for user-provided points: section 3.1 presents a family
of positive bases with desirable uniform directionality properties, and section 3.2
combines the pattern generated by these positive bases with user-provided points
and develops the new class of pattern search methods. The user-provided points
computation is illustrated by introducing geometrical transformations with physical
meaning in the context of molecular geometry (see Appendix A). In section 4 we
show numerical results with an implementation of our pattern search methods for
user-provided points in molecular geometry problems. Finally, in section 5 we draw
conclusions and present prospects for future work. In Appendix B we provide a brief
description of the total energy evaluation and comment on its numerical complexity.

This new class of pattern search methods can also be applied in other contexts
where the user can provide a scheme to compute points that may lead to an objec-
tive function decrease. We have implemented this class of pattern search methods
for general user-provided points as well as for the molecular geometry context de-
scribed above. The codes and their documentation can be downloaded from the web
site http://www.mat.uc.pt/∼lnv/psm/. Both versions have been implemented in For-
tran 95. The parallel version uses the parallelization protocol MPI; see [1] for more
details.

2. Pattern search methods and positive bases. We use ‖ · ‖ and 〈·, ·〉 to
represent the Euclidean norm and inner product, respectively. By abuse of notation,
if A is a matrix, a ∈ A means that the vector a is a column of A. It will be also
convenient to assume that [a1 · · · ar] represents not only the matrix with r columns,
but also, depending on the context, the set of r vectors {a1, . . . , ar}. The identity
matrix is denoted by I and its ith column by ei. Finally, we write e to represent a
vector of ones with appropriate size.

2.1. Positive bases. We present a few basic properties of positive bases from
the theory of positive linear dependence developed by Davis [9] (see also Lewis and
Torczon [20]). The positive span2 of a set of vectors [v1 · · · vr] is the convex cone

{v ∈ Rn : v = α1v1 + · · ·+ αrvr, αi ≥ 0, i = 1, . . . , r} .
2Strictly speaking, we should have written nonnegative instead of positive, but we decided to

follow the notation in [9, 20]. We also note that by span we mean linear span.
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The set [v1 · · · vr] is said to be positively dependent if one of the vectors is in the
convex cone positively spanned by the remaining vectors, i.e., if one of the vectors is
a positive combination of the others; otherwise, the set is positively independent. A
positive basis is a positively independent set whose positive span is Rn. Alternatively,
a positive basis for Rn can be defined as a set of nonzero vectors of Rn whose positive
combinations span Rn, but no proper set does. The following theorem [9] indicates
that a positive spanning set contains at least n+ 1 vectors in Rn.

Theorem 2.1. If [v1 · · · vr] positively spans Rn, then it contains a subset with
r − 1 elements that spans Rn.

It can also be shown that a positive basis cannot contain more than 2n ele-
ments [9]. Positive bases with n+ 1 and 2n elements are referred to as minimal and
maximal positive bases, respectively.

We now present three necessary and sufficient characterizations for a set that
spans Rn to also span Rn positively [9].

Theorem 2.2. Let [v1 · · · vr], with vi �= 0 for all i ∈ {1, . . . , r}, span Rn. Then
the following are equivalent:

(i) [v1 · · · vr] positively spans for Rn.
(ii) For every i = 1, . . . , r, −vi is in the convex cone positively spanned by the

remaining r − 1 vectors.
(iii) There exist real scalars α1, . . . , αr with αi > 0, i ∈ {1, . . . , r}, such that∑r

i=1 αivi = 0.
(iv) For every nonzero vector b ∈ Rn, there exists an index i in {1, . . . , r} for

which b�vi > 0.
The following result provides a simple mechanism for generating different positive

bases. The proof can be found in [20].
Theorem 2.3. Suppose [v1 · · · vr] is a positive basis for Rn and B ∈ Rn×n is a

nonsingular matrix. Then [Bv1 · · ·Bvr] is also a positive basis for Rn.
From Theorems 2.2 and 2.3, we can easily deduce the following corollary.
Corollary 2.1. Let B = [b1 · · · bn] ∈ Rn×n be a nonsingular matrix. Then

[B −∑n
i=1 bi] is a positive basis for Rn.

A trivial consequence of this corollary is that [I −e] is a positive basis.

2.2. Pattern search methods. We present pattern search methods for uncon-
strained optimization problems of the form

min f(x), x ∈ Rn,
and briefly describe their main convergence properties. Pattern search methods are
iterative methods generating a sequence of iterates {xk}. Given the current iterate xk,
at each iteration k, the next point xk+1 is chosen from a finite number of candidates
on a given mesh Mk. The next iterate, if iteration k is successful, must provide a
decrease on the objective function: f(xk+1) < f(xk).

In order to define the mesh Mk, let us consider a set V of m positive bases. For
convenience, let us abuse notation and also denote by V the matrix whose columns
correspond to the vectors in the m positive bases. The number of columns of V,
denoted by |V|, is the sum of the number of vectors in all positive bases. The mesh
at iteration k is then defined as

Mk = {xk + ∆kVz : z ∈W ⊆ Z|V|},(2.1)

where ∆k > 0 is the mesh size parameter. Possible choices for W are

W = Z
|V|, W = N

|V|.
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The choice we actually use in our implementation is

W = {nei : n ∈ N, i = 1, . . . , |V|}.(2.2)

The mechanism of pattern search methods is best explained by considering two
phases at every iteration. The first phase, or step, consists of a finite search on the
mesh, with the goal of finding a new iterate that decreases the value of the objective
function at the current iterate. This step, called the search step, is free of any other
rules, as long as it searches only a finite number of points in the mesh. If the search
step is unsuccessful, a second phase or step, called the poll step, is performed around
the current iterate with the goal of decreasing the objective function.

The poll step follows stricter rules and appeals to the concept of a positive basis
described in the previous section. In this step the candidate for a new iterate xk+1 is
chosen in the mesh neighborhood around xk

N (xk) = {xk + ∆kv : for all v ∈ Vk(xk)},

where Vk(xk) is a positive basis chosen from the finite set V of positive bases. This
set V of positive bases is specified a priori, but the choice of each Vk(xk) ∈ V may
depend on k and xk. Note that the poll step also searches points in the mesh since
every column v of any of the positive bases in V is of the form Vz with z = ei for a
given i ∈ {1, . . . , |V|}.

We now have all the ingredients to describe pattern search methods.
Algorithm 2.1 (pattern search methods).

0. Initialization. Choose a rational number τ > 1 and an integer number mmax ≥ 1.
Choose x0 ∈ Rn and ∆0 ∈ R+. Set k = 0.

1. Search step (in current mesh). With the goal of decreasing f(xk), try to obtain
xtrialk+1 by evaluating f at a finite number of points in Mk. If xtrialk+1 ∈ Mk is

found satisfying f(xtrialk+1 ) < f(xk), then set xk+1 = xtrialk+1 , and go to step 3,
expanding Mk. (The search step and iteration are declared successful.)

2. Poll step (in mesh neighborhood given by the positive basis). This step is reached
only if the search step is unsuccessful. If f(xk) ≤ f(x) for every x in the
mesh neighborhood N (xk), go to step 4, shrinking Mk. (The poll step and
iteration are declared unsuccessful.) Otherwise, choose a point xk+1 ∈ N (xk)
such that f(xk+1) < f(xk) and go to step 3, expanding Mk. (The poll step
and iteration are declared successful.)

3. Mesh expansion (at successful iterations). Let ∆k+1 = τm
+
k ∆k (with 0 ≤ m+

k ≤
mmax). Increase k by one, and move to step 1 for a new iteration.

4. Mesh reduction (at unsuccessful iterations). Let ∆k+1 = τm
−
k ∆k (with −mmax ≤

m−
k ≤ −1). Increase k by one, and move to step 1 for a new iteration.

The search step provides the flexibility for a global search and influences the
quality of the local minimizer or stationary point found by the method. The poll
step is applied when the search step fails to produce a better point. The poll step
attempts to perform a local search in a mesh neighborhood that, for a sufficient
small mesh parameter ∆k, is guaranteed to provide a function reduction, unless the
current iterate is at a stationary point (a fact that can be inferred by Theorem 2.2.iv
with b = −∇f(xk)). So, if the poll step also fails, the mesh parameter ∆k must be
decreased.

An interesting feature of pattern search methods is the simple way in which
they can be parallelized. The poll step and the search step can be implemented by
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requiring different processors to evaluate the objective function at different points;
their strategies can actually depend on the number of processors available.

Pattern search methods, as described above, share the following convergence re-
sult, provided the following assumption is made on the mesh: each column i of V is
given by Gz̄i, where G ∈ Rn×n is a nonsingular generating matrix and z̄i is an integer
vector in Zn.

Theorem 2.4. Suppose that the level set L(x0) = {x ∈ Rn : f(x) ≤ f(x0)}
is compact and that f is continuously differentiable in an open set containing L(x0).
Then

lim inf
k−→+∞

‖∇f(xk)‖ = 0,

and there exists at least one limit point x∗ such that ∇f(x∗) = 0.
Furthermore, if limk−→+∞ ∆k = 0, ‖xk+1−xk‖ ≤ C∆k for some constant C > 0

independent of the iteration counter k, and xk+1 = argminx∈N (xk)f(x) in the poll
step, then

lim
k−→+∞

‖∇f(xk)‖ = 0,

and every limit point x∗ satisfies ∇f(x∗) = 0.
The proof can be found, for instance, in [2, 20, 29].
We note finally that the condition xk+1 = argminx∈N (xk)f(x) can be implemented

in the poll step and that the condition ‖xk+1−xk‖ ≤ C∆k is verified for some positive
constant C if the choice of z in (2.1) is limited to a bounded set.

The results of Theorem 2.4 concern the ability of pattern search methods to
converge globally (i.e., from arbitrary points) to local minimizers candidates. We
recall, despite the nonexistence of any supporting theory, that there is numerical
evidence about the capability of pattern search methods to compute global minimizers
(see the papers [12, 13, 22] and the numerical experiments reported in this paper).

3. Pattern search methods for user-provided points: Application to
molecular geometry problems. Having described pattern search methods in a
general framework, we turn now to their application to the situation where one would
like to take advantage of a user-provided points calculation, like the one we will
describe in the context of molecular geometry problems. Our goal is to develop a
class of pattern search methods especially tailored to these problems, where each
optimization step is physically meaningful.

We accomplish our intention by identifying a set of geometrical transformations—
the user-provided points—viewed as deformations of the molecular shape with physical
meaning that may provide an energy lowering path. However, as we will see in
Appendix A, these geometrical transformations are dependent on the data of the
current configuration. In other words, they depend on each optimization point xk,
which stores the coordinates of the current configuration, and therefore they cannot
themselves define a pattern and a mesh. (Asymptotically, the dependence would be
on the sequence {xk}, ruining the finiteness property of the pattern matrices.)

As we will see in section 3.1, we then define a pattern with interesting uniform
directionality properties to fit the geometrical transformation procedure, or any other
user-provided points calculation.

A new trial point for the search step is computed by geometrical transformation
followed by a computation that determines approximately the closest point in the
patterned mesh to the point calculated by geometrical transformation.
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The positive basis needed to define the mesh neighborhood in the poll step is
identified after a point is computed again by a geometrical transformation: among all
the vectors in the set of positive bases, the one that makes the smallest angle with
the vector defined by the current point and the point computed by the geometrical
transformation is identified. This vector in turn identifies the positive basis to be used
in the poll step.

The search and poll steps of this new class of pattern search methods for user-
provided points (e.g., geometrical transformations) are described in section 3.2.

3.1. Positive bases with uniform angles. We start by introducing the pat-
tern onto which geometrical transformations will be projected. Consider n+1 vectors
v1, . . . , vn+1 in Rn for which all the angles between pairs vi, vj (i �= j) have the same
amplitude α. Assuming that the n + 1 vectors are normalized, this requirement is
expressed as

a = cos(α) = 〈vi, vj〉, i, j ∈ {1, . . . , n+ 1}, i �= j,(3.1)

where a �= 1. One can show that a = −1/n. Let us assume, without loss of generality,
that

vn+1 =

n∑
i=1

αivi(3.2)

for some scalars α1, . . . , αn ∈ R. From (3.1) and (3.2), we obtain

1 = a

n∑
i=1

αi,(3.3)

a =

n∑
i=1,i �=j

aαi + αj , j = 1, . . . , n.(3.4)

Adding all the rows in (3.4) yields

na = (1 + (n− 1)a)

n∑
i=1

αi.(3.5)

From (3.3) and (3.5) we have that na2 + (1− n)a− 1 = 0, and thus, since a �= 1, we
conclude that a = −1/n.

Now we seek a set of n + 1 normalized vectors [v1 · · · vn+1] satisfying property
(3.1) with a = −1/n. Let us first compute v1, . . . , vn; i.e., let us compute a matrix
V = [v1 · · · vn] such that

V �V = A,

where A is the matrix given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1/n −1/n · · · −1/n
−1/n 1 −1/n · · · −1/n

...
. . .

...
. . .

−1/n −1/n −1/n · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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The matrix A is symmetric and diagonally dominant with positive diagonal entries,
and, therefore, it is positive definite [11]. Thus, we can make use of its eigenvalue
decomposition

A = QΛQ�,

where Q ∈ Rn×n is orthogonal and Λ is a diagonal matrix of order n with positive
diagonal entries. Given this decomposition, one can easily see that a choice for V is
determined by

V = [v1 · · · vn] = QΛ
1
2Q�.(3.6)

The vector vn+1 is then computed by

vn+1 = −
n∑
i=1

vi.(3.7)

It is obvious that 〈vi, vn+1〉 = −1/n, i = 1, . . . , n, and 〈vn+1, vn+1〉 = 1.
Since V is nonsingular and vn+1 is determined by (3.7), we can apply Corollary 2.1

to establish that [v1 · · · vn+1] is a (minimal) positive basis.
Our goal is now to generate, from the positive basis [v1 · · · vn+1] given by (3.6)–

(3.7), a set of positive bases such that: (i) the overall set of vectors captures the
directionality of Rn as well as possible and (ii) each element of the set is itself a
positive basis satisfying the uniform angle property (3.1) with a = −1/n. First, let
us consider a “rotation” U [e1 · · · en] = [u1 · · ·un] of the coordinate axes [e1 · · · en]
given by the a priori fixed orthogonal matrix U = [u1 · · ·un]. The first positive basis
is computed by U1[v1 · · · vn+1], where U1 is an orthogonal matrix that “rotates” v1
into u1:

U1v1 = u1.

A choice for U1 is the Householder transformation

U1 = I − π−1uu�, u = v1 − u1, π =
1

2
‖u‖2.

The ith positive basis is then obtained by “rotating” v1 into ui. However, since
ui = Uei and ei = U�ui, there is no need to compute another Householder transfor-
mation. In fact, we easily see that

UP1iU
�U1v1 = ui,

where P1i is the permutation matrix obtained from the identity by interchanging
rows 1 and i. Thus the ith positive basis is given by Ui[v1 · · · vn+1], where Ui is the
orthogonal matrix

Ui = UP1iU
�U1.

The desired set of positive bases is given by these n positive bases and their corre-
sponding symmetrical counterparts:

V = [U1[v1 · · · vn+1] · · ·Un[v1 · · · vn+1] − U1[v1 · · · vn+1] · · · − Un[v1 · · · vn+1] ].
(3.8)

The number of positive bases is therefore m = 2n.
The vectors in V are reasonably well distributed by amplitude in Rn. In Figure 3.1

we depict the mesh (2.1) with the choices of V and W respectively given by (3.8) and
(2.2); the matrix U given above was set to the identity.
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Fig. 3.1. Mesh for n = 2. There are 4 uniform positive bases.

3.2. The new pattern search framework. Finally, we combine the procedure
introduced in section 3.1 with the technique described in Appendix A, and define our
class of pattern search methods for molecular geometry problems. We describe how
the computation of new points (by geometrical transformations) can determine a
pattern search method using, for instance, the pattern described in section 3.1. The
same ideas can be used in any application where the user has a scheme to provide the
calculation of new points (see also [1]).

The new search and poll steps are described in a parallel environment withNp pro-
cessors. We start by showing how the computation of a trial point xtrialk+1 can be carried
out in the search step.

Search step: Computation of xtrialk+1 . For each processor p in {1, . . . , Np}:
1. Compute a trial point ugtp,k+1 by a geometrical transformation.
2. Solve the integer programming problem

min
z∈W
‖ugtp,k+1 − (xk + ∆kVz)‖(3.9)

to determine a point xgtp,k+1, in Mk, closest to ugtp,k+1.
3. Set

xtrialk+1 = argminxgt
p,k+1

f(xgtp,k+1) .

Using the mesh (2.1) with the choices of V and W respectively given by (3.8)
and (2.2), as we do in our implementation, the computation of xgtp,k+1 as the solution
of the integer programming problem (3.9) can be carried out with relatively little
computational effort (see also Figure 3.2). In fact, it can be easily checked that the
linear algebra cost is of the order of n3, which for small n is relatively low compared
to the cost of expensive function evaluations such as the total energy computed by
local density plane-waves (Appendix B).
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Fig. 3.2. Search step (left) and poll step (right).

In the poll step, the geometrical transformation technique defines the positive
basis Vk(xk), which in turn defines the mesh neighborhood N (xk). The procedure is
described below and depicted in Figure 3.2.

Poll step: Choice of mesh neighborhood N (xk).
1. Compute one trial point xgtk+1 by a geometrical transformation.

2. Determine vgtk in V = [U1[v1 · · · vn+1] · · · Un[v1 · · · vn+1] −U1[v1 · · · vn+1] · · ·
−Un[v1 · · · vn+1] ] such that

〈xgtk+1 − xk, vgtk 〉
‖xgtk+1 − xk‖

= max
v∈V
〈xgtk+1 − xk, v〉
‖xgtk+1 − xk‖

.

3. Set Vk(xk) to the positive basis in V that contains vgtk , and then set N (xk) =
{xk + ∆kv : for all v ∈ Vk(xk)}.

Poll step: Evaluation of f in the mesh neighborhood N (xk).
4. List the points in N (xk) by increasing order of the values of the angles between

xgtk+1 − xk and the corresponding vectors in Vk(xk).
5. Following the list given above, divided in groups of Np points, start evaluating in

parallel the function f in N (xk).
Stop if a point xk+1 ∈ N (xk) is found such that f(xk+1) < f(xk). In this case
go to step 3, expanding Mk (poll step and iteration are declared successful).
If f(xk) ≤ f(x) for every x in the mesh neighborhood N (xk), go to step 4,
shrinking Mk (poll step and iteration are declared unsuccessful).

Mesh expansions and reductions could also be designed to take advantage of
problem information obtained from geometrical transformations.

4. Numerical experiments. In order to define a pattern search method for
molecular geometry we need to be more specific about the geometrical transforma-
tions. The simplest geometrical transformations used in our calculations were the
uniform expansions and compressions of the cluster in the plane perpendicular to
the l-axis (Figure A.1(b)). These deformations correspond to putting c1 = c2 = 0 in
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(A.1) and setting c3 = 1.1 for expansions and c3 = 0.9 for compressions. For the linear
stretches (Figure A.1(c)), c3 was set to 1 and c2 = 0.1 or c2 = −0.1 (Figure A.1(c), top
and bottom, respectively). The quadratic stretches were done using c3 = 1, c2 = 0,
and c1 = 0.1 (Figure A.1(d), top) or c1 = −0.1 (Figure A.1(d), bottom). The last
deformation considered was the torsion of the cluster around the l-axis. This torsion
was accomplished rotating atom α around the l-axis by an angle θ = c2 r

α,k
l + c3,

with c2 and c3 chosen so that the topmost atom would be rotated by π/8 clockwise
(Figure A.1(e), right) or counter-clockwise (Figure A.1(e), left).

All the values mentioned above for c1, c2, and c3 were the values used in the poll
step of our pattern search methods. The search step should be much more aggressive
than the poll step as an attempt for global search. To try to accomplish this goal, the
parameters used in the search step were the poll step parameters, scaled by a factor
of 5.

A random rearrangement of the atoms was also considered at every iteration, in
an attempt to capture geometries very different from the current one. During the
poll step, these rearrangements consisted of multiplying each coordinate of the atoms
by a random value between 0.9 and 1.1; i.e., whenever a random deformation was
performed, the 3N − 6 coordinates of the cluster were scaled by a set of 3N − 6
random values between 0.9 and 1.1. The random scaling factors used in the search
step were between 0.5 and 1.5.

The mesh used in our implementation is defined by (2.1) with the choices of
V and W respectively given by (3.8) and (2.2). The set of positive bases has m = 2n
uniform positive bases each with n + 1 vectors. To ensure that all deformations are
tried in the search steps, the set of Np deformations used is changed in a consistent
way in consecutive search steps.

The stopping criterion used in our pattern search method followed the one imple-
mented in PDS: √

2(n− 1)

n

∆k

max{1, ‖xk‖} ≤ 10−2,

where
√

2(n− 1)/n∆k is the length of the longest edge in the simplex defined in the
current poll step by the corresponding uniform positive basis.

We applied our pattern search methods (PSM:MGP) to the minimization of the
total energy of sodium clusters of dimension 4, 8, 16, and 32. The calculation of
the total energy followed the process summarized in Appendix B. Results are given
in Tables 4.1, 4.2, 4.3, and 4.4. We provide results for eight initial points, except
for Na32, for which we present only two initial points. We list in these tables the
number of iterations (iters), the number of total energy function evaluations (fevals),
and the best value of the total energy found (f). The calculations were done in a
cluster of twelve 2.266 GHz Intel Pentium IV personal computers connected through
a switched full-duplex 100 Mb/s ethernet network, running LINUX, and using the
message passing interface (MPI) as the parallelization protocol. We point out once
again that we are dealing with expensive function evaluations: one evaluation of the
total energy for the Na4 (resp., Na8, Na16, and Na32) cluster took on average 16
(resp., 59, 114, and 186) seconds of CPU time.

These preliminary results show that the method PSM:MGP is able to find a
configuration nearly optimal for a significant number of initial points. The optimal
value is approximately −1.698 for the Na4 cluster and −3.534 for the Na8 cluster,
but these values are only attained after applying a local optimization code. The Na16
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Table 4.1

Numerical results obtained by PSM:MGP for Na4. The numbers of processors used was Np = 12.

x0 iters fevals f

Na4a 24 397 -1.689
Na4b 38 589 -1.697
Na4c 42 711 -1.685
Na4d 12 193 -1.698
Na4e 16 262 -1.696
Na4f 20 312 -1.697
Na4g 28 444 -1.682
Na4h 52 875 -1.694

Table 4.2

Numerical results obtained by PSM:MGP for Na8. The numbers of processors used was Np = 12.

x0 iters fevals f

Na8a 125 3385 -3.524
Na8b 105 2913 -3.522
Na8c 101 2748 -3.528
Na8d 73 1783 -3.467
Na8e 11 293 -3.504
Na8f 169 4558 -3.521
Na8g 108 2502 -3.489
Na8h 133 3305 -3.515

Table 4.3

Numerical results obtained by PSM:MGP for Na16. The numbers of processors used was Np = 12.

x0 iters fevals f

Na16a 260 11195 -7.119
Na16b 285 11740 -7.147
Na16c 283 12091 -7.135
Na16d 371 15783 -7.159
Na16e 239 10373 -7.136
Na16f 245 10268 -7.143
Na16g 255 10846 -7.122
Na16h 304 13134 -7.138

Table 4.4

Numerical results obtained by PSM:MGP for Na32. The numbers of processors used was Np = 12.

x0 iters fevals f

Na32a 462 33417 -14.558
Na32b 477 34509 -14.580

and Na32 cluster geometries are not well established.

Due to limited access to our cluster, we are unable to provide the full results for
Na32. We were able to finish only two of the runs, for two given initial configurations,
which terminated with 33417 and 33509 function evaluations, respectively. We used
this information, however, in a derivation of an estimate for the rate of growth in
the number of (average) function evaluations in terms of the number of variables
n = 3N − 6. The number of function evaluations (fevals) seems to grow with n under
a rate slower than quadratic (fevals ≈ n1.6). A fit of log(fevals) to A + B log n has
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Fig. 4.1. Scaling of the average number of function evaluations (fevals) with the number of
variables (n). Dashed line is a fit of a power law, fevals = AnB, to the data (A = 27.336 and
B = 1.5977).

Table 4.5

Numerical results obtained by PDS (with twelve pattern points) and PSM:MGP for Na4. The
computation of the total energy was carried out differently from that reported in Tables 4.1–4.4. The
numbers of processors used was Np = 12.

PDS PSM:MGP
x0 iters fevals f iters fevals f best

Na4i 26 324 -2.58191 28 533 -2.58251 PSM:MGP
Na4j 9 120 -2.58751 18 343 -2.58772 PSM:MGP
Na4k 6 84 -2.58920 4 77 -2.58868 PDS
Na4l 7 96 -2.58860 4 77 -2.58862 PSM:MGP
Na4m 25 312 -2.58098 32 609 -2.57487 PDS

given A = 27.336 and B = 1.5977, and the least squares regression error was 0.008322
(see Figure 4.1).

For the sake of comparison with other methods, we ran PSM:MGP and PDS
for another set of initial configurations for Na4 and Na8. These calculations were
done in a different computer system (a cluster of 24 DIGITAL/Compaq Alpha 500au
Personal Workstations connected through a switched full-duplex 100 Mb/s ethernet
network, running DIGITAL UNIX, and using MPI as the parallelization protocol)
and with different parameters for the plane-wave code (corresponding to a different
version of the application code, slower due to the use of a more accurate model for
the electron-ion interactions). As a result, the total energy values presented now
are not comparable to the ones reported above. A simple comparison of the total
energy values obtained with both methods shows that the comparison between PDS
and PSM:MGP is mildly favorable to the latter, as we indicated in the last column
of Tables 4.5 and 4.6. (In one instance the values of the objective function coincided
and we used as a second criterion the number of function evaluations.) Both PDS and
PSM:MGP were able to find, for the Na8 cluster, the two best known local minimizers
for different starting configurations.

We point out that the implementation of PSM:MGP used in these computations
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Table 4.6

Numerical results obtained by PDS (with 36 pattern points) and PSM:MGP for Na8. The
computation of the total energy was carried out differently from that reported in Tables 4.1–4.4. The
numbers of processors used was Np = 10.

PDS PSM:MGP
x0 iters fevals f iters fevals f best

Na8i 31 1135 -5.25543 35 868 -5.23153 PDS
Na8j 5 199 -5.31805 3 88 -5.31805 PSM:MGP
Na8k 24 883 -5.30026 58 1546 -5.31268 PSM:MGP
Na8l 3 118 -1.27962 3 88 -5.31022 PSM:MGP

is far from being exhaustively tuned. We did not play with the code to try to come up
with the best strategies (geometrical transformations, etc.) and with the best values
for the different parameters. We expect that a method like PSM:MGP has plenty of
room for improvement.

5. Conclusions and future work. We designed a class of pattern search meth-
ods for molecular geometry by taking advantage of physically meaningful energy low-
ering geometrical transformations, and by combining them with appropriate patterns
for minimization purposes. The preliminary numerical results obtained with a par-
ticular pattern search method in the class have indicated that this approach could
lead to very promising algorithms for molecular geometry. We hope to obtain better
numerical results by considering more elaborate search steps. In fact, our approach
has the flexibility to incorporate several types of global optimization algorithms in
the search step to enhance the selection of the geometrical transformations and their
defining values. We have in mind, for instance, the use of evolutionary algorithms like
evolutionary programming or evolutionary strategies.

The new pattern search methods can be used in any other context where there
is a user-provided scheme to generate points leading to potential objective function
decrease.

We plan to apply our pattern search methods to the total energy minimization
of other clusters and to develop analogues of this approach in other molecular geom-
etry contexts. We also plan to investigate patterns with similar interesting uniform
directionality properties.

Appendix A. The current point xk in the optimization process stores the atomic
positions rα,ki of a set of N atoms, where k denotes the iteration counter and rαi is the
ith coordinate of atom α (i = 1, 2, 3). The set of atomic positions specifies not only
the shape of the system of atoms but also its location and orientation in space. Since
shapes that result from translations or rotations about a fixed point have the same
energy, there are six redundant coordinates in a molecular geometry optimization
process. Three of these refer to the location of the set of atoms with a certain shape
in space and the other three are the angles that define the orientation of this set with
respect to some fixed three-dimensional reference frame. The easiest way to get rid
of these additional degrees of freedom is to fix one of the atoms at the origin of a
three-dimensional reference frame, to keep another atom on one of the axes of this
frame (the x-axis, for example), and to force a third atom to move only on a plane
containing the above mentioned axis (the xy-plane, for example). These restrictions do
not introduce constraints in shape space, they merely exclude atomic configurations
representing the same system translated and/or rotated in space. Without loss of
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generality, the three constrained atoms are chosen to be atoms N , N − 1, and N − 2.
The vector xk can then be related to the atomic positions, rα,ki , in the following way:

xk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1,k1

r1,k2

r1,k3

r2,k1
...

rN−3,k
3

rN−2,k
1

rN−2,k
2

rN−1,k
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The corresponding “constraints” are:

rN−2,k
3 = rN−1,k

2 = rN−1,k
3 = rN,ki = 0, i = 1, 2, 3.

An optimization step, xk → xk+1, can be viewed as a deformation of the molec-
ular shape described by xk. This deformation may not have any physical meaning,
corresponding simply to a random rearrangement of the atoms. The space spanned
by an algorithm where only this type of move is present is unrelated to shape space;
i.e., a given path in this space is not related in a simple way to a shape space path, a
path where the molecule undergoes a recognizable shape transformation. Physically
meaningful deformations (as, for example, a simple uniform compression or expansion
of the molecule), i.e., paths in shape space, are expected to be closer to (total energy)
downhill directions than simple paths in xk-space. In fact, a path in shape space will
in general correspond to a nontrivial path in xk-space that can even connect very
distant xk-space points.

A simple way to introduce physically meaningful and energy lowering deforma-
tions of a given molecule or cluster is to consider just stretches and twists along
some direction. An obvious choice for the directions along which the cluster is to be
stretched or twisted is its principal axes system.3 In order to deform the molecule in
this way it is necessary to refer the atomic positions to the principal axes system:

r̄α,ki =

3∑
j=1

R(k)
ij r

α,k
j ,

where R(k) rotates the reference axes to the principal axes. The deformations of the
molecule can then be written as

r̄α,k+1
i =

3∑
j=1

εα,kij r̄α,kj

3The principal or inertial axes system of a given molecule is the set of eigenvectors of the matrix

Iij =
N∑

α=1

mα
(‖rα‖2δij − rαi r

α
j

)
,

where δij is the Kronecker tensor and mα is the mass of atom α. For convenience, we choose a
reference frame whose origin is the center of mass of the molecule, i.e., where the atomic coordinates
satisfy the relation

∑N
α=1mαrα = 0.
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or, returning to the nonprincipal axes system, as

rα,k+1
i =

3∑
j,l,m=1

R(k)−1
ij εα,kjl R(k)

lm r
α,k
m .

Alternatively, using matrix notation, we can write

rα,k+1 = R(k)−1εα,kR(k) rα,k.

The form for the deformations assumed above is very broad. Some simple and
physically meaningful particular forms can be written simply as

εα,kij =
[(
c1 (r̄α,kl )2 + c2 r̄

α,k
l + c3 − 1

)
(1− δjl) + 1

]
δij ,(A.1)

where l ∈ {1, 2, 3} is the label of the principal axes about which the transformations
are made. The effect of these transformations is simply to put the atoms closer or
farther from the principal axis l (see Figures A.1(a)–A.1(d)).

Another physically meaningful deformation that can be considered is a torsion of
the molecule around some axis (Figure A.1(e)), in a way that forces different parts of
the molecule to be rotated around that axis with different angles:

εα,k = Rêl(θ(r̄α,kl )).(A.2)

The axis l ∈ {1, 2, 3} is the torsion axis, and Rêl(θ) is a rotation by an angle θ around
that axis. For example,

Rê3(θ) =

⎡
⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦ .

The angle θ must be a function of the l-coordinate of each atom (a quadratic function

of rα,kl , for example). Contrary to the previous forms, this type of deformation can
break any axial symmetry that the molecule at iteration k might possess.

As we said before, the geometrical transformations (A.1) are performed with the
center of mass of the cluster at the origin of the r̄α,k coordinates. Thus, an atom
sitting on the plane containing the center of mass and perpendicular to the l-axis of
this system of coordinates—where these geometrical transformations are performed—
would remain unaffected by most deformations (see Figures A.1(c)–A.1(e)). The
exceptions are the uniform expansions and compressions (see Figure A.1(b)).

A set of new coordinates rα,k+1
i computed by geometrical transformation from

the previous coordinates rα,ki (stored in xk) can then be used as a trial point xgtk+1 for
the search and poll steps of the k + 1 pattern search iteration.

Appendix B. We will provide a brief description of the main issues in local
density plane-wave total energy calculation [18]. The Hamiltonian H of an N -electron
system with M nuclei of charge ZI and mass mI can be written as

H(r1, . . . , rN , R1, . . . , RM ) =

N∑
i=1

p2
i

2
+

M∑
I=1

P2
I

2mI
−

N,M∑
i,I=1

ZI
|ri −RI |

+

N∑
i,j=1
i<j

1

|ri − rj | +
M∑

I,J=1
I<J

ZIZJ
|RI −RJ | ,
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(a)
(b) (c) (d)

(e)

Fig. A.1. Simple example of the deformations (A.1) and (A.2). In (b), the reference molecule
seen in (a) is expanded sideways, which corresponds to setting c1 = c2 = 0, c3 �= 0 in (A.1). The
parameter c3 can be greater (top) or lower (bottom) than 1. Setting c2 �= 0 results in deformations
similar to those in (c) (with c2 positive (top) or negative (bottom)), while the use of a full quadratic
form gives rise to deformations like those in (d) (with c1 positive (top) or negative (bottom)). (In

this example, θ = c2 r
α,k
l + c3, with c2 positive (left) or negative (right).) Panel (e) is an example

of the deformations that can be achieved with (A.2). In all these examples, the l-axis is the vertical
axis.

where ri and RI are the coordinates of the electrons and of the atomic nuclei, and
pi and PI are their linear momenta. (Spin was not considered, for simplicity; atomic
units are used throughout the calculations.)

By solving the time-independent Schrödinger equation

HΨ = EΨ,

one obtains the set of eigenvalues (energies, E) and eigenvectors (wavefunctions, Ψ)
of the system. This equation gives a good description of nonrelativistic many-electron
systems subject to electric fields produced by atomic nuclei, like atoms, molecules,
and solids. However, this equation is in general unsolvable. If the mass difference be-
tween electrons and nuclei is taken into account [4], the time-independent Schrödinger
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equation can be separated in two equations: one for the electrons

(B.1)

⎛
⎜⎜⎝

N∑
i=1

p2
i

2
−

N,M∑
i,I=1

ZI
|ri −RI | +

N∑
i,j=1
i<j

1

|ri − rj | + Enn

⎞
⎟⎟⎠Ψ(r1, . . . , rN ;R1, . . . , RM )

= E(R1, . . . , RM ) Ψ(r1, . . . , rN ;R1, . . . , RM ),

where

Enn =

M∑
I,J=1
I<J

ZIZJ
|RI −RJ | ,

and another for the nuclei, of no interest in this context.
In (B.1), the nuclear coordinates Ri are just parameters, and the electronic wave-

functions and eigenvalues are different for each arrangement of nuclei. In order to
find the lowest energy state of the system (the ground state), one can solve (B.1) for
a given set of nuclear coordinates, and assume that E(R1, . . . , RM ) is a function of
the nuclear coordinates to be subsequently minimized.

Hohenberg and Kohn [15] proved a theorem that legitimizes the use of the elec-
tronic density

ρ(r) = N

∫
|Ψ(r, r2, . . . , rN )|2 dr2 . . . drN

as fundamental variable, instead of the wavefunction Ψ(r1, . . . , rN ). The theorem
states that any observable (e.g., the energy) is a functional of the ground state den-
sity. In particular, the ground state energy functional of an N -electron system in an
external potential vext(r) (representing the interaction of the nuclei with the electrons,
for example) can be written as

Evext [ρ] = FHK[ρ] +

∫
ρ(r)vext(r)dr + Enn

where FHK[ρ] is a universal functional, i.e., a functional that does not depend on the
external potential. Therefore, FHK[ρ] is the same for atoms, molecules, and solids.
The ground state is obtained through the variational principle

E∗ = min
{ρ}

Evext [ρ],(B.2)

and the variational search is performed over all the admissible electronic densities.
A good approximation to the functional FHK[ρ] was suggested by Kohn and

Sham [19]. Their main hypothesis is that, for each interacting ground state den-
sity ρ(r), there exists a noninteracting electron system with the same ground state
density. The Kohn–Sham FHK[ρ(r)] functional is

FHK[ρ(r)] = −1

2

N∑
i=1

∫
φ∗i (r)∇2φi(r)dr +

1

2

∫
ρ(r1)ρ(r2)

|r1 − r2| dr1dr2 + Exc[ρ(r)],

with

N∑
i=1

|φi(r)|2 = ρ(r).(B.3)
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Exc[ρ(r)] is the so-called exchange and correlation functional, for which many approx-
imations exist [7, 24, 25].

The ground state is obtained solving the Euler–Lagrange equation that results
from the minimization (B.2):[

−1

2
∇2 + vext(r) +

∫
ρ(r)

|r − r′|dr
′ +

δExc [ρ(r)]

δρ(r)

]
φi(r) = εiφi(r),(B.4)

and the total energy of the system is therefore

EKS[ρ(r)] = −1

2

N∑
i=1

∫
φ∗i (r)∇2φi(r)dr +

1

2

∫
ρ(r1)ρ(r2)

|r1 − r2| dr1dr2

+ Exc[ρ(r)] +

∫
ρ(r)vext(r)dr + Enn.

The coupled nonlinear equations (B.3)–(B.4) are the so-called Kohn–Sham equations.
To calculate the total energy of solids, a plane-wave expansion of the Kohn–Sham

wavefunctions is very useful, as it takes advantage of the translation symmetry of
the crystal [17, 18, 26]. For finite systems, such as atoms, molecules, and clusters,
plane-waves can also be used in a supercell approach. In the supercell method, the
finite system is placed in a unit cell of a fictitious crystal, and this cell is made large
enough to avoid interactions between neighboring cells. However, for finite systems
a very large number of plane waves is needed, as the electronic density spans only
a small fraction of the total volume of the supercell. The plane-wave expansion of
the wavefunctions amounts simply to Fourier transforming them and all the other
quantities involved in the Kohn–Sham equations, thereby converting the differential
equation (B.4) into a matrix diagonalization problem. For finite systems, as many
plane waves are needed, this matrix is very large, on the order of hundreds for small
clusters.

But even for extended systems, many plane-waves may be needed. The valence
wavefunctions of the large ZI atoms oscillate strongly in the vicinity of the atomic
core, due to the orthogonalization to the inner electronic wavefunctions. To describe
these oscillations a large number of plane-waves is required, making even more difficult
the calculation of the total energy. However, the inner electrons are almost inert and
are not significantly involved in bonding. This makes possible the description of
an atom based solely on its valence electrons, which feel an effective potential that
includes both the nuclear attraction and the repulsion of the inner electrons. This
technique is the so-called pseudopotential approximation. In this work, we used the
Troullier–Martins pseudopotential [31].

Although the pseudopotential approximation reduces its computational burden,
the calculation of the total energy of a given system in the manner outlined above is
still a very demanding task. One can deal with systems with at most a few hundred
atoms. There are other methods that are significantly faster, allowing the calculation
of the total energy of systems consisting of thousands of atoms. But these methods
are much less accurate than the density functional method presented above. There
are also some methods more accurate than this one, but they are significantly harder,
prohibiting the simulation of systems with more than a few atoms.
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Abstract. For a particular class of minimax stochastic programming models, we show that the
problem can be equivalently reformulated into a standard stochastic programming problem. This
permits the direct use of standard decomposition and sampling methods developed for stochastic
programming. We also show that this class of minimax stochastic programs is closely related to a
large family of mean-risk stochastic programs where risk is measured in terms of deviations from a
quantile.
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1. Introduction. A wide variety of decision problems under uncertainty involve
optimization of an expectation functional. An abstract formulation for such stochastic
programming problems is

Min
x∈X

EP [F (x, ω)],(1.1)

where X ⊆ R
n is the set of feasible decisions, F : Rn × Ω �→ R is the objective

function, and P is a probability measure (distribution) on the space Ω equipped with
a sigma algebra F . The stochastic program (1.1) has been studied in great detail,
and significant theoretical and computational progress has been achieved (see, e.g.,
[18] and references therein).

In the stochastic program (1.1) the expectation is taken with respect to the proba-
bility distribution P which is assumed to be known. However, in practical applications,
such a distribution is not known precisely and has to be estimated from data or con-
structed using subjective judgments. Often, the available information is insufficient
to identify a unique distribution. In the absence of full information on the underly-
ing distribution, an alternative approach is as follows. Suppose a set P of possible
probability distributions for the uncertain parameters is known; then it is natural to
optimize the expectation functional (1.1) corresponding to the “worst” distribution
in P. This leads to the following minimax stochastic program:

Min
x∈X

{
f(x) := sup

P∈P
EP [F (x, ω)]

}
.(1.2)

Theoretical properties of minimax stochastic programs have been studied in a
number of publications. In that respect we can mention pioneering works of Žáčk-
ová [22] and Dupačová [3, 4]. Duality properties of minimax stochastic programs were
thoroughly studied in Klein Haneveld [10]; for more recent publications see [19] and
references therein. These problems have also received considerable attention in the
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context of bounding and approximating stochastic programs [1, 7, 9]. A number of au-
thors have proposed numerical methods for minimax stochastic programs. Ermoliev,
Gaivoronski, and Nedeva [5] proposed a method based on the stochastic quasi-gradient
algorithm and generalized linear programming. A similar approach along with compu-
tational experience is reported in [6]. Breton and El Hachem [2] developed algorithms
based on bundle methods and subgradient optimization. Riis and Andersen [16] pro-
posed a cutting plane algorithm. Takriti and Ahmed [21] considered minimax stochas-
tic programs with binary decision variables arising in power auctioning applications,
and developed a branch-and-cut scheme. All of the above numerical methods require
explicit solution of the inner optimization problem supP∈P EP [F (x, ω)] corresponding
to the candidate solution x in each iteration. Consequently, such approaches are inap-
plicable in situations where calculation of the respective expectations numerically is
infeasible because the set Ω although finite is prohibitively large, or possibly infinite.

In this paper, we show that a fairly general class of minimax stochastic programs
can be equivalently reformulated into standard stochastic programs (involving opti-
mization of expectation functionals). This permits a direct application of powerful
decomposition and sampling methods that have been developed for standard stochas-
tic programs in order to solve large-scale minimax stochastic programs. Furthermore,
the considered class of minimax stochastic programs is shown to subsume a large fam-
ily of mean-risk stochastic programs, where the risk is measured in terms of deviations
from a quantile.

2. The problem of moments. In this section we discuss a variant of the prob-
lem of moments. This will provide us with basic tools for the subsequent analysis of
minimax stochastic programs.

Let us denote by X the (linear) space of all finite signed measures on (Ω,F). We
say that a measure µ ∈ X is nonnegative, and write µ � 0, if µ(A) ≥ 0 for any A ∈ F .
For two measures µ1, µ2 ∈ X we write µ2 � µ1 if µ2 − µ1 � 0. That is, µ2 � µ1 if
µ2(A) ≥ µ1(A) for any A ∈ F . It is said that µ ∈ X is a probability measure if µ � 0
and µ(Ω) = 1. For given nonnegative measures µ1, µ2 ∈ X consider the set

M :=
{
µ ∈ X : µ1 � µ � µ2

}
.(2.1)

Let ϕi(ω), i = 0, . . . , q, be real valued measurable functions on (Ω,F) and bi ∈ R,
i = 1, . . . , q, be given numbers. Consider the problem

MaxP∈M
∫
Ω
ϕ0(ω)dP (ω)

subject to
∫
Ω
dP (ω) = 1,∫

Ω
ϕi(ω)dP (ω) = bi, i = 1, . . . , r,∫

Ω
ϕi(ω)dP (ω) ≤ bi, i = r + 1, . . . , q.

(2.2)

In the above problem, the first constraint implies that the optimization is performed
over probability measures, the next two constraints represent moment restrictions,
and the set M represents upper and lower bounds on the considered measures. If
the constraint P ∈ M is replaced by the constraint P � 0, then the above problem
(2.2) becomes the classical problem of moments (see, e.g., [13], [20], and references
therein). As we shall see, however, the introduction of lower and upper bounds on
the considered measures makes the above problem more suitable for an application
to minimax stochastic programming.

We make the following assumptions throughout this section:



ON A CLASS OF MINIMAX STOCHASTIC PROGRAMS 1239

(A1) The functions ϕi(ω), i = 0, . . . , q, are µ2-integrable; i.e.,∫
Ω

|ϕi(ω)|dµ2(ω) <∞, i = 0, . . . , q.

(A2) The feasible set of problem (2.2) is nonempty, and, moreover, there exists a
probability measure P ∗ ∈M satisfying the equality constraints as well as the
inequality constraints as equalities, i.e.,∫

Ω

ϕi(ω)dP ∗(ω) = bi, i = 1, . . . , q.

Assumption (A1) implies that ϕi(ω), i = 0, . . . , q, are P -integrable with respect
to all measures P ∈M, and hence problem (2.2) is well defined. By assumption (A2),
we can make the following change of variables P = P ∗ + µ, and hence write problem
(2.2) in the form

Maxµ∈M∗
∫
Ω
ϕ0(ω)dP ∗(ω) +

∫
Ω
ϕ0(ω)dµ(ω)

subject to
∫
Ω
dµ(ω) = 0,∫

Ω
ϕi(ω)dµ(ω) = 0, i = 1, . . . , r,∫

Ω
ϕi(ω)dµ(ω) ≤ 0, i = r + 1, . . . , q,

(2.3)

where

M∗ :=
{
µ ∈ X : µ∗

1 � µ � µ∗
2

}
(2.4)

with µ∗
1 := µ1 − P ∗ and µ∗

2 := µ2 − P ∗.
The Lagrangian of problem (2.3) is

L(µ, λ) :=

∫
Ω

ϕ0(ω)dP ∗(ω) +

∫
Ω

Lλ(ω)dµ(ω),(2.5)

where

Lλ(ω) := ϕ0(ω)− λ0 −
q∑
i=1

λiϕi(ω),(2.6)

and the (Lagrangian) dual of (2.3) is

Minλ∈Rq+1

{
ψ(λ) := supµ∈M∗ L(µ, λ)

}
subject to λi ≥ 0, i = r + 1, . . . , q.

(2.7)

It is straightforward to see that

ψ(λ) =

∫
Ω

ϕ0(ω)dP ∗(ω) +

∫
Ω

[Lλ(ω)]+dµ
∗
2(ω)−

∫
Ω

[−Lλ(ω)]+dµ
∗
1(ω),(2.8)

where [a]+ := max{a, 0}.
By the standard theory of Lagrangian duality we have that the optimal value of

problem (2.3) is always less than or equal to the optimal value of its dual (2.7). It is
possible to give various regularity conditions (constraint qualifications) ensuring that
the optimal values of problem (2.3) and its dual (2.7) are equal to each other, i.e., that
there is no duality gap between problems (2.3) and (2.7). For example, we have (by
the theory of conjugate duality [17]) that there is no duality gap between (2.3) and
(2.7), and the set of optimal solutions of the dual problem is nonempty and bounded,
if and only if the following assumption holds:
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(A3) The optimal value of (2.2) is finite, and there exists a feasible solution to (2.2)
for all sufficiently small perturbations of the right-hand sides of the (equality
and inequality) constraints.

We may refer to [10] (and references therein) for a discussion of constraint qualifica-
tions ensuring the “no duality gap” property in the problem of moments.

By the above discussion we have the following result.
Proposition 2.1. Suppose that the assumptions (A1)–(A3) hold. Then problems

(2.2) and (2.3) are equivalent and there is no duality gap between problem (2.3) and
its dual (2.7).

Remark 1. The preceding analysis simplifies considerably if the set Ω is finite,
say, Ω := {ω1, . . . , ωK}. Then a measure P ∈ X can be identified with a vector
p = (p1, . . . , pK) ∈ RK . We have, of course, that P � 0 if and only if pk ≥ 0,
k = 1, . . . ,K. The set M can be written in the form

M =
{
p ∈ RK : µ1

k ≤ pk ≤ µ2
k, k = 1, . . . ,K

}
for some numbers µ2

k ≥ µ1
k ≥ 0, k = 1, . . . ,K, and problems (2.2) and (2.3) be-

come linear programming problems. In that case the optimal values of problem (2.2)
(problem (2.3)) and its dual (2.7) are equal to each other by the standard linear pro-
gramming duality without a need for constraint qualifications, and the assumption
(A3) is superfluous.

Let us now consider, further, a specific case of (2.2), where

M :=
{
µ ∈ X : (1− ε1)P ∗ � µ � (1 + ε2)P

∗};(2.9)

i.e., µ1 = (1− ε1)P ∗ and µ2 = (1 + ε2)P
∗ for some reference probability measure P ∗

satisfying assumption (A2) and numbers ε1 ∈ [0, 1], ε2 ≥ 0. In that case the dual
problem (2.7) takes the form

Minλ∈R
q+1 EP∗

{
ϕ0(ω) + ηε1,ε2 [Lλ(ω)]

}
subject to λi ≥ 0, i = r + 1, . . . , q,

(2.10)

where Lλ(ω) is defined in (2.6) and

ηε1,ε2 [a] :=

{ −ε1a if a ≤ 0,
ε2a if a > 0.

(2.11)

Note that the function ηε1,ε2 [·] is convex piecewise linear and Lλ(ω) is affine
in λ for every ω ∈ Ω. Consequently the objective function of (2.10) is convex in λ.
Thus, the problem of moments (2.2) has been reformulated as a convex stochastic
programming problem (involving optimization of the expectation functional) of the
form (1.1).

3. A class of minimax stochastic programs. We consider a specific class of
minimax stochastic programming problems of the form

Min
x∈X

f(x),(3.1)

where f(x) is the optimal value of the problem

MaxP∈M
∫
Ω
F (x, ω)dP (ω)

subject to
∫
Ω
dP (ω) = 1,∫

Ω
ϕi(ω)dP (ω) = bi, i = 1, . . . , r,∫

Ω
ϕi(ω)dP (ω) ≤ bi, i = r + 1, . . . , q,

(3.2)
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and M is defined as in (2.9). Of course, this is a particular form of the minimax
stochastic programming problem (1.2) with the set P formed by probability measures
P ∈M satisfying the corresponding moment constraints.

We assume that the set X is nonempty and assumptions (A1)–(A3) of section 2
hold for the functions ϕi(·), i = 1, . . . , q, and ϕ0(·) := F (x, ·) for all x ∈ X. By the
analysis of section 2 (see Proposition 2.1 and dual formulation (2.10)) we then have
that the minimax problem (3.1) is equivalent to the stochastic programming problem:

Min (x,λ)∈Rn+q+1 EP∗ [H(x, λ, ω)]
subject to x ∈ X and λi ≥ 0, i = r + 1, . . . , q,

(3.3)

where

H(x, λ, ω) := F (x, ω) + ηε1,ε2

[
F (x, ω)− λ0 −

q∑
i=1

λiϕi(ω)

]
.(3.4)

Note that by reformulating the minimax problem (3.1) into problem (3.3), which
is a standard stochastic program involving optimization of an expectation functional,
we avoid explicit solution of the inner maximization problem with respect to the prob-
ability measures. The reformulation, however, introduces q + 1 additional variables.

For problems with a prohibitively large (or possibly infinite) support Ω, a simple
but effective approach to attacking (3.3) is the sample average approximation (SAA)
method. The basic idea of this approach is to replace the expectation functional in the
objective by a sample average function and to solve the corresponding SAA problem.
Depending on the structure of the objective function F (x, ω) and hence H(x, λ, ω),
a number of existing stochastic programming algorithms can be applied to solve the
obtained SAA problem. Under mild assumptions, the SAA method has been shown to
have attractive convergence properties. For example, a solution to the SAA problem
quickly converges to a solution to the true problem as the sample size N is increased.
Furthermore, by repeated solutions of the SAA problem, statistical confidence inter-
vals on the quality of the corresponding SAA solutions can be obtained. Detailed
discussion of the SAA method can be found in [18, Chapter 6] and references therein.

3.1. Stochastic programs with convex objectives. In this section, we con-
sider minimax stochastic programs (3.1) corresponding to stochastic programs where
the objective function is convex. Note that if the function F (·, ω) is convex for every
ω ∈ Ω, then the function f(·), defined as the optimal value of (3.2), is given by the
maximum of convex functions and hence is convex. Not surprisingly, the reformulation
preserves convexity.

Proposition 3.1. Suppose that the function F (·, ω) is convex for every ω ∈ Ω.
Then for any ε1 ∈ [0, 1] and ε2 ≥ 0 and every ω ∈ Ω, the function H(·, ·, ω) is convex
and

∂H(x, λ, ω) =

⎧⎨
⎩

(1− ε1)∂F (x, ω)× {ε1ϕ(ω)} if N(x, λ, ω) < 0,
(1 + ε2)∂F (x, ω)× {−ε2ϕ(ω)} if N(x, λ, ω) > 0,
∪τ∈[−ε1,ε2](1 + τ)∂F (x, ω)× {−τϕ(ω)} if N(x, λ, ω) = 0,

(3.5)

where the subdifferentials ∂H(x, λ, ω) and ∂F (x, ω) are taken with respect to (x, λ)
and x, respectively, and

N(x, λ, ω) := F (x, ω)− λ0 −
q∑
i=1

λiϕi(ω), ϕ(ω) := (1, ϕ1(ω), . . . , ϕq(ω)).
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Proof. Consider function ψ(z) := z + ηε1,ε2 [z]. We can write

H(x, λ, ω) = ψ
(
N(x, λ, ω)

)
+ λ0 +

q∑
i=1

λiϕi(ω).

For any ω ∈ Ω, the function N(·, ·, ω) is convex, and for ε1 ∈ [0, 1] and ε2 ≥ 0, the
function ψ(·) is monotonically nondecreasing and convex. Convexity of H(·, ·, ω) then
follows. The subdifferential formula (3.5) is obtained by the chain rule.

Let us now consider instances of (3.3) with a finite set of realizations of ω:

Min (x,λ)∈Rn+q+1

{
h(x, λ) :=

K∑
k=1

p∗kH(x, λ, ωk)

}

subject to x ∈ X and λi ≥ 0, i = r + 1, . . . , q,

(3.6)

where Ω = {ω1, . . . , wK} and P ∗ = (p∗1, . . . , p
∗
K). The above problem can either

correspond to a problem with finite support of ω or may be obtained by sampling
as in the SAA method. Problem (3.6) has a nonsmooth convex objective function,
and often can be solved by using cutting plane or bundle type methods that use
subgradient information (see, e.g., [8]). By the Moreau–Rockafellar theorem we have
that

∂h(x, λ) =

K∑
k=1

p∗k∂H(x, λ, ωk),(3.7)

where all subdifferentials are taken with respect to (x, λ). Together with (3.5) this
gives a formula for a subgradient of h(·, ·), given subgradient information for F (·, ω).

3.2. Two-stage stochastic programs. A wide variety of stochastic programs
correspond to optimization of the expected value of a future optimization problem.
That is, let F (x, ω) be defined as the optimal value function

F (x, ω) := Min
y∈Y (x,ω)

G0(x, y, ω),(3.8)

where

Y (x, ω) := {y ∈ Y : Gi(x, y, ω) ≤ 0, i = 1, . . . ,m} ,(3.9)

Y is a nonempty subset of a finite dimensional vector space, and Gi(x, y, ω), i =
0, . . . ,m, are real valued functions. Problem (1.1), with F (x, ω) given in the form
(3.8), is referred to as a two-stage stochastic program, where the first-stage variables x
are decided prior to the realization of the uncertain parameters, and the second-stage
variables y are decided after the uncertainties are revealed. The following result shows
that a minimax problem corresponding to a two-stage stochastic program is itself a
two-stage stochastic program.

Proposition 3.2. If F (x, ω) is defined as in (3.8), then the function H(x, λ, ω),
defined in (3.4), is given by

H(x, λ, ω) = inf
y∈Y (x,ω)

G(x, λ, y, ω),(3.10)

where

G(x, λ, y, ω) := G0(x, y, ω) + ηε1,ε2

[
G0(x, y, ω)− λ0 −

q∑
i=1

λiϕi(ω)

]
.(3.11)
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Proof. The result follows by noting that

G(x, λ, y, ω) = ψ

(
G0(x, y, ω)− λ0 −

q∑
i=1

λiϕi(ω)

)
+ λ0 +

q∑
i=1

λiϕi(ω),

and the function ψ(z) := z + ηε1,ε2 [z] is monotonically nondecreasing for ε1 ≤ 1 and
ε2 ≥ 0.

By the above result, if the set Ω := {ω1, . . . , ωK} is finite, then the reformulated
minimax problem (3.3) can be written as one large-scale optimization problem:

Minx,λ,y1,...,yK

K∑
k=1

p∗kG(x, λ, yk, ωk)

subject to yk ∈ Y (x, ωk), k = 1, . . . ,K,
x ∈ X, λi ≥ 0, i = r + 1, . . . , q.

(3.12)

A particularly important case of two-stage stochastic programs are the two-stage
stochastic (mixed-integer) linear programs, where F (x, ω) := V (x, ξ(ω)) and V (x, ξ)
is given by the optimal value of the problem:

Miny cTx+ qT y,
subject to Wy = h− Tx, y ∈ Y.(3.13)

Here ξ := (q,W, h, T ) represents the uncertain (random) parameters of problem (3.13),
and X and Y are defined by linear constraints (and possibly with integrality restric-
tions). By applying standard linear programming modelling principles to the piecewise
linear function ηε1,ε2 , we obtain that H(x, λ, ξ(ω)) is given by the optimal value of
the problem:

Miny,u+,u− cTx+ qT y + ε1u
− + ε2u

+

subject to Wy = h− Tx,
u+ − u− = cTx+ qT y − ϕTλ,
y ∈ Y, u+ ≥ 0, u− ≥ 0,

(3.14)

where ϕ := (1, ϕ1(ω), . . . , ϕq(ω))T . As before, if the set Ω := {ω1, . . . , ωK} is finite,
then the reformulated minimax problem (3.3) can be written as one large-scale mixed-
integer linear program:

Minx,λ,y,u+,u− cTx+

K∑
k=1

p∗k
(
qTk yk + ε1u

−
k + ε2u

+
k

)
subject to Wkyk = hk − Tkx, k = 1, . . . ,K,

u+
k − u−k = cTx+ qTk yk − ϕTk λ, k = 1, . . . ,K,
yk ∈ Y, u+

k ≥ 0, u−k ≥ 0, k = 1, . . . ,K,
x ∈ X.

(3.15)

The optimization model stated above has a block-separable structure which can, in
principle, be exploited by existing decomposition algorithms for stochastic (integer)
programs. In particular, if Y does not have any integrality restrictions, then the
L-shaped (or Benders) decomposition algorithm and its variants can be immediately
applied (see, e.g., [18, Chapter 3]).
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4. Connection to a class of mean-risk models. Note that the stochastic
program (1.1) is risk-neutral in the sense that it is concerned with the optimization
of an expectation objective. To extend the stochastic programming framework to a
risk-averse setting, one can adopt the mean-risk framework advocated by Markowitz
and further developed by many others. In this setting the model (1.1) is extended to

Min
x∈X

E[F (x, ω)] + γR[F (x, ω)],(4.1)

where R[Z] is a dispersion statistic of the random variable Z used as a measure of
risk, and γ is a weighting parameter to trade-off mean with risk. Classically, the
variance statistic has been used as the risk-measure. However, it is known that many
typical dispersion statistics, including variance, may cause the mean-risk model (4.1)
to provide inferior solutions. That is, an optimal solution to the mean-risk model
may be stochastically dominated by another feasible solution. Recently, Ogryczak
and Ruszczyński [15] have identified a number of statistics which, when used as the
risk-measure R[·] in (4.1), guarantee that the mean-risk solutions are consistent with
stochastic dominance theory. One such dispersion statistic is

hα[Z] := E
{
α[Z − κα]+ + (1− α)[κα − Z]+

}
,(4.2)

where 0 ≤ α ≤ 1 and κα = κα(Z) denotes the α-quantile of the distribution of Z.
Recall that κα is said to be an α-quantile of the distribution of Z if Pr(Z < κα) ≤
α ≤ Pr(Z ≤ κα), and the set of α-quantiles forms the interval [a, b] with a :=
inf{z : Pr(Z ≤ z) ≥ α} and b := sup{z : Pr(Z ≥ z) ≤ α}. In particular, if α = 1

2
,

then κα(Z) becomes the median of the distribution of Z and

hα[Z] = 1
2
E
∣∣Z − κ1/2

∣∣ ,
and it represents half of the mean absolute deviation from the median.

In [15], it is shown that mean-risk models (4.1), with R[·] := hα[·] and γ ∈ [0, 1],
provide solutions that are consistent with stochastic dominance theory. In the fol-
lowing, we show that minimax models (3.3) provide a new insight into mean-risk
models (4.1).

Consider functions Lλ(ω) and ηε1,ε2 [a], defined in (2.6) and (2.11), respectively.
These functions can be written in the form

Lλ(ω) = Z(ω)− λ0 and ηε1,ε2 [a] = (ε1 + ε2) (α[a]+ + (1− α)[−a]+) ,

where Z(ω) := ϕ0(ω)−∑q
i=1 λiϕi(ω) and α := ε2/(ε1 + ε2), and hence

ηε1,ε2 [Lλ(ω)] = (ε1 + ε2)
(
α[Z(ω)− λ0]+ + (1− α)[λ0 − Z(ω)]

+

)
.(4.3)

We obtain that for fixed λi, i = 1, . . . , q, and positive ε1 and ε2, a minimizer λ̄0 of
EP∗ {ηε1,ε2 [Lλ(ω)]} over λ0 ∈ R is given by an α-quantile of the distribution of the
random variable Z(ω), defined on the probability space (Ω,F , P ∗). In particular, if
ε1 = ε2, then λ̄0 is the median of the distribution of Z. It follows that if ε1 and ε2
are positive, then the minimum of the expectation in (3.3), with respect to λ0 ∈ R, is
attained at an α-quantile of the distribution of F (x, ω)−∑q

i=1 λiϕi(ω) with respect to
the probability measure P ∗. In particular, if the moment constraints are not present
in (3.2), i.e., q = 0, then problem (3.3) can be written as follows:

Min
x∈X

EP∗
[
F (x, ω)

]
+ (ε1 + ε2)hα[F (x, ω)],(4.4)

where hα is defined as in (4.2). The above discussion leads to the following result.
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Proposition 4.1. The mean-risk model (4.1) with R[·] := hα[·] is equivalent to
the minimax model (3.3) with ε1 = γ(1− α), ε2 = αγ, and q = 0.

The additional term (ε1 + ε2)hα[F (x, ω)], which appears in (4.4), can be inter-
preted as a regularization term. We conclude this section by discussing the effect of
such regularization.

Consider the case when the function F (·, ω) is convex and piecewise linear for all
ω ∈ Ω. This is the case, for example, when F (x, ω) is the value function of the second-
stage linear program (3.13) without integrality restrictions. Consider the stochastic
programming problem (with respect to the reference probability distribution P ∗)

Min
x∈X

EP∗ [F (x, ω)](4.5)

and the corresponding mean-risk or minimax model (4.4). Suppose that X is poly-
hedral, the support Ω of ω is finite, and both problems (4.4) and (4.5) have finite
optimal solutions. Then from the discussion at the end of section 3, the problems
(4.4) and (4.5) can be stated as linear programs. Let S0 and Sε1,ε2 denote the sets of
optimal solutions of (4.5) and (4.4), respectively. Then by standard theory of linear
programming, we have that, for all ε1 > 0 and ε2 > 0 sufficiently small, the inclusion
Sε1,ε2 ⊂ S0 holds. Consequently, the term (ε1 + ε2)hα[F (x, ω)] has the effect of reg-
ularizing the solution set of the stochastic program (4.5). We further illustrate this
regularization with an example.

Example 1. Consider the function F (x, ω) := |ω − x|, x,w ∈ R, with ω having
the reference distribution P ∗(ω = −1) = p∗1 and P ∗(ω = 1) = p∗2 for some p∗1 > 0,
p∗2 > 0, p∗1 + p∗2 = 1. We then have that

EP∗ [F (x, ω)] = p∗1|1 + x|+ p∗2|1− x|.
Let us first discuss the case where p∗1 = p∗2 = 1

2
. Then the set S0 of optimal solutions

of the stochastic program (4.5) is given by the interval [−1, 1]. For ε2 > ε1 and
ε1 ∈ (0, 1), the corresponding α-quantile κα(F (x, ω)), with α := ε2/(ε1 + ε2), is equal
to the largest of the numbers |1−x| and |1+x|, and for ε2 = ε1 the set of α-quantiles
is given by the interval with the end points |1 − x| and |1 + x|. It follows that, for
ε2 ≥ ε1, the mean-risk (or minimax) objective function in problem (4.4),

f(x) := EP∗
[
F (x, ω)

]
+ (ε1 + ε2)hα[F (x, ω)],

is given by

f(x) =

{
1
2
(1− ε1)|1− x|+ 1

2
(1 + ε1)|1 + x| if x ≥ 0,

1
2
(1 + ε1)|1− x|+ 1

2
(1− ε1)|1 + x| if x < 0.

Consequently, Sε1,ε2 = {0}. Note that for x = 0, the random variable F (x, ω) has
minimal expected value and variance zero (with respect to the reference distribu-
tion P ∗). Therefore it is not surprising that x = 0 is the unique optimal solution of
the mean-risk or minimax problem (4.4) for any ε1 ∈ (0, 1) and ε2 > 0.

Suppose now that p∗2 > p∗1. In that case S0 = {1}. Suppose, further, that
ε1 ∈ (0, 1) and ε2 ≥ ε1, and hence α ≥ 1

2
. Then for x ≥ 0 the corresponding

α-quantile κα(F (x, ω)) is equal to |1 − x| if α < p∗2, κα(F (x, ω)) = 1 + x if α > p∗2,
and κα(x) can be any point on the interval

[|1 − x|, 1 + x
]

if α = p∗2. Consequently,
for α ≤ p∗2 and x ≥ 0,

f(x) = (p∗1 + ε2p
∗
1)(1 + x) + (p∗2 − ε2p∗1)|1− x|.
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It follows then that Sε1,ε2 = {1} if and only if p∗1 + ε2p
∗
1 < p∗2 − ε2p∗1. Since α ≤ p∗2

means that ε2 ≤ (p∗2/p
∗
1)ε1, we have that for ε2 in the interval [ε1, (p

∗
2/p

∗
1)ε1], the

set Sε1,ε2 coincides with S0 if and only if ε2 < (p∗2/p
∗
1 − 1)/2. For ε2 in this interval

we can view ε̄2 := (p∗2/p
∗
1 − 1)/2 as the breaking value of the parameter ε2; i.e., for

ε2 bigger than ε̄2 an optimal solution of the minimax problem moves away from the
optimal solution of the reference problem.

Suppose now that p∗2 > p∗1 and α ≥ p∗2. Then for x ≥ 0,

f(x) = (p∗1 + ε1p
∗
2)(1 + x) + (p∗2 − ε1p∗2)|1− x|.

In that case the breaking value of ε1, for ε1 ≤ (p∗1/p
∗
2)ε2, is ε̄1 := (1− p∗1/p∗2)/2.

5. Numerical results. In this section we describe some numerical experiments
with the proposed minimax stochastic programming model. We consider minimax
extensions of two-stage stochastic linear programs with finite support of the random
problem parameters. We assume that q = 0 (i.e., that the moment constraints are
not present in the model) since, in this case, the minimax problems are equivalent to
mean-risk extensions of the stochastic programs, where risk is measured in terms of
quantile deviations.

Recall that, owing to the finiteness of the support, the minimax problems reduce
to the specially structured linear programs (3.15). We use an ∞–trust-region based
decomposition algorithm for solving the resulting linear programs. The method along
with its theoretical convergence properties is described in [12]. The algorithm has
been implemented in ANSI C with the GNU Linear Programming Kit (GLPK) [14]
library routines to solve linear programming subproblems. All computations have
been carried out on a Linux workstation with dual 2.4 GHz Intel Xeon processors and
2 GB RAM.

The stochastic linear programming test problems in our experiments are de-
rived from those used in [11]. We consider the problems LandS, gbd, 20term, and
storm. Data for these instances are available from the website http://www.cs.wisc.
edu/∼swright/stochastic/sampling. These problems involve extremely large numbers
of scenarios (joint realizations of the uncertain problem parameters). Consequently,
for each problem, we consider three instances each with 1000 sampled scenarios. The
reference distribution P ∗ for these instances corresponds to equal weights assigned to
each sampled scenario.

Recall that a minimax model with parameters ε1 and ε2 is equivalent to a mean-
risk model (involving quantile deviations) with parameters γ := ε1 + ε2 and α :=
ε2/(ε1 + ε2). We consider α values of 0.5, 0.7, and 0.9, and ε1 values of 0.1, 0.3, 0.5,
0.7, and 0.9. Note that the values of the parameters ε2 and γ are uniquely determined
by ε2 = αε1/(1−α) and γ = ε1/(1−α). Note also that some combinations of ε1 and α
are such that γ > 1, and consequently the resulting solutions are not guaranteed to
be consistent with stochastic dominance.

First, for each problem, the reference stochastic programming models (with ε1 =
ε2 = 0) corresponding to all three generated instances were solved. Next, the minimax
stochastic programming models for the various ε1-α combinations were solved for all
instances. Various dispersion statistics corresponding to the optimal solutions (from
the different models) with respect to the reference distribution P ∗ were computed.
Table 5.1 presents the results for the reference stochastic program corresponding to
the four problems. The first six rows of the table display various cost-statistics cor-
responding to the optimal solution with respect to P ∗. The presented data is the
average over the three instances. The terms “Abs Med-Dev,” “Abs Dev,” “Std Dev,”
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“Abs SemiDev,” and “Std SemiDev” stand for the statistics mean absolute deviation
from the median, mean absolute deviation, standard deviation, absolute semidevia-
tion, and standard semideviation, respectively. The last two rows of the table display
the average (over the three instances) number of iterations and CPU seconds required.
Tables 5.2–5.4 present the results for the problem LandS. Each table in this set corre-
sponds to a particular α value, and each column in a table corresponds to a particular
ε1 value. The statistics are organized in the rows as in Table 5.1. Similar results are
available from the authors for the problems gbd, 20term, and storm. In Table 5.5, we
present the statistics corresponding to α = 0.7 and ε1 = 0.5 for these three problems.

For a fixed level of α, increasing ε1 corresponds to increasing the allowed per-
turbation of the reference distribution in the minimax model, and to increasing the
weight γ for the risk term in the mean-risk model. Consequently, we observe from the
tables that this leads to solutions with higher expected costs. We also observe that
the value of some of the dispersion statistics decreases, indicating a reduction in risk.
Similar behavior occurs upon increasing α corresponding to a fixed level of ε1.

A surprising observation from the numerical results is that the considered prob-
lem instances are very robust with respect to perturbations of the reference distribu-
tion P ∗. Even with large perturbations of the reference distribution, the perturbations
of the optimal objective function values are relatively small.

A final observation from the tables is the large variability of computational effort
for the various ε1-α combinations. This can be somewhat explained by the regu-
larization nature of the minimax (or mean-risk) objective function as discussed in
section 4. For certain ε1-α combinations, the piecewise linear objective function may
become very sharp, resulting in faster convergence of the algorithm.

Table 5.1

Statistics corresponding to the reference stochastic program.

LandS gbd 20term storm

Expected cost 225.52 1655.54 254147.15 15498557.91
Abs Med-Dev 46.63 502.01 10022.59 304941.12
Abs Dev 46.95 539.63 10145.86 313915.60
Std Dev 59.26 715.33 12079.76 371207.13
Abs SemiDev 23.47 269.81 5072.93 156957.80
Std SemiDev 44.55 605.01 8824.36 261756.11
Iterations 47.33 57.33 275.33 5000.00
CPU seconds 0.67 0.67 32.33 2309.33

Table 5.2

Statistics for problem LandS with α = 0.5.

ε1 = 0.1 ε1 = 0.3 ε1 = 0.5 ε1 = 0.7 ε1 = 0.9
Expected cost 225.57 225.74 225.99 226.39 226.95
Abs Med-Dev 45.91 45.03 44.41 43.74 43.04
Abs Dev 46.24 45.38 44.70 44.15 43.47
Std Dev 58.28 57.16 56.41 55.63 54.84
Abs SemiDev 23.12 22.69 22.39 22.08 21.73
Std SemiDev 43.78 42.97 42.48 41.97 41.45
Iterations 3357.33 3357.00 75.00 70.00 67.33
CPU seconds 196.33 195.33 1.00 1.00 1.00
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Table 5.3

Statistics for problem LandS with α = 0.7.

ε1 = 0.1 ε1 = 0.3 ε1 = 0.5 ε1 = 0.7 ε1 = 0.9
Expected cost 225.603 225.86 226.31 226.92 227.73
Abs Med-Dev 45.69 44.76 43.91 43.14 42.32
Abs Dev 46.01 45.11 44.28 43.54 42.76
Std Dev 57.94 56.79 55.79 54.92 54.01
Abs SemiDev 23.00 22.55 22.14 21.77 21.38
Std SemiDev 43.47 42.69 42.02 41.44 40.85
Iterations 5000.00 72.67 64.67 70.67 68.00
CPU seconds 293.00 1.33 1.00 1.00 1.00

Table 5.4

Statistics for problem LandS with α = 0.9.

ε1 = 0.1 ε1 = 0.3 ε1 = 0.5 ε1 = 0.7 ε1 = 0.9
Expected cost 225.66 226.23 227.16 228.24 228.72
Abs Med-Dev 45.44 44.06 42.93 42.06 41.76
Abs Dev 45.77 44.45 43.36 42.49 42.17
Std Dev 57.61 55.95 54.64 53.62 53.26
Abs SemiDev 22.88 22.23 21.68 21.25 21.09
Std SemiDev 43.21 42.13 41.27 40.54 40.28
Iterations 65.67 63.33 59.67 60.00 1700.33
CPU seconds 1.00 1.00 1.00 1.00 95.67

Table 5.5

Statistics for problems gbd, 20term, and storm with α = 0.7 and ε1 = 0.5.

gbd 20term storm

Expected cost 1663.67 254545.40 15499225.25
Abs Med-Dev 483.94 9220.59 303585.26
Abs Dev 523.96 9360.18 312532.81
Std Dev 702.31 11002.47 369731.47
Abs SemiDev 261.98 4680.09 156266.40
Std SemiDev 598.71 7767.96 260501.73
Iterations 71.67 281.33 1718.33
CPU seconds 1.00 34.00 807.33
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